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ABSTRACT

Complex query answering (CQA) on knowledge graphs (KGs) is gaining mo-
mentum as a challenging reasoning task. In this paper, we show that the current
benchmarks for CQA are not really complex, and the way they are built distorts
our perception of progress in this field. For example, we find that in these bench-
marks most queries (up to 98% for some query types) can be reduced to simpler
problems, e.g. link prediction, where only one link needs to be predicted. The
performance of state-of-the-art CQA models drops significantly when such mod-
els are evaluated on queries that cannot be reduced to easier types. Thus, we
propose a set of more challenging benchmarks, composed of queries that require
models to reason over multiple hops and better reflect the construction of real-
world KGs. In a systematic empirical investigation, the new benchmarks show
that current methods leave much to be desired from current CQA methods.

1 INTRODUCTION

A crucial challenge in AI and ML is learning to perform complex reasoning, i.e., solving tasks that
involve a number of intermediate steps and sub-goals to be completed. Complex query answer-
ing (CQA; Hamilton et al., 2018; Zhang et al., 2021; Arakelyan et al., 2021; Zhu et al., 2022) has
emerged as one of the most prominent ways to measure complex reasoning over external knowledge
bases, encoded as knowledge graphs (KGs; Hogan et al., 2021). For instance, to answer the query:

“Which actor performed in a movie filmed in New York City and distributed on Blue Ray?” (q1)

over a KG such as FreeBase (Bollacker et al., 2008), one would need to first intersect the set of
movies found on Blue Ray and the ones shot in New York City, and then link these intermediate
candidate answers to another entity, i.e., an actor participating in it. However, the answers computed
in this way may not include entities that are unreachable if missing links are present.

To deal with the unavoidable incompleteness of real-world KGs, ML methods were developed to
solve CQA in the presence of missing links. Neural query answering models, constituting the current
state-of-the-art (SoTA) for CQA (Arakelyan et al., 2021; Zhu et al., 2022; Arakelyan et al., 2023;
Ren et al., 2023; Galkin et al., 2024b), map queries and KGs (i.e., entities and relation names) into
a unified latent space that supports reasoning. Performance measurements on de-facto-standard
benchmarks such as FB15k237 (Toutanova & Chen, 2015) and NELL995 (Xiong et al., 2017) suggest
that in recent years such models achieved impressive progress on CQA on queries having different
structures, and hence posing apparently different levels of difficulty to be answered.

The difficulty of a benchmark relates to the size and structural complexity1 of its queries, and several
query “types” have been proposed (Ren et al., 2020), each involving a different combination of
logical operators—conjunctions, disjunctions, and requiring to traverse a number of missing links
that generally increases with the number of logical conditions imposed (Figs. 1 and 2). For instance,
the query q1 is an example of a “2i1p” query type, since it comprises an intersection of two entity
sets (2i) followed by a path2 of length one (1p).

In this paper, we argue that the perception of progress on CQA benchmarks has been distorted by
implicit assumptions in these benchmarks. We start by noting how both in FB15k237 and NELL995,
the vast majority of queries of a complex type simplifies to one simpler type, thanks to the fact that to

1Not to be confused with the computational complexity of query answering (Dalvi & Suciu, 2012).
2Also referenced as projection in related works (Ren et al., 2023).
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“Blue Ray”training link

missing link

“NYC”2i1p “King Kong” “A. Serkis”

“Which actor performed
in a movie filmed in New
York City and distributed
on Blue Ray?”

?T : ∃V.(a1, r1,V) ∧
(a2, r2,V) ∧ (V, r3,T)

“Blue Ray”

“NYC”1p “Spiderman 2” “K. Dunst”

“Blue Ray”

“NYC”2p “When in Rome”“J. Bryant”

“Blue Ray”

“NYC”2i “King Kong” “K. Chandler”

Figure 1: Query answers are not all equally hard when some links can be found in the
training data as shown for the 2i1p query q1 and fragments of the KG FB15k237, where r1 =
distributedVia−1, r2 = locatedIn−1 and r3 = performedIn−1. Its different answers can be obtained
by traversing the training graph (continuous line) and predicting the missing links (dotted lines).
(Top) Example answer that requires all links to be predicted. (Bottom) Example answers that re-
quire only a subset of the links to be predicted and that, therefore, can be reduced to the simpler
types 1p, 2p, and 2i (see Sec. 2 and Fig. 2).non plus ultra query

answer them one can leverage links already appearing in the training data. Fig. 1 shows an example
of how answers to the query q1 on FB15k237– which should require predicting three missing links
– require the same effort associated to simpler types involving fewer links. In fact, in FB15k237
the answer “K. Dunst” can be retrieved by predicting just one missing link while leveraging the
training links. In this sense, a 2i1p query reduces to a “1p” query, i.e., the much simpler task of link
prediction (see Sec. 2). Similarly, the answers “J. Bryant” and “K. Chandler” can be retrieved by
predicting two links, instead of three. Only the answer “A. Serkis” requires predicting three missing
links, and thus satisfies the expected “hardness” associated to the type 2i1p.

We furthermore argue that SoTA performance is inflated likely due to current models memorizing
training links. Therefore, we create new CQA benchmarks that comprise only “hard” queries, i.e.,
queries that cannot be reduced to simpler types by leveraging training links. Then, we perform a
thorough re-evaluation of the SoTA models for CQA. Lastly, in order to raise the bar of “complexity”
for CQA, we investigate more realistic sampling schemes to generate the train/validation/test splits,
and introduce query types that require more reasoning steps in order to be answered.

Contributions. After revisiting the CQA task (Sec. 2) and highlighting how query types can sim-
plify at test time (Sec. 3), (C1) we show that there is a major data leakage of training links, reporting
that up to 99.9% test queries can be reduced to simpler queries, with the majority of them (up to
98%) reduced to “one-step” link prediction problems (Sec. 4). (C2) We re-evaluate previous SoTA
approaches (Sec. 5), revealing that neural link predictors are relying on memorized information from
the training set. Furthermore, we show that the reported hardness of queries involving unions is only
apparent. To have a better understanding of why performances are inflated, we introduce CQD-
Hybrid (Sec. 5.1), a novel CQA model that combines classical graph-matching with neural link
predictors, surpassing the SoTA on existing benchmarks. (C3) We create new benchmarks for CQA
(Sec. 6), FB15k237+H and NELL995+H from FB15k237 and NELL995, respectively, and ICEWS18+H
from the temporal KG ICEWS18 (Boschee et al., 2015), where validation and test links are links that
have been added to the KG after those in the training, making it more challenging. All these contain
only irreducible queries, to which we add the even more challenging query types “4p” (a four-length
path) and “4i” (a conjunction of four patterns).

2 KGS AND COMPLEX QUERY ANSWERING

Knowledge graphs. A KG is a graph-structured knowledge base where knowledge about the
world is encoded as relationships between entities. More formally, a KG can be represented as a
multi-relational graph G = (E ,R, T ), where E is a set of entities, R is a set of relation names, and
T ⊆ E × R × E is a set of links or triples, where each triple (s, p, o) ∈ T represents a relation-
ship of type p ∈ R between the subject s ∈ E and the object o ∈ E of the triple. For instance,
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1p 2p 3p 4p 1p2i 2i1p

2u 2u1p 2i 3i 4i

conjunction link

disjunction link

Figure 2: Query structures we consider, adapted from Ren & Leskovec (2020) and including path
(p), intersection (i), union (u) structures. See Sec. 2 for their logical formulation.

in a KG such as FreeBase (Bollacker et al., 2008), the fact that a movie such as “Spiderman 2”
is distributed in Blue Ray can be stored into the triple (Spiderman2, distributedVia,BlueRay) or
equivalently (BlueRay, distributedVia−1,Spiderman2) where distributedVia−1 denotes the inverse
relation of distributedVia. Fig. 1 shows examples of fragments from the KG FB15k237.

Complex Query Answering. The aim of CQA is to retrieve a set of possible answers to a logical
query q that poses conditions over entities and relation types in a KG. Following the literature on
CQA (Arakelyan et al., 2021), we consider the problem of answering logical queries with a single
target variable (T ), a set of constants including anchor entities (a1, a2, . . . , ak ∈ E), given relation
names (r1, r2, . . . , rn ∈ R), and first-order logical operations that include conjunction ∧, disjunc-
tion ∨ and existential quantification ∃. In this work, we do not deal with queries involving negation;
however, all of our considerations about the inflated performance of current benchmarks will also
transfer to versions of these benchmarks that include them (Ren et al., 2023; Galkin et al., 2020).

