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Abstract

In sequential decision-making, the reward func-
tion serves as the primary supervision signal, guid-
ing agents to acquire the desired behaviors. Tradi-
tional reward modeling methods rely heavily on
human expertise, limiting their scalability. Au-
tomated preference generation from suboptimal
demonstrations has emerged as a promising alter-
native to address this limitation. This approach
first generates preference data from suboptimal
demonstrations and then trains reward models
based on these preferences. Despite its potential,
existing methods often struggle to generate prefer-
ence data with sufficient coverage, limiting the ac-
curacy and generalizability of the resulting reward
models. To overcome this limitation, we propose
APEC (Automated Preference generation with En-
hanced Coverage), a novel method that improves
the coverage of preference data. APEC achieves
this by selecting policy pairs with significantly dif-
ferent iteration indices from the whole adversarial
imitation learning process. We provide a theoret-
ical analysis to validate that the selected policy
pairs provably hold preference relationships. Ex-
perimental results demonstrate that APEC consis-
tently outperforms baseline methods in generat-
ing preferences with broader coverage across both
vector-based and pixel-based control tasks. Con-
sequently, the reward models trained with APEC
align more closely with ground-truth rewards, de-
riving improved policy performance. Our code is
released at https://github.com/Zzl35/APEC.
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1. Introduction
In reinforcement learning (RL) (Sutton & Barto, 2018), the
reward function serves as the cornerstone for defining the
agent’s objective, quantifying its performance, and steering
it toward learning optimal behavior by maximizing cumu-
lative rewards. However, designing an appropriate reward
function remains a significant challenge. An ideal reward
function should capture the intended behaviors while pre-
venting the reward hacking issue that the policy produces
artificially high rewards without achieving the desired behav-
iors (Gao et al., 2023). Moreover, it should provide dense
and informative feedback, offering actionable guidance to
boost efficient policy learning.

Traditional reward modeling methods can be broadly cat-
egorized into three types: manual design (Hwangbo et al.,
2019; Kumar et al., 2021), inverse reinforcement learning
(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Fu et al.,
2017a; Luo et al., 2022), and preference-based reward learn-
ing (Bradley & Terry, 1952; Christiano et al., 2017; Wirth
et al., 2017). Manual design involves crafting reward func-
tions by hand, requiring extensive domain expertise and
frequent adjustments. This approach is labor-intensive and
often impractical for complex tasks. In contrast, IRL at-
tempts to infer reward functions from expert demonstrations,
eliminating the need for manual reward design. However,
it suffers from inherent ambiguity and relies on optimal
demonstrations (Amin & Singh, 2016; Kim et al., 2021),
limiting its utility to tasks where such optimal demonstra-
tions are difficult to obtain. Preference-based reward learn-
ing, which learns reward models from preference feedback
using the Bradley-Terry model (Bradley & Terry, 1952),
has emerged as a promising alternative. Despite this, exist-
ing methods typically require substantial human preference,
limiting their applicability to large-scale tasks. In summary,
traditional reward modeling methods rely heavily on human
expertise, limiting their scalability.

To address these challenges, researchers have been explor-
ing various solutions, with automated preference generation
from suboptimal demonstrations emerging as a promising
approach (Brown et al., 2020; Chen et al., 2021; Huo et al.,
2023; Huang et al., 2023). For example, D-REX (Brown
et al., 2020) starts by learning a behavior cloning (BC)
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(Pomerleau, 1991) policy from suboptimal demonstrations
and then generates trajectories with varying preference lev-
els by introducing different uniformly random noise to the
BC policy. Based on this, LERP (Huo et al., 2023) improves
the utility of the preference by adding noise directly into
the reward space. Despite these innovations, such methods
overlook the importance of the coverage of generated pref-
erences, which is proven to be crucial for learning accurate
reward models (Zhu et al., 2023; Nika et al., 2024). As a
result, the reward models learned by these methods are not
robust and thus cannot be used for subsequent policy learn-
ing. The purpose of this paper is to address the following
research problem.

How to automatically generate accurate preferences with
broad coverage?

In this paper, we present APEC, an Automated Preference
generation with Enhanced Coverage method. This method
is inspired by the key observation in adversarial imitation
learning (AIL) (Ho & Ermon, 2016; Kostrikov et al., 2019;
Garg et al., 2021; Xu et al., 2024), the value of the learned
policy gradually increases as the training progresses, sug-
gesting that later policies are preferred over earlier ones.
Based on existing analysis on AIL (Xu et al., 2023), we pro-
vide a theoretical justification for this observation, demon-
strating that the value gap bound of the learned policy di-
minishes as the iteration index increases. Building on this
insight, APEC chooses policy pairs with significantly differ-
ent iteration indexes from the whole AIL training process
and then executes them to generate the preference data. In
stark contrast to previous methods (Brown et al., 2020; Huo
et al., 2023), which generate preference data by merely in-
jecting uniformly random noise into a fixed policy, APEC
leverages a wide range of policies from the whole AIL train-
ing process, resulting in a preference dataset with broad
coverage.

Empirically, we evaluate APEC across five vector-based and
three pixel-based continuous control tasks. The empirical
results demonstrate that, compared to existing baselines,
our method can generate preferences with broader coverage,
and the reward models learned from these preferences align
more closely with the true environment rewards. In partic-
ular, APEC is the only method that consistently produces
policies that achieve performance comparable to or even
better than demonstrations in all tasks.

We highlight the main contributions of our work below.

• We propose an automated preference generation
method, APEC, which leverages the policy pairs with
different iteration indexes from the AIL training pro-
cess, ensuring broad coverage in the generated prefer-
ence data.

• We provide a theoretical justification for APEC, demon-
strating that the value gap bound of the learned policy
diminishes as the iteration index increases.

• We validate APEC across eight continuous control
tasks, demonstrating that it can learn reward models
that align more closely with true rewards, leading to
improved policy performance.

2. Preliminaries
Markov Decision Process. In this paper, we consider finite-
horizon Markov Decision Processes (MDPs), represented
by the tuple M = (S,A, P, r⋆, H, ρ). Here, S and A de-
note the state and action spaces, respectively. H signifies
the planning horizon, while ρ stands for the initial state
distribution. Besides, P : S × A → ∆(S) denotes the
transition function where P (s′|s, a) determines the prob-
ability of transiting to state s′ given state s and action a.
Similarly, r⋆ : S ×A → [0, 1] outlines the reward function
of this MDP. Without loss of generality, we assume that the
reward value is bounded in [0, 1]. A non-stationary policy
is denoted by π = {πh}Hh=1 with πh : S → ∆(A), where
∆(A) denotes the probability simplex. Here, πh(a|s) repre-
sents the probability of selecting action a in state s at time
step h, for h ∈ [H]. The quality of policy π is evaluated
by policy value: V π = E

[∑H
h=1 r

⋆(sh, ah);π, P
]
. Be-

sides, for a policy π, we define the state-action distribution
dπ(s, a) = (1/H) ·

∑H
h=1 P (sh = s, ah = a;π).

