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Figure 1. Overview of SimShear: our shear-based Sim-to-Real pipeline for
tactile robotics.

I. INTRODUCTION

This research aims to improve tactile sim-to-real policy
transfer by leveraging contact data available in most rigid-
body physics simulators to build sim-to-real image translators
that include shear information and return estimated ‘real’
tactile images that correctly contain shear deformations. By
transforming simulated images into their real analogs during
training, it becomes possible to build policies that operate
purely on real tactile images, thereby removing the need
for a real-to-sim transformation at each deployment step.
This streamlined process reduces computational overhead and
simplifies the overall control pipeline. Our contributions are:
1. We introduce shPix2pix: a conditional U-Net GAN architec-
ture that incorporates shear information into simulated tactile
sensor images for image-to-image translation. By modeling
deformations due to lateral displacements, shPix2pix enables
the generation of realistic tactile images that contain shear
deformations not modeled by our rigid-body simulator.

2. We train a ShearNet: a Gaussian Density Neural Network
that leverages the shPix2pix-generated shear-based tactile im-
ages to estimate both contact pose and shear. We validate
GDNN performance when trained on ‘real’” shPix2pix gen-
erated tactile images and show this significantly outcompetes
a baseline using standard pix2pix-generated tactile images.

3. We demonstrate SimShear with two control tasks involving
a pair of low-cost desktop robotic arms: a collaborative tactile
tracking task and a collaborative co-lift task. Our results
demonstrate how our shear-based sim-to-real approach enables
manipulation using shear and validates that shear-aware mod-
els trained in simulation can effectively transfer to reality.

II. METHOD
A. Tactile Simulation

We use Tactile Gym 2.0 [1]], a simulation environment
designed specifically for tactile robotic manipulation tasks.
As the simulated tactile sensor is approximated with rigid
body physics, shear deformations of the tactile sensor are
not modeled, and thus will never be present in simulated
tactile images. However, we can infer shear displacements
by extracting positional and rotational displacements from the
simulator. When the sensor tip moves while in contact with an
object, the shift in the contact surface’s position and orientation
relative to the sensor is used to generate a 6-dimensional “shear
pose” (here 4 dimensional to match the DoFs of the robot arm),
containing both positional and rotational shear components
that complement the purely indentation depth-based images.

B. Data Collection

The collected datasets consist of tuples containing real
tactile images, corresponding simulated tactile images, and
a vector encoding the shear displacements derived from the
physics simulator. The robot performed a series of controlled
interactions with the surfaces and edges of various objects,
replicating a range of realistic contact scenarios.

C. Conditional U-Net GAN for Image-to-Image Translation

Here we extend the vanilla pix2pix architecture to incorpo-
rate shear information explicitly. While previous methods [1]],
[2] used the standard U-net architecture to address the tactile
sim-to-real gap, they did not account for shear information
due to the limitations of rigid-body simulations. The U-net
architecture cannot simulated tactile images into realistic ones
due to the many-to-one relationship between simulated and
real data. To address this, we add a fully connected layer
with ReLU activation between the encoding (downsampling)
and decoding (upsampling) layers of the U-net. The shear
vector, which encodes both positional and rotational shear, is
appended to the encoded representation before being passed
through this fully connected layer.

D. Training Generalizable Contact Pose Estimators

we extend this pose-and-shear decoding approach to sim-
ulated tactile images generated using our trained shPix2pix
networks: the conditional U-Net GANs described in
We trained Gaussian-density neural networks to decode both
contact pose and shear information from our generated tactile
images. By successfully training on simulated images, these
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models can provide accurate pose and shear estimates on real
tactile images despite the absence of direct real-world data
during training.

Our Gaussian-density neural networks were trained using
the ShPix2pix generated datasets. The training data included
U-net generated tactile images and corresponding pose and
shear vectors. The networks were optimized using a negative
log-likelihood loss over 50 training epochs with batch size
of 64, using the Adam optimizer [3|] with a learning rate of
0.0001 and early stopping

III. EXPERIMENTS AND RESULTS
A. Task Formulation

We evaluate our improved Sim-to-Real pipeline using two
collaborative tasks [4], [5]] that require both pose and shear-
based tactile sensing. In both scenarios, two Dobot MG400
robotic arms are employed: one acts as the leader robot,
while the other (the follower robot) is equipped with a
biomimetic optical tactile sensor that uses a trained GDNN
shear-estimation network.

a) Tactile Tracking Task:: In this task, the leader robot
manipulates and rotates an object along a pre-programmed
trajectory, and the follower robot actively tracks the object’s
surface while preserving continuous contact as it moves and
rotates in three-dimensional space.

b) Collaborative Co-Lifting Task:: Both robots hold the
object together, with the leader robot moving it along a
specified path while the follower robot maintains a secure grip.

