A Unified Framework for Deep Symbolic Regression

Mikel Landajuela Chak Shing Lee Jiachen Yang
landajuelalal@llnl.gov leel1029@11nl.gov yang40@llnl.gov
Ruben Glatt Claudio Santiago T. Nathan Mundhenk
glatt1@llnl.gov prata@llnl.gov mundhenk1@l1nl.gov
Ignacio Aravena Garrett Mulcahy Brenden Petersen*
aravenasolis1@llnl.gov mulcahy4@llnl.gov bp@llnl.gov

Computational Engineering Division
Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract

The last few years have witnessed a surge in methods for symbolic regression,
from advances in traditional evolutionary approaches to novel deep learning-based
systems. Individual works typically focus on advancing the state-of-the-art for
one particular class of solution strategies, and there have been few attempts to
investigate the benefits of hybridizing or integrating multiple strategies. In this
work, we identify five classes of symbolic regression solution strategies—recursive
problem simplification, neural-guided search, large-scale pre-training, genetic
programming, and linear models—and propose a strategy to hybridize them into
a single modular, unified symbolic regression framework. Based on empirical
evaluation using SRBench, a new community tool for benchmarking symbolic
regression methods, our unified framework achieves state-of-the-art performance
in its ability to (1) symbolically recover analytical expressions, (2) fit datasets
with high accuracy, and (3) balance accuracy-complexity trade-offs, across 252
ground-truth and black-box benchmark problems, in both noiseless settings and
across various noise levels. Finally, we provide practical use case-based guidance
for constructing hybrid symbolic regression algorithms, supported by extensive,
combinatorial ablation studies.

1 Introduction

2 P LT
. . . (X y) = : ; : 2 T
Symbolic regression (SR) aims to ’ g : (m) g
identify a tractable mathematical ex- 7 (X, y)mmT g
pression to best fit a dataset. Specif-
ically, given the set of pairs {(acl = 0 g © "
, .- 2 i >
(i1, @ia),Yi) Yie1, SR seeks a |(X o), m8 = 0 | mi) Trnn mg) Top
mathematical function f : R — R E S oo 3 3
such that the residual || f(X) — y||? Encoder o e
. .. . optimize
is minimized, where the matrix X € train
R™*4 has entries X; ; = x; j, the vec- | Solve P; Tonsis Y Tamm

tor y € R” has entries y;, and we

- ' Figure 1: Unified deep symbolic regression. The five integrated
Corresponding author. solution strategies are color-coded: AIF, DSR, LSPT, GP, LM.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

assume point-wise application of real-valued functions over vectors and matrices, i.e., f(X) =
(f(x;)), € R™ (we keep this convention throughout the paper for convenience).

Since the introduction of SR as an application of genetic programming (GP) (Koza, |1994), many
classes of methods—especially machine learning-based methods in recent years—have been proposed.
These methods include recursive problem simplification (Udrescu et al.,|2020), neural-guided search
(Petersen et al., [2021a), large-scale pre-training for problem generalization (Biggio et al.| [2021;
Kamienny et al.| 2022; |Vastl et al.| [2022), sparse linear regression using nonlinear basis functions
(Brunton et al.| |2016), and combination of evolutionary search with learning (Mundhenk et al.|
2021). Each of these independent advances exploits different information (e.g., graph modularity
or constraints) to offer key capabilities for various aspects of the SR problem (e.g., search or
generalization), but the specificity of each work resulted in design choices that pose limitations in
other facets of the problem. This motivates an investigation of whether disparate solution strategies
are complementary to one another and how they can be effectively combined. In this paper, we
carefully rewire the five aforementioned solution strategies into a unified SR framework and show
that they are indeed complementary.

Based on the SRBench pipeline for benchmarking SR algorithms (https://github.com/cavalab/
srbench), our unified deep symbolic regression (uUDSR) framework achieves a new state-of-the-art
in SR: for ground-truth problems, uDSR ranks highest in both symbolic-based and accuracy-based
solution rates for both noiseless settings and for multiple noise levels; for black-box problems, uDSR
falls on the accuracy-complexity Pareto frontier alongside three other non-dominated algorithms.

Our main contributions in this work include: (1) a modular, unified framework for SR that integrates
five disparate SR solution strategies (illustrated in Figure|[I); (2) a novel LINEAR token that identifies
sparse coefficients of a linear combination of basis functions and can be used by almost any SR
algorithm; (3) achieving new state-of-the-art for SR on SRBench in its metrics for symbolic recovery,
solution accuracy, and accuracy vs complexity trade-offs; and (4) practical recommendations for
designing SR algorithms, driven by extensive and combinatorial ablation studies that show the
complementary benefits of these previously disjoint SR solution strategies.

2 Background

We describe each of the five solution strategies our framework unifies. For each strategy, we focus on
a key capability and a key limitatio summarized in Table E, which motivates our unification that
captures all capabilities and mitigates all limitations via the inherent synergy among strategies. We
encourage readers to read the original works for additional background.

Al Feynman. Al Feynman 2.0 (AIF) (Udrescu et al.,[2020) approaches SR via recursive problem
simplification; it is the only known algorithm to date to employ this solution strategy. Specifically,
AITF exploits knowledge of physics and the given training data, (X, y), by identifying simplifying
properties (e.g., multiplicative separability) of the underlying functional form. Applying a simplifica-
tion yields sub-problems (or one sub-problem) of lower dimensionality. Simplifications are applied
recursively until all sub-problems (i.e., leaf nodes of the recursion tree) are 1-dimensional. For each
sub-problem, the paper employs a combination of brute force search plus polynomial fit (BF/PF).
Finally, solutions to the sub-problems are then combined back into a final solution to the original
problem. While AIF positions itself as a standalone SR algorithm, it is more appropriately understood
as a SR problem simplification algorithm, as pointed out in prior work (Petersen et al.,[2021a} Biggio
et al.,[2021). From this general perspective, the use of BF/PF is simply a design choice, orthogonal to
the core methodology, and may be enhanced by integration with more advanced search methods for
solving sub-problems.