Reward Learning from Suboptimal Demonstrations.
This work studies the setup of reward learning from sub-
optimal demonstrations, which aims to infer reward func-
tions from imperfect trajectories (Brown et al., 2019;
2020). In this setup, we typically assume the exis-
tence of a suboptimal policy, πO, that interacts with
the environment to generate a suboptimal dataset. For-
mally, DO = {τO

n = (s1, a1, s2, a2, . . . , sH , aH) ; ah ∼
πO
h (·|sh), sh+1 ∼ P (·|sh, ah),∀h ∈ [H]}Nn=1. The learner

then uses DO to infer a reward function rϕ parameterized
by ϕ, which is subsequently employed to derive an effective
policy.

Preference-based Reward Learning. Preference-based
reward learning (Christiano et al., 2017; Brown et al., 2019)
aims to infer rewards from a preference dataset. These meth-
ods are typically built on the Bradley-Terry (BT) model
(Bradley & Terry, 1952). In particular, for a pair of trajecto-
ries (τ1, τ2), the BT model assumes that the probability of
τ1 being preferred over τ2 can be formulated as

P
(
τ1 ≻ τ2

)
= σ(r⋆(τ1)− r⋆(τ2)).

Here σ(x) = 1/(1 + exp(−x)) is the logistic function and
r⋆(τ) =

∑H
h=1 r

⋆(sh, ah) denotes the return of the trajec-
tory τ = (s1, a1, . . . , sH , aH). Based on this probability
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modeling, these methods apply maximum likelihood esti-
mation to learn rewards from the preference dataset Dpref.

min
ϕ

−E(τ+,τ−)∼Dpref

[
log
(
σ(rϕ(τ

+)− rϕ(τ
−))
)]

.

Here (τ+, τ−) means that τ+ is preferred over τ−.

3. Method
In this section, we introduce APEC: Automated Preference
Generation with Enhanced Coverage. We first highlight the
importance of preference data coverage in preference-based
reward learning, a critical issue that previous methods have
largely overlooked (Section 3.1). Next, we present the key
observation behind APEC: adversarial imitation learning
(AIL) can produce a series of policies with increasing values.
We also provide a theoretical justification for this observa-
tion (Section 3.2). Finally, we describe the resulting APEC
method, which incorporates additional techniques such as
the Wasserstein distance criterion and random segment crop-
ping to further enhance the generalization of reward models
(Section 3.3).

3.1. The Coverage of Preference Data is Crucial

This work follows the pipeline of first automatically gener-
ating a preference dataset and then learning rewards from
it. In this preference-based reward learning procedure, the
coverage of the preference dataset is a pivotal factor (Zhu
et al., 2023; Nika et al., 2024). Specifically, (Zhu et al.,
2023, Theorem 5.2) indicates that if policy optimization
is performed using the reward learned from the preference
dataset, the resulting policy exhibits a sub-optimality bound
that depends on the following coverage coefficient.

Cov(Dpref) =
∥∥∥(ΣDpref + λI)

−1/2 E(s,a)∼dπ⋆ [ϕ(s, a)]
∥∥∥
2
.

Here ϕ : S × A → Rd is the feature function. For a tra-
jectory τ , we use ϕ(τ) =

∑
(s,a)∈τ ϕ(s, a) to denote the

summation of features along this trajectory and ΣDpref =
(1/|Dpref|) ·

∑
(τ+,τ−)∈Dpref(ϕ(τ+) − ϕ(τ−))(ϕ(τ+) −

ϕ(τ−))⊤ ∈ Rd×d is the covariance matrix of Dpref.
Cov(Dpref) qualifies the coverage of Dpref over the target
data distribution induced by the optimal policy π⋆ in the
feature space. If Dpref exhibits good coverage in the sense
that Cov(Dpref) is small, the derived policy enjoys a small
sub-optimality.

However, previous automated preference generation meth-
ods (Brown et al., 2020; Huo et al., 2023) often overlook the
crucial role of coverage and struggle to generate a prefer-
ence dataset with sufficient coverage. For instance, D-REX
(Brown et al., 2020) first learns a behavioral cloning pol-
icy πBC from DO. D-REX then designs a disturbed policy
πε
h(·|s) = (1− ε)πBC

h (·|s) + εUnifA(·), where ε controls

the level of disturbance, and UnifA(·) denotes the uniform
distribution over the action space. Finally, D-REX generates
preferences by executing these disturbed policies with dif-
ferent values of ε, i.e., (τ+, τ−) if τ+ ∼ πε and τ− ∼ πε′

with ε < ε′. Consequently, the resulting preference data
distribution is induced by these disturbed policies. We argue
that this distribution exhibits poor coverage. In particular,
due to the well-known compounding errors issue (Syed &
Schapire, 2010), the BC policy πBC suffers a significant
performance gap compared to πO. As a result, these dis-
turbed policies, interpolated between πBC and UnifA, fail
to provide adequate coverage of high-return regions. We
also empirically validate this claim. As shown in Figure
4, the preference data distributions generated by D-REX
exhibit relatively poor coverage.

3.2. AIL Produces Policy Pairs with Clear Preferences
and Good Coverage

This work aims to enhance previous automatic preference
generation methods by improving preference data cover-
age. The proposed method is inspired by the following
key observation: in another imitation learning method, ad-
versarial imitation learning (AIL), the value of the learned
policy gradually increases as training progresses, as shown
in Figure 2. We briefly introduce AIL in the following. AIL
mimics DO by solving the minimax optimization problem
of:

min
π

max
r

Eτ∼DO

[
H∑

h=1

r(sh, ah)

]
− Eτ∼π

[
H∑

h=1

r(sh, ah)

]
.

For the inner optimization, the variable r : S ×A → [0, 1]
can be regarded as a reward function, aiming to maximize
the value gap between πO and π. To solve the above mini-
max problem, AIL methods alternatively update the policy
variable and reward variable in an iterated manner; see Algo-
rithm 1 for a standard AIL training procedure. Proposition
3.1 provides a theoretical justification for the above obser-
vation on the AIL training process.

Proposition 3.1. Consider the AIL method shown in Algo-
rithm 1. For any fixed δ ∈ (0, 1], with probability at least
1− δ, we have

V πO

− V πk

≤ 4H2

√
2|S||A| ln(|A|)

k
+ εstat.

Here πk denotes the policy in the k-th iteration and εstat =
4
√
2H(|S||A| log(1/δ)) 1

2 |DO|− 1
2 denotes the statistical er-

ror due to finite samples in DO.