Different queries are categorized into different types based on the structure of their corresponding
logical sentence (Xiong et al., 2017). The idea behind this taxonomy is that queries of the same
type share the same “hardness”, i.e., the level of difficulty to be answered and different query types
correspond to tasks that map to more or less complex reasoning tasks. The simplest CQA task is
link prediction (Bordes et al., 2013), i.e., answering a query of the form:

?T : (a1, r1, T ), (1p)

that is, given an entity a1 (e.g., NYC) and a relation name r1 (e.g., locatedIn−1), find the entity that
when substituted to T correctly matches the link in the KG (e.g., Spiderman2, see Fig. 1). Instead
of matching a single link, more complex queries involve matching sub-graphs in a KG (see Fig. 2).
Xiong et al. (2017) extend 1p queries, and ask questions that involve traversing sequential paths
made of two or three links, i.e.,

?T : ∃V1.(a1, r1, V1) ∧ (V1, r2, T ), (2p)
?T : ∃V1, V2.(a1, r1, V1) ∧ (V1, r2, V2) ∧ (V2, r3, T ), (3p)

where V1, V2 denote variables that need to be grounded into entities associated to nodes in the path.
Moreover, multiple ground entities can directly participate in a conjunction, e.g., in queries such as:

?T : (a1, r1, T ) ∧ (a2, r2, T ), (2i)
?T : (a1, r1, T ) ∧ (a2, r2, T ) ∧ (a3, r3, T ), (3i)

which represent the intersection of the target entity sets defined over two (2i) or three (3i) links. Path
and intersection structures can be combined into more complex queries: for example, the natural
language expression for query q1 can be formalized as the formula

?T : ∃V1.(a1, r1, V1) ∧ (a2, r2, V1) ∧ (V1, r3, T ), (2i1p)

involving one intersection followed by a one-length path.3 See also the example in Fig. 1. By
inverting the order of operations, we obtain the query type “1p2i”:

?T : ∃V1.(a1, r1, V1) ∧ (V1, r2, T ) ∧ (a2, r3, T ). (1p2i)

Similarly to the introduction of conjunctions, we can consider disjunctions in queries, realizing the
union query types which can be answered by matching one link or the other, such as

?T : (a1, r1, T ) ∨ (a2, r2, T ), (2u)
3In previous works (Ren et al., 2020) this query type was referred to as “ip”. We explicitly mention the

number of steps involved in a path or conjunction, as this is a factor of complexity. Analogously, “pi”, “u” and
“up” queries from Ren et al. (2020) are now 1p2i, 2u and 2u1p.
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or by combining the union with the previous query types, e.g., obtained by combining 2u and 1p:

?T : ∃V1.((a1, r1, V1) ∨ (a2, r2, V1)) ∧ (V1, r2, T ). (2u1p)

Note that despite their dissimilar syntaxes and the different sub-graphs defining possible solutions
(Fig. 2), the query type 2u should be as difficult as 1p, as to answer the first it suffices to match a
single link correctly. Similarly, 2u1p is as complex as 2p. The fact that 2u and 2u1p are reported to
be harder to solve in practice than 1p and 2p (Ren et al., 2020) is due to the way standard benchmarks
are built, which we discuss in Sec. 4, and the way in which CQA is evaluated, discussed next.

Standard evaluation. Given a KG G and a logical query q from one of the types described above,
answering q boils down to a graph matching problem (Hogan, 2020) if we assume that all the mean-
ingful links are already in G. Instead, if G is incomplete, we will need to predict missing links while
answering q. Many ML approaches to CQA, reviewed in Sec. 5, therefore assume a distribution over
possible links (Loconte et al., 2023), requiring probabilistic reasoning. To evaluate them, standard
benchmarks such as FB15k237 and NELL995 artificially divide G into Gtrain and Gtest, treating the
triples in the latter as missing links. This splitting process is done uniformly at random, a procedural
choice that can alter the measured performance, as we discuss next.

CQA is generally treated as a ranking task, counting how many true candidate answers to a query are
ranked higher than non-answer ones. Denoting the rank of a query answer pair (q, t) by rank(q, t),
the performance for each query type is calculated as the mean reciprocal rank (MRR), i.e.,

|Q|−1
∑

q∈Q,t∈Eq

|Eq|−1
rank(q, t), (1)

where Q denotes the set of test queries of the considered type, and Eq is the set of candidate answer
entities for each query q ∈ Q. This average, across queries and answers, assumes that every query
answer pair having the same query type is equivalently hard, which is not the case. In fact, we show
that certain query answer pairs can be easier to retrieve if links from the training data leak into the
model (Fig. 1), and that the distribution of the query answer pairs in the existing benchmarks is very
skewed towards those involving a single missing link (Table 1). Thus, computing Eq. (1) without
understanding what is the benchmark distribution, distorts the perception of performance gains.

3 WHAT IS THE REAL “HARDNESS” OF CQA IN INCOMPLETE KGS?

As discussed in the previous section, the perceived complexity of a query is related to the graph
structure associated to its query type (Fig. 2): queries containing more hops/existentially-quantified
variables are more challenging, e.g., a 3p query is harder than a 2p query. In this section, we give an
alternative perspective on the difficulty of answering queries that take into account the information
coming from the training data, and that might have leaked into a learned model. We argue that
predicting links that are truly missing, i.e., not accessible to a learned model, is actually what makes
a query “hard”. To do so, we formalize the notion of a reasoning tree for a query answer pair, and
then define how we determine the practical hardness of a query answer pair.

Given a query q and every answer set of candidate answers t ∈ Eq in its candidate set, we define
the reasoning tree of each query answer pair (q, t), as the directed acyclic graph starting from the
anchor entities of q to the target entity t, whose relational structure matches the query graph. Fig. 1
provides examples of different reasoning trees for four different answers to the same query. There,
we highlight whether a link belongs to Gtrain or not, i.e., it is a missing link. We assess the hardness
of each answer t ∈ Eq , by analyzing the composition of the reasoning tree required to predict t.
As to answering a (q, t) pair, multiple reasoning trees are possible, so we select the one with the
smallest number of missing links and the fewest number of hops.

A (q, t) pair is trivial if the answer t can be entirely retrieved from Gtrain, i.e., there exists at least one
reasoning tree where all the links in it are seen during training. This type of answer does not need
probabilistic inference and hence is filtered out from current CQA benchmarks (Ren & Leskovec,
2020), which only consider non-trivial (q, t) pairs, which we call inference-based pairs. However,
inference-based pairs do not need all links in their reasoning tree to be predicted as, by definition,
it is sufficient that at least one link in the tree is missing. Therefore, we define a (q, t) pair to be
a partial-inference pair if its reasoning tree contains at least one link in Gtrain and at least one link
present in Gtest. Alternatively, a query answer pair whose reasoning tree contains only links present

4
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Table 1: The great majority of query answer pairs are of the much easier partial-inference
type (non-diagonal), rather than of the harder full-inference type (diagonal). For each query
type (as rows) we show the percentage of the query answer pairs that can be reduced to an easier
query type (as columns) for datasets FB15k237 and NELL995. Most of the complex queries can be
reduced to simple link prediction queries (i.e., 1p). We denote as ‘-’ those reductions that are not
possible given the sub-graph structure induced by the query type.

FB15k237 NELL995

1p 2p 3p 2i 3i 1p2i 2i1p 2u 2u1p 1p 2p 3p 2i 3i 1p2i 2i1p 2u 2u1p

1p 100 - - - - - - - - 100 - - - - - - - -
2p 98.1 1.9 - - - - - - - 97.6 2.4 - - - - - - -
3p 97.2 2.7 0.1 - - - - - - 95.6 4.3 0.1 - - - - - -
2i 96.0 - - 4.0 - - - - - 94.0 - - 6.0 - - - - -
3i 91.6 - - 8.2 0.2 - - - - 87.4 - - 12.1 0.5 - - - -

1p2i 86.8 1.0 - 12.0 - 0.2 - - - 49.5 0.6 - 49.0 - 0.9 - - -
2i1p 96.7 1.8 - 1.4 - - 0.1 - - 96.2 2.4 - 1.2 - - 0.2 - -

2u 0.0 - - - - - - 100 - 0.0 - - - - - - 100 -
2u1p 98.3 0.0 - - - - - 1.6 0.1 98.5 0.0 - - - - - 1.4 0.1

in Gtest is called a full-inference pair. We claim that predicting an answer of a full-inference kind is
harder than doing that for a partial-inference one, as discussed next.

To predict a partial-inference pair (q, t), a ML model that has explicit access to Gtrain has to solve
a simpler task to answer q, as only a subset of the links in the reasoning tree are missing and need
to be predicted. As such, the (q, t) pair can be simplified to (q′, t) pair, where the query q′ is
of an easier query type than q. Fig. 1 shows one example of how a query answer pairs of type
2i1p from FB15k237 are reduced in practice to the simpler types 1p, 2i and 2p. We will build our
hybrid solver in Sec. 5.1 leveraging this intuition. Note that this advantage applies also to ML
models that have implicit access to Gtrain, e.g., by having memorized the triples during training,
a common phenomenon for many neural link predictors (Nickel et al., 2014). We confirm this in
Sec. 5, showing that the performance of all SoTA models for partial-inference pairs is comparable
to the performance of full-inference pairs but of simpler types. We next analyze how many partial
vs full-inference queries the current benchmarks contain.