Deep symbolic regression. Deep symbolic regression (DSR) (Petersen et al.,[2021a) leverages the
effectiveness of deep reinforcement learning for combinatorial search in SR. DSR employs a neural
network controller with parameters 6 to represent a distribution p(7|#) over mathematical expressions
T =|7,...,7r|, represented by the sequence of “tokens” ; (mathematical operators, input variables,
or constants) in the pre-order (depth-first then left-to-right) traversal of the corresponding expression

*We clarify that the key limitations are not necessarily issues with the algorithms themselves; often, they are
conscious design decisions by the authors. For example, in the context of physics-based SR problems, AIF’s use
of BF/PF only strengthens their claim that recursive simplification alone is often sufficient to solve the problem.
This work considers a wider context of challenging SR problems, in which these can be viewed as limitations.

https://github.com/cavalab/srbench
https://github.com/cavalab/srbench

tree (see Koza) (1994) for details). For instance, 7 = [+, SIN, 21, EXP, 2] corresponds to expression
f(x) = sin(xq) + exp(z2). Expressions are sampled from the controller autoregressively, i.e.

p(7]0) = HiTzlp(Ti|T1:i—17 0), and evaluated based on fitness R(7, (X,y)) to the (X,y) dataset.
The controller is then trained to maximize the reinforcement learning objective:

J(Q) = ETNP(T\Q) [R(Ta (Xa y))]) (D

using a risk-seeking policy gradient that aims to maximize best-case performance. Autoregressive
sampling affords the ability to easily incorporate prior knowledge by directly modifying likelihoods
of individual tokens p(7;|71.4—1,6) in situ, for example by precluding expressions with nested
trigonometric operators. This dramatically reduces the search space, which has been shown to greatly
improve the ability to recover ground-truth expressions (Petersen et al., [2021b). Whereas DSR
focuses on discrete search and pruning the combinatorial search space, it does not exploit the (X, y)
data. In fact, the (X, y) data itself only shows up in the reward computation in (1)), which is a weak,
aggregate learning signal. Thus, DSR trains from scratch for each new SR problem and cannot
generalize to new problems.

Large-scale pre-training. Large-scale pre-training (LSPT) algorithms (Biggio et al.,2021; | Kamienny
et al., 2022} |Vastl et al., |2022) tackle the problem of generalization in SR: they seek a single model
that, once trained, produces a distribution over solutions to any SR problem. To accomplish this, the
algorithm “Neural Symbolic Regression that Scales” (NeSymReS) (Biggio et al., [2021) uses a set
transformer (Lee et al.,2019) to learn an encoding of the (X, y) data. A second transformer network
then maps the encoding to a distribution over expressions using autoregressive sampling. The model
is trained end-to-end via supervised learning, using a large dataset of SR problems (input data (X, y)
and corresponding ground truth label 7) produced by a programmatic expression generator (Lample
and Charton, 2019). Given (X, y) at test time, beam search is used to find high-likelihood expressions.
LSPT approaches claim that pre-training alone is sufficient to solve many SR problems. However,
the lack of fine-tuning during testing means that LSPT algorithms may not be optimized for new
out-of-distribution SR problems.

Genetic programming. Genetic programming (GP) refers to a well-established class of evolutionary
algorithms commonly applied to SR in which a set or “population” of mathematical expressions
is maintained and “evolved” over time using genetic operators such as mutation, crossover, and
selection. We refer the reader to|Langdon and Poli (2013) for an overview of GP. In this work, we
consider only standard GP (as defined in Chapter 7 of Bick et al.|(2018)); however, our integration of
GP into the unified framework applies to virtually any GP method. GP excels at exploring the search
space to find complex expressions, but does not employ a neural network or other parameterized
model to learn over time. This limitation was addressed in Mundhenk et al.|(2021), where GP was
combined with a learned expression generator, but not in concert with other methods considered here.

Linear models. Linear models (LM) are a mainstay of statistics and machine learning (Murphy,

2022). LM methods seck expressions of the form g = Zle Bip; = ®BT, where ® := (¢, ..., ¢1)
comprises a library of k user-defined basis functions ¢; : R — R, and 8 = (84, ..., O) is a vector
of scalar coefficients that is often learned using least squares minimization. To avoid over-fitting,
the vector (3 can be alternatively optimized using sparsity inducing optimizers. As an example, the
algorithm “Sparse Identification of Nonlinear Dynamical systems” (SINDy) (Brunton et al., 2016) is a
simple, computationally expedient, and popular LM method for SR, particularly for learning systems
of differential equations. SINDy identifies sparse representations by using LASSO (Tibshirani, |1996).
While effective at quickly learning sparse expressions, the restriction to a linear combination of
pre-defined basis functions results in a massively reduced search space, precluding such functional
forms as rationals and compositions. In our unified framework, we abstract the entire process of
learning a linear model into one single discrete token, thereby restoring the nonlinear, combinatorial
search space while retaining the ability to quickly learn sparse linear subcomponents.

3 Related Work

In addition to AIF, DSR, LSPT, GP, and LM described above, we describe several other related SR
solution strategies that are not part of our unified framework. EQL™ presents a unique deep-learning
framework for SR that employs neural networks whose activation functions are elementary operators,
enabling end-to-end differentiable training (Sahoo et al.l |2018). GrammarVAE learns to encode
expression trees in a continuous space and uses Bayesian optimization to optimize them in latent

Table 1: Key capabilities and limitations of the five unified solution strategies.

