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Abstract

Although equivariant machine learning has proven effective at many tasks, success
depends heavily on the assumption that the ground truth function is symmetric
over the entire domain matching the symmetry in an equivariant neural network. A
missing piece in the equivariant learning literature is the analysis of equivariant
networks when symmetry exists only partially in the domain. In this work, we
present a general theory for such a situation. We propose pointwise definitions of
correct, incorrect, and extrinsic equivariance, which allow us to quantify continu-
ously the degree of each type of equivariance a function displays. We then study
the impact of various degrees of incorrect or extrinsic symmetry on model error.
We prove error lower bounds for invariant or equivariant networks in classification
or regression settings with partially incorrect symmetry. We also analyze the poten-
tially harmful effects of extrinsic equivariance. Experiments validate these results
in three different environments.

1 Introduction

(a) Correct (b) Incorrect (c) Extrinsic

Figure 1: An example of correct, incorrect, and
extrinsic equivariance. The ground truth func-
tion f(x) is shown in black and its probability
density function p(x) is shown in orange. If we
model f(x) using a G-invariant network where
G is a reflection group that negates x, different
f(x) and p(x) will lead to correct, incorrect, and
extrinsic equivariance. See Section 3 for details.

Equivariant neural networks [9, 10] have proven to
be an effective way to improve generalization and
sample efficiency in many machine learning tasks.
This is accomplished by encoding task-level sym-
metry into the structure of the network architecture
so that the model does not need to explicitly learn
the symmetry from the data. However, encoding
a fixed type of symmetry like this can be limiting
when the model symmetry does not exactly match
the symmetry of the underlying function being
modeled, i.e., when there is a symmetry mismatch.
For example, consider the digit image classifica-
tion task. Is it helpful to model this problem using
a model that is invariant to 180-degree rotation of the image? For some digits, the label is invariant
(e.g., 0 and 8). However, for other digits, the label changes under rotation (e.g., 6 and 9), suggesting
that a rotationally symmetric model would be inappropriate here. However, recent work [58] suggests
that this is not necessarily the case – symmetric models are sometimes helpful even when a symmetry
mismatch exists between the problem and model. This raises the question – do the advantages
obtained by using a symmetric model outweigh the errors introduced by the symmetry mismatch?
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This paper makes four main contributions towards this problem. First, this paper extends the
definitions for types of model symmetry with respect to true symmetry introduced in Wang et al.
[58]. They classify models as having correct, incorrect, or extrinsic equivariance (see Figure 1),
where correct means the ground truth function has the same symmetry as the equivariant model,
incorrect means the ground truth function disagrees with the symmetry in the model, and extrinsic
means the model symmetry transforms in-distribution data to out-of-distribution data. We generalize
this system into a continuum of equivariance types to reflect the fact that a single task may have
different proportions of correct, incorrect, and extrinsic symmetry across its domain. For example,
in the digit classification task, 0 has correct equivariance, 6 has incorrect equivariance, and 4 has
extrinsic equivariance.

Our second contribution is to introduce an analytical lower bound on model error in classification tasks
resulting from incorrect model symmetry. This result can help guide model selection by quantifying
error resulting from incorrect equivariance constraints. Our result generalizes that of Wang et al. [58]
by removing the simplifying assumption that data density over the domain is group invariant. We
prove the minimum error of an invariant classifier can be realized by assigning all data points in the
same group orbit the label with the majority of the data density (Theorem 4.3).

Our third contribution is to develop new lower bounds on the L2 error for regression tasks in terms
of the variance of the function to be modeled over the orbit of the symmetry group. Like our
classification bound, this bound can assist in model selection in situations with symmetry mismatch.

Fourth, in contrast to Wang et al. [58] who show benefits of extrinsic equivariance, we theoretically
demonstrate its potential harm. We perform experiments documenting the error rate across the
correct-extrinsic continuum. Finally, we perform empirical studies illustrating the ideas of the paper
and showing that the lower bounds obtained in our analysis appear tight in practice. This suggests
our analysis can assist practitioners select symmetry groups appropriate for a given problem setting.
Our code is available at https://github.com/pointW/ext_theory.

2 Related Work

Equivariant Learning. Originally used for exploiting symmetry in image domains [9, 10], equivari-
ant learning has been very successful in various tasks including molecular dynamics [2, 4], particle
physics [6], fluid dynamics [59], trajectory prediction [53], pose estimation [31, 26, 32], shape com-
pletion [7], robotics [48, 65, 21, 55, 49, 41, 23, 22, 45] and reinforcement learning [52, 54, 56, 39, 63].
However, most prior work assumes that the symmetry of the ground truth function is perfectly known
and matches the model symmetry. Wang et al. [58] go further and define correct, incorrect, and
extrinsic equivariance to classify the relationship between model symmetry and domain symmetry.
However, they do not discuss the possible combinations of the three categories, and limit their theory
to a compact group and invariant classification. Our work extends [58] and allows for a continuum of
equivariance types and analyzes error bounds in a more general setup.

Symmetric Representation Learning. Various works have proposed learning symmetric representa-
tions, using transforming autoencoders [20], restricted Boltzmann machines [50], and equivariant
descriptors [47]. In particular, [30] shows that convolutional neural networks implicitly learn rep-
resentations that are equivariant to rotations, flips, and translations, suggesting that symmetric
representations are important inductive biases. Other works have considered learning symmetry-
aware features using disentanglement [43], projection mapping [25], equivariance constraints [35],
separation into invariant and equivariant parts [61] or subgroups [34]. Park et al. [42] propose learning
a symmetric encoder that maps to equivariant features and Dangovski et al. [13] learn features that are
sensitive and insensitive to different group representations. Other works assume no prior knowledge
of symmetry and learn it from data [3, 64, 14, 40]. In particular, Moskalev et al. [40] estimate the
difference between the true latent symmetry and the learned symmetry. Similarly, our work considers
a gap between the true symmetry and model symmetry and theoretically analyze its effects on error.

Theory of Equivariant Learning. There are several lines of work on the theory of equivariant
learning. Kondor and Trivedi [27] prove that convolutions are sufficient and necessary for equivariance
of scalar fields on compact groups, later generalized to the steerable case by Cohen et al. [11]. Certain
equivariant networks have been proved to be universal in that such networks can approximate any
G-equivariant function [36, 62]. Another line of work has considered equivariant networks in terms
of generalization error. Abu-Mostafa [1] show that an invariant model has a VC dimension less than
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or equal to that of a non-equivariant model. Other works studied the generalization error of invariant
classifiers by decomposing the input space [51, 46]. Elesedy and Zaidi [17] quantify a generalization
benefit for equivariant linear models using the notion of symmetric and anti-symmetric spaces. A
PAC Bayes approach was used for generalization bounds of equivariant models [5, 33]. Our work is
complimentary to these and quantifies approximation error for equivariant model classes.

Data Augmentation. Some methods use data augmentation [29, 28] to encourage the network to
learn invariance with respect to transformations defined by the augmentation function [8]. Recent
works have explored class-specific [19, 44] and instance-specific [38] data augmentation methods
to further boost training by avoiding the potential error caused by a uniform augmentation function.
Those methods can be viewed as applying data augmentation where pointwise correct or extrinsic
invariance exist, while avoiding incorrect invariance.

