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Abstract
Cortical neurons exhibit a high degree of trial-to-trial variability in response to
repeated presentations of the same stimulus. We examine a theory of how such
variability can be helpful for generalizing from a small number of examples. We
extract three predictions from a simplified Gaussian model of this theory: (1) to
minimize generalization error, the optimal neural variability must have a covariance
proportional to that of the data points within a class; (2) when considering just
two classes, the magnitude of variability must shrink perpendicular to the decision
boundary; and (3) the magnitude of variability must shrink in all directions with
more examples to generalize from. We then provide evidence from experimental
neural data in support of each of these hypotheses. We observe, in the visual cortex
of mice, that variability is aligned with in-class variance; that the magnitude of
variability shrinks in a task-specific direction with task engagement; and that the
magnitude of variability shrinks in all directions with increased stimulus familiarity.
Finally, we demonstrate that injecting noise with the appropriate correlation struc-
ture into the intermediate layers of a convolutional neural network can promote
generalization over rotations of the input. Taken together, the data and simula-
tions provide evidence consistent with the theory that cortical variability supports
few-shot generalization.

1 Introduction
Cortical neurons portray extremely high variability in response to repeated stimulus presentations,
even in highly standardized recordings [1, 2]. Previous studies in the literature have mainly focused
on whether and how neural variability limits the encoding of information [3–5]. A few recent papers
grounded in empirical evidence argue that, while variability does ultimately limit encoding [6–8], its
correlation structure is such that a dominant fraction of variability is not information-limiting [9].

Incidentally, neurons have the capacity to be very reliable, such as neurons in the peripheral so-
matosensory system [10]. If most variability is harmless, and perhaps biologically evitable, one must
wonder: does the brain maintain a certain degree of variability, and could this variability serve a
computational purpose?

A different long-standing question in neuroscience has been that of how the brain is able to generalize
from a small number of examples. For instance, Tenenbaum et al. [11] ask how 2-year old children
learn new words like “horse” or “hairbrush” from just a few examples. More recently, it has been
argued that few-shot generalization is made possible by a specific representational geometry in the
high-dimensional space of neural activity [12].

We unite these two lines of research, and posit that cortical variability supports the brain’s ability to
generalize from a small number of examples. We believe variability performs this role by encoding
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invariances that are inherent in perception, such as object permanence, geometrical invariances arising
from translations or rotations of 3D objects, etc. A similar idea has been floated before [13, 14],
wherein variability is theorized to encode perceptual uncertainty by providing samples from a
probabilistic representation of a stimulus. The notion that noise can be beneficial has also been long
understood in the field of machine learning: for example, noise in stochastic gradient descent helps
avoid local minima [15], and noise in the form of dropout makes models more robust [16].

Our contributions are threefold: (i) we mathematically formalize a theory of how neural variability can
support few-shot generalization; (ii) we then find evidence from experimental neural data to support
some of its predictions, and (iii) we show that injecting structured variability into a convolutional
neural network imbues it with the ability to generalize over a new invariance space.

2 A Theory of Variability and Few-shot Generalization
In this section, we elucidate a theory of how variability might be helpful for few-shot generalization
under a simplified Gaussian model. Suppose we are interested in learning to distinguish between two
classes in Rd, with distributions P0 = N (µ0,ΣIC) and P1 = N (µ1,ΣIC), where ΣIC is represents
an “in-class” variance common to both classes, while the means, µ0 and µ1 of the two distributions
are themselves drawn i.i.d. from Pµ = N (0,Σµ). In the few-shot setting, let xk

0 and xk
1 be i.i.d.

samples from P0 and P1 respectively, with samples k ∈ {1, ...,K}. We will rely on the fact that
linear discriminant analysis (LDA) is the Bayes-optimal classifier for the binary classification problem
described above [17, Sec. 17.4.1].

Now, to model variability in visual perception, suppose we are allowed to observe these samples xk
i

as many times as we want, so that we observe not just xk
j , but a large number of trials of xk

j with
trial-to-trial variability.1 Let this variability be characterized by a Gaussian distribution with mean
centered around xk

j and some covariance Σ. Then, we can ask: what is the optimal Σ that minimizes
the generalization error of classifying between P0 and P1, given samples {xk

0} and {xk
1}?

