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Abstract. Python is currently the most used platform for data sci-
ence and machine learning. At the same time, public knowledge graphs
have been identified as a valuable source of background knowledge in
many data science tasks. In this paper, we introduce the kgextension

package for Python, which allows for using knowledge graph in data sci-
ence pipelines built in Python. The demo shows how data from public
knowledge graphs such as DBpedia and Wikidata can be used in data
mining pipelines based on the popular Python package scikit-learn.
We demonstrate the package’s utility by showing that the prediction ac-
curacy on a popular Kaggle task can be significantly increased by using
background knoweldge from DBpedia.
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1 Introduction

According to a recent poll, Python is the most used platform for data science
and machine learning.1 At the same time, public knowledge graphs have been
acknowledged as a valuable source for background knowledge in such tasks [14].
While packages such as rdflib2 are quite popular for processing knowledge
graphs, they do not build a bridge between graph processing and widely used
data mining packages, such as scikit-learn3.

In this paper, we present the kgextension package for Python4, which builds
exactly that bridge. It builds on the ideas of previous implementations for
Weka [7] and RapidMiner [10]. The package provides functionalities for link-
ing a dataset to public knowledge graphs, as well as for extracting features from
those graphs. It comes with preconfigured connections to DBpedia and Wikidata,
but can also be used with custom SPARQL endpoints and local RDF dumps.

1 https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-

learning-platforms.html
2 https://github.com/RDFLib/rdflib
3 https://scikit-learn.org/
4 https://github.com/om-hb/kgextension

https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html
https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html
https://github.com/RDFLib/rdflib
https://scikit-learn.org/
https://github.com/om-hb/kgextension
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City Link_KG1 Value

London kg1:London 253.3

Paris kg1:Paris 175.2

... ... ...

New York kg1:NYC 317.7

City Value

London 253.3

Paris 175.2

... ...

New York 317.7

City Link_KG1 Link_KG2 Value

London kg1:London kg2:437832 253.3

Paris kg1:Paris kg2:098327 175.2

... ... ...

New York kg1:NYC kg2:342784 317.7

City ... KG1:population KG2:pop Value

London ... 8961989 8962000 253.3

Paris ... 2175601 2175000 175.2

... ... ...

New York ... 8175133 8173000 317.7

City ... population Value

London ... 8961989 253.3

Paris ... 2175601 175.2

... ... ...

New York ... 8175133 317.7
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Fig. 1: Data analysis pipeline using background knowledge from knowledge
graphs

2 Package Functionalities

A data analytics pipeline using background knowledge from knowledge graphs
typically comprises different steps, as shown in Fig. 1. The final step is per-
forming the actual data analysis, for which built-in methods of scikit-learn

or other data mining packages are used. The remaining steps are supported by
kgextension.

2.1 Linking and Link Exploration

The first step is to identify entities from the dataset to analyze in a knowledge
graph. For example, on a dataset of cities, this step would be in identifying the
corresponding cities in a knowledge graph. To that end, different entity linkers
are available, which implement techniques such as user-defined URI patterns5,
lookup via SPARQL queries, or wrappers for specific services such as DBpedia
Lookup6. Once links to one knowledge graph are established, links to other
datasets (e.g., owl:sameAs) may be explored for generating additional links.

2.2 Feature Generation

In the next step, features are extracted from the linked entities in the knowledge
graph. The package implements a number of techniques, ranging from the cre-
ation of individual features for datatype properties (e.g., the city population),

5 such as http://dbpedia.org/resource/*ENTITY*
6 https://lookup.dbpedia.org/

https://lookup.dbpedia.org/


The Python kgextension Package 3

Fig. 2: Package Structure

binary features for types (e.g., binary features for types such as capital city,
european city, etc.), and different flavours of aggregation of properties [11]
(e.g., using TF-IDF based measures). Moreover, custom SPARQL queries can
be used for constructing specific features.

2.3 Feature Filtering

While scikit-learn provides a lot of generic techniques for feature filtering7,
the kgextension package also implements a number of specific methods from
the literature, which consider the ontology underlying the knowledge graph for
guiding the feature selection process. These methods do not only use internal
measures such as information gain, but also take, e.g., the hierarchy in the on-
tologies into account for identifying the most distinctive features [5,6,12,19].

2.4 Matching and Fusion

When extracting features from more than one knowledge graph, there might
be duplicate attributes (e.g., population values extracted from Wikidata and
DBpedia). The kgextension includes a set of methods for identifying similar
attributes (e.g., based on string similarity of the attribute names, or on value
overlap), and includes a number of heuristics for fusing the values of joined
attributes (e.g., voting, averaging, etc.).

2.5 Other Functionalities

As shown in Fig. 2, the kgextension package also comprises a number of useful
backend functionalities, e.g., for efficient access to endpoints and caching. They
facilitate an efficient execution of the overall pipeline.

7 https://scikit-learn.org/stable/modules/feature_selection.html

https://scikit-learn.org/stable/modules/feature_selection.html
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(a) Code example

(b) Confusion matrix without added
features

(c) Confusion matrix with features
added from DBpedia

Fig. 3: Adding features from DBpedia significantly improves the results

3 Demonstration Contents

We demonstrate an end to end use case (i.e., from a dataset to a prediction),
which is also available online as a Jupyter notebook8. In this use case, we use a
prediction task from Kaggle9 and show how to extend the dataset with informa-
tion from different public knowledge graphs using the different functionalities of
the package. The prediction target is to classify books in fiction and non-fiction
books. We show that by using a few simple Python commands, the performance
increases significantly from an accuracy of 0.86 to an accuracy of 0.94, and the
number of wrongly classified examples reduced to more than half, as shown
in Fig. 3. Since the notebook is interactive, different variants can be explored
together with attendees of the demo.

4 Future Developments

The kgextension package itself is developed in a modular fashion, which allows
for integrating new functionalities. Thus, for the future, we are planning to
integrate, e.g., novel methods for linking [2]. Since knowledge graph embeddings
have been proven useful for many data science tasks [1,13,15], we also plan
to integrate libraries for creating knowledge graph embedding vectors [16], as

8 https://github.com/om-hb/kgextension/blob/master/examples/book_genre_

prediction.ipynb
9 https://www.kaggle.com/sootersaalu/amazon-top-50-bestselling-books-2009-2019

https://github.com/om-hb/kgextension/blob/master/examples/book_genre_prediction.ipynb
https://github.com/om-hb/kgextension/blob/master/examples/book_genre_prediction.ipynb
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well as adapters for repositories for pretrained knowledge graph embeddings [9].
Moreover, on the knowledge graph access side, we plan to integrate efficient
generators for Triple Pattern Fragment endpoints [17] and HDT files [3].

Moreover, the framework provide an interesting test bed for designing com-
parative studies of different public knowledge graphs [4] on various downstream
tasks [8], a field which has not been much considered yet [18].
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