3 Preliminaries

Problem Statement. Consider a function f : X → Y . Let p : X → R be the probability density
function of the domain X . We assume that there is no distribution shift during testing, i.e., p is always
the underlying distribution during training and testing. The goal for a model class {h : X → Y }
is to fit the function f by minimizing an error function err(h). We assume the model class {h} is
arbitrarily expressive except that it is constrained to be equivariant with respect to a group G. Let 1
be an indicator function that equals to 1 if the condition is satisfied and 0 otherwise. In classification,
err(h) is the classification error rate; for regression tasks, the error function is a L2 norm function,

errcls(h) = Ex∼p[1(f(x) ̸= h(x))], errreg(h) = Ex∼p[||h(x)− f(x)||22]. (1)

Equivariant Function. A function f : X → Y is equivariant with respect to a symmetry group G if
it commutes with the group transformation g ∈ G, f(gx) = gf(x), where g acts on x ∈ X through
the representation ρX(g); g acts on y ∈ Y through the representation ρY (g).

3.1 Correct, Incorrect, and Extrinsic Equivariance.

Consider a model h which is equivariant with respect to a group G. Since real-world data rarely
exactly conforms to model assumptions, in practice there may often be a gap between the symmetry
of the model and the ground truth function. Wang et al. [58] propose a three-way classification which
describes the relationship between the symmetry of f and the symmetry of h. In this system, h has
correct equivariance, incorrect equivariance, or extrinsic equivariance with respect to f .
Definition 3.1 (Correct Equivariance). For all x ∈ X, g ∈ G where p(x) > 0, if p(gx) > 0 and
f(gx) = gf(x), h has correct equivariance with respect to f .
Definition 3.2 (Incorrect Equivariance). If there exist x ∈ X, g ∈ G such that p(x) > 0, p(gx > 0),
but f(gx) ̸= gf(x), h has incorrect equivariance with respect to f .
Definition 3.3 (Extrinsic Equivariance). For all x ∈ X, g ∈ G where p(x) > 0, if p(gx) = 0, h has
extrinsic equivariance with respect to f .
Example 3.4. Consider a binary classification task where X = R and Y = {0, 1}. If the model h
is invariant to a reflection group G where the group element g ∈ G acts on x ∈ X by gx = −x,
Figure 1 shows examples when correct, incorrect, or extrinsic equivariance is satisfied.

3.2 Pointwise Equivariance Type.

Figure 2: Example of pointwise correct,
incorrect, and extrinsic equivariance in
a binary classification task. f(x) is in
black and p(x) is in orange. G is a re-
flection group that negates x.

Although Definitions 3.1- 3.3 are self-contained, they do
not consider the mixture of different equivariance types
in a single function. In other words, an equivariant model
can have correct, incorrect, and extrinsic equivariance in
different subsets of the domain. To overcome this issue,
we define pointwise correct, incorrect, and extrinsic equiv-
ariance, which is a generalization of the prior work.
Definition 3.5 (Pointwise Correct Equivariance). For g ∈
G and x ∈ X where p(x) ̸= 0, if p(gx) ̸= 0 and f(gx) =
gf(x), h has correct equivariance with respect to f at x
under transformation g.
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Definition 3.6 (Pointwise Incorrect Equivariance). For g ∈ G and x ∈ X where p(x) ̸= 0,
if p(gx) ̸= 0 and f(gx) ̸= gf(x), h has incorrect equivariance with respect to f at x under
transformation g.
Definition 3.7 (Pointwise Extrinsic Equivariance). For g ∈ G and x ∈ X where p(x) ̸= 0, if
p(gx) = 0, h has extrinsic equivariance with respect to f at x under transformation g.

Notice that the definitions of pointwise correct, incorrect, and extrinsic equivariance are mutually
exclusive, i.e., a pair (x, g) can only have one of the three properties. The pointwise definitions are
generalizations of the global Definitions 3.1- 3.3. For example, when pointwise correct equivariance
holds for all x ∈ X and g ∈ G, Definition 3.1 is satisfied.
Example 3.8 (Example of Pointwise Correct, Incorrect, and Extrinsic Equivariance). Consider
the same binary classification task in Example 3.4. Figure 2 shows f(x), g(x), and four subsets
of X where pointwise correct, incorrect, or extrinsic holds. For x in the correct section (green),
p(x) > 0, p(gx) > 0, f(x) = f(gx). For x in the incorrect sections (red), p(x) > 0, p(gx) >
0, f(x) ̸= f(gx). For x in the extrinsic section (blue), p(x) > 0, p(gx) = 0.
Definition 3.9 (Correct, Incorrect, and Extrinsic Sets). The Correct Set C ⊆ X ×G is a subset of
X ×G where pointwise correct equivariance holds for all (x, g) ∈ C. Similarly, the Incorrect Set I
and the Extrinsic Set E are subsets where incorrect equivariance or extrinsic equivariance holds for
all elements in the subset. Denote U ⊆ X ×G as the Undefined Set where ∀(x, g) ∈ U, p(x) = 0.
By definition we have X ×G = C ⨿ I ⨿ E ⨿ U , where ⨿ denotes a disjoint union.

4 Approximation Error Lower Bound from Incorrect Equivariance

Studying the theoretical error lower bound of an equivariant network is essential for model selection,
especially when incorrect equivariance exists. Wang et al. [58] prove an error lower bound for an
incorrect equivariant network, but their setting is limited to a classification task in the global situation
of Definition 3.2 with a discrete group and an invariant density function. In this section, we find
the lower bound of err(h) for an equivariant model h in a general setting. To calculate such a lower
bound, we first define the fundamental domain F of X . Let d be the dimension of a generic orbit of
G in X and n the dimension of X . Let ν be the (n− d) dimensional Hausdorff measure in X .
Definition 4.1 (Fundamental Domain). A closed subset F of X is called a fundamental domain of
G in X if X is the union of conjugates2 of F , i.e., X =

⋃
g∈G gF, and the intersection of any two

conjugates has 0 measure under ν.

We assume further that the set of all x which lie in any pairwise intersection
⋃

g1F ̸=g2F
(g1F ∩ g2F )

has measure 0 under ν. Let Gx = {gx : g ∈ G} be the orbit of x, then X can be written as the union
of the orbits of all points in the fundamental domain F as such X =

⋃
x∈F Gx.

4.1 Lower Bound for Classification

We first show the lower bound of the error errcls(h) (Equation 1) given the invariant constraint in h:
h(gx) = h(x), g ∈ G. In this section, the codomain Y of f is a finite set of possible labels. Since h
is G-invariant, h has the same output for all inputs in an orbit Gx. We call the label that causes the
minimal error inside the orbit the majority label3, and define the error in the orbit as the total dissent.
Definition 4.2 (Total Dissent). For the orbit Gx of x ∈ X , the total dissent k(Gx) is the integrated
probability density of the elements in the orbit Gx having a different label than the majority label

k(Gx) = min
y∈Y

∫
Gx

p(z)1(f(z) ̸= y)dz. (2)

We can also lift the integral to G itself by introducing a factor α(x, g) to account for the Jacobian of
the action map and size of the stabilizer of x. (See Appendix A.)

k(Gx) = min
y∈Y

∫
G

p(gx)1(f(gx) ̸= y)α(x, g)dg. (3)

2A conjugate gF is defined as gF = {gx|x ∈ F}.
3The majority label has more associated data than all other labels, but does not need to be more than 50%.
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Theorem 4.3. err(h) is lower bounded by
∫
F
k(Gx)dx.

Proof. Rewriting the error function of Equation 1, we have

err(h) =

∫
X

p(x)1(f(x) ̸= h(x))dx =

∫
x∈F

∫
z∈Gx

p(z)1(f(z) ̸= h(z))dzdx, (4)

using iterated integration (Appendix B) and Definition 4.1. We assume the measure of F ∩ gF is 0.
Since h(z) can only have a single label in orbit Gx, we can lower bound the inside integral as∫

z∈Gx

p(z)1(f(z) ̸= h(z))dz ≥ min
y∈Y

∫
z∈Gx

p(z)1(f(z) ̸= y)dz = k(Gx).