Proposition 1. Let K = 1, and suppose we have infinitely many trials. Then, the optimal trial-to-
trial variability, Σ, which minimizes the generalization error of LDA, is proportional to the in-class
variance, i.e., Σ∗ = αΣIC , for some scaling constant α.

A sketch of the proof is provided in Appendix A. Proposition 1 formalizes an intuitive argument:
to minimize generalization error, the trial-to-trial variability should smear the representation of a
sample along directions that would mimic other samples of the same class. In essence, variability
should augment the dataset. For simplicity, we present the restricted case, where Σµ (the covariance
corresponding to Pµ) is taken to be equal to ΣIC . We leave a more complete analysis of this theorem
to future work. We provide two more predictions based on this Gaussian model, along with proof
sketches in the appendix:

Proposition 2. Suppose there are only two classes, i.e., µ0 and µ1 are arbitrary constants, and
not drawn from a distribution Pµ. Then, the optimal noise Σ is a degenerate Gaussian, with zero
variance in the direction orthogonal to the true decision boundary.

Proposition 3. Suppose K > 1, and that we estimate the covariance to be used for LDA from the
samples {xk

i }. Then, the scaling factor α decreases with increasing K, falling roughly as 1/
√
K.

3 Experimental Evidence from Mouse Visual Cortex
We used two datasets collected by us at the Allen Institute [18], consisting of spiking neural data
collected from the visual cortex of mice using neuropixels probes. In Dataset 1, mice were made to
passively watch 10 movie clips, each repeated a total of 200 times in random order. In Dataset 2,
mice were presented one of eight images in 250ms flashes separated by 500ms gray screens. The
image changed after a variable number of flashes; mice had to lick to receive a reward when the
image changed. Apart from a “Familiar” session with eight images that were seen during training, a
“Novel” session with six new images and two familiar images was also recorded. In each recording
session, after one hour of “active” task engagement, the mice were replayed the same sequence of
stimuli for “passive” viewing. In both datasets, neural activity was recorded using six neuropixels

1Note the distinction between a sample, xk
0 , representing one of a small number of examples we are given for

few-shot learning, and a trial, which gives rise to trial-to-trial variability and of which we have many.
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Figure 1: (Left) We measure the alignment between the distribution of variability of spike count
responses corresponding to frames of a given movie clip, and the distribution of responses to all frames
of that clip (green). We also measure the alignment between the variability and the in-class variance
of frames from a different clip (purple), and to the between-clip direction (red). Alignments are
measured using the weighted average of q-values, denoted q̄ (see Appendix B). (Center) Histograms
of q̄-values, taken across all appropriate frame-movie pairs: comparing variability of frames with
in-class variance in green; comparing variability of frames with between-class variance in purple;
and comparing variability of frames with the between-class direction, denoted “w”. The q̄-values are
more aligned to the in-class variance (as well as to the variance of another class) than to the between-
class direction, confirming that variability smears representations along directions of invariance.
(Right) Null distribution histograms of q̄-values for randomized controls: each frame’s variability
was randomly rotated using a random orthogonal matrix before computing the alignment. This
measures the extent to which the alignments shown in the Center figure are produced by chance.
Observe that the histograms are all clustered around a q̄-value of ∼ 10−3 in the null distribution,
whereas they are clustered around a q̄-value of ∼ 10−2 for the true histograms, indicating that the
true alignment is much higher than chance.

probes targeting visual cortical regions. We consider the variability in neural representations, which
are defined by spike counts of visual cortical neurons in short time windows, in response to movie
frames in Dataset 1, or image flashes in Dataset 2. We provide evidence from these experimental data
supporting each of the three theoretical results presented in the previous section:

1. In Dataset 1, we find that the distribution of trial-to-trial variability is aligned with the distribution
of in-class variance, as predicted by Prop. 1.

2. In Dataset 2, we find that the magnitude of variability shrinks in a task-specific direction when
the mouse is actively engaged in a discrimination task, compared to a setting where it passively
observes the stimuli. This is in line with Prop. 2, which states that the optimal variability is
infinitesimal in the direction orthogonal to the decision boundary.