The proof is deferred to Appendix A. Proposition 3.1 demon-
strates that during the AIL training process, the value gap
bound of the learned policy diminishes as the iteration index
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Stage2: Generation of Diverse Preferences Stage3: Reward Learning and Evaluation
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Figure 1. Overview of APEC. There are three key stages: (1) Collecting policies from the AIL training process. (2) Generating diverse
preferences based on their corresponding iteration indexes. (3) Learning generalizable reward models from generated preferences.
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Figure 2. The learning curves of AIL on Mujoco and DMControl
tasks. The x-axis represents the number of interactions with the
environment (frames for pixel-based tasks), and the y-axis repre-
sents the policy return. The gray dashed line represents the average
return of trajectories in suboptimal demonstrations DO.

increases. This may indicate a progressive improvement in
policy value over successive iterations, suggesting that later
policies are preferred over earlier ones.

Building on this insight, we propose constructing policy
pairs with distinct preferences by repeatedly selecting two
policies with significantly different iteration indices from
the AIL training process. These policy pairs are then used
to generate the preference dataset. In our approach, the
preference data distribution is induced by policies across
the entire AIL training process, ensuring broad coverage
for two reasons. First, both theoretical (Xu et al., 2020;
Rajaraman et al., 2020) and practical (Ho & Ermon, 2016;
Kostrikov et al., 2019) works have demonstrated that AIL
effectively mitigates the compounding errors issue in BC,
leading to final policies that closely match πO and induce
a distribution with good coverage of high-return regions.
Second, by drawing from policies throughout the entire AIL
training process, the preference dataset captures a broad and
representative coverage of the whole state-action space.

3.3. APEC: Automated Preference Generation with
Enhanced Coverage

We present our method, APEC, which consists of three
components: collection of AIL policies, generation of di-

verse preferences, and reward learning and evaluation, as
illustrated in Figure 1.

Collection of AIL Policies. In Section 3.2, we prove that
the policy performance bound of the AIL algorithm im-
proves for training epochs. For our implementation, we use
DAC (Kostrikov et al., 2019), a well-known AIL algorithm
recognized for its excellent sample efficiency and conver-
gence properties. Additionally, we save checkpoints of the
policy model at regular intervals during training. While
these policies display diverse behaviors, they consistently
show a steady increase in expected cumulative return, which
is then used to generate preferences for subsequent steps.

Generation of Diverse Preferences. After policy collec-
tion, we construct a preference buffer. Following the guid-
ance of Proposition 3.1, we iteratively sample policy pairs πi

and πj from the collected policy set, ensuring that j− i > k,
where k is the training epoch interval between two policies.
For each pair, we allow πi and πj to rollout trajectories τi
and τj in the environment, respectively. However, directly
adding (τ i, τ j ,≻) to the preference buffer presents two
challenges: 1) In tasks with high stochasticity, the perfor-
mance variance is high among trajectories sampled from the
same policy. Although V (πj) is expected to be greater than
V (πi), the instance-level performance R(τ i) < R(τ j) may
not always hold. 2) During training, AIL may experience
occasional performance spikes, where policy performance
drops dramatically but recovers quickly. To address the
above two issues, we introduce a Wasserstein distance crite-
rion for doubly robust preference generation. Specifically,
we calculate the Wasserstein distance between sampled tra-
jectories and suboptimal demonstrations DO, denoted as
di =

1
N

∑N
n=1 W(τ i, τOn ), dj =

1
N

∑N
n=1 W(τ j , τOn ). We

then impose the constraint di − dj > δ for a threshold
δ. Finally, only trajectory pairs that satisfy both the epoch
criterion and the Wasserstein distance criterion conditions
are added to the preference buffer. In Section 4.5, we vali-
date the effectiveness of the Wasserstein distance criterion
through ablation experiments.

Reward Learning. Reward learning from preferences aims
at estimating the reward model that reflects the observed
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preferences. Most approaches are based on the Bradley-
Terry model (Bradley & Terry, 1952), which assumes that
the probability of preferring one trajectory segment over an-
other is exponentially related to the sum of the reward model
rϕ estimates for those segments. However, we have found
that when the trajectory horizon is long and preference data
consist of full trajectories, directly applying the Bradley-
Terry model often fails to capture the desired behavior in
complex tasks. To address this, we randomly extract seg-
ments from full trajectories and use these partial trajectories
for training as proposed in T-REX (Brown et al., 2019). The
loss function for this approach is defined in Equation (1).

min
ϕ

−Eh∼[0,H−l],

(τ−,τ+)∼D

[
log
(
σ(rϕ(τ

+
[h:h+l])− rϕ(τ

−
[h:h+l]))

)]
.

(1)

4. Experiment
We perform comprehensive experiments to answer the fol-
lowing questions. Q1: How accurate is the learned reward
model? How does its performance compare to the baselines?
(Section 4.2) Q2: Can the learned reward model derive an
effective policy? (Section 4.3) Q3: How accurate are the
generated preferences? Do they offer broader coverage than
baselines? (Section 4.4) Q4: How does each component in
APEC affect performance? (Section 4.5)

4.1. Experimental Setup

Benchmark. We evaluate our method on five tasks from
the feature-based Mujoco benchmark (Todorov et al., 2012),
and three tasks from the pixel-based DMControl bench-
mark (Tassa et al., 2018), which are leading benchmarks in
reinforcement learning and imitation learning that provide a
diverse set of continuous control tasks.

Suboptimal demonstrations and test dataset. We train RL
agents using SAC (Haarnoja et al., 2018) for MuJoCo tasks
and DrQ-v2 (Yarats et al.) for DMControl tasks, ensuring
sufficient training epochs and treating the final policy check-
point as the optimal one. To generate suboptimal demon-
strations, we select policy checkpoints with performance
ranging from 50% to 80% of the optimal. Additionally, we
uniformly sample 1,000 trajectories from the replay buffers
during training to create test datasets, enabling the evalua-
tion of the generalization of the learned reward functions
across different algorithms.

Primary Baselines. We compare APEC with four state-of-
the-art baselines: D-REX (Brown et al., 2020), AIRL (Fu
et al., 2017a), SSRR (Chen et al., 2021), and LERP (Huo
et al., 2023). To control for the impact of sample size on
training results, we ensure that all methods are trained with
an identical number of sampled trajectories. Specifically,
we use 2000 trajectories for Mujoco and 10,000 trajectories

for DMControl.

Experimental Challenges. Compared to previous works,
our experimental setup is significantly more challeng-
ing. (1) Pixel-based continuous control tasks are included.
(2) Fewer demonstrations are available, for Mujoco tasks,
only one suboptimal demonstration is provided, whereas
for DMControl tasks, ten suboptimal demonstrations are
used. (3) The suboptimal demonstrations are selected from
a high-return range, making it more difficult to achieve
better-than-demo performance.