Key capability

Key limitation

Solution strategy Label
Al Feynman AIF
Deep symbolic DSR
regression
Large-scale LSPT

pre-training

Genetic programming GP

Linear models LM

Exploits (X,y) data to sim-
plify a SR problem into lower-
dimensional sub-problems.
Neural network learns over time,
with the ability to incorporate in
situ constraints.

Leverages big data, learning from
many other problems by condi-
tioning on the (X, y) data.

Rapidly explores the search space
via genetic operators.

Quickly learn sparse coefficients
of a linear combination of basis

Underlying SR algorithm resorts
to simple BF/PE.

Does not exploit the (X, y) data,
which only appears in the (weak)
reward function.

Limited to fixed numbers of di-
mensions, and does not fine-tune
the search to a particular SR prob-
lem.

Does not employ a neural network
to learn over time.

Operate on a dramatically re-
duced search space.

functions.

space (Kusner et al.,[2017). Both EQL* and GrammarVAE impose specific representations of the
expressions (either by constraining the search space or by projecting it into a latent space) and thus
do not facilitate straightforward integration with the solution strategies in our framework. The idea
of pre-training models for use in neural-guided search, used by LSPT approaches and our unified
framework, is inspired by Bello et al. (2017), who apply a similar method to the traveling salesman
problem.

Previous work on hybrid approaches to SR mainly focus on improving a single aspect of one approach,
such as alleviating the challenge of high dimensional data by extracting features for GP (Icke and
Bongard, 2013), or improving the starting population of GP iterations (Mundhenk et al.|[2021). Often,
the motivation for combining separate methods comes from specific problem settings, such as the
case of datasets with missing values (Al-Helali et al.,|[2018)) or noisy high-dimensional measurements
in systems with known physical constraints (Reinbold et al.,2021). In contrast, the unification in our
work serves to enhance multiple general capabilities of SR, such as generalization, combinatorial
search and optimization, and single-token abstraction of function spaces.

Our empirical analysis heavily leverages SRBench, a reproducible and open-source platform for
benchmarking new SR methods against 14 established methods on accuracy and complexity for
122 real-world datasets and exact symbolic correctness for 130 ground-truth problems with varying
noise levels (La Cava et al., 2021). SRBench has seen rapid adoption by recent works that use it to
evaluate improvements in accuracy, exact solution rate, and solution complexity (Kamienny et al.|
2022; Virgolin and Bosman, 2022} Zhang et al., 2022)).

Lastly, we note a similarity between this work and Rainbow, a work that combines several deep
reinforcement learning methods into a unified algorithm and performs extensive ablation studies
(Hessel et al.,[2018)). Analogous to Rainbow’s use of Deep Q Networks (DQN) as a base framework
into which it integrates several improvements, this work uses DSR as a base framework into which
we integrate AIF, LSPT, GP, and LM.

4 Methods

Our overall unification strategy is to carefully rewire the solution strategies identified above as con-
nected but non-overlapping modules in an algorithmic framework that leverages their key capabilities.
This is visualized in Figure [T (see also Figure [I2in Appendix L] for an illustrative example of
expression discovery under uDSR). In an initial offline stage, pre-training a parametric controller
model on a large dataset facilitates generalization to test problem instances (LSPT). In the online
stage, given a specific problem instance, a recursive problem simplification module (AIF) exploits
modularity of mathematical expressions to produce sub-problems of lower dimensionality for the
main trunk of uDSR. Within the trunk, a Recurrent Neural Network (RNN) continually learns over
many iterations (DSR) and provides good candidates to seed the starting population for genetic
programming (GP); high fitness populations produced by GP are combined with elite candidates for

controller parameter updates via risk-seeking policy gradient. Finally, the RNN is permitted the use
of a powerful symbolic token that encapsulates an entire space spanned by basis functions (LM).

Below, we describe the integration of each module in detail. Algorithm [T provides high-level
pseudocode for uDSR. More detailed pseudocode is available in Algorithm 2{of Appendix [Al

Table 2: Feature compatibility matrix for uDSR and the five integrated solution strategies.

& &) $ $ & ~§’b
o o & 52 ¥ Fe S S
T F¢ Y O e TS & F
é,\& K &

AIF v

DSR v v v

LSPT v v v

GP v v

LM v

uDSR Vv v v v v v v

Beginning with DSR. For DSR, we begin with the method proposed by [Petersen et al.| (2021a)),
including two improvements to exploration (soft length prior and hierarchical entropy regularizer)
introduced in follow-up works (Landajuela et al.l 2021a/b). DSR includes a number of in situ priors
and constraints to the search space, which help bias and/or prune the search, and have been shown to
greatly improve performance (Landajuela et al.,|2021b). We provide a complete list of DSR priors
and constraints in Appendix [B] including several new constraints required to unify all five methods
(described below). DSR also includes a CONST token that represents an arbitrary floating-point
constant, whose value is optimized using a nonlinear optimizer, e.g., L-BFGS-B (Zhu et al., [1997).

Integrating AIF via recursive simplifications. Our key insight to integrate AIF (Udrescu et al.|
2020) is that its recursive problem simplification steps can be viewed as orthogonal to the underlying
SR algorithm. While AIF resorts to BE/PF, we propose using a hybrid of the other four integrated
algorithms (which we continue to describe in subsequent paragraphs). To integrate AIF, we consider
the starting SR problem as P, a d-dimensional SR problem. One application of AIF’s simplification
step produces either one sub-problem P,, with dimensionality da < d, or two sub-problems, P» and
Ps3, with dimensions ds and d3 such that ds 4 d3 = d, as well as metadata M containing information
required to recombine sub-solutions back to the full solution of P;. Recursive simplifications are
applied until sub-problems at the leaf nodes of the recursion tree are each 1-dimensional. For
each sub-problem P; (including the starting problem, P;), we apply our hybrid SR algorithm to its
corresponding dataset, (X, y);. Finally, using the metadata from each simplification step, solutions
from all sub-problems are recombined to form a single, final solution to the original problem, P;.