We obtain the claim by integrating over F . Notice that this is a tight lower bound assuming universal
approximation. That is, there exists h which realizes this lower bound.

We can express the total dissent in terms of the Incorrect Set I (Definition 3.9).
Proposition 4.4. k(Gx) = minx′∈(Gx)+

∫
G
p(gx′)1((x′, g) ∈ I)α(x′, g)dg, where (Gx)+ =

{x0 ∈ Gx|p(x0) > 0}.

Proof. Consider Equation 3, since the minimum over y is obtained for y = f(x′) for some x′ ∈ Gx
such that p(x′) > 0 (i.e., x′ ∈ (Gx)+),

k(Gx) = min
x′∈(Gx)+

∫
G

p(gx)1(f(gx) ̸= f(x′))α(x, g)dg.

Since x′ ∈ Gx, then Gx′ = Gx and we have k(Gx) = k(Gx′). Thus,

k(Gx) = min
x′∈(Gx)+

∫
G

p(gx′)1(f(gx′) ̸= f(x′))α(x′, g)dg

= min
x′∈(Gx)+

∫
G

p(gx′)1((x′, g) ∈ I)α(x′, g)dg.

Example 4.5 (Lower bound example for a binary classification task using Proposition 4.4).

Figure 3: An example
binary classification task.
The circles are elements
of X . The arrows show
how g ∈ G acts on x ∈
X . The arrow color shows
whether (x, g) ∈ I .

Figure 4: An exam-
ple multi-class classifi-
cation task. Color indi-
cates the label. The fun-
damental domain F is a
vertical line. For a point
x ∈ F , the orbit Gx is
a horizontal line.

Let f : X → {0, 1} be a binary classification
function on X = {x0, x1, x2, x3}. Let
G = C2 = {e, r} be the cyclic group of order
two that permutes the elements in X . Figure 3
shows X , the label for each x ∈ X , and how
e, r ∈ G acts on x ∈ X . {x0, x3} forms a
fundamental domain F , and there are two
orbits: Gx0 = {x0, x1} and Gx2 = {x2, x3}.
Since both X and G are discrete and
g ∈ G acts on X through permutation, The
lower bound can be written as err(h) ≥∑

x∈F minx′∈(Gx)+
∑

g∈G p(gx′)1((x′, g) ∈
I). We can then calculate∑

g∈G p(gx′)1((x′, g) ∈ I) for x′ ∈ X:
x0 : 0.4, x1 : 0.3, x2 : 0, x3 : 0. Tak-
ing the min over each orbit we have
k(Gx0) = 0.3, k(Gx2) = 0. Taking the sum
over F = {x0, x3} we obtain err(h) ≥ 0.3.
Example 4.6 (Lower bound example for a multi-class classification task using Proposition 4.4).
Consider a multi-class classification task f : R2 → Y with n = |Y | classes. For x = (u, v) ∈ [0, 1]2

then p(u, v) = 1 and otherwise p(u, v) = 0; i.e., the support of p is a unit square. Let G denote
the group of translations in the u-direction and h a G-invariant network. In a data distribution
illustrated in Figure 4, we compute the lower bound for err(h). Consider a fundamental domain
F (brown line in Figure 4). In the blue area, there is one label across the orbit (i.e., the horizontal
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line), meaning ∀g ∈ G, (x′, g) ∈ C, yielding Proposition 4.4 equals 0. For points in the yellow area,
the majority label is yellow. This means that for g ∈ G such that gx is in yellow, (x, g) ∈ C; for
other g ∈ G, (x, g) ∈ I . Consequently, Proposition 4.4 is equivalent to the combined green and pink
lengths. Taking the integral over F (Theorem 4.3), the lower bound equals the green and pink area
(I in Figure 4). We define correct ratio (c) as the blue area’s height and majority label ratio (m) as
the yellow area’s length. Adjusting c and m transitions incorrect to correct equivariance, leading to
err(h) ≥ area(I) = (1− c)× (1−m). Appendix H.2 shows an experiment where the empirical
result matches our analysis.

Lower Bound When G is Finite and The Action of G is Density Preserving. In this section, we
consider the lower bound in Theorem 4.3 when G is finite and the action of G is density preserving,
i.e., p(gx) = p(x). Let (Gx)y = {z ∈ Gx|f(z) = y} be a subset of Gx with label y. Define
Q(x) = (maxy∈Y |(Gx)y|)/|Gx|, which is the fraction of data in the orbit Gx that has the majority
label. Denote Q = {Q(x) : x ∈ X} the set of all possible values for Q. Consider a partition of
X =

∐
q∈Q Xq where Xq = {x ∈ X : Q(x) = q}. Define cq = P(x ∈ Xq) = |Xq|/|X|.

Proposition 4.7. The error lower bound err(h) ≥ 1−
∑

q qcq from Wang et al. [58] (Proposition
4.1) is a special case of Theorem 4.3.

Proof in Appendix C. The proposition shows Theorem 4.3 is a strict generalization of [58, Prop 4.1].

4.2 Lower Bound for Invariant Regression

In this section, we give a lower bound of the error function errreg(h) (Equation 1) in a regression
task given that h is invariant, i.e., h(gx) = h(x) for all g ∈ G. Assume Y = Rn. Denote by
p(Gx) =

∫
z∈Gx

p(z)dz the probability of the orbit Gx. Denote by q(z) = p(z)
p(Gx) the normalized

probability density of the orbit Gx such that
∫
Gx

q(z)dz = 1. Let EGx[f ] be the mean of function f
on the orbit Gx defined, and let VGx[f ] be the variance of f on the orbit Gx,

EGx[f ] =

∫
Gx

q(z)f(z)dz =

∫
Gx

p(z)f(z)dz∫
Gx

p(z)dz
, VGx[f ] =

∫
Gx

q(x)||EGx[f ]− f(z)||22.

Theorem 4.8. err(h) ≥
∫
F
p(Gx)VGx[f ]dx.

Proof. The error function (Equation 1) can be written as:

err(h) =

∫
X

p(x)||f(x)− h(x)||22dx =

∫
x∈F

∫
z∈Gx

p(z)||f(z)− h(z)||22dzdx.

Denote e(x) =
∫
Gx

p(z)||f(z) − h(z)||22dz. Since h is G-invariant, there exists c ∈ Rn such
that h(z) = c for all z ∈ Gx. Then e(x) can be written as e(x) =

∫
Gx

p(z)||f(z) − c||22dz.
Taking the derivative of e(x) with respect to c and setting it to 0 gives c∗, the minimum of e(x),
c∗ =

∫
Gx

p(z)f(z)dz∫
Gx

p(z)dz
= EGx[f ]. Substituting c∗ into e(x) we have

e(x) ≥
∫
Gx

p(Gx)
p(z)

p(Gx)
||EGx[f ]− f(z)||22dz = p(Gx)VGx[f ].

We can obtain the claim by taking the integral of e(x) over the fundamental domain F .

4.3 Lower Bound for Equivariant Regression

We now prove a lower bound for err(h) in a regression task given the model h is equivariant, that
is, h(ρX(g)x) = ρY (g)h(x) where g ∈ G, ρX and ρY are group representations associated with
X and Y . We will denote ρX(g)x and ρY (g)y by gx and gy, leaving the representation implicit.
Assume Y = Rn and α(x, g) is the same as in equation 3. Let Id be the identity. Define a matrix
QGx ∈ Rn×n and q(gx) ∈ Rn×n so that

∫
G
q(gx)dg = Id by

QGx =

∫
G

p(gx)ρY (g)
T ρY (g)α(x, g)dg, q(gx) = Q−1

Gxp(gx)ρY (g)
T ρY (g)α(x, g). (5)
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Figure 5: An example regression task. (a) The value of f(x) and the transformation rule (purple)
with respect to group G = C4 for all x ∈ X . The four points belong to a single orbit. (b) When using
an invariant network, the minimal error (red) is obtained when the invariant network outputs the mean
value (green) of the orbit. (c) For an equivariant network, the minimizer (green) can be obtained by
taking the mean of the G-stabilized f(x) (inversely transformed) (blue) for all x in the orbit with
respect to the transformation rule in the orbit. (d) The minimal error of an equivariant network.

