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Abstract

The Dynamic Pickup and Delivery Problem (DPDP) is an essential problem in
the logistics domain, which is NP-hard. The objective is to dynamically schedule
vehicles among multiple sites to serve the online generated orders such that the
overall transportation cost could be minimized. The critical challenge of DPDP
is the orders are not known a priori, i.e., the orders are dynamically generated in
real-time. To address this problem, existing methods partition the overall DPDP
into fixed-size sub-problems by caching online generated orders and solve each
sub-problem, or on this basis to utilize the predicted future orders to optimize
each sub-problem further. However, the solution quality and efficiency of these
methods are unsatisfactory, especially when the problem scale is very large. In
this paper, we propose a novel hierarchical optimization framework to better solve
large-scale DPDPs. Specifically, we design an upper-level agent to dynamically
partition the DPDP into a series of sub-problems with different scales to optimize
vehicles routes towards globally better solutions. Besides, a lower-level agent is
designed to efficiently solve each sub-problem by incorporating the strengths of
classical operational research-based methods with reinforcement learning-based
policies. To verify the effectiveness of the proposed framework, real historical data
is collected from the order dispatching system of Huawei Supply Chain Business
Unit and used to build a functional simulator. Extensive offline simulation and
online testing conducted on the industrial order dispatching system justify the
superior performance of our framework over existing baselines.

1 Introduction

The Dynamic Pickup and Delivery Problem (DPDP) constitutes an important family of routing
problems, which generally contains three key elements: orders, goods and vehicles as shown in
Figure 1. Orders are generated in real-time. Different orders contain different types and quantities of
goods. A number of vehicles are scheduled to serve the orders by transporting the desired goods from
different origins to different destinations. The objective of DPDP is to dynamically assign each order
to the most appropriate vehicle so that the overall transportation cost (e.g., overall distances) could be
minimized. DPDPs are widespread in order dispatching systems of the supply chain, express mail
delivery services and elsewhere.
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DPDP is a complex variant of the Travelling Salesman Problem (TSP) and Vehicle Routing Problem
(VRP), which are both NP-Hard combinatorial optimization problems [25]. The main difficulty
of DPDP comes from the dynamically generated orders in real-time, thus the order dispatching
decisions cannot be made beforehand in an offline style. Besides, compared with TSP and VRP,
there exist various additional complex constraints in DPDP such as pickup and delivery constraint,
Last-In-First-Out (LIFO) constraint, time window constraint, split demand constraint, etc.
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Figure 1: Demonstration of DPDP

Traditional methods for
DPDP. Existing solutions for
DPDP fall into two categories.
The first category maintains
a fixed buffer to cache the
most recent generated orders
and periodically dispatches all
cached orders in a delayed mode.
By this way, the overall dynamic
problem is partitioned into a
series of static sub-problems
with subsets of known orders,
i.e., static Pickup and Delivery
Problems (PDPs). Then, op-
erational research-based (OR)
methods [22, 20], heuristic and
meta-heuristic methods [7, 16, 25, 4, 5, 3, 11, 26, 23, 9] are designed to solve each sub-problem.
However, myopically optimizing each static sub-problem cannot guarantee the overall dynamic
problem could be optimized from a long-term perspective since the split sub-problems are not
independent of each other. The main reasons are previous orders assignment results will influence
(1) the number of remaining orders to be dispatched, (2) the vehicle’s remaining capacity and (3)
the relative positions to the following orders. To acquire better solutions, the second category
methods [24, 8, 12] try to predict the distribution of future orders and take the predicted orders into
consideration when computing the solution for each sub-problem. However, predicting future orders
is not realistic due to the high uncertainty in the real world. Inaccurate predictions will mislead the
order dispatcher and route planner, and result in poor solution quality.

Learning-based methods for VRP. Additionally, a common flaw of traditional OR and meta-
heuristic methods is that they are computationally expensive and normally unable to obtain a desired
solution within the allowable time. Besides, the design of them heavily relies on complex domain
knowledge. To improve the solution computing efficiency and ease the difficulty of the algorithm
design, recently, several learning-based methods are proposed [27, 1, 18, 6, 13]. These methods have
demonstrated that the solution computing efficiency can be significantly improved by leveraging the
generalization ability of the trained models. Besides, they could obtain solutions with competitive
qualities compared with the state-of-the-art traditional methods. Although these methods mainly
focus on TSPs or VRPs, of which all orders’ information is known in advance and much fewer
constraints are considered comparing with DPDP, learning-based methods have shown great potential
to help solve large-scale DPDPs and reach superior performance.