3. In Dataset 2, we also find that the magnitude of variability is observed to shrink in all directions
with increased stimulus familiarity, consistent with Prop. 3.

Metrics to Measure Variability. We quantify the extent of variability in different directions
using three different metrics: (i) the noise projection, which measures the extent of variability
in a given direction; (ii) the q-value, a measure of the relative variability in a given direction,
compared to all other directions; and (iii) the signal-to-noise ratio (SNR), which measures the (linear)
distinguishability between two distributions (refer Appendix B for details, incl. a diagram in Fig. 7).

Evidence from repeated stimulus presentations. To test whether variability has the appropriate
correlation structure as described by Prop. 1, we measure the alignment of variability with in-class
variance in Dataset 1 (details in Appendix C). Here, the variability is defined by the distribution of
200 different responses to individual frames from the movie stimuli; the “in-class variance” refers to
the distribution of all responses across all frames within the same movie.2 We computed the weighted
averages of q-values (denoted q̄-values; see Appendix B for details) measuring the alignment between
the distributions of trial-to-trial variability for a particular frame and the overall distributions from
all frames and trials for an entire movie clip. We observed that the histogram of q̄-values (over all
frame-movie pairs) is greater than what would be produced by chance, indicating that the variability

2The “classes” in this dataset are dissimilar from conventional ML, because the mice have not been trained
to distinguish between them. Rather, we interpret them as classes, since mice might need to distinguish between
them for ethological reasons.
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Figure 2: (Left) A depiction of the responses to different images under change and no-change
conditions, in a 2D projection of high-dimensional neural activity space. The ellipses correspond to
the distributions of responses due to trial-to-trial variability; the directions along which variability
is measured are shown in red, for the change/no-change direction, and blue, for the between-image
direction. (a-l) Different variability metrics (on rows) computed for the change/no-change direction
(a-c,g-i) and the between-image direction (d-f,j-l). Lines correspond to different mice. Comparing
novel vs. familiar conditions (a-f), variability shrinks in all directions, with increased distinguishability
of images. Comparing active vs. passive conditions (g-l), variability shrinks in only the (task-specific)
change/no-change direction, increasing distinguishability along the task axis. (Right) Summary
cartoons depicting how variability changes with task engagement (top) and familiarity (bottom). The
red line depicts the change/no-change class boundary.

of individual frames is aligned with the variance across frames within a clip (i.e., aligned with what
we interpret as in-class variance, consistent with Prop. 1; see Fig. 1). Interestingly, the variability of
individual frames was also aligned with the distribution of frames from a different movie clip (i.e., a
different class), possibly indicating that variability smears the representations of different classes in
the same way in this dataset, capturing invariances common to all classes. As an additional control,
we observed that the variability was less aligned with the directions along which different movies
were separated.

Evidence from task engagement. To examine the effect of task engagement on the geometry of
neural variability, we measure the variability of neural activity for passive and active conditions
in Dataset 2. We consider two directions: (i) that between the trial-averages under change and
non-change conditions for each image (red lines in Fig. 2Left); (ii) the direction between every
pair of images within change and non-change conditions (blue lines in Fig. 2Left). The former is a
task-relevant direction, while the latter is ethologically relevant.

We compute the noise projection, the q-value and the SNR, for each image (in the change/no-change
direction) and for every pair of images (in the between-image direction), and average over all
images or image pairs (details in Appendix D; results in Fig. 2g–l). We find a small but statistically
significant reduction in variability in the change/no-change direction, going from passive to active task
engagement (14.0% reduction in median across mice, one-sided signed-rank test; Fig. 2g). Moreover,
this decrease is highly specific, as indicated by a decrease in the q-value (24.2% decrease in median
across mice; Fig. 2h). The decreased noise is also accompanied by increased distinguishability
between non-change and change stimuli (26.3% increase; Fig. 2i). In contrast, we are unable to detect
statistically significant changes in any metric in the direction between images (median decreases
of −11.4%, 3.3% and 2.8% in Figs. 2j–l respectively). This is consistent with Prop. 2: i.e., when
focusing on two classes (in the active context), variability shrinks in a specific direction orthogonal to
the class boundary (as depicted in Fig. 2Right,top).