Integrating LM via the novel LINEAR token. Our design goal for integrating LM is to retain
the ability to quickly learn linear subcomponents of an expression, while still operating in a general
nonlinear functional space. That is, while LM finds expressions of the form g(z) = ®(x)37, we
seek to search more generic expressions of the form f(z) = F(x, g(z)), where F' is a nonlinear
function subject to certain constraints (see below), while still using linear methods to determine the
coefficients of g(x). We accomplish this by proposing to represent g(z) as a special type of terminal
token, which we call LINEAR. LINEAR serves as a placeholder for a LM-like solution, ®(x) ﬁT,
where the values of the coefficients 3 are determined only when a traversal has terminated. Thus, we
abstract the entire process of learning a linear model into a single discrete token. In our approach, the
function F'(x,w) must admit an expression tree with a single argument token for w and there must
exist G(z,v) such that y = F(z,G(z,y)), Yo,y € R? x R.

Given an expression f(z) = F(z, ®(z)3"), with F as described above, let f(®3T) denote the view
of f as a function of 3 only. Naively, one could solve a nonlinear optimization problem to determine
the values of 3, just as DSR and Biggio et al. (2021) optimize CONST tokens. However, nonlinear
optimization is computationally expensive, scales poorly with more coefficients, and is challenging
to induce sparsity. Instead, we consider the following convex optimization problem, for which there

are efficient sparse linear solvers:
argmin L(B) := | ®(X)8T — f
ﬁERk
We attain this formulation by solving the equation y = F'(X, LINEAR) for LINEAR, which gives

LINEAR = G(X,y). Since this requires taking the inverse of all ancestor operators of LINEAR—
binary operators are reduced to unary operators by lexical closure, elaborated more programmatically

—1

(W)I3- 2

below—we use ?71 (y) := G(X,y) to denote the view of G as a function of y only.

Equation (2) exhibits an attractive property that enables LINEAR to exactly recover non-linear
expressions with linear subcomponents. When LINEAR is chosen at the correct position in a traversal,
in the sense that the true computational graph contains a linear combination of basis functions in the

corresponding subgraph, we have that ffl (y) exactly equals that linear combination. For example,
given (X, y) data generated from a ground-truth expression f*(x) = sin(x1)+exp(1.223+3.4z122),
and a basis containing all monomials up to degree 3, the traversal 7 = [+, SIN, 2:1, EXP, LINEAR]

yields ffl (y) = log (y — sin(z1)), and the corresponding solution to (2)) exactly recovers f*.

Programmatically, we solve (2)) using the expression tree for 7 and the following procedure (illustrated
in Figure[5 of Appendix [C} pseudocode is provided in Algorithm[2 of Appendix [A): First, partially
execute the tree by evaluating all nodes that are not direct ancestors of LINEAR. Second, redefine
binary operators as unary operators by fixing (or “binding”) the one pre-computed argument (this is
called partial application—a type of lexical closure—in computer science). Third, successively apply
the root node’s inverse operation on the y data until LINEAR is the only token in the tree, resulting in

f_l (y). Finally, perform a linear fit on (2) using the transformed data, (X, f_l (y)).

This procedure for abstracting a linear model into a single operator exhibits several complications:
(1) it only works if there is exactly one LINEAR token, (2) it does not work in the presence of other
placeholder tokens, e.g., the CONST token used in DSR, and (3) it does not work if LINEAR has
non-invertible ancestors (e.g., SIN), as y = F'(X,LINEAR) might not have a unique solution on
LINEAR. Fortunately, seamlessly incorporating these restrictions into the search space is precisely
what the DSR algorithm excels at. To this end, we enable LINEAR into our framework by introducing
three constraints to the search space (further detailed in Appendix [B): (1) there can be at most one
LINEAR token; (2) the LINEAR token and CONST token are mutually exclusive—one cannot appear if
the other is present; and (3) the LINEAR token cannot be the descendant of a non-invertible unary
token, e.g., SIN. In this work, we consider the set of basis functions ® given by the monomials of
degree up to D and solve (2) using a sparsity-inducing least square method (see Appendix [C] for
details).

Lastly, we observe that standard LM regression is restored when F'(z,w) = w. In that case, we
recover the function f(z) = ®(x)3" with trivial traversal 7 = [LINEAR]. Thus, our method expands
the search space of LM by allowing nonlinear function compositions. For instance, F(z,w) = +

w
leads to f(x) = W, which is outside the search space in standard LM regression.

Integrating GP via population seeding. To our knowledge, hybridization of DSR and GP is the
only combination of the five methods that has been explored to date. To summarize, as inMundhenk
et al.|(2021), we hybridize DSR with GP by abstracting the GP algorithm as an inner optimization
loop within DSR. Each time DSR samples a batch of expressions, we use this batch as the starting
population for an inner-loop GP algorithm. The top samples at the end of GP are combined with the
DSR batch for training the neural network. This process leverages GP’s ability to rapidly explore
the search space, while using DSR’s persistent neural network to mitigate the disadvantages of GP’s
non-parametric nature (Mundhenk et al.,[2021).