In this paper, we propose a novel hierarchical reinforcement learning (RL) based optimization
framework to solve the real-world large-scale DPDPs. Considering that order dispatching has a long-
term impact on the overall optimization objective, the upper-level RL agent dynamically determines
whether to wait longer at each moment for caching more future orders. In this way, the orders can be
more flexibly assigned to vehicles (since each vehicle will have more candidate orders to choose)
and the routes of vehicles could be optimized towards globally better solutions. The lower-level RL
agent is responsible for assigning the cached orders to the most appropriate vehicles by sequentially
manipulating heuristic operators to improve the solution quality iteratively. To verify the effectiveness
of the framework, we collected real historical data from the order dispatching system of Huawei
Supply Chain and built a simulator to simulate the order dispatching and vehicle transportation
process. Further, we deployed our method on the company’s Supply Chain Business Unit. Extensive
offline simulation and online testing showed the superior performance of our algorithm.

Our main contributions are as follows:
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• We are the first to propose a practical hierarchical RL framework to efficiently and far-
sightedly compute superior solutions for the real-world large-scale DPDPs with complex
constraints.

• We design a simulator using real industrial data to be the experimental benchmark to verify
the proposed method, which is available here for interested researchers.

• We show that our approach considerably improves the optimization objectives compared
with existing algorithms both in the offline evaluation and online testing. The ablation study
indicates our approach can obtain high-quality solutions with fast running speed and has
strong generalization ability.

2 Problem Formulation

We now give the formulation of DPDP in our logistics scenario. For the orders dynamically generated
in real-time at different nodes (i.e., factories and warehouses) within a day, vehicles should be
scheduled to transport the goods from pickup nodes to delivery nodes to fulfil the orders with minimal
transportation cost. In our case, the objective is to minimize K vehicles average travelling distances
D(K) of the entire DPDP:

minD(K) (1)

while meeting several constraints: Pickup and Delivery Constraint, Capacity Constraint, LIFO
Constraint, Time Window Constraint, etc. Detailed constraints are shown in Appendix A.

In practice, however, some orders are destined to violate time window constraints2. Thus, we add it
to the objective function as an associated penalty to convert the hard time window constraint to a soft
one. The penalty function is defined as the overtime beyond the specified completion time of each
order. The optimization objective is then reformulated as minimizing the weighted sum 3 of average
vehicles travelling distances (kilometers) D(K) and total overtime (seconds) OT of all orders C:

minD(K) + λ ∗OT (C) (2)

Apart from the various complex constraints mentioned above, the additional difficulties of this
problem mainly come from two aspects:

(1) The problem scale is very large. In practical logistic scenarios of the company, millions of
products and intermediate materials are manufactured every day. As these products and materials
might be used in the subsequent phases (e.g., assembling or selling), they have to be scheduled
and transported between hundreds of factories and warehouses by dozens of vehicles within
stringent timeline constraints, which constitutes a very large-scale and complex DPDP.

(2) Besides, as the orders are generated online in real-time, the schedule planning cannot be made
aforehand in an offline style. From the oracle’s point of view, i.e., when all orders of a day
are known in advance, the uncertainty is eliminated and this DPDP can be formulated as a
complex Mixed Integer Programming (MIP) Problem, of which the optimal solution could be
obtained utilizing exact algorithms (e.g., cutting plane algorithms, branch-and-bound algorithms
or modern solvers such as Gurobi[20]) [22]. However, in reality, it’s impossible to know all the
orders in advance, thus these approaches are not applicable.

To eliminate the uncertainties brought by the unknown orders, a practical way is to utilize a buffer
to cache the most recent generated orders and periodically dispatches all cached orders in a little
delayed mode. With the known orders in the cache, the static PDP can be formulated as an MIP as
shown in Appendix A. We could resort to modern solvers to solve this MIP. However, even for the
static PDP with very few orders, it still costs several hours to compute a feasible solution, which is
beyond the acceptable limits (details are shown in Table 2 and 3). Besides, even if we could obtain
the optimal solution for each fixed split static PDP, we still cannot guarantee the global DPDP can be
optimized as these static sub-problems are not independent of each other.