Evidence from stimulus familiarity. To examine how variability changes with familiarity, we
compute the same metrics as before, in the same two directions, between novel and familiar stimuli
in Dataset 2 (details in Appendix D). Going from ‘Novel’ to ‘Familiar’, we observe a reduction in the
noise projection in both the change/no-change direction (24.9% decrease in median across mice) and
in the between-image direction (34.8% decrease in median across mice; see Fig. 2a,d). However, we
are unable to detect a statistically significant decrease in the q-value (−9.9% median decrease in the
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Figure 3: (Left) A depiction of the convolutional neural network trained on the MNIST dataset,
along with the noise injection process. A single covariance matrix is computed for all digits, which is
computed from the change in an intermediate representation induced by rotations. Noise with this
covariance is added back to the network and subsequent layers are re-trained. (Right) The result of
retraining the network with noise injection, using the correctly aligned covariance matrix (shown in
blue), relative to a control using a misaligned diagonal covariance matrix (shown in orange). Upper
and lower baselines, from supervised training with rotations and no noise injection, respectively, are
shown as black and grey dashed lines.

change/no-change direction, −2.5% decrease in the between-image direction; one-sided signed-rank
test; Fig. 2a–f), suggesting an overall shrinkage in neural variability, consistent with Prop. 3. This
shrinkage is accompanied by increased SNR in the direction between images (27.9% increase in
median across mice; Fig. 2f), suggesting that familiarity increases distinguishability of ethologically
relevant stimuli (depicted in Fig. 2Right).

4 Empirical Evidence from Artificial Neural Networks

Prop. 2 suggests that the optimal trial-to-trial variability smears the internal representations along
directions of invariance for the classification problem at hand. We next ask if we can imbue artificial
neural networks with certain invariances by injecting variability into their internal representations.

As a simple test, we consider the task of identifying handwritten digits on the MNIST dataset [19],
and train a small convolutional neural network modeled after LeNet-5 [20] to solve it. Although
convolutional neural networks are invariant to translations by design, they are not inherently invariant
to rotations of the inputs. We infer the covariance structure that rotations would impart to represen-
tation at an intermediate layer of the CNN in an unsupervised manner (see Fig. 3Left; details in
Appendix E). We then test whether injecting variability with this correlation structure while retraining
subsequent layers makes the CNN invariant to rotations of its inputs.

We test the network trained with noise injection on input digits rotated at various angles. To serve as
baselines, we train a second CNN on only vertical digits (for a lower bound), and a third CNN whose
subsequent layers are retrained with rotated digits in a supervised manner (for an upper bound). We
also compare our result with a fourth CNN that is trained with noise injection, but with a misaligned
covariance matrix that has all off-diagonal elements zeroed-out, to test the importance of the structure
of correlations.

Our results show that injecting noise with the right covariance structure imbues the CNN with a
significant amount of rotational invariance (see Fig. 3Right). Using noise with the right alignment is
closer to supervised training, than to the lower baseline trained only on vertical digits. The control
that uses misaligned noise is identical to, or worse than, the lower baseline.

5 Discussion

Our work theorizes that variability supports few-shot generalization, with three predictions that are
supported by empirical evidence from neural data and artificial neural networks. Although it may
be surprising that noise can be beneficial, we believe its usefulness lies in destroying unnecessary
information by smearing representations along directions that the brain needs to generalize over.
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Importantly, the source of cortical variability is irrelevant to our theory of its computational usefulness.
Neural spiking may be purely deterministic (sans thermodynamic noise), with cortical variability
being entirely a product of variability in external stimuli and efference copies of the animal’s own
behavior [5]. Alternatively, variability may be a product of the inherent unreliability of biological
building blocks. In either case, the question is only whether the brain harnesses variability to its
advantage (as we theorize), or if it merely copes with it.

Although we do not formally address the mechanisms that underlie the geometry of neural variability,
we conjecture that simple Hebbian plasticity is sufficient to develop correlations with the right
structure. For example, associations of the different views of a 3D object can be naturally learned
over the course of development, and inhered in synaptic connections through Hebbian plasticity.
Thus, during inference, when one view of an object is perceived, variability smears the representation
of this object along the strongest synaptic connections, organically suggesting what that object might
look like from other angles. We leave a more formal investigation of mechanisms to future work.