4 HOW MANY “COMPLEX” QUERIES IN CURRENT CQA BENCHMARKS?

In this section, we systematically analyze the practical hardness of queries from very popular CQA
benchmarks and answer the following research question: (RQ1) What is the proportion of query
answer pairs that can be classified as full-inference rather than the easier partial-inference?

For this purpose, we consider the CQA benchmarks generated from the KG FB15k237 (based on
Freebase) and NELL995 (based on NELL systems (Carlson et al., 2010)) as they are the most used to
evaluate SoTA methods for CQA (Ren et al., 2020; Ren & Leskovec, 2020; Arakelyan et al., 2021;
Zhang et al., 2021; Zhu et al., 2022; Arakelyan et al., 2023).4

Complex queries can be reduced to much simpler types. We group the testing query answer
pairs (q, t) into query types (Sec. 2), and we further split them based on whether they can be re-
duced to simpler types after observing the training links in Gtrain (Sec. 3). Table 1 shows that for
both FB15k237 and NELL995 the vast majority of (q, t) pairs can be reduced to simpler types. For
FB15k237, 86.8% to 98.3% of (q, t) pairs can be reduced to 1p queries, while only 0.1% to 4%
require full inference. Similarly, for NELL995, 49.5% to 98.5% of (q, t) pairs map to 1p queries,
and only 0.1% to 6% to full inference. For instance, 96.7% of 2i1p (q, t) pairs in FB15k237 can be
reduced to 1p queries, 1.8% to 2p, and 1.4% to 2i. However, only 0.1% of these pairs cannot be
reduced to any other (q′, t) pair, i.e., they require full inference in order to be predicted. The only
exceptions to this trend are (q, t) pairs where q has a 1p or 2u structure which, by definition, only
require the prediction of a single link and therefore cannot be reduced by any other query type.

4We do not consider FB15k (Bordes et al., 2013) as it suffers from data leakage (Toutanova & Chen, 2015).
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Table 2: SoTA performance drops significantly on full-inference query answer pairs. For each
query type (rows), we show the MRR achieved by SoTA methods on full-inference query answer
pairs only (diagonal), and compare it with the MRR achieved on all available testing queries (column
“all”) and on the queries that can be reduced to simpler types (other columns). We highlight in bold
how the best ranking model changes when we consider the full-inference query answer pairs only.
See Tables A.3 and A.4 for results including hybrid solvers.

FB15k237 NELL995

Query type method all 1p 2p 3p 2i 3i 1p2i 2i1p all 1p 2p 3p 2i 3i 1p2i 2i1p

1p

GNN-QE 42.8 42.8 - - - - - - 53.6 53.6 - - - - - -
ULTRAQ 40.6 40.6 - - - - - - 38.9 38.9 - - - - - -

CQD 46.7 46.7 - - - - - - 60.4 60.4 - - - - - -
ConE 41.8 41.8 - - - - - - 60.0 60.0 - - - - - -

2p

GNN-QE 14.7 14.8 4.7 - - - - - 17.9 18.2 6.1 - - - - -
ULTRAQ 11.5 11.5 4.2 - - - - - 11.2 11.5 4.6 - - - - -

CQD 13.2 13.3 3.5 - - - - - 22.0 22.3 7.6 - - - - -
ConE 12.8 12.8 5.2 - - - - - 16.0 16.3 7.2 - - - - -

3p

GNN-QE 11.8 12.0 4.4 4.8 - - - - 15.2 15.1 8.1 3.4 - - - -
ULTRAQ 8.9 9.0 4.6 4.4 - - - - 9.7 9.8 5.1 4.1 - - - -

CQD 7.8 7.8 3.4 1.8 - - - - 13.4 12.8 7.8 8.5 - - - -
ConE 11.0 11.0 5.4 2.6 - - - - 13.8 13.8 8.2 6.5 - - - -

2i

GNN-QE 38.3 39.3 - - 4.0 - - - 40.0 41.4 - - 3.6 - - -
ULTRAQ 35.7 36.7 - - 3.4 - - - 36.3 37.5 - - 3.2 - - -

CQD 35.0 35.8 - - 7.3 - - - 42.2 43.3 - - 6.9 - - -
ConE 32.6 33.3 - - 5.5 - - - 39.6 40.6 - - 8.0 - - -

3i

GNN-QE 54.1 56.0 - - 10.9 5.2 - - 50.9 53.6 - - 10.9 2.2 - -
ULTRAQ 51.0 52.9 - - 9.7 4.3 - - 47.7 50.0 - - 11.3 1.5 - -

CQD 48.5 49.6 - - 17.0 6.0 - - 51.8 53.9 - - 14.4 3.6 - -
ConE 47.3 48.3 - - 15.6 4.0 - - 50.2 51.9 - - 18.3 4.8 - -

1p2i

GNN-QE 31.1 32.8 15.5 - 5.7 - 9.1 - 29.1 42.7 21.4 - 12.0 - 10.2 -
ULTRAQ 29.6 31.5 19.2 - 4.2 - 7.4 - 25.1 39.0 25.6 - 8.2 - 7.0 -

CQD 27.5 28.7 13.4 - 7.1 - 9.0 - 31.5 44.0 25.7 - 14.5 - 12.6 -
ConE 25.5 26.6 13.9 - 5.4 - 9.7 - 26.1 38.5 25.2 - 10.5 8.6 -

2i1p

GNN-QE 18.9 19.2 8.2 - 6.2 - - 3.4 20.5 20.8 16.3 - 14.6 - - 20.7
ULTRAQ 18.6 18.9 8.5 - 5.1 - - 8.1 15.6 16.5 9.5 - 9.6 - - 11.4

CQD 20.7 21.0 10.5 - 6.7 - - 7.6 25.8 25.9 21.2 - 26.3 - - 23.6
ConE 14.0 13.8 9.7 - 12.8 - - 5.6 17.6 17.7 16.4 - 25.7 - - 19.5

Non-existing links for union queries. Additionally, we discovered that there are non-existing links,
i.e., links that are not in the original KG G and hence neither in Gtrain or Gtest, in both FB15k237
and NELL995 in the reasoning trees of queries involving unions, i.e., the 2u and 2u1p types. Fig. A.1
shows some examples. These links violate our definitions of inference (q, t) pairs, hence, we filter
them out, and report only filtered (q, t) pairs in Table 1. More crucially, these non-existing links can
alter the performance of solvers for 2u and 2u1p types, as we discuss in the next section.

Takeaway 1.

The de-facto-standard benchmarks for CQA do not provide a clear picture of the ability of
a model to solve complex queries, but rather simple link prediction tasks. We discourage
reporting average performance per query type and suggest a stratified analysis as in Table 1.

5 HOW DO SOTA MODELS PERFORM ON FULL-INFERENCE QUERIES?

In this section, we re-evaluate a number of SoTA methods for CQA and answer to the following
question: (RQ2) How do these approaches perform on partial-inference and full-inference query
answer pairs? Furthermore, we leverage our query hardness distinction (Sec. 3) to devise a model
class that explicitly leverages the links stored in the training KG to solve CQA tasks.

SoTA CQA methods. Over the years, a significant number of neural models have been proposed
for solving the CQA task. Guu et al. (2015) propose compositional training for embedding methods
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Table 3: Queries of type 2u are
less hard than previously thought in
terms of MRR by SoTA methods, with
our filtered 2u queries having compa-
rable performance to 1p, as discussed
in Sec. 2, in contrast with the results of
the 2u queries originally used (2u all).