2For example, goods of an order need to be transported to a far destination in a short time. Even if a vehicle
is used to serve the order as soon as the order is generated, violation of time window constraints can still occur.

3If the overtime happens, the subsequent assembling and selling will be delayed or cancelled, resulting in
great economic loss. Therefore, we set λ to a very large number, e.g., 10000, to severely punish the overtime.
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3 Method

3.1 Overall Framework
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Figure 2: Hierarchical Optimization Framework

In this paper, considering the challenges mentioned above, we propose a novel hierarchical rein-
forcement learning based optimization framework, which contains two levels of agents. As shown
in Figure 2, we maintain a buffer to cache the newly generated orders and periodically dispatch all
cached orders at once. But instead of dispatching the cached orders of fixed numbers or predicting
future orders, we design an upper-level agent to dynamically determine whether to wait longer for
caching more future orders at each moment. Though waiting longer will postpone the dispatching
and transportation of the earlier cached orders, additional future orders can be taken into account for
the vehicle-order matching. In this way, each vehicle will have more candidate orders to choose, thus
the overall travelling distances will be more potentially to be optimized for shorter4. This process
could be regarded as sacrificing a little time in exchange for a precise estimation of future orders.
However, waiting for too long will also increase the risk of overtime of the earlier cached orders.
Thus, whether to wait longer to cache more orders at each moment will have a long-term impact
on the overall dispatching results, and can be naturally modeled as a sequential decision-making
problem. We model this procedure as a Markov Decision Process (MDP). Depending on whether
to wait longer at each moment, the overall DPDP can be dynamically partitioned into a series of
static sub-problems, each of which includes different numbers of orders. As shown in Figure 2, the
generated orders are accumulated in the buffer until the upper-level agent decides to stop caching at
time ti+k. Then, the agent releases the cached orders to the lower-level agent and clears the buffer.

Given the released orders (which form a static sub-problem, i.e., a PDP), the lower-level agent is
appointed to assign the orders to the most appropriate vehicles and arrange the transportation route
of each vehicle, such that the transportation cost of these orders could be minimized. First, a set
of basic operators are maintained, whose roles are converting one feasible solution to another. For
instance, given an initial solution’s route {A->B->C} with three nodes A, B and C, a typical operator
is swapping two nodes[13], e.g., swapping A and B. After applying this operator, {A->B->C} is
converted to {B->A->C}. If the travelling cost of {B->A->C} is less than {A->B->C}, the initial
solution is improved. On this basis, we design the lower-level agent similar to the traditional meta-
heuristic algorithms which sequentially manipulates these operators to improve the solution of each
PDP. The difference is that we model the process of sequentially manipulating these operators as an
MDP and incorporate RL methods to optimize the policy instead of manually designing complex
rules. Finally, the best found solution is adopted by the order dispatching system to assign the orders
to the vehicles and arrange their transportation routes. In the following two subsections, we will go
into more details of the designed two agents.

4In Table 7 of Appendix I, we show that splitting the overall DPDP into different sub-problems with different
time spans will lead to different qualities of solutions
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3.2 Upper-level Agent

3.2.1 Workflow

The workflow of the upper-level agent is described in Figure 2. We partition a day into T = 144
fixed time intervals, and the time span of each interval is ten minutes. Each time interval starts at time
ti−1 and ends at time ti, i ≤ T is a positive integer. We name t1, ..., ti, ..., tT as decision points. At
each decision point ti, the upper-level agent decides whether to release the accumulated orders to the
lower-level agent according to their overtime risk. Taking Figure 2 as an example, at decision point
ti−1, the buffer already cached some orders Oi−1. At ti−1, the upper-level agent makes a decision
and determines to wait longer and not to release Oi−1 to the lower-level agent. Thus Oi−1 are still
maintained in the buffer. Thereafter, at all decision points before ti+k, the upper-level agent makes
the same decisions as at ti−1, i.e., ’not release’. Therefore, new generated orders 〈Oi, ..., Oi+k〉
between ti−1 and ti+K are all appended to the buffer as well. At ti+k, the upper-level agent makes
a change and determines to release all accumulated orders 〈Oi−1, Oi, ..., Oi+k〉 to the lower-level
agent. At this time, all accumulated orders together with the remaining orders Oremain (assigned to
the vehicles before ti−1 but the goods of the orders are still not loaded onto the vehicles even at ti+k)
will be released by the upper-level agent. In this way, we get a static sub-problem constituting of
orders 〈Oi−1, Oi, ..., Oi+k, Oremain〉 for the lower-level agent. By analogy, the overall DPDP can be
divided into a series of static PDPs with different scales. We model the procedure of whether to wait
longer at each decision moment as an MDP described in the following subsection.