B. Sim-to-Real Image Translation

First, we evaluated our shPix2pix image translation network
compared to a baseline vanilla pix2pix architecture. The
vanilla pix2pix framework struggled to translate simulated
tactile images into realistic ones due to the many-to-one rela-
tionship between simulated and real data. The baseline pix2pix
architecture achieved a mean average pixel error (MAPE) of
0.22 and a structural similarity index measure (SSIM) of 0.17
when translating from simulated to real images.

Our shPix2pix image translation network successfully gen-
erated realistic tactile images that closely matched those
obtained from the real tactile sensor. Explicitly encoding shear
information into the model representation gives a significant
reduction in MAPE to 0.091 and SSIM increase of 0.65.

C. Sim-to-Real PoseNet

Our results indicate that while models trained on pix2pix-
generated images can decode pose with above-random success,
they are unable to infer shear information . In contrast, the
models trained on shPix2pix images are able to accurately
predict both pose and shear variables on real data never
encountered during training. Note that the prediction errors for
shear in the shPix2pix-trained model are comparable to those
reported for networks trained entirely on real tactile data [6],
highlighting the robustness of our approach.

D. Tactile Object Tracking and Collaborative Co-Lifting Task

In the tactile object tracking task, we tested the tactile
robot’s ability to follow a leader robot across various complex
trajectories. The follower MG400 successfully maintained
continuous contact with the moving object over all tested
trajectories. On average, the distance between the tactile
sensor’s position and the target position on the object’s surface
was 1-2mm, as marked by the error on the trajectory plots.
Repeated runs of the same experiment gave the same results,
with the ‘looping’ trajectory most difficult because of the
complex shape. Visually, the tracked trajectories of the tactile
follower closely matched the trajectory of the leader robot (see
supplemental video on the project webpage), confirming the
precision of the sim-to-real tactile servo controller.

In the collaborative co-Lifting task, the tactile follower robot
maintained continuous contact that was sufficiently precise in
following the leader robot to securely hold the object while
it was being moved along the leader’ trajectory. Again, the
trajectory errors were in the range 1-2 mm, consistent with a
close visual match between the leader and follower trajectories
(see supplemental videos on the project webpage). The most
challenging object was the soft brain, because the soft contact
led to deformation of the tactile images and less reactive
control, although good performance was still maintained.

IV. CONCLUSION

We introduced SimShear, a novel Sim-to-Real pipeline for
tactile sensing that integrates shear information to enhance the
accuracy and versatility of robotic manipulation tasks trained
in simulation. By employing a conditional U-Net GAN, the
shPix2pix, our method overcomes the limitations of current
Real-to-Sim pipelines that cannot model the effects of shear
force. Our method removes two primary drawbacks of current
tactile real-to-sim pipelines—namely, the lack of shear in
simulation and the need to translate real images into the
simulated domain at every inference step. Instead, we generate
realistic, shear-enabled tactile data for policy training, allowing
robots trained in simulation to sense and respond to lateral
displacements directly in real-world scenarios.

REFERENCES
[

—

Yijiong Lin, John Lloyd, Alex Church, and Nathan F Lepora. Tactile
gym 2.0: Sim-to-real deep reinforcement learning for comparing low-
cost high-resolution robot touch. IEEE Robotics and Automation Letters,
7(4):10754-10761, 2022.

Alex Church, John Lloyd, Raia Hadsell, and Nathan F Lepora. Tactile
sim-to-real policy transfer via real-to-sim image translation. In Confer-
ence on Robot Learning, pages 1645-1654, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Yijiong Lin, Alex Church, Max Yang, Haoran Li, John Lloyd, Dandan
Zhang, and Nathan F. Lepora. Bi-touch: Bimanual tactile manipulation
with sim-to-real deep reinforcement learning. IEEE Robotics and Au-
tomation Letters, 8(9):5472-5479, 2023.

Yijiong Lin, Yihui Li, Yan Huang, Kaifu Zhang, Haifei Zhu, Yansui Liu,
and Yisheng Guan. An odd-form electronic component insertion system
based on dual scara. In 2018 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 1514-1520, 2018.

John Lloyd and Nathan F Lepora. Pose-and-shear-based tactile servoing.
The International Journal of Robotics Research, 43(7):1024-1055, 2024.

[2

—

3

—_

[4

—

[5

—

[6

[t



	INTRODUCTION
	METHOD
	Tactile Simulation
	Data Collection
	Conditional U-Net GAN for Image-to-Image Translation
	Training Generalizable Contact Pose Estimators

	Experiments and Results
	Task Formulation
	Sim-to-Real Image Translation
	Sim-to-Real PoseNet
	Tactile Object Tracking and Collaborative Co-Lifting Task

	Conclusion
	References