FB15k237 NELL995

method 1p 2u all 2u filtered 1p 2u all 2u filtered

GNN-QE 42.8 16.2 40.7 53.6 15.4 34.8
ULTRAQ 40.6 13.2 33.6 38.9 10.2 21.3

CQD 46.7 17.6 32.7 60.4 19.9 35.9
ConE 41.8 14.9 29.9 60.0 14.9 28.2

to predict answers for path queries. GQE (Hamilton et al., 2018) learns a geometric intersection
operator to answer conjunctive queries in embedding space; this approach was later extended by
Query2Box (Ren et al., 2020), BetaE (Ren & Leskovec, 2020), and GNN-QE (Zhu et al., 2022).
FuzzQE (Chen et al., 2022) improves embedding methods with t-norm fuzzy logic, which satisfies
the axiomatic system of classical logic. Some recent works such as HypE (Choudhary et al., 2021)
and ConE (Zhang et al., 2021) use geometric interpretations of entity and relation embeddings to
achieve desired properties for the logical operators. Other solutions to CQA combine neural methods
with symbolic algorithms. For example, EmQL (Sun et al., 2020) ensembles an embedding model
and a count-min sketch, and is able to find logically entailed answers, while CQD (Arakelyan et al.,
2021; 2023) extends a pretrained knowledge graph embedding model to infer answers for complex
queries. In this work, we consider four representative approaches that significantly differ in their
methodological designs and yield SoTA results compared to other models in their class. We con-
sider the following models: (1) Cone Embeddings (ConE; Zhang et al., 2021) is a geometry-based
complex query answering model where logical conjunctions and disjunctions are represented as in-
tersections and union of cones. (2) Graph Neural Network Query Executor (GNN-QE; Zhu et al.,
2022) decomposes a complex first-order logic query into projections over fuzzy sets. (3) Continuous
Query Decomposition (CQD; Arakelyan et al., 2021; 2023), reduces the CQA task to the problem of
finding the most likely variable assignment, where the likelihood of each link (1p query) is assessed
by a neural link predictor, and logical connectives are relaxed via fuzzy logic operators. (4) Ultra-
Query (ULTRAQ; Galkin et al., 2024b) is a foundation model for CQA inspired by Galkin et al.
(2024a) where links and logical operations are represented by vocabulary-independent functions
which can generalize to new entities and relation types in any KG.

SoTA methods perform significantly worse on full-inference queries. We re-evaluate the SoTA
methods mentioned above and stratify their performances based on the type of partial- and full-
inference queries. Where available, we reused the pre-trained models for their evaluation. Other-
wise, we re-produced the SoTA results using the hyperparameters provided by the authors, listed
in App. D.1. Table 2 presents the results in terms of MRR for the testing query answer pairs in
the existing benchmarks FB15k237 and NELL995, along with the different (q′, t) pairs they can be
simplified to when observing the training KG, grouped by each query type. There, the performance
of all SoTA methods consistently drops for query answer pairs that have a higher number of missing
links in their reasoning tree. Furthermore, Table 2 compares the MRR computed on all the available
queries originally used in the benchmarks (column “all”), and the scores on those query types that
they can be reduced to. There is a high similarity in MRR between the columns “all” and “1p”
that is evidence that the good performances of CQA methods are explained by their link prediction
performances, as a very high percentage of queries in fact are reduced to 1p queries (see Table 1).

However, in a few cases it happens that full-inference results are higher than some partial-inference;
in such cases, the reason is to be found in the fact that full-inference (q, t) pairs are very scarce (see
Table 1). We rule out that this is due to the influence of the number of existing entities bounding
to existential quantified variables. For example we report such an analysis for CQD in Figs. A.3
and C.2. Moreover, we found that no anchor entities nor relation names is predominant in both
benchmarks, as shown in A.5.

Non-existing links for union queries give a false sense of hardness. We remark that for union
queries, we filter query answer pairs, as discussed in Sec. 4, removing those with non-existing links
in their reasoning trees. In Table 3, we show that if we do not do that, and consider also the pairs
with non-existing links (denoted as “2u all”), MRR performance greatly drops. In this way, we
reproduce the low performance for 2u queries that the original SoTA baselines reported in their
papers. However, as Table 3 shows, this is just an artifact due to including non-filtered pairs while
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Table 4: Exploiting the links in the training KG during inference boosts MRR on existing
benchmarks, as shown for our CQD-Hybrid model compared to previous SoTA, for several query
types. CQD-Hybrid always achieves higher MRR scores when compared to CQD, and outperforms
more sophisticated baselines 10/14 times. Best values in bold and second best underlined. For the
stratified comparison of CQD-Hybrid with previous SoTA, please refer to the Tables A.3 and A.4.

Method

FB15k237 NELL995

2p 3p 2i 3i 1p2i 2i1p 2u1p 2p 3p 2i 3i 1p2i 2i1p 2u1p

GNN-QE 14.7 11.8 38.3 54.1 31.1 18.9 9.7 17.9 15.2 40.0 50.9 29.1 20.5 8.8
ULTRAQ 11.5 8.9 35.7 51.0 29.6 18.6 7.3 11.2 9.7 36.3 47.7 25.1 15.6 8.4

CQD 13.2 7.8 35.0 48.5 27.5 20.7 10.5 22.0 13.4 42.2 51.8 31.5 25.8 16.0
ConE 12.8 11.0 32.6 47.3 25.5 14.0 7.4 16.0 13.8 39.6 50.2 26.1 17.6 11.1

CQD-Hybrid (ours) 15.0 11.0 37.6 52.7 31.2 24.0 10.3 23.8 17.8 44.2 57.8 33.2 28.4 16.6

computing Eq. (1). With our filtered pairs, instead, we recover the performance of 1p queries, as
expected (Sec. 2). Similar conclusions can be drawn for other union queries as reported in Table A.2.

5.1 BUILDING AN HYBRID REASONER TO EXPLOIT TRAINING LINKS

So far, we have assessed that current benchmarks are skewed towards easier query types (Table 1)
and thus the perceived progress of current SoTA CQA methods boils down to their performance
on 1p queries (Table 2). To have an undistorted view of this progress, in the next section, we will
devise a benchmark that allows to precisely measure model performance on full-inference queries
only. Nevertheless, we argue that in a real-world scenario one has to perform reasoning over both
existing links and in the presence of missing ones. Therefore, it is worth to evaluate CQA over
partial-inference queries, however in a stratified analysis and accounting for the disproportion of 1p
links (see Takeaway 1). Next, we discuss how to build an hybrid solver that exploits both link types.

Current SoTA CQA methods might implicitly exploit this aspect at test time if they are able to
memorize well the entire training KG. However, there is no guarantee that this is the case, especially
for less parameterized models. If one is interested in hybrid inference on real-world KGs, discarding
the information in Gtrain is wasteful. To this end, hybrid solvers such as QTO (Bai et al., 2023)
and FIT (Yin et al., 2024) have been developed. They explicitly retrieve existing links from Gtrain

when answering a query at test time. Inspired by them, and to evaluate our hypothesis, we create a
light-weight hybrid solver, named CQD-Hybrid, that is a variant of CQD that uses a pre-trained link
predictor to compute scores for the answer entities of 1p queries only, denoting the unnormalized
probability of that single link to exist (Loconte et al., 2023). Then, assignments to existentially
quantified variables in a complex query are greedily obtained by maximizing the combined score
of the links, computed by replacing logical operators in the query with fuzzy ones (van Krieken
et al., 2022). A complete assignments to the variables (and hence to the target variable T ), gives
us an answer to the query. In our CQD-Hybrid, we assign the maximum score to those links that
are observed in Gtrain. That is, training links will have a higher score than the one that the link
predictor would output, hence effectively steering the mentioned greedy procedure at test time. We
report hyperparameters and implementation details of CQD-Hybrid in App. D.1. This is the only
minimal change we apply to CQD to test if its performance can depend on memorizing training
triples. Note that this is different from QTO and FIT, which involve more sophisticated steps such
as score calibration and a forward/backward update stage, that can boost performance. In our
experiments, we found CQD-Hybrid was consistently boosting performance in terms of MRR w.r.t.
CQD and other non-hybrid baselines, as reported in Table 4, which shows aggregated performance
for space reasons. A stratified comparison is reported in the appendix in Tables A.3 and A.4.

Takeaway 2.

FB15k237 and NELL995 are not suitable to precisely assess the capability of CQA methods to
answer full-inference queries, resulting in highly inflated performance, as shown in Table 2.
However, they can be used to evaluate the performance of hybrid models , such as QTO (Bai
et al., 2023), FIT (Yin et al., 2024), and CQD-Hybrid, that explicitly exploit existing triples
to predict the query answers.
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Figure 3: MRR of SoTA on the new benchmarks (in orange) is significantly lower than the old
ones (in blue). As expected from the hardness analysis presented in Sec. 2, the performance on the
new benchmark for 2u are similar to 1p, and the one of 2u1p are similar to 2p.
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6 NEW BENCHMARKS FOR “TRULY COMPLEX” QUERY ANSWERING

In this section, we answer to the following question: (RQ3) How can we construct a set of CQA
benchmarks that let us measure truly challenging queries? To do so, we present a new set of CQA
benchmarks based on the previously used FB15k237 and NELL995, as well as a novel one we design
out of temporal knowledge graph ICEWS18 to question the current way to split the original KG G
into Gtrain and Gtest. Then, we evaluate current SoTA methods on these new benchmarks as to
establish a strong baseline for future works.

Building new CQA benchmarks. We generate our benchmarks to comprise only full-inference
question answer pairs, filtering out all partial-inference (and trivial) ones from the evaluation. To
this end, we modify the algorithm of Ren et al. (2020) to ensure that no training links are present
in the reasoning trees of any (q, t) pair we generate. To raise the bar of “complexity” in CQA, we
introduce two query types that, in their full-inference versions, are harder than simpler types by
design. Specifically, we design “4p” queries, for a sequential path made of four links, i.e.,

?T : ∃V1, V2, V3.(a1, r1, V1) ∧ (V1, r2, V2) ∧ (V2, r3, V3) ∧ (V3, r4, T ), (4p)
and “4i”, which represents the intersection of the target entity sets defined over four links, i.e.