3.2.2 Markov Decision Process (MDP)

State: The state includes the number of orders accumulated in the buffer, the number of available
vehicles, the amount of time left before exceeding the time limit of each order, etc. All these features
are normalized and concatenated together. Detailed descriptions are postponed to the Appendix F
due to the space limitation.

Action: The action is a binary variable indicates whether to release orders to the lower-level agent.

Reward: Our ultimate goal is to minimize the optimization objective for the entire dynamic problem.
Therefore, we first get the the overtime of the orders completed and the corresponding vehicle
travelling distances between two consecutive decision moments ti−1 and ti as shown in Figure 2,
i.e., avg_distance + λ ∗ overtime. Then we set the immediate reward of action executed at ti−1 as
−(avg_distance + λ ∗ overtime). By this rule, the sum of the immediate rewards forms the negative
value of the total objective for the entire dynamic problem. With this reward, the overall objective for
the entire dynamic problem could be optimized. In other words, we encourage the upper-level agent
to optimize the overall dynamic problem from a long-term perspective when making decisions.

3.2.3 Agent Model

For the upper-level agent, we use Deep Q Network (DQN) [17]. We parameterize a value function
Q (s, a;φl) using the deep neural network of MLPs in which φl are the parameters of the Q-network
at updating iteration l. When reaching decision point ti, we obtain the state sti , action ati , and
reward rti according to Section 3.2.2 for the current static problem and save them to the replay buffer.
When reaching decision point ti+1, we obtain the state sti+1

, which is the next state of the previous
static sub-problem and we get a new transition eti =

(
sti , ati , rti , sti+1

)
. We store the transitions

into buffer D = {et1 , . . . , eti , . . .} during the running of simulator. During the training, we apply
Q-learning updates on uniformly sampled transitions (s, a, r, s′) ∼ U(D) from the replay buffer.
The model updates at iteration l uses the following Temporal Difference (TD) loss function:

Li (φl) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q
(
s′, a′;φ−l

)
−Q (s, a;φl)

)2
]

(3)

where γ is the discount factor, φl are the parameters of the Q-network at iteration l and φ−l are the
parameters of the target network at iteration l.
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3.3 Lower-level Agent

3.3.1 Workflow

The workflow of the lower-level agent is described in Figure 3. We first generate a feasible initial
solution of the static sub-problem using greedy algorithm (described in Section 4.2). Given the initial
solution, the lower-level agent iteratively improves the solution by manipulating different operators
according to solution states as mentioned in Section 3.1 (we call this step Improvement [6, 13]).
When the improved solution reaches a local optimum (i.e., the solution could not be improved
further for a series of steps), we will partially or entirely re-assigning the orders using the greedy
algorithm (we call this step Reconstruction). The improvement of the next iteration will start from
the reconstructed solution. Note that the lower-level agent only selects improvement operators as
reconstruction operator has a long-lasting effect on solutions compared with improvement operators
and we found mixing up them will lead to instability during the training. The process of improvement
and reconstruction alternates until reaching the maximum number of steps or the maximum allowable
running time. The best generated solution during the improvements and reconstructions will be
adopted to dispatch orders to vehicles. Note that the final accepted solution is ensured to be at least
as good as the initial solution. Overall, by transferring the knowledge learned from previously solved
PDPs to the new ones, the agent could efficiently and monotonically improve the solution quality.
The MDP definition of the operators-manipulating procedure is described in the following subsection.

3.3.2 Markov Decision Process (MDP)

State: The state of the current solution consists of the states of all nodes, i.e., s = {s1, s2, ..., s|V |},
where sv is the state of node v. Each sv includes the position information, order information, vehicle
information and objective-related information. Details can be found in Appendix F.

Action: The action set consists of 4 carefully designed operators, i.e., inner-exchange, inner-relocate,
inter-exchange and inter-relocate. We provide a proof in Appendix G that any feasible solution
(including the optimal one) could be obtained by iteratively applying these 4 operators from
any given initial solution. Details are described in Appendix G.