4.2. Reward Model Accuracy

To address Q1, we compare the learned reward accuracy
of APEC with that of other baselines. Specifically, we
evaluate performance on the test dataset using three key
metrics: (1) Reward correlation, the Pearson correlation
between learned and true rewards. (2) Return correlation,
the Pearson correlation between learned and true returns.
(3) Preference accuracy, the accuracy of preference labels
given by learned returns on randomly constructed trajectory
pairs from the test dataset.

Tables 1 and 2 present the reward and return correlation
results across various tasks and methods, highlighting the
effectiveness of APEC compared to baseline approaches.
Specifically, Table 1 shows that APEC achieves the highest
reward correlation scores, consistently surpassing baselines.
Notably, in the Ant and HalfCheetah tasks, APEC reaches
reward correlation values of 0.94 and 0.91, respectively.
Table 2 presents return correlation results, further reinforc-
ing APEC’s superiority in deriving high-quality policies.
APEC consistently achieves the highest return correlation
scores, reaching near-perfect alignment (0.99–1.00) in sev-
eral vector-based tasks. The method also performs excep-
tionally well in pixel-based control environments, with re-
turn correlation values averaging 0.96, significantly higher
than competing approaches. Overall, our method surpasses
the baselines in nearly all tasks, indicating that the pref-
erences generated by APEC lead to more accurate reward
models.

Environment SSRR AIRL D-REX LERP APEC(ours)

Ant 0.16±0.17 0.61±0.01 −0.07±0.04 −0.09±0.04 0.94±0.02

HalfCheetah 0.33±0.12 0.48±0.14 0.12±0.09 0.12±0.10 0.91±0.02

Hopper 0.37±0.13 0.77±0.05 0.00±0.24 0.00±0.24 0.83±0.05

Humanoid 0.05±0.02 0.23±0.03 0.02±0.01 0.02±0.01 0.04±0.04

Walker2d 0.25±0.06 0.24±0.07 0.19±0.05 0.19±0.07 0.88±0.02

Average 0.23 0.47 0.05 0.05 0.72

cheetah run −0.12±0.02 −0.19±0.03 0.68±0.00 0.70±0.00 0.73±0.00

walker run 0.06±0.18 −0.01±0.24 0.60±0.01 0.62±0.00 0.88±0.00

walker walk 0.06±0.09 −0.17±0.07 0.51±0.02 0.54±0.01 0.76±0.00

Average 0.00 -0.12 0.59 0.62 0.79

Table 1. Reward correlation on Mujoco and DMControl tasks over
5 random seeds.
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Figure 3. Overall performance on policy learning evaluation on Mujoco and DMControl tasks. Here the x-axis is the number of training
steps (frames for pixel-based tasks) and the y-axis is the policy return. The solid lines are the mean of results while the shaded region
corresponds to the standard deviation over 5 random seeds.

Environment SSRR AIRL D-REX LERP APEC(ours)

Ant 0.57±0.28 0.45±0.01 −0.49±0.35 −0.57±0.28 0.99±0.00

HalfCheetah 0.92±0.08 0.96±0.02 0.42±0.40 0.40±0.44 0.99±0.00

Hopper 0.99±0.00 0.97±0.01 0.47±0.71 0.46±0.70 1.00±0.00

Humanoid 0.99±0.00 −0.99±0.00 −0.87±0.17 −0.89±0.14 0.95±0.03

Walker2d 0.98±0.01 0.69±0.18 0.75±0.35 0.84±0.22 1.00±0.00

Average 0.89 0.42 0.06 0.05 0.99

cheetah run −0.44±0.21 −0.43±0.37 0.94±0.00 0.94±0.00 0.98±0.00

walker run 0.15±0.30 −0.01±0.56 0.86±0.01 0.87±0.01 0.98±0.00

walker walk 0.12±0.22 −0.23±0.20 0.65±0.02 0.70±0.01 0.92±0.00

Average −0.06 −0.22 0.81 0.84 0.96

Table 2. Return correlation on Mujoco and DMControl tasks over
5 random seeds.

Furthermore, our method outperforms others in labeling
preferences for unseen trajectory pairs, as shown in Table 3.
APEC achieves an average labeling accuracy of 90% for
Mujoco tasks and 86% for DMControl tasks on the test
dataset. In contrast, all other baselines fail to achieve 80%
accuracy in any task category.

4.3. Policy Learning Evaulation

To answer Q2, we directly use the learned reward model
for RL training and assess its reusability by comparing con-
vergence performance. Specifically, we use SAC for Mu-
joco tasks and DrQ-v2 for DMControl tasks. Additionally,
to accelerate convergence, the training buffer was initial-
ized with trajectories sampled from the AIL step (Stage 1
in Figure 1). For Mujoco tasks, we uniformly sample 10

Environment SSRR AIRL D-REX LERP APEC(ours)

Ant 0.66±0.11 0.69±0.02 0.37±0.08 0.34±0.07 0.85±0.02

HalfCheetah 0.83±0.11 0.90±0.01 0.69±0.10 0.69±0.11 0.97±0.01

Hopper 0.91±0.02 0.84±0.01 0.68±0.27 0.68±0.26 0.95±0.00

Humanoid 0.88±0.01 0.10±0.00 0.23±0.10 0.23±0.09 0.78±0.06

Walker2d 0.88±0.04 0.65±0.05 0.80±0.14 0.81±0.13 0.95±0.01

Average 0.83 0.63 0.55 0.55 0.90

cheetah run 0.39±0.02 0.44±0.26 0.87±0.00 0.87±0.00 0.92±0.00

walker run 0.55±0.01 0.55±0.26 0.78±0.01 0.78±0.00 0.90±0.00

walker walk 0.54±0.01 0.41±0.12 0.65±0.00 0.65±0.00 0.76±0.00

Average 0.49 0.47 0.77 0.77 0.86

Table 3. Preference accuracy on Mujoco and DMControl tasks
over 5 random seeds.

trajectories, while for DMControl tasks, all available trajec-
tories are used. We believe that a well-trained reward model
should enable the agent to achieve performance superior to
suboptimal demonstrations.

The results of the policy learning evaluation are presented
in Figure 3. APEC achieves better-than-demo performance
on 7 out of the 8 tasks, and for the Humanoid-v2, it
also demonstrates comparable performance, showcasing
the strong generalization of our reward models. While
other baselines have demonstrated effectiveness in prior
works (Fu et al., 2017a; Chen et al., 2021; Huo et al., 2023),
they struggle to match demonstration performance under
our more challenging experimental setup, which involves
fewer demonstrations, more complex tasks, and a stricter
better-than-demo requirement. Our analysis reveals that
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this is primarily caused by reward hacking in the baselines,
whereas our method benefits from the broader coverage of
generated data, thus avoiding this problem. Appendix C.2
provides a detailed discussion of reward hacking.