?T : (a1, r1, T ) ∧ (a2, r2, T ) ∧ (a3, r3, T ) ∧ (a4, r4, T ). (4i)
We name the harder versions of FB15k237 and NELL995, FB15k237+H and NELL995+H, each com-
prising 50.000 full-inference test and validation (q, t) pairs for all query types apart from 1p queries,
for which we keep the same set of the old benchmark (this being already full-inference), and for the
new types 4p and 4i, for which we have 10.000 of them. More details in App. C.

Non-uniform at random splits. For FB15k237+H and NELL995+H, we keep the existing data splits
of Gtrain and Gtest. However, to evaluate the impact of this artificial splitting process, we adopt a
more realistic one for ICEWS18+H, where Gtrain contains present links and we might want to predict
the future links contained in Gtest. To this end, we leverage the temporal information in ICEWS18
by (1) ordering the links based on their timestamp; (2) removing the temporal information, thus
obtaining normal triples; and (3) selecting the train set to be the first temporally-ordered 80% of
triples, the valid the next 10%, and the remaining to be the test split. If the same fact appears with
multiple temporal information, we retain only the link with the earliest timestamp. For detailed
statistics about the splits please refer to App. E.

How do SoTA methods fare on our new benchmarks? For FB15k237+H and NELL995+H we
re-used the pre-trained models used for the experiments in Sec. 4, while for the newly created
ICEWS18+H we trained GNN-QE, ConE, and the link predictor used in CQD and QTO from scratch.
As this is not necessary for ULTRAQ, being a zero-shot neural link prediction applicable to any KG,
we re-used the checkpoint provided by the authors. Hyperparameters of all models are in App. D.2.

Fig. 3 reports the results of the selected baselines on the new benchmarks versus the old benchmarks.
The results on the new benchmark show consistency w.r.t the number of reasoning steps needed to
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Table 5: A simple baseline as CQD outperforms most CQA SoTA on the new benchmarks in
terms of test MRR for different complex queries on FB15k237+H, NELL995+H and ICEWS18+H.

Model 1p 2p 3p 2i 3i 1p2i 2i1p 2u 2u1p 4p 4i

F
B
1
5
k2

3
7

+H GNN-QE 42.8 6.5 4.2 10.3 10.3 4.6 7.8 36.9 7.2 3.8 13.2
ULTRAQ 40.6 5.5 3.7 8.2 7.9 4.1 7.9 33.8 5.1 3.4 10.8

CQD 46.7 6.3 2.7 18.4 16.2 5.6 9.4 34.9 7.3 1.1 16.5
ConE 41.8 5.7 3.9 16.8 13.9 4.0 6.6 25.9 5.3 3.3 13.1
QTO 46.7 5.9 3.5 13.5 11.8 4.7 8.8 37.3 7.4 3.2 13.0

N
E
L
L
9
9
5

+H GNN-QE 53.6 7.5 4.0 20.0 14.9 8.5 8.0 63.2 5.3 2.9 10.9
ULTRAQ 38.9 5.7 3.3 15.0 10.0 6.6 5.8 39.5 5.5 2.8 6.6

CQD 60.4 10.7 4.2 36.0 25.6 14.2 12.1 61.0 12.6 2.0 16.8
ConE 53.1 9.0 5.4 39.1 29.8 8.5 9.1 52.2 6.9 4.3 19.4
QTO 60.3 10.4 5.2 28.4 19.6 10.2 12.4 62.7 11.5 5.0 12.5

IC
E
W
S
1
8

+H GNN-QE 12.2 1.9 0.8 3.5 2.4 2.7 3.1 8.6 2.2 0.5 1.7
ULTRAQ 6.3 1.2 0.9 2.9 1.5 2.2 1.1 4.2 1.0 0.7 0.8

CQD 16.6 2.6 1.2 5.9 3.2 4.3 6.1 8.6 4.5 0.9 1.7
ConE 3.5 1.2 0.8 1.0 0.2 0.7 1.2 1.3 0.8 0.5 0.1
QTO 16.6 2.3 0.9 4.6 2.6 3.5 4.9 8.4 3.2 0.6 1.3

predict an answer. For example the MRR of the queries having type 3i is always lower than 2i,
which is also lower than 1p. On the other hand, the performance of these query types for the old
benchmarks did not follow this pattern, as 3i queries had in all cases better performance than 2i, as
true full-inference 3i queries were comprising only 0.1% of all answers (Table 1).

Table 5 shows the results of the selected baselines on the new benchmarks, for all query types.
Note that there is no need for stratification on our new benchmarks. Furthermore, we excluded
our CQD-Hybrid baseline from this evaluation, as the usage of a hybrid model is pointless for full-
inference (q, t) pairs. The surprising result from Table 5 is that CQD, which is the simplest baseline,
relying only on a pre-trained link predictor, outperforms newer and more sophisticated methods
in most cases. Furthermore, we highlight how 2u queries have similar performance than 1p, and
2u1p similar to 2p, as expected from Sec. 3. Finally, we remark that ICEWS18+H is much harder
than NELL995+H and FB15k237+H, across all query types, even 1p, thus raising the for neural link
predictors as well. This confirms our hypothesis that the sampling method of the KG splits plays a
big role in determining the hardness of the benchmark.

Takeaway 3.

Our benchmarks reflect the true “hardness” requirement imposed by query types and should
be used to evaluate the model CQA performance on missing links. Additionally, ICEWS18+H
highlights that more realistic sampling strategies are more challenging for current SoTA.

7 CONCLUSION

In this paper, we revisit CQA on KGs and reveal that the “good” performance of SoTA approaches
predominantly comes from answers that can be reduced to easier types (Table 2), the vast major-
ity of which boiling down to single link prediction (Table 1). We also propose an hybrid solver,
CQD-Hybrid, that by combining classical graph matching approaches with neural query answer-
ing explicitly reduces query answer pairs to easier query types when existing links are available
and therefore can surpass SoTA on old benchmarks. We then created a set of new benchmarks
FB15k237+H,NELL995+H and ICEWS18+H that only consider full-inference queries and are much
more challenging for current SoTA approaches. We consider them to be a stepping stone towards
benchmarking truly complex reasoning with ML models.

However, both old and our new benchmarks only consider queries with bindings of single target
variables. While this reflects an important class of queries on real-world KGs, many real-world
queries require bindings to multiple target variables (i.e. answer tuples). We plan to extend our
current study of the “real hardness” of CQA benchmarks to queries involving negation (Zhang et al.,
2021), and to other popular settings in neural query answering, such as inductive scenarios (Galkin
et al., 2022) where some entities and/or relations are unseen during the test stage.
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REPRODUCIBILITY STATEMENT

We report the hyperparameter settings of all compared models in App. D . Our code and new bench-
marks are included as supplemental materials in an anonymized GitHub repo5 and will be made
available upon acceptance.
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“Norway”non-existing link
X

missing link

“Make-up artist”2u “The wolfman”

“Which movie was released in Norway
or had a make-up artist in the crew?”

?T : (a1, r1,T) ∨ (a2, r2,T)

“Norway”

“Make-up artist” “The exorcist”
X

“Norway”

“Make-up artist” “American History”

X

Figure A.1: Some answers of union
queries can be reached by a sin-
gle missing link, while the other
link does not exist as shown for this
2u query and fragments of the KG
FB15k237, where r1 = releasedIn,
r2 = crewMemberOf. (Top) Exam-
ple answer reachable by two missing
links. (Bottom) Example answers only
reachable by one missing link.

2in 3in 2in1p 2pi1np 2npi1p

conjunction link

negation link

Figure A.2: Query structures including negation, adapted from Ren & Leskovec (2020)

A ADDITIONAL ANALYSIS ON THE OLD BENCHMARKS

Additional comparisons Table A.4 and Table A.3 show the full results of FB15k237 and NELL995,
including the results comparing all methods, all query types, and the subtypes they are reduced to.

Moreover, A.2 show the full results of the union queries, including the old overall results, which
includes (q, t) pairs having non-existing links in their reasoning tree (see Fig. A.1), and the “new
overall”, in which those (q, t) pairs are filtered out. In particular, for “up” queries, we observe that
for FB15k237, the full-inference queries have a higher MRR than the overall, while for NELL995, we
find the MRR results on full-inference(q, t) pairs to be lower than the new overall results and then
the partial inference(q, t) pairs as expected. We attribute the results on FB15k237 to the presence of
bias in the (q, t) pairs due to their scarcity in the benchmarks. We argue that for the same reason
2u1p performances are not comparable to 2p. However, we will show that on the new benchmark
Sec. 6 our claim is confirmed.