Reward: We find that the total objective can be easily reduced by a large margin during the first few
improvement steps of an initial solution or reconstructed solution in the experiments (See Figure
4). If we assign the actions at these improvement steps a large reward, it’s not fair for the actions in
the subsequent steps. This is because the actions in the subsequent steps also play important roles
in improving solutions in the complex solution space. Therefore, the overall objective OBJb of the
sub-problem after the first iteration (e.g., Iteration 1 in Figure 3) is used as the baseline following
[13]. For each subsequent iteration i, we first get the optimized objective after the iteration as OBJi
and then assign (|OBJb − OBJi|)/ni to all ni actions executed in iteration i as reward.

3.3.3 Agent Policy Network

The policy network of the lower-level agent inputs the state of the current solution and outputs action
probabilities of length |A|whereA is the set of operators. In our case, a critical challenge of designing
the policy network is the number of orders and the number of available vehicles are different for each
static sub-problem. As the quantity of the combination of orders and vehicles are extremely huge,
we cannot train a separate model for every combination of different numbers of orders and vehicles.
Thus, the desired model should be able to transfer the knowledge learned from the previously solved
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problems and generalize to new problems of any scale without fine-tuning. Besides, the routes of a
solution naturally form a certain topological graph structure as shown in Figure 3. Therefore, in this
paper, we incorporate GIN (Graph Isomorphism Network)[30], a powerful Graph Neural Network
(GNN), to be the basis of the policy network of the lower-level agent. We use the REINFORCE
algorithm [28] to train the policy network. Details of the policy network are shown in Appendix H.

4 Offline Evaluation

4.1 Experiments Settings

We start with designing a simulator to shed light on the contributions of the proposed framework under
more controlled settings. Details of the simulator can be found in Appendix C. To comprehensively
verify the effectiveness of our approach on problems of different scales, we use four types of datasets
of different sizes, i.e., 15 orders with 5 vehicles, 50 orders with 5 vehicles, 300 orders with 20
vehicles, 1000 orders with 50 vehicles (matching the practical problem of thousand scales). Note
that the orders/vehicles ratios are set according to realistic business settings. Each type of datasets
contains 10 datasets, including 7 training sets and 3 test sets according to the ratio of 7:3 (e.g., 300-1,
300-2 and 300-3 are test sets with 300 orders). The vehicles have the same load capacity. Details of
the datasets are described in Appendix D. According to the realistic business settings, the time span
between two consecutive decision points is set to 10 minutes in the simulator.

The comparisons of different methods proceed as follows. For our approach, we first train a shared
model on each type of training datasets and then evaluate the model on the test datasets of the same
size. At each decision point, the upper-level agent decides whether to release orders to the lower-level
agent. The lower-level agent is executed for no more than 10 minutes after receiving orders from the
upper-level agent. Both agents are trained simultaneously. This training process is relatively stable
due to the following reasons. The iterative solution optimization process (starts from an initial greedy
solution) of our lower-level agent can ensure the obtained solutions have relatively high quality even
at the initial training stages. In other words, the solutions given by the lower-level agent are relatively
stable. Therefore, the unstable issue of co-training both levels of policies in our case is negligible, and
thus both levels can be trained simultaneously. For baselines showed in Section 4.2, we also run them
for up to 10 minutes at each decision point. We run the simulator until all the orders of the dataset are
dispatched and completed to ensure fair comparisons. All the results in the experiments are obtained
by running each algorithm ten times to get the mean and variance value of the optimization objective.

4.2 Baselines

To help readers better understand the baselines, we name them in the format of ’upper-level method +
lower-level method’ except for the Optimal baseline. ’10min-Interval’ means the dynamic problem
is partitioned into static sub-problems with a fixed interval of ten minutes. ’1order-Interval’ means
the dynamic problem is partitioned into static sub-problems consists of a single order.

10min-Interval + Greedy: Greedy [15] is the most widely-used method in industry, which is also
the online deployed baseline method. The solution routes are expanded by greedily inserting new
pickup and delivery nodes until all the orders are inserted.

10min-Interval + ALNS: ALNS [29] is one of the most representative meta-heuristic local search
frameworks for solving DPDP that uses a series of operators to improve the solution. In each iteration,
an operator is selected to destroy the current solution, and an operator is selected to repair the solution.