Integrating LSPT via supervised or reinforcement learning. We integrate LSPT by merging the
RNN used in DSR with a set transformer in an encoder-decoder fashion. Our encoder architecture
closely mimics that of NeSymReS (Biggio et al.,|2021). The set transformer encodes a given dataset
(X, y) into a latent representation hg. This representation is passed as initial state to the RNN, which
decodes it into an expression 7. The resulting architecture models the distribution p(7|6, v, (X, y)),
where 6 and v are the parameters of the RNN and set transformer, respectively (see Figure|[l). As
in Biggio et al.|(2021), we pre-train the model end-to-end on many SR problems using supervised
learning, using ground truth expressions as labels, resulting in parameters 6*,1)*. However, different
from existing LSPT approaches, given a new dataset (X', y’), we propose to search for a symbolic

Algorithm 1 Unified deep symbolic regression. Color key: AIF, LSPT, DSR, GP, LM

input Symbolic regression problem P consisting of tabular data (X, y)
output Best fitting expression 7*
parameters Pre-trained controller and encoder parameters (9, ¢*), objective function J (6, 1)

1: P1,...,Pm < use AIF to recursively simplify /P into m sub-problems
2: for each sub-problem P; and corresponding dataset (X, y); do

3: 0 =0",9" < load pre-trained encoder and controller parameters
4 while budget not exceeded do

5 Trnn < sample N expressions from p(7]0, ¥, (X, y):)

6: Tap < evolve population by performing S generations of GP

7 T < combine Trnn and top k expressions from Tgp

8: T < compute coefficients of LINEAR tokens

9: 0 < train controller on 7 according to J(0,¢*)

10: 7% « store best expression for problem P;

11: 7% < use AIF to combine solutions 71, .. .| 7™ into final solution

12: return 7~

expression by fine-tuning p(7|6,v*, (X’,y’)) using reinforcement learning, with initial conditions
O = 0*.

The pre-training phase requires a large dataset comprising SR problems, each defined by a set of
points (X, y) along with true expression 7. To scale to arbitrary dataset size, we seek a problem
instance generator pg (7, (X, y)) = pg((X, y)|7)pg(7), from which we can sample expressions 7
and corresponding (X, y) data. Full details of the sampling process used by pg are provided in
Appendix [D. Briefly, we leverage the fact that the distribution induced by DSR includes a prior
(Petersen et al.,|[2021b). To generate expressions, pg(7) = p(7]6 = 0) directly samples from this
prior, ignoring emissions from the RNN. Thus, the algorithm bootstraps or “imagines” expressions
that it then uses for training data, rather than relying on an external expression generator as in|Biggio
et al. (2021); (Kamienny et al. (2022); Vastl et al. (2022). After sampling 7, pg((X,y)|7) is obtained
following the strategy in|Biggio et al. (2021).

In this work, we explore two different objectives for model pre-training. First, following Biggio et al.
(2021), we consider the supervised learning (SL) objective:

Jsn(0,9) = ETQ?(va)ngQ [log p (1410, 9, (X, y)g)] -

During fine-tuning, ground-truth labels will not be available. To mitigate an objective mismatch be-
tween pre-training and fine-tuning objectives, we alternatively explore pre-training a la reinforcement
learning (RL) (Bello et al.,[2017). Specifically, we consider:

JRL(aa 1/}) =]E(X,y)ngg [ETwp('r\G,w,(X,y)g) [R(Ta (X7 y)g)]] . (3)

In practice, this objective is maximized using a novel formulation of the risk-seeking policy gradient
for multitask learning (see Appendix [D for details).

S Experiments

Pre-training. We pre-train four models: two trained using SL and two trained using RL, each with
and without the LINEAR token. Details of the pre-training setup can be found in Appendix D!

Experimental setup using SRBench. We empirically assess uDSR using SRBench (La Cava et al.|
2021)), an open-source and reproducible pipeline for benchmarking SR algorithms. SRBench features
130 problems with hidden ground-truth analytic solutions and 122 real-world datasets with no known
analytic model (“black-box” problems) from the PMLB database (Olson et al.,|2017). By running
uDSR through the SRBench pipeline, we enable direct comparison to its curated results of 14
contemporary SR methods. The 14 baselines are described in Appendix [E.

For all experiments, we use a minimal set of tokens: 4, —, X, <+, SIN, COS, EXP, LOG, SQRT, 1.0,
CONST, and (except for the appropriate ablations) LINEAR. For simplicity, our choice of ® (basis
functions for LINEAR) includes only polynomial terms up to degree 3. Hyperparameters are listed

uDSR =i —— uDSR =@~

AIF el c—— Operon =
AFP_FE = T GP-GOMEA = —
DSR —H— SBP-GP —a—
AFP = MRGP =
GP (gplearn) ' e AlF —=E—
GP-GOMEA Yol —— AFP_FE —E-o—
ITEA = Al—— EPLEX _——
EPLEX L AFP =
NeSymReS * —i—— FEAT ===
Operon —#¢ —l@— GP (gplearn) =a—
SINDy —+E—e— ITEA —z—
SBP-GP @ -e— Target Noise NeSymReS —B— Target Noise
BSR @ ® 00 DSR -8 ® 00
FEAT | 0.001 SINDy = | 0.001
FFX X 001 BSR - X 001
MRGP 04 FFX B¢ 04
0 20 40 60 80 0 20 40 60 80 100
Symbolic Solution (%) Accuracy Solution (%)

Figure 2: SRBench-generated comparisons of symbolic (left) and accuracy-based (right) solution rates for uDSR
and 16 baseline SR methods, averaged across 130 ground-truth SR problems and four different noise levels.

in Table [3]of Appendix [F} When possible, we reused the hyperparameters of the published methods
most similar to each uDSR component.