A.1 INFLUENCE OF EXISTING LINKS ON QUERIES INVOLVING NEGATION

To show that our analysis can be valuable also for different kind of queries, in Table A.1 we show
an analysis for queries involving negation. For such analysis, we split the reasoning tree, defined
in Sec. 3, into two subparts, namely positive reasoning tree, composed by the non-negated triples,
and the negative reasoning tree, only composed by the negated triples. In particular, in the same
spirit of Table 1, by only looking at the positive reasoning tree, we report the percentage of (q, a)
pairs that can be reduced to easier types (partial-inference) and the one that cannot be reduced to a
simpler type (full-inference). Furthermore, we argue that also the negative reasoning tree contains
training triples, but how this propagates to performance is less clear than the positive part, as each
method treats negation differently. Table A.1 shows that in both FB15k237 and NELL995, queries
can be reduced to easier types, revealing that our analysis also extends to negated queries. The only
exception is 2in where the positive reasoning tree consists of a single link, see App. B. Consequently,
no reduction to partial inference is possible (see Sec. 3).

A.2 PERFORMANCE ANALYSIS OF QTO

We include the stratified analysis of QTO for the old benchmarks in Tables A.3 and A.4. For a
fair comparison, we remark that we used the same link predictor for CQD, CQD-Hybrid, and QTO.
Details and hyperameters are available in App. D.1. Our analysis reveals that, similarly to the other
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Table A.1: Most negated queries have training links in the positive reasoning tree of the (q, a)
pairs. Partial-inference and full-inference refer to the positive reasoning tree. ’-’ refers to reductions
that are not possible.

FB15k237 NELL995

partial-inference full-inference partial-inference full-inference

2in - 100 - 100
3in 95.4 4.6 93.9 6.1

2pi1pn 98.4 1.6 97.8 2.2
2pni1p 100 0.0 100 0.0

2in1p 97.5 2.5 95.9 4.1

Table A.2: Full inference “2u” (q, t) pairs show higher performance than non-filtered, while
full-inference “up” pairs show lower or comparable performance. Results on union queries for
existing benchmarks and comparison between old and new overalls. ‘-’ refers to reductions that are
not possible, while ‘/’ to reductions that are possible but that are not present in the data.

FB15k237 NELL995

Query type method overall overall (new) 1p 2u 2u1p overall overall (new) 1p 2u 2u1p

2u

GNN-QE 16.2 40.7 / 40.7 - 15.4 34.8 / 34.8 -
ULTRAQ 13.2 33.6 / 33.6 - 10.2 21.3 / 21.3 -

CQD 17.6 32.7 / 32.7 - 19.9 35.9 / 35.9 -
ConE 14.3 29.9 / 29.9 - 14.9 28.2 / 28.2 -

2u1p

GNN-QE 13.4 9.7 8.7 50.9 13.1 8.8 8.8 6.3 53.1 2.0
ULTRAQ 10.2 7.3 6.6 33.2 15.0 8.4 7.0 6.6 37.1 6.5

CQD 11.3 10.5 10.4 13.7 14.7 16.0 14.6 14.2 51.8 9.5
ConE 10.6 7.4 7.0 20.3 11.9 11.1 7.0 9.4 43.2 4.0

baselines, QTO performance drop when evaluated on the full-inference (q, a) pairs only (diagonal),
w.r.t overall results. Moreover, even when QTO is the SoTA on a certain query type, most of the time
it is not so on the portion of full-inference (q, a) pairs only, showing that improving performance
on the partial-inference (q, a) pairs not necessarily results on improvements over the full-inference
ones.

Results on NELL995, shown in Table A.3, reveal that CQD-Hybrid outperforms QTO for some query
types of NELL995, i.e. 3i, 1p2i, 2i1p, suggesting that even by only setting a score=1 to the training
triples it is possible to obtain SoTA results on the old benchmarks. We remark that, while both
in CQD-Hybrid and QTO a score=1 is set to the training links, QTO is much more sophisticated
than CQD-Hybrid, as they 1) calibrated the scores with a heuristics, 2) store a matrix |V | × |V |
for each relation name containing the score for every possible triples, 3) have a forward/backward
mechanism in the reasoning.

Influence of intermediate existing entities on the results For query types having intermediate
variables, such as ”2p”, ”3p”, ”pi”, ”ip”, and ”up”, we analyzed the number of existing intermediate
entities matching the intermediate variables (existentially quantified variables) could influence the
results. We refer to this number as “cardinality of existing entities”. For example, in Fig. 1 the
entities ”When in Rome” and ”Spiderman 2” are existing intermediate entities for the query q1. The
intuition is that while the presence of some of these entities might simplify the query answering
Sec. 3, at test time we do not know which entity leads to a reduction and which does not, as we do
not have access to the test data. Hence, as we claim that the existing models memorize the training
data Sec. 5, we argue that a high value of cardinality must lead to lower performance, as those
entities would act as noise for the models, hindering its capability of predicting the correct answers
higher in the ranking.

To support our claim, we analyze the percentage of (q, t) pairs having different values of cardinality,
namely “0”, “1”, from “2” to “9”, from “10” to ”99”, more than 100 (“100+”), shown in Fig. A.4
both for partial-inference and full-inference(q, t) pairs, and their MRR, using CQD (Arakelyan et al.,
2021), shown in Fig. A.3. Both Figs. A.3 and A.4 have bar charts for partial-inference (blue), and
full-inference (orange)(q, t) pairs for the difference cardinality categories, Fig. A.3 shows that CQD
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Table A.3: The best model on all available queries (column “overall”) and the best on the full
inference queries (diagonal) is different for 6/7 query types, excluding 1p and 2u, those (q,a) pairs
being all of type full-inference. Comparison of MRR scores for SOTA methods for the different sub-
type queries of NELL995 can be reduced to. Best in bold.

Query type method overall 1p 2p 3p 2i 3i 1p2i 2i1p 2u 2u1p

1p GNN-QE 53.6 53.6 - - - - - - - -
ULTRA-query 38.9 38.9 - - - - - - - -

ConE 60.0 60.0 - - - - - - - -
CQD 60.4 60.4 - - - - - - - -

CQD-hybrid 60.4 60.4 - - - - - - - -
QTO 60.3 60.3 - - - - - - - -

2p GNN-QE 17.9 18.2 6.1 - - - - - - -
ULTRA-query 11.2 11.5 4.6 - - - - - - -

ConE 16.0 16.3 7.2 - - - - - - -
CQD 22.0 22.3 7.6 - - - - - - -

CQD-hybrid 23.8 24.2 6.2 - - - - - - -
QTO 24.7 25.1 7.3 - - - - - - -

3p GNN-QE 15.2 15.1 8.1 3.4 - - - - - -
ULTRA-query 9.7 9.8 5.1 4.1 - - - - - -

ConE 13.8 13.8 8.2 6.5 - - - - - -
CQD 13.4 12.8 7.8 8.5 - - - - - -

CQD-hybrid 17.8 17.2 9.9 8.1 - - - - - -
QTO 22.6 22.3 10.9 7.7 - - - - - -

2i GNN-QE 40.0 41.4 - - 3.6 - - - - -
ULTRA-query 36.3 37.5 - - 3.2 - - - - -

ConE 39.6 40.6 - - 8.0 - - - - -
CQD 42.2 43.3 - - 6.9 - - - - -

CQD-hybrid 44.2 45.7 - - 6.7 - - - - -
QTO 44.2 45.7 - - 5.1 - - - - -

3i GNN-QE 50.9 53.6 - - 10.9 2.2 - - - -
ULTRA-query 47.7 50.0 - - 11.3 1.5 - - - -

ConE 50.2 51.9 - - 18.3 4.8 - - - -
CQD 51.8 53.9 - - 14.4 3.6 - - - -

CQD-hybrid 57.8 61.6 - - 10.7 2.5 - - - -
QTO 56.2 60.0 - - - 2.4 - - - -

1p2i GNN-QE 29.1 42.7 21.4 - 12.0 - 10.2 - - -
ULTRA-query 25.1 39.0 25.6 - 8.2 - 7.0 - - -

ConE 26.1 38.5 25.2 - 10.5 - 8.6 - - -
CQD 31.5 44.0 25.7 - 14.5 - 12.6 - - -

CQD-hybrid 33.2 48.7 24.2 - 13.7 - 9.4 - - -
QTO 32.8 47.4 22.0 - 14.5 - 9.8 - - -

2i1p GNN-QE 20.5 20.8 16.3 - 14.6 - - 20.7 - -
ULTRA-query 15.6 16.5 9.5 - 9.6 - - 11.4 - -