1order-Interval + E2ERL: According to [14], we use a DQN model to assign vehicles to each
generated order and insert each order into the vehicle’s order queue using the Greedy algorithm. It’s
an E2ERL (end-to-end RL) algorithm.

10min-Interval + ST-DDGN: ST-DDGN [12] is the state-of-the-art method that predicts future
orders of DPDP. Then both the predicted orders and real generated orders are considered when
solving each sub-problem using E2ERL.

Optimal: We convert DPDPs to static PDPs as we can obtain all the orders’ information beforehand
in offline style. Then we use Gurobi to solve the corresponding MIP model to get the optimal solution.
As Gurobi can only solve small-scale PDPs within acceptable time due to the NP-hard property, we
only compare with the optimal solution on problems of 15 and 50 orders in Section 4.4.1.
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4.3 Main Results

Table 1: Main results of different methods on test datasets
Dataset Algorithm Overtime Avg_Dis Objective Obj Impro

50-1

10min-Interval + Greedy 0 109.30 109.30 0.00%
1order-Interval + E2ERL 0 96.56 96.56 11.66%
10min-Interval + ALNS 0 107.95 107.95 1.24%

10min-Interval + ST-DDGN 0 108.95 108.95 0.32%
Our (Upper-level RL + Lower-level RL) 0 93.70 93.70 14.27%

300-1

10min-Interval + Greedy 0 147.78 147.78 0.00%
1order-Interval + E2ERL 0 158.39 158.39 -7.18%
10min-Interval + ALNS 0 137.31 137.31 7.08%

10min-Interval + ST-DDGN 0 131.99 131.99 10.68%
Our (Upper-level RL + Lower-level RL) 0 122.42 122.42 17.16%

1000-1

10min-Interval + Greedy 0 183.04 183.04 0.00%
1order-Interval + E2ERL 0 180.36 180.36 1.46%
10min-Interval + ALNS 0 174.68 174.68 4.57%

10min-Interval + ST-DDGN 0 171.09 171.09 6.53%
Our (Upper-level RL + Lower-level RL) 0 159.18 159.18 13.04%

Here we show part of
the experimental results
in Table 1. The com-
plete results are shown
in Table 6 of Appendix
I. The objective improve-
ment measurement is the
improvement percentage
of each algorithm com-
pared with the Greedy
algorithm. Our ap-
proach consistently out-
performs all baselines
on all datasets (lower total objective is better). On some datasets, the baselines have overtime
results due to their lack of long-term planning and exhaustively optimization of each static problem
from a myopic perspective. As a result, dispatching of some orders is delayed for too long, and finally,
overtime is inevitable in any case. In contrast to this, our upper-level RL partitions the dynamic
problem into sub-problems considering the balance between the orders overtime (seconds) risk and
optimization of vehicle travelling distances (kilometers), and our lower-level RL is responsible for
the optimization of each static sub-problem. The cooperation of the two agents enables our method
to find solutions with less overtime and vehicle travelling distances on the overall dynamic problem
from a long-term perspective. The comparison of the learning curves of all learning-based methods
on 50-1 are shown in Figure 11 in Appendix I.

4.4 Ablation Studies

4.4.1 How far is our lower-level agent from the optimal one on static PDP?

We convert the DPDP to a single static PDP as described in Section 4.2. As the orders should be
assigned to vehicles all at once, there is no need to use an upper-level agent. Similarly, without the
prediction of future orders, ST-DDGN is essentially the same as E2ERL. Therefore we only use the
lower-level agent and E2ERL in the static PDP. Each algorithm is run without time or step limitation
to discover its full potential. As shown in Table 2 and 3, the difference of the total objective of our
method with the optimal solution is much smaller than the baselines (as all the overtime is 0, the
column is omitted from the two Tables). The time consumption is much shorter than ALNS and
Gurobi. It is because our method can exert the generalization ability to quickly improve the initial
solution by using the most appropriate operators based on the experiences obtained from training,
without the need of manually designing complicated search as in ALNS and Gurobi. Note that the
time consumption of Gurobi on problems of 50 orders is represented using hyphen symbol ’-’, which
means we can’t get results even after 100 hours due to the various complex constraints as described
in Appendix A. Comparing with baselines, our method is the most qualified to meet the online
deployment requirements that the algorithm should obtain high-quality solutions with fast speed.