We ran uDSR via SRBench on the 252 datasets with 10 random seeds each. Each run was performed
for up to 2,000,000 expression evaluations per sub-problem, or until a 24 hr walltime limit was
reached. For ground-truth problems, SRBench computes two metrics, each averaged across the 130
problems: (1) symbolic solution rate, based on symbolic equivalence using SymPy
2017) and (2) accuracy solution rate, defined as achieving an R? > 0.999 on held-out test data. For
black-box problems, SRBench reports accuracy (R? on held-out test data) vs complexity (number of
nodes in the SymPy-parsed expression tree).

Performance results. Figure [2 shows
that uDSR outperforms all other 14 bench-

marked methods both in symbolic solu-

tion (by a large margin) and accuracy solu-

tion rates. Figure[3]shows that uDSR falls -

on the Pareto frontier, alongside Operon 20 \ :

(Kommenda et al., 2020) (at higher ac-

curacy and complexity), and DSR and AF

SINDy (at lower accuracy and complex- & 15 P

: & . (Kemoidge

ity). >

Notably, the previously published SR- %_ \

Bench results had no clear winner across € 4o \

the three categories of (1) symbolic solu- © \ o

tion, (2) accuracy solution, and (3) Pareto L ¥ GP-GoMEA] -{\

efficiency. The top performers for sym- S

bolic solution rate (namely, AIF) dif- 5 GP (gplearn) 5

fered from those for accuracy solution :

rate (namely, Operon and MRGP). Only SR

Operon appeared as a top performer in 0

two categories. However, in this work, 0 5 10 15 20

we see that uDSR is highest in all three R? Test Rank

categories. Figure 3: SRBench-generated comparison of test R? (on held-
out test data) vs complexity for uDSR and 22 baseline regres-

6 Ablations and Discussion sion/SR methods, averaged across 122 black-box SR problems.

Ablations. Since uDSR integrates many disparate components, it is critical to assess the relative
contributions of each component in various contexts. To identify synergies, anti-synergies, and

1.0 -
HE Symbolic success Accuracy success

0.8 - y . . .D-—————————————.————
0.6 . Iyl === - --
. . DSR
0.4 + .
N ‘lII I‘
GP v v v v v - s s e e e e e e ey P A 2,
A A A A A 2 2 2 2
AlF v v v A A A A A A A 2 A A A o - -
DSRV v v v V/ = - v vV /v A2 A A A - v v v - v e T v - -
ISPTR SR-SSRRSRS---SR-RRRSSSSRRS - - - - - - SRSRRSRS - - - -RS -
#554444444443333333333333333222222222222221111110

Figure 4: Combinatorial ablations of uDSR components on 130 SRBench ground-truth problems. Indicators
below bars denote which components are enabled for each ablation. v': Component enabled. -: Component
disabled. S: Pre-training enabled using SL. R: Pre-training enabled using RL. #: Number of enabled components.
Error bars represent standard error across 10 random seeds per problem. Colored labels are referred to in the
main text. Ablation ‘D’ is equivalent toMundhenk et al.[(2021). Ablation ‘DSR’ is equivalent to|Landajuela
et al./(2021Db).

diminishing returns among the integrated methods, we perform a large-scale study of all combinations
of the five integrated methods (standard “leave-one-out” style ablations in which we begin with the
full uDSR and ablate one component at a time do not provide this full picture). There are 48 total
combinations: AIF € [on, off] x GP € [on, off] X LINEAR € [on, off] X pre-training € [SL, RL,
off] x DSR € [on, off]. We define ablating each component as follows: For AIF, “off” means that
we do not perform recursive problem-simplification; only the root problem is considered. For GP,
“off” means we do not perform inner-loop GP algorithms between batches. For LINEAR, “off” means
we exclude the LINEAR token from the library. For pre-training, SL and RL refer to whether we use
the model pre-trained using SL or RL; “off” means we do not use any pre-trained model, and the
controller architecture does not include the set transformer component. For DSR, “off”” means the
learning rate for the neural network is set to zero; notably, the controller is still used for sampling,
including all priors and constraints. For each ablation, we run on the 130 ground-truth SRBench
problems with 10 random seeds each (48 x 130 x 10 = 62, 400 total runs), using a maximum of
500,000 expression evaluations per sub-problem.

Figure [shows the symbolic solution rate and accuracy solution rate computed by SRBench, with
labels for select ablations we refer to in the subsequent discussion. Generally, performance increases
with the number of enabled components, N. For a fixed N, GP and LM tend to yield the largest
marginal performance gains. Refer to Figure[in Appendix [G]for a visualization of the marginal
performance gains yielded by each component.

Recommendations. The full uDSR algorithm, using all components and RL pre-training, achieves
the best symbolic and accuracy success on SRBench. Nonetheless, we believe that the choice of SR
algorithm should be guided by use case. Thus, based on the extensive ablation studies presented
above, we provide our recommendations for the five integrated solution strategies.

AIF’s recursive simplifications have the attractive property of providing strict improvement over the
base SR algorithm, since the root sub-problem in the sub-problem tree is simply the original problem;
sub-problems further down the tree only have the ability to improve the end result. This property
comes at the expense of incurring a roughly m-fold increase in computational cost, where m is the
number of identified sub-problems. Empirically, our ablations confirm the strict improvement (e.g.,
compare ‘A’ with ‘DSR’ in Figure), though performance gains exhibit diminishing returns as the
number of integrated methods increases. Thus, we suggest inclusion of AIF for use cases in which
computational cost is not an important bottleneck. Finally, we note that we only considered AIF
without its dimensionality analysis component, as this is really a pre-processing step orthogonal to
the SR algorithm. For real-world problems with physical units, we highly recommend that users first
perform dimensional analysis on their SR problem.