ConE 17.6 17.7 16.4 - 25.7 - - 19.5 - -
CQD 25.8 25.9 21.2 - 26.3 - - 23.6 - -

CQD-hybrid 28.4 28.9 20.4 - 22.8 - - 23.3 - -
QTO 28.2 28.5 20.2 - 24.0 - - 24.4 - -

2u GNN-QE 34.8 - - - - - - - 34.8 -
ULTRA-query 21.3 - - - - - - - 21.3 -

ConE 28.2 - - - - - - - 28.2 -
CQD 35.9 - - - - - - - 35.9 -

CQD-hybrid 35.9 - - - - - - - 35.9 -
QTO 37.6 - - - - - - - 37.6 -

2u1p GNN-QE 8.8 6.3 - - - - - - 53.1 2.0
ULTRA-query 8.4 6.6 - - - - - - 37.1 6.5

ConE 7.0 9.4 - - - - - - 43.2 4.0
CQD 14.6 14.2 - - - - - - 51.8 9.5

CQD-hybrid 15.0 14.5 - - - - - - 53.5 9.6
QTO 16.4 15.8 - - - - - - 61.2 9.6

is highly influenced by the value of cardinality having decreasing performance at the increase of
the cardinality. Note that by matching this plot with the one in Fig. A.4, one can understand if the
result on a specific query type are highly influenced by a high proportion of (q, t) pairs having the
same cardinally. For example, the MRR of 2u1p full-inference (q, t) pairs in FB15k-237 is highly
influenced by the presence of about 50% of (q, t) pairs having cardinality of “0”.

This additional analysis shows that there is an additional level of “hardness” that can be considered
when designing a benchmark or evaluating a model.

Imbalances of relation names and anchor nodes Next, we check if there is some imbalances in
both relation names and anchors. Note that if a relation name or an anchor entity is present multiple
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Table A.4: The best model on all available queries (column “overall”) and the best on the full
inference queries (diagonal) is different for 5/7 query types, excluding 1p and 2u, those (q,a) pairs
being all of type full-inference. Comparison of MRR scores for SOTA methods for the different sub-
type queries of FB15k237 can be reduced to. Best in bold.

Query type method overall 1p 2p 3p 2i 3i 1p2i 2i1p 2u 2u1p

1p GNN-QE 42.8 42.8 - - - - - - - -
ULTRA-query 40.6 40.6 - - - - - - - -

ConE 41.8 41.8 - - - - - - - -
CQD 46.7 46.7 - - - - - - - -

CQD-hybrid 46.7 46.7 - - - - - - - -
QTO 46.7 46.7 - - - - - - - -

2p GNN-QE 14.7 14.8 4.7 - - - - - - -
ULTRA-query 11.5 11.5 4.2 - - - - - - -

ConE 12.8 12.8 5.2 - - - - - - -
CQD 13.2 13.3 3.5 - - - - - - -

CQD-hybrid 15.0 15.2 3.5 - - - - - - -
QTO 16.6 16.7 4.0 - - - - - - -

3p GNN-QE 11.8 12.0 4.4 4.8 - - - - - -
ULTRA-query 8.9 9.0 4.6 4.4 - - - - - -

ConE 11.0 11.0 5.4 2.6 - - - - - -
CQD 7.8 7.8 3.4 1.8 - - - - - -

CQD-hybrid 11.0 11.1 3.6 4.4 - - - - - -
QTO 15.6 15.8 4.5 5.0 - - - - - -

2i GNN-QE 38.3 39.3 - - 4.0 - - - - -
ULTRA-query 35.7 36.7 - - 3.4 - - - - -

ConE 32.6 33.3 - - 5.5 - - - - -
CQD 35.0 35.8 - - 7.3 - - - - -

CQD-hybrid 37.6 38.7 - - 3.8 - - - - -
QTO 39.7 40.8 - - 5.7 - - - - -

3i GNN-QE 54.1 56.0 - - 10.9 5.2 - - - -
ULTRA-query 51.0 52.9 - - 9.7 4.3 - - - -

ConE 47.3 48.3 - - 15.6 4.0 - - - -
CQD 48.5 49.6 - - 17.0 6.0 - - - -

CQD-hybrid 52.7 54.8 - - 9.9 4.6 - - - -
QTO 54.6 56.4 - - 15.4 5.4 - - - -

1p2i GNN-QE 31.1 32.8 15.5 - 5.7 - 9.1 - - -
ULTRA-query 29.6 31.5 19.2 - 4.2 - 7.4 - - -

ConE 25.5 26.6 13.9 - 5.4 - 9.7 - - -
CQD 27.5 28.7 13.4 - 7.1 - 9.0 - - -

CQD-hybrid 31.2 33.4 14.8 - 4.8 - 7.0 - - -
QTO 33.8 35.9 15.8 - 6.2 - 7.3 - - -

2i1p GNN-QE 18.9 19.2 8.2 - 6.2 - - 3.4 - -
ULTRA-query 18.6 18.9 8.5 - 5.1 - - 8.1 - -

ConE 14.0 13.8 9.7 - 12.8 - - 5.6 - -
CQD 20.7 21.0 10.5 - 6.7 - - 7.6 - -

CQD-hybrid 24.0 24.6 10.0 - 4.6 - - 7.5 - -
QTO 24.7 25.3 10.3 - 8.6 - - 8.1 - -

2u GNN-QE 40.7 - - - - - - - 40.7 -
ULTRA-query 33.6 - - - - - - - 33.6 -

ConE 29.9 - - - - - - - 29.9 -
CQD 32.7 - - - - - - - 32.7 -

CQD-hybrid 32.7 - - - - - - - 32.7 -
QTO 37.0 - - - - - - - 37.0 -

2u1p GNN-QE 9.7 8.7 - - - - - - 50.9 13.1
ULTRA-query 7.3 6.6 - - - - - - 33.2 15.0

ConE 7.4 7.0 - - - - - - 20.3 11.9
CQD 10.5 10.4 - - - - - - 13.7 14.7

CQD-hybrid 10.3 10.0 - - - - - - 18.5 13.6
QTO 12.2 11.6 - - - - - - 35.3 11.3

times in a query, this is counted only once. As shown in Table A.5, for FB15k237 and NELL995
we find that in most cases there is no predominant relation name nor anchor entity. However, there
are exceptions, as for 3i queries of FB15k237, where the anchor node “USA” is present in 30.1% of
them, and for 2u queries, where it is present in 22.5%. We also notice that there is a predominance
of USA as an anchor entity across the vast majority of query types, which is most likely given by
the vast presence of this entity in the knowledge graph.
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Figure A.3: Higher cardinality of intermediate existing entities leads to lower MRR. Influence
of the number of existing intermediate variables on the MRR for datasets FB15k237 and NELL995,
using CQD.
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Figure A.4: Proportion of(q, t) pairs having different cardinality of intermediate existing enti-
ties in the old benchmarks.
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Table A.5: There is no significant unbalancement in anchor nor relation names for each query
type . Most frequent relation name and anchor per query type in the old benchmarks. Highest value
in bold.

Query relation name frequency(%) anchor entity frequency(%)

FB15k237

1p film release region−1 3.7 USA 0.7
2p location/location/contains 7.8 USA 4.0
3p location/location/contains 10.5 USA 3.3
2i people/person/profession−1 16.3 USA 16.4
3i people/person/gender−1 18.7 USA 30.1
pi people/person/gender−1 13.4 USA 14.1
ip people/person/profession−1 7.8 US dollars 5.7
2u film/film/language−1 14.6 USA 22.5
up taxonomy entry/taxonomy−1 9.9 /m/08mbj5d 5.4

NELL995

1p concept:atdate 6.6 concept stateorprovince california 0.5
2p concept:proxyfor−1 5.5 concept lake new 1.5
3p concept:proxyfor−1 11.9 concept book new 2.5
2i concept:atdate−1 21.6 concept book new 7.6
3i concept:atdate−1 21.1 concept company pbs 12.0
pi concept:proxyfor−1 9.6 concept book new 6.1
ip concept:subpartof−1 7.0 concept athlete sinorice moss 3.8
2u concept:atdate−1 10.4 concept company pbs 4.9
up concept:subpartof−1 8.5 concept athlete sinorice moss 3.3

B QUERY TYPES INCLUDING NEGATION

In Fig. A.2 we include the query types including the negation operator involved in the analysis
described in App. A.1. Those queries are obtained by adding a negation to a single triple pattern of
some of the query structures described in Sec. 2. For example, by negating a triple pattern involved
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in the intersection of a 2i, 3i, 2i1p queries, we obtain respectively:

?T : (a1, r1, T ) ∧ ¬(a2, r2, T ), (2in)
?T : (a1, r1, T ) ∧ (a2, r2, T ) ∧ ¬(a3, r3, T ), (3in)
?T : ∃V1.((a1, r1, V1) ∧ ¬(a2, r2, V1) ∧ (V1, r3, T )), (2in1p)

Moreover, by placing the negation in different triple patterns of the query type 1p2i, we obtain two
query types:

?T : ∃V1.((a1, r1, V1) ∧ (V1, r2, T ) ∧ ¬(a2, r3, T )), (2pi1pn)

where the negation is placed in the triple pattern directly involved in the intersection, and

?T : ∃V1.((a1, r1, V1) ∧ ¬(V1, r2, T ) ∧ (a2, r3, T )), (2pni1p)

where the negation is placed on a triple pattern involved in the path query 2p.
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Figure C.1: Higher cardinality of intermediate existing entities leads to lower MRR. Influence
of the number of existing intermediate variables on the MRR for datasets FB15k237+H, NELL995+H,
ICEWS18+H, using CQD.
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Figure C.2: Proportion of(q, t) pairs having different cardinality of intermediate existing enti-
ties in new benchmarks.