Table 2: Results on static 15-1, 15-2, 15-3
Algorithm Avg_Dis Objective Obj Impro Time

Greedy 53.85 53.85 0.00% 0.38s
E2ERL 51.70 51.70 3.99% 0.58s
ALNS 51.58 51.58 4.22% 405s
Our

(Lower-level RL) 45.72 45.72 15.10% 68.21s

Optimal 44.35 44.35 17.64% 141360s
Greedy 69.61 69.61 0.00% 0.40s
E2ERL 68.00 68.00 2.31% 0.79s
ALNS 62.62 62.62 10.04% 606s
Our

(Lower-level RL) 62.32 62.32 10.47% 27.96s

Optimal 57.48 57.48 17.43% 193680s
Greedy 78.73 78.73 0.00% 0.34s
E2ERL 59.02 59.02 25.03% 0.83s
ALNS 52.21 52.21 33.68% 920s
Our

(Lower-level RL) 50.95 50.95 35.29% 71.98s

Optimal 50.75 50.75 35.54% 28651s

Table 3: Results on static 50-1, 50-2, 50-3
Algorithm Avg_Dis Objective Obj Impro Time

Greedy 98.68 98.68 0.00% 66.73s
E2ERL 94.94 94.94 3.79% 52.64s
ALNS 96.98 96.98 1.72% 10728.34s
Our

(Lower-level RL) 82.43 82.43 16.47% 1459.23s

Optimal - - - -
Greedy 80.67 80.67 0.00% 22.27s
E2ERL 76.04 76.04 5.74% 16.66s
ALNS 65.31 65.31 19.04% 6012.56s
Our

(Lower-level RL) 58.42 58.42 27.58% 1152.64s

Optimal - - - -
Greedy 83.34 83.34 0.00% 44.31s
E2ERL 80.92 80.92 2.90% 20.34s
ALNS 80.51 80.51 3.40% 4140.15s
Our

(Lower-level RL) 72.66 72.66 12.81% 1998.09s

Optimal - - - -
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4.4.2 Does lower-level agent learn how to select operators?

To verify that our lower-level agent learns to choose the most suitable operators at different
states, we compare the results of different operator selection methods on both static problems
and dynamic problems. We first compare the total objective during the solution improve-
ment process on the static problems using the lower-level agent with the method that randomly
selects operators. As the improvement-reconstruct iteration process designed in Section 3.3
ensures the quality of the solution can be monotonically improved, selecting operators ran-
domly is also a powerful baseline that can achieve satisfactory performance for the static PDP.

(a) 50-1 (b) 50-2 (c) 50-3

Figure 4: Comparison of different selection methods of opera-
tors on static problems

Therefore, for the static problem,
we mainly focus on whether the
lower-level agent can improve the
solving speed. As we can see in
Figure 4, at the same step, choos-
ing operators using lower-level RL
can reach a better objective than ran-
domly choosing operators, which
indicates our lower-level method
learned to accelerate the searching
for better solutions. Since the static
sub-problems of a dynamic problem
are not independent of each other,
the small gap between the above
two methods in a static sub-problem will continue to enlarge in the subsequent sub-problems,
resulting in a very large result gap on the entire dynamic problem. We compare the total objectives
of the entire dynamic problems in Table 4. To ensure fairness, we control the upper-level methods
to be ’10min-Interval’ and use the lower-level agent and random selection as lower-level methods,
respectively. As we can see in Table 4, using the lower-level agent can help find better solutions on
the entire dynamic problems.

4.4.3 Does the upper-level agent learn to partition DPDP from a long-term perspective?

Table 4: Effectiveness of lower-level agent and upper-level agent
Dataset Method Overtime Avg_Dis Objective Obj Impro

300-1 10min-Interval + Random Search 0 139.16± 8.59 139.16 0.00%
10min-Interval + Lower-level RL 0 126.95± 4.80 126.95 8.77%

Our (Upper-level RL + Lower-level RL) 0 122.42± 4.02 122.42 12.03%

300-2 10min-Interval + Random Search 0 166.31± 10.20 166.31 0.00%
10min-Interval + Lower-level RL 0 154.39± 8.13 154.39 7.17%

Our (Upper-level RL + Lower-level RL) 0 142.33± 7.47 142.33 14.42%

300-3 10min-Interval + Random Search 0 168.69± 7.70 168.69 0.00%
10min-Interval + Lower-level RL 0 156.64± 7.50 156.64 7.14%

Our (Upper-level RL + Lower-level RL) 0 146.88± 13.91 146.88 12.93%

To verify that our
upper-level agent
learns to partition
the dynamic prob-
lem into static sub-
problems from a
long-term perspec-
tive, we compare
the results of differ-
ent static sub-problems partitioning methods. We compare our upper-level agent with the ’10min-
Interval’ method. As we can see in Table 4, using an upper-level agent to partition the dynamic
problem reaches the best objective. The results illustrate that our upper-level agent can partition the
problem from a long-term perspective to balance the orders overtime risk and optimization of vehicle
travelling distances.