The best results were obtained using RL pre-training with all other components enabled. However,
in general, LSPT across the ablations yielded mixed results. For example, the only significant
anti-synergy among all components occurs between SL pre-training and GP (compare ‘B1’ and ‘B2’

in Figure). To gain further insight into which use cases may benefit from LSPT, we inspected the
initial rewards for each pre-training modality before fine-tuning. As shown in Figure[6]of Appendix D,
both SL and RL pre-trained models yield higher reward than randomly initialized models. This is
especially the case for RL pre-training, where the traces of the initial expressions (see Figure[§ of
Appendix D) appear very close to the real data. Thus, pre-training can be desirable for use cases with
very low budgets (e.g., zero-shot learning), a point reinforced empirically by Biggio et al. (2021).
However, as shown in Figure[7]of Appendix D, pre-trained models may have tendencies to become too
“sharp” (i.e., exhibiting low entropy), resulting in reduced exploration that can hinder performance
during fine-tuning. We conclude that to be effective in combination with other solution strategies in
SR, pre-trained models must strike the delicate balance between high initial reward and sufficient
initial diversity.

Both the LINEAR token and the inclusion of our GP component almost always provide large improve-
ments in both symbolic solution and accuracy solution (e.g., compare ‘C’ and ‘D’ with ‘DSR’ in
Figure). They also do not incur significant additional computational cost given a fixed budget of
expressions (see Table [of Appendix [H). Thus, we highly recommend their inclusion for most use
cases. A limitation of the LINEAR token, and to a lesser extent the use of GP, is that it is inefficient
in improving accuracy relative to its complexity, which we show in Figure[I0 of Appendix [l Thus,
users may not want LINEAR or GP for use cases in which they seek a low-complexity expression.

7 Conclusion

We introduce a modular framework for SR, in which we carefully integrate five different SR solution
strategies in an attempt to maximize the benefits of each and cover each other’s weaknesses. Our
unification strategy focuses on abstraction of the constituent strategies: using DSR as a baseline, we
abstract AIF as an algorithmic wrapper, LSPT as a pre-training step, GP as an inner-optimization loop,
and LM as a single optimizable token. Using the SRBench pipeline for benchmarking SR algorithms,
uDSR demonstrates state-of-the-art performance across 252 benchmark problems. For future work,
we leave open the questions of using more advanced modules for GP, such as GP-GOMEA (Virgolin
et al.,[2017), or controller architectures (such as transformers as alternatives to the RNN), as well as
the possible benefits from hyperparameter tuning individual modules. We hope that future work in
SR considers additional strategies for hybridizing and/or abstracting SR solution strategies.

Acknowledgments and Disclosure of Funding

We thank Livermore Computing at Lawrence Livermore National Laboratory (LLNL) for the compu-
tational resources that enabled this work. Funding was provided by the LLNL Laboratory Directed
Research and Development project 19-DR-003. We thank the Computational Engineering Directorate
and the Data Science Institute at LLNL for additional support. This work was performed under
the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344.
LLNL-CONF-835375.

References

Abolafia, D. A., Norouzi, M., Shen, J., Zhao, R., and Le, Q. V. (2018). Neural program synthesis
with priority queue training. arXiv preprint arXiv:1801.03526.

Al-Helali, B., Chen, Q., Xue, B., and Zhang, M. (2018). A hybrid gp-knn imputation for symbolic
regression with missing values. In Australasian Joint Conference on Artificial Intelligence, pages
345-357. Springer.

Arnaldo, 1., Krawiec, K., and O’Reilly, U.-M. (2014). Multiple regression genetic programming.
In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages
879-886.

Bick, T., Fogel, D. B., and Michalewicz, Z. (2018). Evolutionary computation 1: Basic algorithms
and operators. CRC press.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2017). Neural combinatorial optimization
with reinforcement learning.

10

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Parascandolo, G. (2021). Neural symbolic
regression that scales. In International Conference on Machine Learning, pages 936-945. PMLR.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932-3937.

de Franga, F. O. and Aldeia, G. S. I. (2021). Interaction—transformation evolutionary algorithm for
symbolic regression. Evolutionary computation, 29(3):367-390.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G., Parizeau, M., and Gagné, C. (2012). Deap:
Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13(1):2171-2175.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software, 33(1):1.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,
B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement
learning. In Thirty-second AAAI conference on artificial intelligence.

Icke, I. and Bongard, J. C. (2013). Improving genetic programming based symbolic regression using
deterministic machine learning. In 2013 IEEE Congress on Evolutionary Computation, pages
1763-1770. IEEE.

Jin, Y., Fu, W., Kang, J., Guo, J., and Guo, J. (2019). Bayesian symbolic regression. arXiv preprint
arXiv:1910.08892.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F. (2022). End-to-end symbolic regression
with transformers. arXiv preprint arXiv:2204.10532.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3128-3137.

Kim, J. T., Landajuela, M., and Petersen, B. K. (2021). Distilling wikipedia mathematical knowledge
into neural network models. arXiv preprint arXiv:2104.05930.

Kommenda, M., Burlacu, B., Kronberger, G., and Affenzeller, M. (2020). Parameter identification for
symbolic regression using nonlinear least squares. Genetic Programming and Evolvable Machines,
21(3):471-501.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4(2):87-112.

Kusner, M. J., Paige, B., and Herndndez-Lobato, J. M. (2017). Grammar variational autoencoder. In
International conference on machine learning, pages 1945-1954. PMLR.

La Cava, W., Helmuth, T., Spector, L., and Moore, J. H. (2019). A probabilistic and multi-objective
analysis of lexicase selection and e-lexicase selection. Evolutionary Computation, 27(3):377-402.

La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F. O., Virgolin, M., Jin, Y., Kommenda, M., and
Moore, J. H. (2021). Contemporary symbolic regression methods and their relative performance.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1).