Questions about how the brain computes in the presence of variability, as well as about how the brain
is able to generalize from a small number of examples have long been discussed in neuroscientific
literature. Our paper offers a theoretical formalism connecting these concepts, and provides evidence
from experimental neural data supporting this theory. We also demonstrate the practical feasibility
of this idea through simulations on artificial neural networks. The theory presented here could be
further validated through targeted experiments that explore the relationship between the structure of
variability and generalization in diverse settings.
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A Proof Sketches of Theoretical Results

Figure 4: Diagram to provide an intuition for the proof of Prop. 1. (Left) A depiction of the problem
setup for optimizing the trial-to-trial variability Σ to minimize generalization error. The ellipses of
different colors refer to different possible centers µi, which are drawn from an overarching distribution
with covariance Σµ, depicted by the large dashed ellipse in black. The two filled ellipses in blue and
orange refer to the two classes that are actually drawn, with centers µ0 and µ1. The shapes of the
blue and orange ellipses are described by the in-class variance ΣIC . The two samples x0 and x1

drawn from each of these classes are depicted as points, with their trial-to-trial variability Σ shown
by the smaller circles. The true decision boundary between the two selected classes is given by
the solid red line, while the 1-shot estimated classifier is shown in dashed red. (Right) The same
picture shown after transforming the space by Σ

−1/2
IC , for the case where Σµ is assumed to be identity

post-transformation.

In this section, we provide sketches of the Propositions presented in Section 2.

Proof Sketch for Proposition 1. We assume K = 1, so we have one sample x0 and x1 from each
class P0 and P1. These samples have variability Σ, which we are trying to optimize to minimize
generalization error. We first write out the closed-form expression of the LDA classifier, and state the
generalization error of the classifier.
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The LDA classifier is a function ϕ : Rd → {0, 1}, mapping any new data point x ∈ Rd to the class
label.

ϕ(x) =

{
0, wTx ≤ c
1, wTx > c

(1)

where

w = Σ−1(x1 − x0) (2)

c = wT(x0 + x1)/2 (3)

The generalization error for the LDA classifier is given by the Gaussian tail probability, which we
write using the Q-function [21]:

Q(z) :=

∫ ∞

z

1√
2π

exp(−z2/2)dz (4)

The generalization error is then given by the tail probability of each Gaussian distribution P0 and P1,
averaged under a prior of Ber(1/2):

GEϕ(Σ) = Eµ0,µ1
Ex0,x1

[
1

2
Q

(
c− wTµ0√
wTΣICw

)
+

1

2
Q

(
wTµ1 − c√
wTΣICw

)]
, (5)

where Σ is implicit in w and c; the expectation of x0 and x1 is taken over the independent product of
P0 and P1; and the expectation of µ0 and µ1 is taken over Pµ ×Pµ. We then wish to find the optimal
Σ that minimizes the generalization error:

Σ∗ = min
Σ

GEϕ(Σ) (6)

Without loss of generality, we can take ΣIC = I , by simply transforming all vectors in the space by
Σ

−1/2
IC . This simplifies the generalization error:

GEϕ(Σ) = Eµ0,µ1
Ex0,x1

[
1

2
Q

(
wT(x0+x1

2 − µ0)

∥w∥

)
+

1

2
Q

(
wT(µ1 − x0+x1

2 )

∥w∥

)]
(7)

= Eµ0,µ1
Ex0,x1

[
1

2
Q

(
ŵT

(x0 + x1

2
− µ0

))
+

1

2
Q

(
ŵT

(
µ1 −

x0 + x1

2

))]
, (8)

where ŵ = w/∥w∥. In this setup, it should now be clear that Σ∗ is determined only up to a scaling
factor α, since Σ only appears within ŵ, which is a unit vector. Thus, Σ only controls the direction of
the classifier ŵ.

Now, if Σµ = I , then there are no special directions in this space, since both inner and outer
expectations are carried out over standard, isotropic, Gaussian distributions (see Fig. 4). Therefore,
by symmetry, we must have Σ = I so as to not impose any inductive biases, which will only worsen
the generalization.

If Σ = I in the space transformed by Σ
−1/2
IC , then Σ = ΣIC (modulo a scaling factor) in the original

space, prior to transformation. Thus, the optimal trial-to-trial variability that minimizes generalization
error is proportional to the in-class variance.