Here, for simplicity, we assume QGx is an invertible matrix. (See Appendix D for general case).

If f is equivariant, g−1f(gx) is a constant for all g ∈ G. Define EG[f, x]

EG[f, x] =

∫
G

q(gx)g−1f(gx)dg. (6)

Theorem 4.9. The error of h has lower bound err(h) ≥
∫
F

∫
G
p(gx)||f(gx) −

gEG[f, x]||22α(x, g)dgdx.

See Appendix D for the proof. Intuitively, EG[f, x] is the minimizer obtained by taking the mean of
all inversely transformed f(x) for all x in the orbit, see Figure 5cd and Example 4.11 below.
Corollary 4.10. Denote p(Gx) =

∫
Gx

p(z)dz. Denote qx : g 7→ q(gx). Define G-stabilized f as
fx : g 7→ g−1f(gx). When ρY is an orthogonal representation ρY : G → O(n) ⊂ GL(n), qx is a
probability density function on G. Denote the variance of fx as VG[fx] where g ∼ qx. The error has
a lower bound err(h) ≥

∫
F
p(Gx)VG[fx]dx.

See Appendix E for the proof. Notice that Corollary 4.10 is a generalization of Theorem 4.8. That is,
Theorem 4.8 can be recovered by taking ρY (g) = Id (See the proof in Appendix F).
Example 4.11 (Lower bound example of a regression task). Consider a regression problem where
X = {x0, x1, x2, x3} and Y = R2. Assume p is uniform density. The cyclic group G = C4 =
{e, r, r2, r3} (where e = 0 rotation and r = π/2 rotation) acts on X through x1 = rx0;x2 =
rx1;x3 = rx2;x0 = rx3 (i.e., there is only one orbit Gx = X). g ∈ G acts on y ∈ Y through
ρY (g) =

( cos g − sin g
sin g cos g

)
. Figure 5a shows the output of f(x),∀x ∈ X . First, consider a G-invariant

network h. Since there is only one orbit, Theorem 4.8 can be simplified as: err(h) ≥ VX [f ], the
variance of f over X . This can be calculated by first taking the mean of f(x) then calculating the
mean square error (MSE) from all x to the mean (Figure 5b). Second, consider a G-equivariant
network h. Since G is discrete, gx permutes the order of X , ρY is an orthogonal representation, and
there is only one orbit, Corollary 4.10 can be written as err(h) ≥ VG[fx], the variance of G-stabilized
f . First, to calculate EG[fx], let x = x0, we stabilize g from f by g−1f(gx) for all g ∈ G, then take
the mean (Figure 5c). We can then find VG[fx] by calculating the MSE between f(x) and transformed
mean gEG[fx] (Figure 5d). Appendix H.3 shows an experiment in this example’s environment.

5 Harmful Extrinsic Equivariance

Wang et al. [58] demonstrate that extrinsic equivariance, where the symmetry imposed on the model
leads to out-of-distribution data with respect to the input distribution, can lead to a higher performance
on the original training data. In this section, we argue that this is not necessarily true in all cases, and
there can exist scenarios where extrinsic equivariance can even be harmful to the learning problem.

Consider a binary classification task where the domain is discrete and contains only a set of four points
S ⊂ R3, and their labels are either {−1,+1} as shown in Figure 6a. We consider the probability
density p to be uniform for this domain, i.e., p(x) = 1/4 for the four points S, and p = 0 elsewhere.
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This domain is used for both model training and testing so there is no distribution shift. We consider
two model classes, FN , the set of all linear models, and FE , the set of all linear models which
are invariant with respect to the cyclic group C2 = {1, g}, where g(x1, x2, x3) = (x1, x2,−x3).
FN corresponds to an unconstrained or a non-equivariant model class and FE corresponds to an
extrinsically equivariant class for this domain. For the labeling shown in Figure 6, the hyperplane
x3 = 0 correctly classifies all samples and is contained in FN . However, a function fe ∈ FE is
equivalent to a linear classifier on R2 and effectively sees the data as Figure 6b4. This exclusive-or
problem does not admit a linear solution (it can be correct for at most 3 points).

(a) Data (b) Transformed
data

(c) C2-equivariant
view

Figure 6: An example dataset where extrinsic
equivariance increases the problem difficulty. The
samples are of the form x = (x1, x2, x3) and
the labels are shown as different shapes. A C2-
equivariant linear model transforms the original
data (a) into (b), which is equivalent to viewing
the data as in (c). The original task has an easy
solution (e.g. hyperplane at x3 = 0), while the C2-
invariant view is the classic exclusive-or problem.

Concretely, we can compute the empiri-
cal Rademacher complexity, a standard mea-
sure of model class expressivity, for non-
equivariant and extrinsically equivariant model
classes and show that FE has lower com-
plexity than FN . Recall that empirical
Rademacher complexity is defined as RS (F) =
Eσ

[
supf∈F

1
m

∑m
i=1 σif(x

i)
]
, where S is the

set of m samples and σ = (σ1, . . . , σm)⊤, σi ∈
{−1,+1} are independent uniform Rademacher
random variables, and xi is the i-th sample. As
there exists some linear function fn ∈ FN

that fully classifies S for any combination of
labels, RS(FN ) = 1. For the extrinsic equivari-
ance case, of the 16 possible label combinations,
there are two cases where fe ∈ FE can at most
classify 3 out of 4 points correctly, and thus
RS(FE) = 31

32 < RS(FN ) (see Appendix G
for the calculations). This illustrates that in certain cases, extrinsic equivariance can lead to lower
model expressivity than no equivariance and thus be harmful to learning.

6 Experiments

We perform experiments to validate our theoretical analysis on both the lower bounds (Section 4) and
the harmful extrinsic equivariance (Section 5). We find that our bounds accurately predict empirical
model error. In addition to the experiments in this section, Appendix H.2 shows an experiment
verifying our classification bound (Theorem 4.3) and Appendix H.3 shows an experiment verifying
our regression bound (Theorem 4.8 and 4.9). The experiment details are in Appendix I.

6.1 Swiss Roll Experiment

We first perform an experiment in a vertically separated Swiss Roll data distribution, see Figure 7a5.
This example, similar to that in Section 5, demonstrates that a C2-invariant model effectively “flattens”
the z-dimension of the data so it must learn the decision boundary between two spirals (Figure 7b),
whereas the non-equivariant model only needs to learn a horizontal plane to separate the classes,
a significantly easier task. Besides the extrinsic data distribution, we consider two other data
distributions shown in Figure 7c and Figure 7d, where a C2-invariant model will observe incorrect
and correct equivariance due to the mismatched and matched data labels in the two z planes.

We combine data from all three distributions in various proportions to test the performance of a
z-invariant network (INV) with a baseline unconstrained network (MLP). Let c be the correct ratio,
the proportion of data from the correct distribution. Define the incorrect ratio i and extrinsic ratio
e similarly. We consider all c, i, e that are multiples of 0.125 such that c + i + e = 1. Figure 7ef
shows some example data distributions. Relative to INV, this mixed data distribution has partial
correct, incorrect, and extrinsic equivariance, which is not fully captured in prior work [58]. Based on
Proposition 4.4, we have k(Gx) = 0.5 for x drawn from the incorrect distribution, and k(Gx) = 0
otherwise. Since the data is evenly distributed, we can calculate the error lower bound err(h) ≥ 0.5i.