C ADDITIONAL ANALYSIS ON THE NEW BENCHMARKS

Influence of intermediate existing entities on the results Similar to what was done for the
old benchmarks in App. A, we analyze the proportion and influence (on the MRR) of the num-
ber of intermediate existing entities for CQD, on the new benchmarks FB15k237+H, NELL995+H,
ICEWS18+H. Fig. C.1 show a very similar result to the one in Fig. A.3, showing a decreasing MRR
at the increase of the value of cardinality for all benchmarks. On the other hand the proportions of
the full-inference (q, t) pairs on the new benchmarks Fig. C.2 are quite different than the one shown
in Fig. A.4, having in general an higher number of (q, t) pairs with cardinality “0”. Nevertheless,
the overall MRR on those query types on the new benchmark is much lower than the one on the old
Fig. 3, showing that the “hardness” of a (q, t) pair is mainly defined by (1) number of hops/number
of reasoning steps, (2) being of type partial-inference or full-inference.
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Query relation name frequency(%) anchor entity frequency(%)

FB15k237+H

1p film release region−1 3.7 USA 0.7
2p marriage/type of union−1 19.7 American english 1.1
3p people/person/nationality−1 14.4 Hartford 1.2
2i film release region−1 10.2 USA 4.6
3i people/person/profession−1 11.8 USA 9.2
pi people/marriage/type of union−1 19.6 USA 20.0
ip webpage/category−1 20.0 /m/02s9vc 3.5
2u film release region−1 10.4 USA 4.7
up webpage/category−1 20.0 /m/02s9vc 4.9
4p people/person/profession−1 19.3 Hartford 3.0
4i people/person/profession−1 18.6 USA 19.4

NELL995+H

1p concept:atdate 6.6 concept stateorprovince california 0.5
2p concept:proxyfor−1 16.3 concept book things 0.6
3p concept:proxyfor−1 19.8 concept lake new 0.7
2i concept:atdate−1 10.2 concept lake new 1.9
3i concept:atdate−1 15.1 concept lake new 3.7
pi concept:proxyfor−1 18.7 concept book new 17.4
ip concept:proxyfor−1 19.4 concept lake new 9.7
2u concept:atdate−1 10.1 concept lake new 1.9
up concept:proxyfor−1 18.3 concept lake new 6.8
4p concept:proxyfor−1 20.0 concept stateorprovince colorado 1.5
4i concept:atdate−1 20.0 concept date n2004 8.0

ICEWS18+H

1p Make statement−1 11.12 USA 3.0
2p Make Statement−1 19.9 United Stated 3.4
3p Make Statement−1 19.9 Saudi Arabia 2.7
2i Consult−1 16.4 Citizen (India) 3.2
3i Consult−1 20.0 Turkey 5.5
pi Make statement−1 18.8 United States 7.4
ip Make statement−1 19.9 Saudi Arabia 5.3
2u Consult−1 16.5 Citizien (India) 3.1
up Make statement−1 20.0 Saudi Arabia 5.4
4p Make statement 19.8 Saudi Arabia 2.9
4i Consult 20.0 Turkey 8.4

Table C.1: The new benchmarks are generated such that anchors and relation names cannot
appear more than 20% in each query type.Most frequent relation name and anchor per query type
in the new benchmarks.

Imbalances of relation names and anchor nodes When creating the new benchmarks
FB15k237+H, NELL995+H, ICEWS18+H, to make sure that no anchor entities nor relation name was
predominant in each query type, we set a maximum of 20% frequency for both anchor entities and
relation names accross all benchmarks and query type, as shown in Table C.1
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Dataset 2p 3p 2i 3i 1p2i 2i1p 2u up

k tn k tn k tn k tn k tn k tn k tn k tn

FB15k237 512 p 8 p 128 p 128 p 256 p 64 p 512 m 512 m
NELL995 512 p 2 p 2 p 2 p 256 p 256 p 512 m 512 m

Table D.1: CQD hyperparameters old benchmarks. tn = tnorm. p=prod, m=min. Note that for 1p
neither the k nor the tnorm are needed.

D HYPERPARAMETERS

In this section we detail the hyperparameters used for each dataset and model.

D.1 OLD BENCHMARKS

GNN-QE We did not tune hyperparameters, but re-used the ones provided in the official repo. 6

ULTRA We did not tune hyperparameters, but re-used the ones provided in the official repo.7

CQD In our experiments we use ComplEx as it is a simple, robust and versatile predictor
(Ruffinelli et al., 2020). Hence, we re-used the pre-trained link predictor (Trouillon et al., 2017)
provided by the authors.8 However, we tuned CQD-specific hyperparameters, namely the CQD
beam “k”, ranging from [2,512] and the t-norm type being “prod” or “min” In Table D.1 we provide
the hyperparameter selection for the old benchmarks FB15k237 and NELL995. Also note that we
normalize scores with min-max normalization.

ConE We did not tune hyperparameters but re-used the ones provided in the official repo. 9

CQD-Hybrid For CQD-Hybrid, to make the comparison with CQD fair, we re-used the hyperpa-
rameters found for CQD and fixed an upper bound value for the CQD beam “k” to 512, even when
there are more existing entities matching the existentially quantified variables, to match the upper
bound of the “k” used for CQD. Additionally, the scores of the pre-trained link predictor are nor-
malized between [0, 0.9] using min-max normalization, and a score of 1 is assigned to the existing
triples.

QTO We re-used the hyperparameters provided in the official repo. 10 For a fair comparison with
CQD, we used the same pre-trained link predictor for both methods.

D.2 NEW BENCHMARKS

For FB15k237+H and NELL995+H, we re-used the same models trained for the old benchmarks, and
using the same hyperparameters presented in App. D.1. Instead, for the new benchmark ICEWS18+H
we trained every model. The used hyperparameters for each model are presented in the following:

GNN-QE For GNN-QE, we tuned the following hyperparameters: (1) batchsize, with values 8 or
48, and concat hidden being True or False, while the rest are the same used for the old benchmarks
and do not change across benchmarks. For ICEWS18+H the best hyperparameters are “batchsize=48”
and “concat hidden=True”.

ULTRAQ Being a zero-shot neural link predictor, we re-used the same checkpoint provided in the
official repo, as for D.1.

6https://github.com/DeepGraphLearning/GNN-QE/tree/master/config
7https://github.com/DeepGraphLearning/ULTRA/tree/main/config/ultraquery
8https://github.com/Blidge/KGReasoning/
9https://github.com/MIRALab-USTC/QE-ConE/blob/main/scripts.sh

10https://github.com/bys0318/QTO/tree/main
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Dataset 2p 3p 2i 3i 1p2i 2i1p 2u up 4i 4p

k tn k tn k tn k tn k tn k tn k tn k tn k tn k tn

ICEWS18+H 32 p 2 p 2 p 2 p 512 p 256 p 2 m 2 m 2 p 2 p

Table D.2: CQD hyperparameters new ICEWS18+H benchmark. tn = tnorm. p=prod, m=min

CQD For NELL995+H and FB15k237+H we re-used the pre-trained link-predictor and the same
hyperparameters found for the old benchmarks D.1. Instead, for the newly created ICEWS18+H, we
train ComplEx Trouillon et al. (2017) link predictor with hyperparameters “regweight” 0.1 or 0.01,
and batch size 1000 or 2000, with the best being, respectively 0.1 and 1000. Moreover, in D.2 are
shown the hyperparameters for CQD on the new benchmark ICEWS18+H.

ConE We re-used the same hyperparameters of NELL995 for ICEWS18+H.

QTO The same considerations made in App. D.1 apply.

E KNOWLEDGE GRAPHS STATISTICS

The statistics, i.e., number of entities, relation names, training/validation/test links, of the knowledge
graphs used in this paper are shown in Table E.1.

Table E.1: Statistics of knowledge graphs used to generate complex queries
Dataset Entities Relation Names Training Links Validation Links Test Links Total Links

FB15k237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804

ICEWS18+CQ (new) 20,840 250 213,304 25,048 24,689 263,041
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