4.4. Generated Preference Analysis

To answer Q3, we analyze the generated preferences of
D-REX, SSRR, and APEC from generation accuracy and
generation coverage two perspectives.

Generation accuracy. The experimental results for genera-
tion accuracy are presented in Table 10. In both vector-based
and pixel-based control tasks, APEC achieves an impressive
accuracy of 98%, consistently outperforming the baseline
methods by a significant margin. SSRR and D-REX, which
are based on noise injection, achieve 92% and 80% respec-
tively. This improvement in accuracy is critical for learning
robust reward models, as it ensures that the preferences used
for training are reliable.

Environment SSRR D-REX APEC(ours)

Ant 0.11±0.00 0.19±0.00 0.09±0.00

HalfCheetah 1.54±0.02 2.13±0.02 1.20±0.05

Hopper 0.29±0.01 0.71±0.01 0.23±0.00

Humanoid 0.96±0.02 1.14±0.01 1.02±0.04

Walker2d 0.48±0.01 0.77±0.02 0.45±0.00

Average 0.68 0.99 0.60

cheetah run 0.90±0.00 0.85±0.00 0.82±0.00

walker run 0.68±0.00 0.79±0.00 0.63±0.00

walker walk 0.53±0.00 0.56±0.00 0.49±0.00

Average 0.70 0.73 0.65

Table 4. Projection distances on Mujoco and DMControl tasks over
5 random seeds.

Generation coverage. To assess the coverage of the gen-
erated dataset, we first calculate the projection distance
dproj from the test dataset to the generated dataset as de-
fined in Equation 2, where DO and DT are the generated
dataset and test dataset respectively. A smaller projection
distance typically indicates better sample coverage. The
results presented in Table 4 show that APEC exhibits the
smallest projection distance from the test dataset to the gen-
erated samples except for the humanoid task. We believe
that APEC outperforms other baselines due to its ability to
generate the most well-covered samples while maintaining
high production accuracy. Additionally, we visualize the
sample distributions for Hopper-v2 and walker run in
Figure 4. These visualizations reveal that APEC-generated
samples provide broader coverage in both the x-axis dis-
placement and x-axis velocity dimensions, especially in
high-return regions (the return of these locomotion tasks is
generally strongly correlated with the x-axis displacement),

which is crucial for achieving better-than-demo policies.

dproj =
1

|DT |
∑
s∈DT

min
s′∈DO

∥s− s′∥1 (2)
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Figure 4. Visualization of generated preference distributions on
Hopper-v2 and walker run tasks. From top to bottom, the rows
represent the generated samples for SSRR, D-REX, and APEC,
respectively. In each plot, the x-axis represents the x-axis displace-
ment, while the y-axis represents the x-axis velocity.

4.5. Ablation Study

In this section, we investigate the effect of the Wasserstein
distance criterion and the number of collection policies on
the generalization of the reward model. We use reward
correlation mentioned in Section 4.2 as the evaluation metric.
The results are shown in Figure 5.

Wasserstein distance criterion. We observe that the
Wasserstein distance criterion is crucial to improving the ac-
curacy of generated preferences. Its importance is especially
evident in Mujoco tasks, where the training process may
exhibit instability. By combining the epoch criterion with
the Wasserstein distance criterion, we substantially enhance
the generalization of reward models.

Number of collection policies. For the Mujoco tasks, we
reduce the number of policies used for preference collection
from 400 to 4, and for the DMControl tasks, from 50 to
5. Despite this reduction, the number of generated pref-
erences remains constant (1000 for Mujoco and 5000 for
DMControl). Our results reveal that using a smaller set of
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policies decreases the diversity and coverage of the gener-
ated preferences, which in turn hampers the generalization
of the reward function. In DMControl tasks, where the
model inputs are images and the tasks are more complex,
the diversity of the policies becomes even more critical for
the generalization of reward models.

Mujoco DMControl
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Figure 5. Ablation study on Mujoco and DMControl Tasks. We use
reward correlation as the evaluation metric, with results averaged
across all tasks over 5 random seeds. The blue bars represent
APEC, the orange bars show the results without the Wasserstein
distance criterion, and the red bars indicate the results obtained
using fewer policies.

5. Related Works
Reward Modeling. Reward modeling is a critical aspect
of reinforcement learning, traditionally relying on expert
knowledge, which often requires significant human input
and incurs considerable costs (Hadfield-Menell et al., 2017).
One of the most widely used methods for reward model-
ing, inverse reinforcement learning (IRL), aims to recover
reward functions from expert behaviors, thus minimizing
human involvement in the reward design process. In appren-
ticeship learning (Abbeel & Ng, 2004), the reward model is
optimized to maximize the performance gap between expert
demonstrations and the learned policy. MaxEnt IRL (Ziebart
et al., 2008) formulates reward updates as maximum likeli-
hood estimation problems, integrating a maximum entropy
principle to promote policy diversity and better represent
expert behavior. As an extension of IRL, adversarial imita-
tion learning (AIL) algorithms learn rewards through a fully
adversarial process inspired by GANs (Goodfellow et al.,
2014), achieving high data efficiency and replicating expert
policies with minimal expert demonstrations. For instance,
AIRL (Fu et al., 2017b) learns a reward function by training
a discriminator to distinguish between expert and generated
trajectories, resulting in a reward model that is robust to
changes in dynamics and environmental properties. Un-

like IRL and AIL, preference-based reinforcement learning
(PBRL) leverages human preferences to train reward models.
The pioneering work by (Christiano et al., 2017) introduced
neural networks to PBRL, demonstrating their capacity to
capture complex behaviors. Building on this foundation,
(Ibarz et al., 2018) improves the sample efficiency of PBRL
by utilizing expert demonstrations, while (Cao et al., 2024)
advances the approach by relaxing the optimality constraint
on trajectories. Additionally, FTB (Zhang et al., 2023) uses
a diffusion model for trajectory generation, achieving more
robust policy learning by preferred trajectory augmentation.
In contrast, APEC does not require human annotations or
optimal trajectories and can achieve robust reward learning
from a small number of suboptimal trajectories.

Reward Learning from Suboptimality. Standard PBRL
methods typically require extensive manual labeling of tra-
jectory pairs, posing a huge burden on human annotators.
Active learning methods (Eric et al., 2007) have been used to
alleviate this burden by selectively presenting the most infor-
mative preference pairs for labeling. In addition, approaches
such as (Palan et al., 2019) and (Ibarz et al., 2018) enhance
the quality of preference data by incorporating constraints
from demonstrations. Recently, methods have emerged to
fully automate preference generation, reducing or eliminat-
ing the need for manual annotation. D-REX (Brown et al.,
2020) was the first to inject uniformly random noise at vary-
ing levels into the BC policy to generate preferences for
reward learning. LERP (Huo et al., 2023) enhances reward
learning from preferences in D-REX by introducing noise
directly into the reward space, rather than the action space.
SSRR (Chen et al., 2021) employs AIRL for policy train-
ing, using a sigmoid function to enable reward regression.
What distinguishes APEC from these existing methods is
its capacity to produce preference data with much broader
coverage by leveraging the diverse policies produced in the
adversarial training process, enabling more robust reward
learning.