4Notice that the four additional points in Figure 6b compared with (a) are not in the domain, they are created
through applying the transformation rule of FE onto the domain.

5For visualization, we show a simpler version of the data distribution. See Appendix H.1 for the actual one.
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(a) Swiss Roll
Data

(b) C2-Invariant
View

(c) Incorrect (d) Correct (e) c = .5, i =
.5, e = 0

(f) c = .5, i =
0, e = .5

Figure 7: (a) (b) The Swiss Roll data distribution that leads to harmful extrinsic equivariance. (c) (d)
The correct and incorrect data distribution in the Swiss Roll experiment. Here the spirals overlap
with mismatched and matched labels respectively. (e) (f) Data distribution example with different
correct ratio (c), incorrect ratio (i), and extrinsic ratio (e) values.

(a) (b)

Figure 8: Result of the Swiss Roll experiment. (a)
test success rate of an invariant network (red) and an
unconstrained MLP (blue) with different extrinsic
and correct ratio when incorrect ratio is 0. (b) same
as (a) with different correct and incorrect ratio when
extrinsic ratio is 0. Averaged over 10 runs.

Results. Figure 8a shows the test success rate
of INV compared with MLP when e and c vary
with i = 0. When e increases, the performance
of INV decreases while the performance of
MLP shows an inverse trend, demonstrating
that extrinsic equivariance is harmful in this ex-
periment. Figure 8b shows the performance of
INV and MLP when c and i vary while e = 0.
The green line shows the upper bound of the
test success rate (1 − 0.5i). The experimen-
tal result matches our theoretical analysis quite
closely. Notice that when c increases, there
is a bigger gap between the performance of
the network and its theoretical upper bound,
since classification in the correct distribution
is a harder task. Appendix H.1 shows the com-
plete results of this experiment.

6.2 Digit Classification Experiment

In this experiment, we apply our theoretical analysis to a realistic digit classification task using
both the printed digit dataset [16] and the MNIST handwritten digit dataset [15]. We compare a
D4-invariant network (D4) with an unconstrained CNN. In the printed digit classification, D4 exhibits
incorrect equivariance for 6 and 9 under a π rotation. Using Theorem 4.3, we can calculate a lower
bound of error for D4 at 10%. However, as shown in Table 1 (top), the experimental results indicate
that the actual performance is slightly better than predicted by the theory. We hypothesize that this
discrepancy arises because a rotated 9 differs slightly from a 6 in some fonts. We conduct a similar
experiment using the MNIST handwritten digit dataset (Table 1 bottom), where D4 achieves even
better performance in classifying 6 and 9. This improvement is likely due to the more distinguishable
handwriting of these digits, although the performance still underperforms the CNN as incorrect
equivariance persists. It is important to note that there is a significant decrease in performance for
D4 when classifying 2/5 and 4/7 compared to the CNN. This is because a vertical flip results in
incorrect equivariance when classifying handwritten 2/5, and a similar issue arises for 4/7 under a
π/2 rotation followed by a vertical flip (notice that Weiler and Cesa [60] make a similar observation).
These experiments demonstrate that our theory is useful not only for calculating the performance
bounds of an equivariant network beforehand, but also for explaining the suboptimal performance of
an equivariant network, thereby potentially assisting in model selection.

6.3 Robotic Experiment

In this experiment, we evaluate our theory in behavior cloning in robotic manipulation. We first
preform an experiment where the problem is a mixture of correct and incorrect equivariance for
a D1-equivariant policy network (D1) where the robot’s action will flip when the state is flipped
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Digit Overall 0 1 2 3 4 5 6 7 8 9

Print CNN 96.62 99.81 98.27 97.06 96.12 98.04 92.9 94.93 97.85 93.65 96.13
Print D4 92.5 99.71 98.62 96.94 95.98 97.91 93.52 63.08 98.42 95.88 76.17
Print D4 Upper Bound 90 100 100 100 100 100 100 50 100 100 50

MNIST CNN 98.21 99.51 99.61 98.62 98.83 98.08 98.47 97.99 97.04 96.98 96.81
MNIST D4 96.15 98.93 99.21 91.84 98.28 95.49 95.04 93.71 95.67 97.73 95.34

Table 1: D4-invariant network compared with an unconstrained CNN in printed and MNIST hand-
written digit classification tasks. Bold indicates that there is a > 1% difference in two models.

Figure 9: Left: an environment containing both correct (Stacking) and
incorrect (Pushing) equivariance for a D1-equivariant (horizontal flip)
policy net. Right: an environment with harmful extrinsic equivariance
for the same policy.

Figure 10: Result of robotic
experiment with different
correct ratio. Averaged over
4 runs.

horizontally. Specifically, the environment contains two possible tasks (Figure 9 left). Stacking
requires the robot to stack a green triangle on top of a blue cube. Here flip equivariance is correct.
Sorting requires the robot to push the red cube to the left and the yellow triangle to the right. Here
flip equivariance is incorrect because the robot should not sort the objects in an opposite way when
the state is flipped (in other words, D1 cannot distinguish left and right). We vary the probability
c of the stacking task (correct ratio) in the task distribution, and compare the performance of D1

versus a standard CNN policy. If we view the sorting task as a binary classification task, we can
calculate an upper bound of performance for D1 using Theorem 4.3: 0.5 + 0.5c. Figure 10 shows
the result. Notice that the performance of D1 closely matches the theoretical upper bound, while the
performance of CNN remains relatively stable for all Stacking-Sorting distributions.

We further evaluate D1 in a sorting task with harmful extrinsic equivariance. Here, the goal for the
robot is the same as sorting above (push the red cube left and the yellow triangle right), however,
the left and right sides of the workspace can now be differentiated by gray-scale colors. The shades
of gray are discretized evenly into n bins, where the left side’s color is randomly sampled from the
odd-numbered bins, and the right side’s color is randomly sampled from the even-numbered bins
(Figure 9 right). The different color distributions of the left and right sides make D1 extrinsically
equivariant, but it needs to learn the color distribution to distinguish left and right (while CNN can
distinguish left and right directly). We set n = 10, and D1 achieves 71.5± 1.6% test success rate,
while CNN achieves 99.5± 0.5%, demonstrating that the D1 extrinsic equivariance is harmful in this
task. See Appendix I.5 for the details of the robot experiment.

7 Discussion

This paper presents a general theory for when the symmetry of the ground truth function and equiv-
ariant network are mismatched. We define pointwise correct, incorrect, and extrinsic equivariance,
generalizing prior work [58] to include continuous mixtures of the three extremes. We prove error
lower bounds for equivariant networks applied to asymmetric tasks including classification, invariant
regression, and equivariant regression without the assumption of invariant data density. Our work
discusses the potential disadvantage of extrinsic equivariance, and provides experiments that validate
our theoretical analysis. The major limitation of this paper is that our theoretical lower bounds require
domain knowledge like the density function over the domain. In future work, we will develop easy-to-
apply model selection tools using our theory. Another future direction is theoretically understanding
when extrinsic equivariance is helpful or harmful and analyzing the effect of extrinsic equivariance
on the decision boundary of an equivariant network.
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A Integrals on the Group

Fundamental Domains In this paper, we are interested in cases in which the group G is not
necessarily discrete but may have positive dimension. We do not assume the fundamental domain has
non-empty interior, and thus domain is a misnomer. In this case the conjugates of the fundamental
domain gF have measure 0 and the condition that their intersection have measure 0 is vacuous. Instead
we assume a stronger condition, that the union of all pairwise intersections

⋃
g1 ̸=g2

(g1F ∩ g2F ) has
measure 0. We also require that F and the orbits Gx are differentiable manifolds such that integrals
over X may be evaluated

∫
X
f(x)dx =

∫
F

∫
Gy

f(z)dzdy similar to Equation 8 from [18].