Proof Sketch for Proposition 2. Continuing from the intuition provided in the proof above, if there
are only two classes, then there is a clear usefulness for having an inductive bias, as depicted in Fig. 5.
Intuitively, the generalization error is minimized when the estimated 1-shot classifier is parallel to the
true decision boundary.

This can be enforced by a Σ that has some finite extent in all directions, except for the single
axis orthogonal to the decision plane, along which it has an eigenvalue of zero. In other words,
generalization error is minimized in the binary classification setting by a trial-to-trial variability that
is degenerate, with an infinitesimal thickness that is parallel to the decision plane.
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Figure 5: Diagrams to provide an intuition for the proof sketch of Prop. 2. (Left) Isotropic variability
Σ can give rise to 1-shot classifiers that generalize poorly, depending on which sample is drawn from
each class. (Right) If the variability is highly anisotropic, with infinitesimal variance in a direction
orthogonal to the true decision plane, estimated 1-shot classifiers are guaranteed to be parallel to the
true decision plane, thus minimizing generalization error.

Figure 6: Figures for the numerical proof sketch of Prop. 3. (Left) Numerically computed generaliza-
tion error as a function of α, for different values of the number of samples K. (Right) The optimal
value of α that minimizes generalization error at each value of K (shown in blue). The line in orange
shows what an α ∝ 1/

√
K would look like. α decreases with increasing K, and the estimated trend

closely matches the 1/
√
K line until estimation errors appear to cause the trend to diverge.

Proof Sketch for Proposition 3. Beginning with the expression for the generalization error of LDA
given in Equation (8), we numerically evaluate how the optimal scaling α depends on the number of
samples K.

We take K values between 3 and 10, and a range of α values between 10−3 and 1. We consider

a 2-dimensional case, setting µ0 = [−1, 0]T and µ1 = [1, 0]T, with ΣIC =

[
1 0.3
0.3 2

]
. We

simulate the generalization problem 500 times for each value of K and α, with results as shown in
Fig. 6. We find that the optimal value of α decreases with increasing K, indicating that the optimal
variability shrinks as more samples are available to generalize from. This scaling approximately
matches the 1/

√
K trend, before estimation errors cause a divergence in the trend lines.

This is intuitive, since as more samples become available, the distribution of the samples provides
a sufficient description of the shape of in-class variance for classification, and the inductive bias
introduced by Σ becomes less important.

B Mathematical Definitions of the Variability Metrics

We measure the geometry of variability by considering the distribution of neural activity over multiple
trials. We assume that the neural activity of a single neuron is given by a real number, e.g., its spike
count within some temporal window. Then, in the datasets, the overall distribution of neural activity
is an empirical distribution given by a set of vectors xi ∈ RN , i ∈ {1, ..., T}, where N is the number
of neurons and T is the number of trials.
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Let {xi} represent the N -dimensional neural activity vector across T trials, and ŵ be a unit vector in
some direction of interest. Let x̄ ∈ RN be the trial-averaged neural activity. Then, two of the three
variability metrics—the noise projection and the q-value—are given by:

NoiseProj({xi}, ŵ) =
1

T

T∑
i=1

(
ŵT(xi − x̄)

)2
= Var

(
ŵT(xi − x̄)

)
(9)

q({xi}, ŵ) =
Var(ŵT(xi − x̄))

1
N

∑N
j=1 Var(xij − x̄j)

. (10)

In most cases in the results section, we refer to the noise projection and q-value between two
distributions. In these cases, the noise projection and q-value are more precisely defined as:

NoiseProj({x(1)
i }, {x(2)

i }) = Var
(
{v̂T(x(1)

i − x̄
(1)

)} ∪ {v̂T(x(2)
i − x̄

(2)
)}
)

(11)

q({x(1)
i }, {x(2)

i }) =
Var

(
{v̂T(x(1)

i − x̄
(1)

)} ∪ {v̂T(x(2)
i − x̄

(2)
)}
)

1
N

∑N
j=1 Var

(
{x(1)

ij − x̄
(1)
j } ∪ {x(2)

ij − x̄
(2)
j }

) , (12)

where v̂ = (x̄(1) − x̄(2))/∥x̄(1) − x̄(2)∥ is the unit vector along the line joining the centers of the two
distributions.