La Cava, W., Singh, T. R., Taggart, J., Suri, S., and Moore, J. H. (2018). Learning concise representa-
tions for regression by evolving networks of trees. arXiv preprint arXiv:1807.00981.

Lample, G. and Charton, F. (2019). Deep learning for symbolic mathematics. In International
Conference on Learning Representations.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P., Glatt, R., Mundhenk, N., Pettit, J. F,,
and Faissol, D. (2021a). Discovering symbolic policies with deep reinforcement learning. In
International Conference on Machine Learning, pages 5979-5989. PMLR.

11

Landajuela, M., Petersen, B. K., Kim, S. K., Santiago, C. P., Glatt, R., Mundhenk, T. N., Pettit,
J. F,, and Faissol, D. M. (2021b). Improving exploration in policy gradient search: Application to
symbolic optimization. arXiv preprint arXiv:2107.09158.

Langdon, W. B. and Poli, R. (2013). Foundations of genetic programming. Springer Science &
Business Media.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set transformer: A
framework for attention-based permutation-invariant neural networks. In International Conference
on Machine Learning, pages 3744-3753. PMLR.

Luke, S. and Panait, L. (2001). A survey and comparison of tree generation algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 81-88. Citeseer.

McConaghy, T. (2011). Ffx: Fast, scalable, deterministic symbolic regression technology. In Genetic
Programming Theory and Practice IX, pages 235-260. Springer.

Meurer, A., Smith, C. P., Paprocki, M., Certl’k, 0., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov,
S., Moore, J. K., Singh, S., et al. (2017). Sympy: symbolic computing in python. Peer] Computer
Science, 3:¢103.

Mundhenk, T., Landajuela, M., Glatt, R., Santiago, C. P,, Petersen, B. K., et al. (2021). Symbolic
regression via deep reinforcement learning enhanced genetic programming seeding. Advances in
Neural Information Processing Systems, 34:24912-24923.

Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.

Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J., and Moore, J. H. (2017). Pmlb: a large
benchmark suite for machine learning evaluation and comparison. BioData mining, 10(1):1-13.

Pawlak, T. P., Wieloch, B., and Krawiec, K. (2014). Semantic backpropagation for designing search
operators in genetic programming. IEEE Transactions on Evolutionary Computation, 19(3):326—
340.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago, C. P., Kim, S. K., and Kim, J. T. (2021a).
Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
gradients. In International Conference on Learning Representations.

Petersen, B. K., Santiago, C., and Landajuela, M. (2021b). Incorporating domain knowledge into
neural-guided search via in situ priors and constraints. In 8th ICML Workshop on Automated
Machine Learning (AutoML).

Popova, M., Shvets, M., Oliva, J., and Isayev, O. (2019). Molecularrnn: Generating realistic molecular
graphs with optimized properties. arXiv preprint arXiv:1905.13372.

Reinbold, P. A., Kageorge, L. M., Schatz, M. F., and Grigoriev, R. O. (2021). Robust learning
from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic
regression. Nature communications, 12(1):1-8.

Sahoo, S., Lampert, C., and Martius, G. (2018). Learning equations for extrapolation and control. In
International Conference on Machine Learning, pages 4442—4450. PMLR.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental data. science,
324(5923):81-85.

Schmidt, M. and Lipson, H. (2011). Age-fitness pareto optimization. In Genetic programming theory
and practice VIII, pages 129-146. Springer.

Schmidt, M. D. and Lipson, H. (2008). Coevolution of fitness predictors. IEEE Transactions on
Evolutionary Computation, 12(6):736-749.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267-288.

12

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., and Tegmark, M. (2020). Ai feynman 2.0:
Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural Information
Processing Systems, 33:4860—4871.

Vastl, M., Kulhanek, J., Kubalik, J., Derner, E., and Babuska, R. (2022). Symformer: End-to-end
symbolic regression using transformer-based architecture. arXiv preprint arXiv:2205.15764.

Virgolin, M., Alderliesten, T., and Bosman, P. A. (2019). Linear scaling with and within semantic
backpropagation-based genetic programming for symbolic regression. In Proceedings of the
genetic and evolutionary computation conference, pages 1084—1092.

Virgolin, M., Alderliesten, T., Witteveen, C., and Bosman, P. A. (2017). Scalable genetic program-
ming by gene-pool optimal mixing and input-space entropy-based building-block learning. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 1041-1048.

Virgolin, M., Alderliesten, T., Witteveen, C., and Bosman, P. A. (2021). Improving model-based
genetic programming for symbolic regression of small expressions. Evolutionary computation,
29(2):211-237.

Virgolin, M. and Bosman, P. A. (2022). Coefficient mutation in the gene-pool optimal mixing
evolutionary algorithm for symbolic regression. arXiv preprint arXiv:2204.12159.

Zhang, H., Zhou, A., Qian, H., and Zhang, H. (2022). Ps-tree: A piecewise symbolic regression tree.
Swarm and Evolutionary Computation, 71:101061.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on mathematical software
(TOMS), 23(4):550-560.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Several limitations are discussed
in Section[6l

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(@) Did you include the code, data, and instructions needed to repro-
duce the main experimental results (either in the supplemental ma-
terial or as a URL)? [Yes] uDSR source code is provided at
https://github.com/brendenpetersen/deep-symbolic-optimization.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Hyperparameters used and hyperparameter selection are
described in Section [5)and Appendix|[F.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All figures and tables with results include error
bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Computational resources used
are described in Appendix[J}

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Software and dataset
assets are described and cited in Appendix [J. Our benchmarks use the PMLB
database, cited in Section

(b) Did you mention the license of the assets? [Yes] Asset licences are described in
Appendix[J]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