Reparameterization Consider the integral∫
Gx

f(z)dz. (7)

Denote the identification of the orbit Gx and coset space G/Gx with respect to the stabilizer
Gx = {g : gx = x} by ax : G/Gx → Gx. Then the integral can be written∫

G/Gx

f(ḡx)

∣∣∣∣∂ax(ḡ)∂ḡ

∣∣∣∣ dḡ.
We can also lift the integral to G itself∫

G/Gx

f(ḡx)

∣∣∣∣∂ax(ḡ)∂ḡ

∣∣∣∣ dḡ =

(∫
Gx

dh

)−1 (∫
Gx

dh

)∫
G/Gx

f(ḡx)

∣∣∣∣∂ax(ḡ)∂ḡ

∣∣∣∣ dḡ
=

(∫
Gx

dh

)−1 ∫
G/Gx

∫
Gx

f(ḡhx)

∣∣∣∣∂ax(ḡ)∂ḡ

∣∣∣∣ dhdḡ
=

(∫
Gx

dh

)−1 ∫
G

f(gx)

∣∣∣∣∂ax(ḡ)∂ḡ

∣∣∣∣ dg.
Define α(g, x) =

(∫
Gx

dh
)−1 ∣∣∣∂ax(ḡ)

∂ḡ

∣∣∣. Then∫
Gx

f(z)dz =

∫
G

f(gx)α(g, x)dg.

B Iterated Integral

Let X be an n-dimensional space, Definition 4.2 (Equation 2) defines k(Gx) as an integral over
Gx ⊆ X , which is a m-dimensional sub-manifold of X . In Theorem 4.3, Equation 4 rewrites the
error function (Equation 1) as an iterated integral over the orbit Gx and then the fundamental domain
F using Definition 4.1. In the discrete group case, m would be 0, Equation 2 is an integral of a
0-form in a 0-manifold, which is a sum:

k(Gx) = min
y∈Y

∑
z∈Gx

p(z)1(f(z) ̸= y) = min
y∈Y

∑
g∈G

p(gx)1(f(gx) ̸= y) (8)

C Proof of Proposition 4.7

Proof. Consider the integral of probability density inside Gx, for a given y, it can be separated into
two groups: ∫

Gx

p(z)dz =

∫
Gx

p(z)1(f(z) = y)dz

+

∫
Gx

p(z)1(f(z) ̸= y)dz.
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We can then rewrite k(Gx) in Equation 2 as:

k(Gx) = min
y∈Y

[∫
Gx

p(z)dz −
∫
Gx

p(z)1(f(z) = y)dz

]
. (9)

Letting (Gx)y = {x′ ∈ Gx | f(x′) = y} = f−1(y) ∩Gx, Equation 9 can be written as:

k(Gx) = min
y∈Y

[ ∫
Gx

p(z)dz −
∫
(Gx)y

p(z)dz
]

∫
Gx

p(z)dz −max
y∈Y

∫
(Gx)y

p(z)dz.

Theorem 4.3 can be rewritten as:

err(h) ≥
∫
F

(∫
Gx

p(z)dz −max
y∈Y

∫
(Gx)y

p(z)dz
)
dx

≥
∫
F

∫
Gx

p(z)dz −
∫
F

max
y∈Y

∫
(Gx)y

p(z)dz

≥ 1−
∫
F

max
y∈Y

|(Gx)y|p(x)dx. (10)

The first term in Equation 10 uses the fact that X =
⋃

x∈F Gx so the integral of the probability of the
orbits of all points in the fundamental domain is the integral of the probability of the input domain X
which is 1. The second term of Equation 10 uses p(gx) = p(x) so the integration of p(z) on (Gx)y
becomes p(x) times the range of the limit which is the size of (Gx)y , |(Gx)y|.
Now consider a partition of F =

∐
q Fq where Fq = {x ∈ F : (maxy∈Y |(Gx)y|)/|Gx| = q}. We

can rewrite Equation 10 as:

err(h) ≥ 1−
∫
F

q|Gx|p(x)dx (11)

≥ 1−
∑
q

∫
Fq

q|Gx|p(x)dx (12)

≥ 1−
∑
q

q

∫
Fq

|Gx|p(x)dx. (13)

Equation 11 uses the definition of q. Equation 12 separates the integral over F into the partition of F .
Equation 13 moves q out from the integral because it is a constant inside the integral. Consider the
definition of cq , we have:

cq = P(x ∈ Xq)

=

∫
Xq

p(x)dx

=

∫
Fq

∫
Gx

p(z)dzdx (14)

=

∫
Fq

|Gx|p(x)dx. (15)

Equation 14 uses Xq =
⋃

x∈Fq
Gx. Equation 15 uses p(x) = p(gx). Now we can write Equation 13

as:

err(h) ≥ 1−
∑
q

qcq.

16



D Proof of Theorem 4.9

Define q(gx) ∈ Rn×n such that

QGxq(gx) = p(gx)ρY (g)
T ρY (g)α(x, g). (16)

In particular, q(gx) exists when QGx is full rank. It follows that QGx

∫
G
q(gx)dg = QGx. Moreover,

QGx and q(gx) are symmetric matrix.

Proof. The error function (Equation 1) can be written

err(h) = Ex∼p[||f(x)− h(x)||22]

=

∫
X

p(x)||f(x)− h(x)||22dx

=

∫
x∈F

∫
g∈G

p(gx)||f(gx)− h(gx)||22α(x, g)dgdx.

Denote e(x) =
∫
G
p(gx)||f(gx)− h(gx)||22α(x, g)dg. Since h is G-equivariant, for each x ∈ F the

value c = h(x) ∈ Rn of h at x determines the value of h across the whole orbit h(gx) = gh(x) = gc
for g ∈ G. Then e(x) can be written

e(x) =

∫
G

p(gx)||f(gx)− gc||22α(x, g)dg

=

∫
G

p(gx)||g(g−1f(gx)− c)||22α(x, g)dg

=

∫
G

(g−1f(gx)− c)T p(gx)gT gα(x, g)(g−1f(gx)− c)dg

=

∫
G

(g−1f(gx)− c)TQGxq(gx)(g
−1f(gx)− c)dg. (17)

Taking the derivative of e(x) with respect to c we have

∂e(x)

∂c
=

∫
G

(
(QGxq(gx))

T + (QGxq(gx))
)
(c− g−1f(gx))dg

=

∫
G

2QGxq(gx)(c− g−1f(gx))dg.

Setting ∂e(x)/∂c = 0 we can find an equation for c∗ which minimizes e(x)

QGx

∫
G

q(gx)dg · c∗ = QGx

∫
G

q(gx)g−1f(gx)dg

QGxc
∗ = QGxEG[f, x]. (18)

Substituting c∗ into Equation 17 we have

e(x) ≥
∫
G

(g−1f(gx)− c∗)TQGxq(gx)(g
−1f(gx)− c∗)dg

=

∫
G

(g−1f(gx))TQGxq(gx)(g
−1f(gx))

−
(
c∗TQGxq(gx)g

−1f(gx)
)T

− c∗TQGxq(gx)g
−1f(gx)

+ c∗TQGxq(gx)c
∗dg.

(19)

The term
∫
G
c∗TQGxq(gx)g

−1f(gx)dg could be simplified as
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∫
G

c∗TQGxq(gx)g
−1f(gx)dg =

∫
G

EG[f, x]QGxq(gx)g
−1f(gx)dg.

(20)

Notice that QGx, and q(gx) are symmetric matrix

∫
G

c∗TQGxq(gx)c
∗dg =

∫
G

c∗T q(gx)QGxc
∗dg

=

∫
G

ET
G[f, x]QGxq(gx)EG[f, x]dg.