6. Discussions and Limitations
In this paper, we introduce APEC, a framework for auto-
mated preference generation with enhanced coverage for
reward learning. Building on the theoretical and empirical
evidence that AIL generates policy pairs with clear pref-
erences and good coverage, APEC selects policies from
different stages of the AIL training process to produce pref-
erence data that is both diverse and accurate. This approach
addresses key limitations in existing preference generation
methods, which often struggle to generate sufficiently cover-
age samples, limiting the generalizability of learned reward
models. Our experimental results on vector-based and pixel-
based control tasks demonstrate that APEC significantly
improves the coverage of generated preferences compared
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to baseline methods. The reward models learned from these
preferences align more closely with ground-truth rewards.

Limitations and Future Works. Although APEC repre-
sents significant progress, there is still considerable room for
further improvement in future work. For example, APEC
still requires interaction with the environment to generate
preference data, making the extension of APEC to offline
settings an interesting problem. Additionally, as a fully data-
driven reward learning framework, APEC may still suffer
from reward hacking in more complex tasks. A key chal-
lenge for future work is integrating human prior knowledge
into the reward learning process to mitigate such risks.
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A. Proof of Proposition 3.1
In this part, we present the proof of Proposition 3.1. First, Algorithm 1 outlines the procedure of a standard adversarial
imitation learning algorithm.

Algorithm 1 Adversarial Imitation Learning

Require: Initialized reward r1, initialized policy π̂1, reward step size ηr =
√

|S||A|/(4H2K), policy step size ηπ =√
(2 ln(|A|))/(H2K).

for k = 1, 2, . . . ,K do
Rollout π̂k to compute the state-action distribution dπ̂

k

.
Update the reward by projected gradient descent:

rk+1 = PR
(
rk − ηr∇fk(r)

)
,

where fk(r) = V π̂k,r − V̂ πO,r = H
∑

(s,a)∈S×A r(s, a)
(
dπ̂

k

(s, a)− d̂πO(s, a)
)

and d̂πO is the empirical state-

action distribution based on DO.
Calculate the Q-value function {Qπ̂k,rk

h }Hh=1 for policy π̂k.
Update the policy by KL-regularized policy optimization:

π̂k+1
h (·|s) = max

p∈∆(A)
Ea∼p(·)

[
Qπ̂k,rk

h (s, a)
]
− 1

ηπ
DKL

(
p(·), π̂k

h(·|s)
)
.

end for
Ensure: πK sampled uniformly from {π̂1, . . . , π̂K}.

Now we proceed to present the proof of Proposition 3.1. First of all, we have the following error decomposition.

V πO,r⋆ − V πK ,r⋆ ≤ max
r∈R

V πO,r − V πK ,r

(a)
=

1

K
max
r∈R

K∑
k=1

V πO,r − V π̂k,r

=
1

K

(
max
r∈R

K∑
k=1

V πO,r − V π̂k,r −
K∑

k=1

V πO,rk − V π̂k,rk

)
︸ ︷︷ ︸

Term I

+
1

K

K∑
k=1

V πO,rk − V π̂k,rk

︸ ︷︷ ︸
Term II

.

Here R = {r : S ×A → [0, 1]} is the set of reward functions. Here equation (a) follows the definition of πK . For Term I,
we have that

1

K

(
max
r∈R

K∑
k=1

V πO,r − V π̂k,r −
K∑

k=1

V πO,rk − V π̂k,rk

)

=
1

K

((
max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r + V πO,r − V̂ πO,r

)
−

K∑
k=1

V̂ πO,rk − V π̂k,rk + V πO,rk − V̂ πO,rk

)

≤ 1

K

((
max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r

)
−

K∑
k=1

V̂ πO,rk − V π̂k,rk

)
+ 2max

r∈R
V πO,r − V̂ πO,r − 1

K

K∑
k=1

V πO,rk − V̂ πO,rk

≤ 1

K

((
max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r

)
−

K∑
k=1

V̂ πO,rk − V π̂k,rk

)
+ 4max

r∈R

∣∣∣V πO,r − V̂ πO,r
∣∣∣ .

Here V̂ πO,r = (1/|DE|)
∑

τ∈DE

∑H
h=1 rh(τ(sh), τ(ah)) is the estimated policy value for policy πO regarding reward r.
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For the first term in RHS, we have that

max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r −

(
K∑

k=1

V̂ πO,rk − V π̂k,rk

)
=

K∑
k=1

V π̂k,rk − V̂ πO,rk −min
r∈R

K∑
k=1

V π̂k,r − V̂ πO,r,

which is exactly the regret for solving the online optimization problem with loss functions fk(r) = V π̂k,r − V̂ πO,r. We
leverage the following lemma to upper bound this regret.

Lemma A.1. Consider Algorithm 1, we have

K∑
k=1

fk
(
rk
)
−min

r∈R

K∑
k=1

fk(w) ≤ 2H
√

|S||A|K,

where fk(r) = H
∑

(s,a)∈S×A r(s, a)(dπ̂
k

(s, a)− d̂πO(s, a)).

Proof of Lemma A.1. Lemma A.1 is a direct consequence of the regret bound of online gradient descent (Shalev-Shwartz,
2012). To apply such a regret bound, we need to verify that 1) the iterate norm ∥r∥2 has an upper bound; 2) the gradient
norm ∥∇rf

k(r)∥2 also has an upper bound. The first point is easy to show, i.e., ∥r∥2 ≤
√

|S||A| by the condition that
r ∈ R = {r : S ×A → [0, 1]}. For the second point, we have

∥∥∇rf
k(r)

∥∥
2
= H

√√√√ ∑
(s,a)∈S×A

(
dπ̂k(s, a)− d̂πO(s, a)

)2

≤ H

√√√√ ∑
(s,a)∈S×A

(
dπ̂k(s, a)

)2
+
(
d̂πO(s, a)

)2
≤

√
2H.

Invoking Corollary 2.7 in (Shalev-Shwartz, 2012) with B =
√
|S||A|, L =

√
2H and ηr = B/(L

√
2K) =√

|S||A|/(2H
√
K) finishes the proof.

Lemma A.1 demonstrates that

max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r −

(
K∑

k=1

V̂ πO,rk − V π̂k,rk

)
≤ 2H

√
|S||A|K.