For Dataset 1, we use a slightly different version of the q-value, which does not normalize by 1/N ,
and which takes a weighted average with respect to the principal component values of the first
distribution. This boils down to:

q̄(Σ(1),Σ(2)) =
Tr{Σ(1)Σ(2)}

Tr{Σ(1)}Tr{Σ(2)}
, (13)

where Σ(1) and Σ(2) are respectively the N-dimensional covariance matrices corresponding to {x(1)
i }

and {x(2)
i }.

The signal-to-noise ratio (SNR) is a generalization of the d-prime score, which measures the distin-
guishability between two Gaussian distributions. For distributions with equal covariance matrices,
this measure is given by:

SNR({x(1)
i }, {x(2)

i }) = ∥x̄(1) − x̄(2)∥
Std

(
{v̂T(x(1)

i − x̄
(1)

)} ∪ {v̂T(x(2)
i − x̄

(2)
)}
) , (14)

When {x(1)
i } and {x(2)

i } are sampled from two distributions with unequal covariances, this metric
can be generalized by computing the generalization error of a Quadratic Discriminant Analysis
classifier. We estimate the variances of the two 1D distributions given by {v̂T(x(1)

i − x̄
(1)

)} and
{v̂T(x(2)

i − x̄
(2)

)} separately and compute the SNR numerically [22].

A diagrammatic representation of these metrics is provided in Fig. 7.

On the Stability of our Estimates. It should be noted that the expressions provided here involve
estimating the variance or standard deviation of one-dimensional quantities. We avoid computing the
covariance matrix itself, since the dimensionality of our data is larger than the number of available
trials. A more careful analysis of the variance of our estimates of these metrics is left to future work.

On the Skewness of Variability. In constructing our metrics, we ignore the precise shape of the
distribution of neural variability, and assume that it is approximately ellipsoidal. In practice, if the
variability is highly anisotropic, with different degrees of skew along different directions, our metrics
would not capture these effects, since they only consider up to the second moment. This could occur,
for instance, with Poisson spike counts at low rates, wherein a Poisson distribution with a rate of λ
has a positive skew of 1/

√
λ. A more careful analysis of the impact of such effects are beyond the

scope of the current study and could be taken up in future work.

C Analysis Pipeline for Dataset 1

1. We take three consecutive movie frames (for a total of 100 ms) to be a single frame for the
purposes of our analysis. The “representation” of this (combined) single frame is given by
the spike counts of the recorded neurons in this window.
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Figure 7: Depictions of metrics used to measure trial-to-trial variability. The noise projection
measures the variance of the variability, projected along a direction of interest. The q-value computes
the variance in a direction of interest, and normalizes it by the average variance over all directions.
The signal-to-noise ratio measures the distinguishability of two distributions, and is a generalization
of the d-prime measure depicted here, to two Gaussian distributions with unequal covariance matrices.

2. Only movie clips that are longer than 2.5s are included, to ensure a sufficient number of
frames within each clip, resulting in 9 clips. In addition, we exclude the first three bins from
each movie clip to avoid responses that result from transitions between clips.

3. Neural data are filtered to include only time points when the animals are not running (a
speed below 5 cm/s) to control for changes in firing rates due to running.

4. Different frames from a single movie clip are treated as different samples from a single class.
It should be understood that the dataset is entirely passive, and that mice are not trained to
classify between clips, and thus this nomenclature of “classes” is only valid to the mice in
the sense that it is ethologically relevant for them to distinguish different stimuli.

5. We compute q-values, as defined in Appendix B for the 200 trials of each sample. We use
the first 10 principal components of the in-class variance, defined by the covariance of the
trial-averaged responses to each frame within each clip. We then take a weighted average of
these 10 q-values, using the percentage of variance explained by the corresponding principal
component as the weight.

6. A histogram of these averaged q-values over all samples is presented in Figure 1.

D Analysis Pipeline for Dataset 2

1. We only considered mice with both familiar and novel sessions, and which had at least 20
neurons in each of the following visual cortical regions: VISp, VISl, VISal, VISam and
VISpm. We sub-selected units that had a quality of ‘good’, with an SNR of at least 1, and
with fewer than 1 inter-spike interval violations.