Thus Equation 19 becomes

e(x) ≥
∫
G

(g−1f(gx))TQGxq(gx)(g
−1f(gx))

−
(
ET

G[f, x]QGxq(gx)g
−1f(gx)

)T

−ET
G[f, x]QGxq(gx)g

−1f(gx)

+ET
G[f, x]QGxq(gx)EG[f, x]dg

=

∫
G

p(gx)||f(gx)− gEG[f, x]||22α(x, g)dg.

Taking the integral over the fundamental domain F we have

err(h) =

∫
F

e(x)

≥
∫
F

∫
G

p(gx)||f(gx)− gEG[f, x]||22α(x, g)dgdx. (21)

E Proof of Corollary 4.10

Proof. When ρY is an orthogonal representation, we have ρY (g)
T ρY (g) = In, i.e., the identity

matrix. Then q(gx) can be written as q(gx) = s(gx)Id where s(gx) is a scalar. Since
∫
G
q(gx)dg =

Id, we can re-define q(gx) to drop Id and only keep the scalar, then qx(g) can be viewed as a
probability density function of g because now

∫
G
qx(g) = 1.

With qx(g) being the probability density function, EG[f, x] (Equation 6) naturally becomes the mean
EG[fx] where g ∼ qx.

Now consider e(x) =
∫
G
p(gx)||f(gx)− gEG[fx]||22α(x, g)dg in Theorem 4.9, it can be written as

e(x) =

∫
G

p(gx)||f(gx)− gEG[fx]||22α(x, g)dg

=

∫
G

p(gx)||g(g−1f(gx)− EG[fx])||22α(x, g)dg

=

∫
G

p(gx)(g−1f(gx)− EG[fx])
T ρY (g)

T ρY (g)(g
−1f(gx)− EG[fx])α(x, g)dg.

Since ρY (g)
T ρY (g) = In, we have

e(x) =

∫
G

p(gx)(g−1f(gx)− EG[fx])
T (g−1f(gx)− EG[fx])α(x, g)dg

=

∫
G

p(gx)||g−1f(gx)− EG[fx]||22α(x, g)dg. (22)
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From Equation 5 we have p(gx)α(x, g) = QGxq(gx). Substituting in Equation 22 we have

e(x) =

∫
G

QGxq(gx)||g−1f(gx)− EG[fx]||22dg.

Since QGx =
∫
G
p(gx)α(a, g)dg when ρY (g)

T ρY (g) = In, we have

e(x) =QGx

∫
G

qx(g)||g−1f(gx)− EG[fx]||22dg

=QGxVG[fx]. (23)

Now consider QGx (Equation 5), when ρY (g)
T ρY (g) = In, it can be written

QGx =

∫
G

p(gx)α(x, g)dg

=

∫
Gx

p(z)dz

= p(Gx).

Replacing QGx with p(Gx) in Equation 23 then taking the integral of e(x) over the fundamental
domain gives the result.

F Lower Bound of Equivariant Regression when ρY = Id

Proposition F.1. When ρY = Id, the error of h has lower bound err(h) ≥
∫
F
p(Gx)VGx[f ]dx,

which is the same as Theorem 4.8.

Proof. Consider Equation 5, when ρY (g) = Id, we have

QGx =

∫
G

p(gx)α(x, g)dg.

Exchange the integration variable using z = gx we have

QGx =

∫
Gx

p(z)dz. (24)

Consider EG[fx] =
∫
G
qx(g)g

−1f(gx)dg. When ρY (g) = Id, it becomes

EG[fx] =

∫
G

q(gx)f(gx)dg.

Substituting q(gx) with Equation 5, considering ρY (g) = Id, we have

EG[fx] =

∫
G

Q−1
Gxp(gx)f(gx)α(x, g)dg.

Exchange the integration variable using z = gx we have

EG[fx] =

∫
Gx

Q−1
Gxp(z)f(z)dz.

Substituting Equation 24 we have

EG[fx] =

∫
Gx

p(z)∫
Gx

p(z)dz
f(z)dz

= EGx[f ].

Similarly, we can proof VG[fx] = VGx[f ], thus when ρY = Id, Corollary 4.10 is Theorem 4.8.
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Non-equivariant model class C2-equivariant model class

σ⊤ supfn∈FN

1
m

∑m
i=1 σifn(x

i) supfn∈FN

1
m

∑m
i=1 σifn(x

i)

[−1,−1,−1,−1] 1 1
[−1,−1,−1,+1] 1 1
[−1,−1,+1,−1] 1 1
[−1,−1,+1,+1] 1 0.75
[−1,+1,−1,−1] 1 1
[−1,+1,−1,+1] 1 1
[−1,+1,+1,−1] 1 1
[−1,+1,+1,+1] 1 1
[+1,−1,−1,−1] 1 1
[+1,−1,−1,+1] 1 1
[+1,−1,+1,−1] 1 1
[+1,−1,+1,+1] 1 1
[+1,+1,−1,−1] 1 0.75
[+1,+1,−1,+1] 1 1
[+1,+1,−1,+1] 1 1
[+1,+1,+1,+1] 1 1

RS 1 31
32

(a) Correct (b) Incorrect (c) Extrinsic (d) Extrinsic Invariant
View

Figure 11: The correct, incorrect, and extrinsic data distribution in the Swiss Roll experiment.

G Rademacher Complexity of Harmful Extrinsic Equivariance Example

Let S = {x1, x2, x3, x4}, where the labels are y1, y2 = +1 and y3, y4 = −1. We consider two
model classes FN , the set of all linear models, and FE , the set of all linear models equivariant to C2,
and compute their empirical Rademacher complexity on S.

For the data S, an extrinsically equivariant linear model class has lower empirical Rademacher
complexity than its unconstrained linear counterpart, demonstrating that extrinsic equivariance can
be harmful to learning.

H Additional Experiments

H.1 Swiss Roll Experiment

Figure 11 and Figure 12 show the actual data distribution for the Swiss Roll experiment in Section 6.1.
In the incorrect distribution, the data in the two z planes form two spirals with different labels
but the same shape. The equivariance is incorrect because if we translate one spiral to the other
spiral’s plane, they will overlap but their labels are different. In the correct distribution, there are
two different ‘dashed’ spirals copied into two z-planes. The equivariance is correct because after a
z-translation, both the data and their labels exactly overlap. In all three cases, we assume the data has
a uniform distribution. Figure 13b shows the ternary plot of MLP for all different c, ir, er, where the
performance of MLP decreases as the correct ratio increases. Figure 13a shows an inverse trend: the
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(a) c = .5, i = .5, e = 0 (b) c = .5, i = 0, e = .5 (c) c = 0, i = .5, e = .5 (d)
c = .5, i = .25, e = .25

Figure 12: Data distribution example with different correct ratio (c), incorrect ratio (ir), and extrinsic
ratio (er) values.

(a) (b)

Figure 13: The ternary plot of the invariant network (a) and unconstrained network (b) with different
correct, incorrect, and extrinsic ratio.

performance of INV increases as the correct ratio increases. Moreover, both extrinsic and incorrect
equivariance harms the performance of INV, but incorrect equivariance is more devastating because
the error is limited by a theoretical lower bound.

H.2 Square Experiment

We consider the environment shown in Example 4.6. We vary m ∈ {0.2, 0.4, 0.6, 0.8, 1} and
c ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. We train an u-invariant network and evaluate its test performance with
the theoretical lower bound err(h) ≥ (1 − c) × (1 − m). Figure 14 shows the test error of the
trained network compared with the theoretical lower bound. The highest difference is below 3%,
demonstrating the correctness of our theory.