Furthermore, we have that

4max
r∈R

∣∣∣V πO,r − V̂ πO,r
∣∣∣ = 4max

r∈R
H

∣∣∣∣∣∣
∑

(s,a)∈S×A

(
dπ

O
(s, a)− d̂πO(s, a)

)
r(s, a)

∣∣∣∣∣∣
≤ 4H

∥∥∥dπO
(·, ·)− d̂πO(·, ·)

∥∥∥
1
.

According to the concentration inequality for ℓ1-norm (Weissman et al., 2003; Kang et al., 2023), with probability at least
1− δ, we have

∥∥∥dπO
(·, ·)− d̂πO(·, ·)

∥∥∥
1
≤

√
2|S||A| ln(1/δ)

|DO|
.
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Consequently, for Term I, we have that

1

K

(
max
r∈R

K∑
k=1

V πO,r − V π̂k,r −
K∑

k=1

V πO,rk − V π̂k,rk

)

≤ 1

K

((
max
r∈R

K∑
k=1

V̂ πO,r − V π̂k,r

)
−

K∑
k=1

V̂ πO,rk − V π̂k,rk

)
+ 4max

r∈R

∣∣∣V πO,r − V̂ πO,r
∣∣∣

≤ 2H

√
|S||A|
K

+ 4H

√
2|S||A| ln(1/δ)

|DO|
.

For Term II, according to the policy difference lemma, we have that

1

K

K∑
k=1

V πO,rk − V π̂k,rk =
1

K

K∑
k=1

E

[
H∑

h=1

⟨πO
h (·|sh)− π̂k

h(·|sh), Q
π̂k,rk

h (sh, ·)⟩
∣∣∣∣πO

]
.

For each fixed (s, h) ∈ S × [H], we analyze the term

K∑
k=1

⟨πO
h (·|s)− π̂k

h(·|s), Q
π̂k,rk

h (s, ·)⟩ =
K∑

k=1

⟨π̂k
h(·|s),−Qπ̂k,rk

h (s, ·)⟩ − ⟨πO
h (·|s),−Qπ̂k,rk

h (s, ·)⟩,

which is exactly the regret of online linear minimization with respect to loss function fk(p) =
∑

a∈A p(a)Qπ̂k,rk

h (s, a) for
probability distribution p ∈ ∆(A). From the perspective of online linear minimization, we can view the policy update as the
well-known mirror descent update. Based on the theory of online mirror descent (Shalev-Shwartz, 2007), we have that

K∑
k=1

⟨π̂k
h(·|s),−Qπ̂k,rk

h (s, ·)⟩ − ⟨πO
h (·|s),−Qπ̂k,rk

h (s, ·)⟩ = log(|A|)
ηπ

+
ηπ

2

K∑
k=1

∑
a∈A

πk
h(a | s)

(
Qπ̂k,rk

h (s, a)
)2

≤ ln(|A|)
ηπ

+
ηπH2K

2

=
√

2 ln(|A|)H2K.

The last equation holds by choosing ηπ =
√

(2 ln(|A|))/(H2K). Consequently, we have the following upper bound on
Term II.

1

K

K∑
k=1

V πO,rk − V π̂k,rk =
1

K

K∑
k=1

E

[
H∑

h=1

⟨πO
h (·|sh)− π̂k

h(·|sh), Q
π̂k,rk

h (sh, ·)⟩
∣∣∣∣πO

]

≤ 2H2

√
2 ln(|A|)

K
.

Combining the upper bounds on Term I and Term II yields that

V πO,r⋆ − V πK ,r⋆ ≤ 2H

√
|S||A|
K

+ 4H

√
2|S||A| ln(1/δ)

|DO|
+ 2H2

√
2 ln(|A|)

K

≤ 4H2

√
2|S||A| ln(|A|)

K
+ 4H

√
2|S||A| ln(1/δ)

|DO|
.

We complete the proof.

B. Implementation Details
B.1. Implementation Details of APEC

Policy Collection. We choose DAC (Kostrikov et al., 2019), an AIL algorithm known for its sample efficiency and
excellent convergence performance, to collect policies. Moreover, we use SAC (Haarnoja et al., 2018) for policy updates in

14



Improving Reward Model Generalization from Adversarial Process Enhanced Preferences

vector-based tasks and DrQ-v2 (Yarats et al.) for pixel-based tasks, as outlined in Algorithm 1. Specifically, for vector-based
MuJoCo tasks, we train policies using a single suboptimal demonstration for 400 iterations with 5000 steps per iteration.
Checkpoints of the policy model are saved at the end of each iteration, labeled by the corresponding iteration number. For
pixel-based DMControl tasks, we train a policy with 10 suboptimal demonstrations. The training spans 4M frames, with
evaluations conducted every 20,000 frames. During each evaluation phase, a checkpoint of the policy is saved. We select the
official codes of PAIL(Cao et al., 2024) and ROT(Haldar et al., 2023) as the codebase for Mujoco and DMControl tasks
respectively and use their recommended default hyperparameters as listed in Table 5 and 6.

Hyperparameter Value

Hidden layers 2
Hidden dimension 128

Auto Alpha False
Activation ReLU
Batch size 256
Buffer size 1000000

Gradient penalty coefficient 0
Exploration steps 10000

Learning rate 1e-3
Optimizer Adam

Table 5. Hyperparameters of AIL in Mujoco tasks.

Hyperparameter Value

Hidden layers 2
Feature dimension 50
Hidden dimension 1024

Activation ReLU
Batch size 256
Buffer size 150000

Gradient penalty coefficient 10
Exploration steps 2000

DDPG exploration schedule linear(1,0.1,500000)
Learning rate 1e-4

Optimizer Adam

Table 6. Hyperparameters of AIL in DMControl tasks.

Preference Generation. In each iteration, we sample policy pairs πi and πj from the policy set and rollout trajectories,
only trajectory pairs that satisfy both the epoch criterion and the Wasserstein distance criterion conditions are added to the
preference buffer. Table 7 lists the hyperparameters used in this process. For Mujoco tasks, we collect 1,000 preference
pairs, while for more challenging DMControl tasks, we collect 5,000 pairs.

Task epoch threshold k distance threshold δ

Mujoco 10 0.1
walker run 10 0.01

walker walk 15 0
cheetah run 15 0

Table 7. Hyperparameters of preference generation.

Reward Learning. For Mujoco tasks, the reward is trained for 100 epochs, each using 1,000 samples. For DMControl
tasks, all samples in the preference buffer are used in each iteration and are trained for 50 epochs. In addition, we implement
a random shift augmentation for pixel-based data as recommended in DrQ-v2 to improve the robustness of the reward by
encouraging the model to learn invariant features under various shifts in the input. The hyperparameters of reward learning
are listed in Table 8 and 9.

Reward Evaluation. We evaluate the reward by using it to train RL agents with the same policy learning algorithms
applied in the policy collection stage (SAC for Mujoco and DrQ-v2 for DMControl). We initialize the buffer with selected
trajectories from the AIL buffer in the policy collection stage to speed up convergence. For Mujoco tasks, 10 trajectories are
chosen, while for DMControl tasks, all available trajectories are utilized. Both this stage and the Policy Collection stage
share the same hyperparameters for policy learning.