4.4.4 Can our method generalized to larger-scale problems?

Table 5: Generalization verification
Dataset Model Overtime Avg_Dis Objective

1000-1 Trained on 1000 0 159.18± 4.10 159.18
Trained on 300 0 170.78± 10.27 170.78

1000-2 Trained on 1000 0 196.66± 9.52 196.66
Trained on 300 0 209.48± 8.68 209.48

1000-3 Trained on 1000 0 176.39± 7.61 176.39
Trained on 300 0 182.83± 5.64 182.83

To verify our method’s generalization
ability, we evaluate the models trained
using datasets of 300 orders / 20 vehicles
on larger-scale datasets, i.e., 1000 orders
/ 50 vehicles. As shown in Table 5, the
model trained on datasets of 300 orders
achieves similar performance with the
one trained on datasets of 1000 orders.
Note that the model trained on datasets of 300 orders also outperforms the baselines in Table 1. It
verifies that our method can be generalized to new problems of different scales without fine-tuning
after well trained on existing problems.
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5 Online Testing

Figure 5: Online Results

We deployed our method on
the order dispatching system
in Huawei supply chain. In the
online experiments, we com-
pare our method with the pre-
viously online deployed greedy
algorithm (10min-Interval +
Greedy). For a fair compar-
ison, we control the vehicles
and the nodes (factories and
warehouses) involved in the
online testing to be the same.
Normally, a standard A/B test-
ing is required to be performed
on homogeneous experimental
groups using different methods
at the same time dimension. Then experimental data of each group are collected and evaluated to
choose the best method. However, in our situation, it’s unrealistic to split each order into two
sub-orders to ensure the experimental groups are homogeneous. Besides, a large number of offline
experiments have demonstrated that our method is significantly better than the greedy algorithm.
Even in the worst case when there is no improvement in each sub-problem, our method is still the
same with Greedy. Thus, we directly replaced the greedy algorithm for online deployment. Figure 5
summarises the results from Nov 2020 to Apr 2021. The points of Nov and Dec 2020 shown in Figure
5 are generated by greedy algorithm and our method is deployed from Jan to Apr 2021. As we can
see, our method can reduce the average orders’ overtime and vehicles’ travelling distances compared
with the greedy baseline. Even with more orders, our method can still reach a better optimization
objective. Note that in the actual business scenario, orders generated in each day follow a similar
distribution with a small variance. These results indicate that our method could achieve a better
performance in the realistic deployment environment with varied data distributions.

6 Conclusions

In this paper, we propose a novel hierarchical reinforcement learning based optimization framework
to solve the large-scale DPDP in the real world. The upper-level agent is equipped with the far-sight
ability whose target is to optimize the long-term cumulative objective. The lower-level agent exerts the
generalization ability of GNN to quickly improve the solution quality by transferring the knowledge
(policy) learned from training. The cooperation of the upper-level and lower-level agents enables
our method to find globally better solutions. Extensive offline simulation on the simulator built on
real historical data and online testing verify that our method can obtain higher-quality solutions with
faster running speed.

The core idea of our learning-based framework are beneficial to a number of similar problems in the
supply chain community that have time-evolving components (e.g., orders/customers/tasks), such as
dynamic routing problems, dynamic flow shop scheduling, dynamic job shop scheduling, dynamic
bin packing and so on. As orders/customers/tasks of all these dynamic problems are online generated
that are not known a priori, the orders/customers/tasks should first be cached and then be dispatched.
In this way, these problems can be modeled as hierarchical optimization problems like DPDP that the
upper-level problem is ”how to cache orders/customers/tasks” and the lower-level problem is ”how to
dispatch cached orders/customers/tasks”. We will verify our proposed framework in these fields in
the future work.
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