2. In each session, we computed the neural activity by counting the spikes of each unit in a
50–125ms time window after stimulus onset.

3. Stimulus flashes that corresponded to a ‘change’ were those trials in which the image
changed (i.e., was different from the image in the preceding flash) and the mouse was
engaged in the task (defined by having a rolling reward rate of at least 2 rewards/min).

4. Stimulus flashes that corresponded to a ‘non-change’ were those flashes that occurred
between 4 and 10 flashes after the start of a behavioral trial and before the image changed,
which did not have an omission or follow an omission, on which the mouse did not lick, and
while the mouse was engaged.

5. The three variability metrics in the change/no-change direction were computed separately
for every image, between change and non-change distributions. The metrics were then
averaged across all 8 images (for the familiar session) and across all 6 novel images (for the
novel session; the two shared familiar images were ignored).

6. The variability metrics in the between-image direction were computed separately for every
pair of images in the non-change class and for every pair in the change class. The variability
metrics were then averaged across all images pairs across both classes.
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7. The active-passive comparison was performed on the 6 novel images.
8. Each line in Fig. 2c-n corresponds to a different mouse. Statistical significance was assessed

across mice using one-sided (paired) Wilcoxon signed-rank tests.

The selection criteria in Step 1 above yielded 39 mice with both familiar and novel sessions, with
525.15 ± 98.63 units in familiar sessions, and 423.97 ± 80.67 units in novel sessions (mean ±
standard deviation). We also obtain 82.18± 19.57 trials of each image for the non-change condition
and 23.78± 6.06 trials of each image for the change condition.

E Details of the Analysis on Artificial Neural Networks

1. We train a feedforward convolutional neural network with five layers on the MNIST classifi-
cation task. The architecture of the CNN is as follows: (0) Starting with 28× 28 MNIST
digits as input; (1) 6-channel 5× 5 convolutional layer with 2-pixel padding, followed by
2 × 2 max-pooling down to 6 × 14 × 14; (2) 16-channel 5 × 5 convolutional layer with
no padding, followed by 2 × 2 max-pooling down to 16 × 5 × 5; (3) A fully-connected
linear layer to 32 hidden units; (4) A fully-connected linear layer to 16 hidden units; (5) A
fully-connected linear layer to 10 hidden units, representing a 1-hot encoded output. We use
tanh activations in all but the final layer.

2. The network is trained on vertical MNIST digits with an Adam optimizer (with a learning
rate of 0.001), for 10 epochs. We will refer to this network as the base network below. We
do not use any form of early stopping, so that all networks we compare are trained on the
same amount of data.

3. After the initial training, the lower baseline is assessed by testing the base network at
different test rotation angles (see the x-axis in Fig. 3Right).

4. For the upper baseline, we retrain the last three layers of the base network on digits rotated
uniformly at random between ±60 degrees, in a supervised manner.

5. Our main result retrains the base network with noise drawn from a Gaussian distribution
N (0,Σ), added to the hidden layer activations after layer 2 (after the tanh non-linearity). A
different realization of noise is used for each sample that is passed through the network.

6. The covariance structure of the noise, Σ, is computed from the training data in an unsuper-
vised manner as follows: (i) For every training data point, we run a forward pass through the
base network of vertical digits as well as the same digits, rotated uniformly at random be-
tween ±60 degrees. (ii) We extract the hidden layer activations after layer 2 (with dimension
16× 5× 5) for the vertical and rotated stimuli—call these X and Xrot respectively. (iii)
The covariance matrix is then computed as Σ := Cov(Xrot −X), as shown in Fig. 3Left.
Note that the training labels are never used in this process, and that a common covariance
matrix is computed for all MNIST digits.

7. As a control, and to test the importance of the precise structure of the noise covariance, we
also retrain the base network with noise injection that is sampled from the diagonal of Σ,
i.e., Σ⊙ I , where ⊙ represents an element-wise product.

8. For each of the four test settings, we train (and retrain) 10 networks with different random
initializations. This is shown in the errorbars of Fig. 3Right, representing one standard
deviation in the distribution of outputs.
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