C. Additional Experimental Results
C.1. Reward Accuracy

We visualized the return correlation and the reward correlation of across all tasks, as shown in Figures 6 and Figure 7. Here,
we only present the results for seed=1 due to space constraints.
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Hyperparameter Value

Hidden layers 2
Hidden dimension 512

Activation ReLU
Batch size 256

Weight decay 1e-3
Learning rate 1e-4

Optimizer Adam

Table 8. Hyperparameters of reward model in Mujoco tasks.

Hyperparameter Value

Hidden layers 2
Feature dimension 50
Hidden dimension 1024

Activation ReLU
Batch size 256

Weight decay 1e-4
Learning rate 1e-4

Optimizer Adam

Table 9. Hyperparameters of reward model in DMControl
tasks.

C.2. Generated Preference Accuracy

The generated preference accuracy is summarized in Table 10.

Environment SSRR D-REX APEC(ours)

Ant 0.89±0.03 0.96±0.01 0.94±0.01

HalfCheetah 0.99±0.01 0.94±0.02 1.00±0.00

Hopper 0.96±0.03 0.89±0.02 0.99±0.00

Humanoid 0.95±0.03 0.31±0.17 0.99±0.00

Walker2d 0.88±0.05 0.70±0.21 0.99±0.00

Average 0.93 0.76 0.98

cheetah run 0.91±0.00 0.94±0.00 0.98±0.00

walker run 0.93±0.00 0.72±0.02 1.00±0.00

walker walk 0.89±0.00 0.89±0.01 0.95±0.01

Average 0.91 0.85 0.98

Table 10. Generate accuracy on Mujoco and DMControl tasks over 5 random seeds.

C.3. Additional experiment on Atari

Table 11 shows an additional experiment on the Atari game Pong, which features a discrete action space. Results show that
APEC consistently outperforms both DREX and LERP in terms of task performance, demonstrating its broader applicability.
Notably, for the Pong experiment, we used an alternative AIL method, IQ-Learn (Garg et al., 2021), to generate preference
data, which further highlights APEC’s generalizability across different AIL algorithms.

Table 11. Task performance comparison on Pong

Method Demo Mean Task Performance

DREX 3.7 -9.5
LERP 3.7 -20.0
APEC (ours) 3.7 -0.44

C.4. Sensitivity analysis on hyperparameters

As shown in Table 12, 13 and 14, We perform ablation studies on key hyperparameter choices, including the training
epoch interval, Wasserstein distance threshold, and segment length for reward learning, across both feature-based
HalfCheetah and pixel-based walker run tasks. The ”default” refers to the values used in our original experiments.
The results show that APEC is not sensitive to different hyperparameter choices.

16



Improving Reward Model Generalization from Adversarial Process Enhanced Preferences

Table 12. Ablation study on training epoch interval

Task 5 10 (default) 50/20

HalfCheetah 11,957 12,232 10,019
walker run 710 701 591

Table 13. Ablation study on Wasserstein distance threshold (higher is better)

Task Lower Default Higher

HalfCheetah (0.05/0.1/0.2) 13,291 12,232 8,848
walker run (0.005/0.01/0.02) 709 701 736

Table 14. Ablation study on segment length (higher is better)

Task Shorter Default Longer

HalfCheetah (100/500/1000) 12,658 13,434 12,232
walker run (5/10/20) 712 701 696

Table 15. Experiments on four MuJoCo tasks under two conditions: lower quality demonstrations and more demonstrations. In each value
pair “x/y”, x represents the performance of the demonstrations, while y is the performance of the policy trained with the reward model
learned from APEC.

Performance Ant HalfCheetah Hopper Walker2d

low 1 demo 2413 / 1522 4232 / 7874 1325 / 3300 2205 / 2089
high 1 demo 4105 / 5221 7313 / 12232 2275 / 3310 3706 / 5394
high 10 demo 4179 / 4830 7385 / 14700 2388 / 3325 3728 / 5390

C.5. Reward Hacking Analysis

Figure 8, 9, 10, 11, and 12 demonstrates the relationship between the predicted return and ground truth return for the
baselines and APEC. The learned return of all algorithms increases with the number of training steps. However, only APEC
ensures that the ground truth return increases throughout the process, while the other methods show a decline in ground truth
return, indicating reward hacking. These plots show the strong robustness and generalizability of APEC’s learned reward.

D. Computational Resources
All experiments were performed on an RTX 4090 GPU platform. In Stage 1 (Policy Collection), Mujoco tasks require
approximately 24 hours to complete 2 million training steps, while DMControl tasks take about 10 hours to complete 1
million frames. Stage 2 (Preference Generation) does not require GPU resources. In Stage 3 (Reward Model Training),
Mujoco tasks typically take around 20 minutes, while DMControl tasks require approximately 3 hours.
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Ant

HalfCheetah

Hopper

Walker2d

cheetah_run

walker_run

walker_walk

Humanoid

Figure 6. Return correlation visualization. Blue dots represent trajectories generated for training reward models, and orange dots represent
additional trajectories not seen during training. Here, the x-axis represents the ground truth return, while the y-axis represents the return
predicted by the learned reward models.

18



Improving Reward Model Generalization from Adversarial Process Enhanced Preferences

Ant

HalfCheetah

Hopper

Walker2d

cheetah_run

walker_run

walker_walk

Humanoid

Figure 7. Reward correlation Return correlation visualization. Orange dots represent state-action pairs on the test dataset. Here, the x-axis
represents the ground truth reward, while the y-axis represents the reward predicted by the learned reward models.
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Figure 8. The relationship between the predicted return and the ground truth return in SSRR. The left y-axis represents the normalized
episode return, while the right y-axis also indicates the normalized episode return for comparison. The x-axis denotes the number of
training steps.
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Figure 9. The relationship between the predicted return and the ground truth return in AIRL. The left y-axis represents the normalized
episode return, while the right y-axis also indicates the normalized episode return for comparison. The x-axis denotes the number of
training steps.
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Figure 10. The relationship between the predicted return and the ground truth return in D-REX. The left y-axis represents the normalized
episode return, while the right y-axis also indicates the normalized episode return for comparison. The x-axis denotes the number of
training steps.
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Figure 11. The relationship between the predicted return and the ground truth return in LERP. The left y-axis represents the normalized
episode return, while the right y-axis also indicates the normalized episode return for comparison. The x-axis denotes the number of
training steps.
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Figure 12. The relationship between the predicted return and the ground truth return in APEC. The left y-axis represents the normalized
episode return, while the right y-axis also indicates the normalized episode return for comparison. The x-axis denotes the number of
training steps.
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