H.3 Regression Experiment

In this experiment, we validate our theoretical error lower bound for invariant and equivariant
regression (Theorem 4.8, 4.9) in an environment similar to Example 4.11. Consider a regression task
f : R × X → R2 given by (θ, x) 7→ y, where X = {x0, x1, x2, x3}. The group g ∈ G = C4 =
{e, r, r2, r3} acts on (θ, x) by g(θ, x) = (θ, gx) through permutation: x1 = rx0;x2 = rx1;x3 =

Invariant Network Equivariant Network

Empirical/Theoretical 1.002 ±0.000 1.001 ±0.000

Table 2: Empirical err(h) divided by theoretical err(h) for invariant regression and equivariant
regression. Results are averaged over 100 runs with different f for each regression. Empirical
regression error matches theoretical error.
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Figure 14: Result of the square experiment in terms of the L1 distance between the network error and
the theoretical lower bound in percentage. Each cell corresponds to an experiment with a particular
correct ratio (c) and majority label ratio (m). Results are averaged over 10 runs.

rx2;x0 = rx3. Let rk ∈ G acts on y by ρY (g) =
(

cos g − sin g
sin g cos g

)
where g = kπ/2. Note that fixing

a single value of θ gives Example 4.11; in other words, this experiment has infinitely many orbits
where each orbit is similar to Example 4.11.

We generate random polynomial function f that is not equivariant, i.e., ∃(θ, x) s.t. g · f(θ, x) ̸=
ρY (g)y. Then we try to fit f using a G-invariant network and a G-equivariant network. We measure
their error compared with the theoretical lower bound given by Theorem 4.8 and 4.9. As is shown in
Table 2, both the invariant network and the equivariant network achieve an error rate nearly the same
as our theoretical bound. The empirical error is slightly higher than the theoretical error due to the
neural network fitting error. Please refer to I.4 for more experiment details.

I Experiment Details

This section describes the details of our experiments. All of the experiment is performed using a
single Nvidia RTX 2080 Ti graphic card.

I.1 Swiss Roll Experiment

In the Swiss Roll Experiment in Section 6.1, we use a three-layer MLP for the unconstrained network.
For the z-invariant network, we use a network with two DSS [37] layers to implement the z-invariance,
each containing two FC layers. We train the networks using the Adam [24] optimizer with a learning
rate of 10−3. The batch size is 128. In each run, there are 200 training data, 200 validation data, and
200 test data randomly sampled from the data distribution. The network is trained for a minimal
of 1000 epochs and a maximum of 10000 epochs, where the training is terminated after there is no
improvement in the classification success rate in the validation set for a consecutive of 1000 epochs.
We report the test success rate of the epoch model with the highest validation success rate.

I.2 Square Experiment

In the Square Experiment in Section H.2, we use a network with two DSS [37] layers to implement
the horizontal invariance, where each layer contains two FC layers. We train the networks using the
Adam [24] optimizer with a learning rate of 10−3. The batch size is 128. In each run, there are 1000
training data, 200 validation data, and 200 test data randomly sampled from the data distribution. The
network is trained for a minimal of 1000 epochs and a maximum of 10000 epochs, where the training
is terminated after there is no improvement in the classification success rate in the validation set for
a consecutive of 1000 epochs. We report the test success rate of the epoch model with the highest
validation success rate.

I.3 Digit Classification Experiment

In the Digit Classification Experiment in Section 6.2, we use two similar five-layer convolutional
networks for the D4-invariant network and the CNN, where the D4-invariant network is implemented
using the e2cnn package [60]. Both networks have the similar amount of trainable parameters. We
train the networks using the Adam [24] optimizer with a learning rate of 5× 10−5 and weight decay
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Figure 15: The robotic experiment setup and the D1-equivariant policy network.

of 10−5. The batch size is 256. In each run, there are 5000 training data, 1000 validation data, and
1000 test data randomly sampled from the data distribution. The network is trained for a minimal
of 50 epochs and a maximum of 1000 epochs, where the training is terminated after there is no
improvement in the classification success rate in the validation set for a consecutive of 50 epochs. We
report the test success rate of the epoch model with the highest validation success rate.

I.4 Regression Experiment

In the regression experiment, we validate our theoretical error lower bound for invariant and equivari-
ant regression (Theorem 4.8, 4.9) by comparing empirical network fitting error and the theoretical
fitting error of a function f . Specifically, the function f maps a distance θ and an index x pair to a
vector y:

f : R×X → R2, given by (θ, x) 7→ y (25)

where X = {x0, x1, x2, x3}. The group g ∈ G = C4 = {e, r, r2, r3} acts on (θ, x) by g(θ, x) =
(θ, gx) through permuting the index x: x1 = rx0;x2 = rx1;x3 = rx2;x0 = rx3. Let rk ∈ G acts
on vector y by rotation ρY (g) =

(
cos g − sin g
sin g cos g

)
where g = kπ/2.

We construct function f in the following way: for each x ∈ X , choose lx : R → R2 and define
f(θ, x) = lx(θ). Notice that when lgx = ρY (g)lx(θ), f is G-equivariant. We define lx(θ) =
(px(θ), qx(θ)) where px and qx are cubic polynomials of x, i.g., px with coefficients a, b, c, d will be
px = ax3 + bx2 + cx+ d. We choose px and qx with different coefficients for each x such that f is
not equivariant, i.e., lgx ̸= ρY (g)lx(θ). For each run, we generate a function f , sample data θ, x, and
evaluate the data obtaining y. Then we train neural networks using L2 loss till converge. Eventually,
we sample another set of data to evaluate the empirical L2 error as well as the theoretical L2 error.

I.5 Robotic Experiment

In the robotic manipulation experiment, the state s is defined as a top-down RGBD image of the
workspace centered at the gripper’s position (Figure 15 middle). The action a = (x, y, z, θ, λ) is
defined as the change of position (x, y, z) and top-down orientation (θ) of the gripper, with the
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gripper open width (λ). For a D1 = {1, g} group where g represents a horizontal flip, the group
action on the state space gs is defined as flipping the image; the group action on the action space
ga is defined as flipping the y and θ action and leaving the other action components unchanged,
ga = (x,−y, z,−θ, λ). We define a D1-equivariant policy network π : s 7→ a using e2cnn [60],
where the output action of π will flip accordingly when the input image is flipped (Figure 15 bottom).
We train the network using the Adam [24] optimizer with a learning rate of 10−3 and weight decay
of 10−5. For each run, we train the network for a total of 20k training steps, where we perform
evaluation for 100 episodes every 2k training steps. We report the highest success rate of the 10
evaluations as the result of the run.

We develop the experimental environments in the PyBullet [12] simulator, based on the BullatArm
benchmark [57]. In the Stacking (correct equivariance) and Sorting (incorrect equivariance) experi-
ment, we gather a total of 400 episodes of demonstrations, where 400c of them are Stacking and the
rest 400(1− c) are Sorting. In evaluation, the task follows the same distribution, where 100c of the
evaluation episodes are Stacking and the rest are Sorting. Notice that the agent can distinguish the
Stacking and Sorting tasks because the object colors are different for the two tasks (green and blue
for stacking, yellow and red for sorting). In the Sorting (extrinsic equivariance) experiment, we also
use 400 episodes of demonstrations.

Specifically, in Sorting, the cube and the triangle are initially placed randomly, within a distance
of ±1.5cm from the horizontal mid-line of the workspace. The objective is to push the triangle at
least 9cm toward left and to push the cube at least 9cm toward right, while ensuring that both objects
remain within the boundaries of workspace. In Stacking, two blocks are randomly initialized on
the floor of the workspace. The goal is to pick up the triangle and place it on top of the cube. The
workspace has a size of 30cm× 30cm× 25cm.
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