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ABSTRACT

Recent advances in Transformer architecture have empowered its empirical success
in various tasks across different domains. However, existing works mainly focus
on improving the standard accuracy and computational cost, without considering
the robustness of contaminated samples. Existing work (Nguyen et al., 2022) has
shown that the self-attention mechanism, which is the center of the Transformer
architecture, can be viewed as a non-parametric estimator based on the well-known
kernel density estimation (KDE). This motivates us to leverage a set of robust
kernel density estimation methods in the self-attention mechanism, to alleviate the
issue of the contamination of data by down-weighting the weight of bad samples in
the estimation process. The modified self-attention mechanism can be incorporated
into different Transformer variants. Empirical results on language modeling and
image classification tasks demonstrate the effectiveness of this approach.

1 INTRODUCTION

Attention mechanisms and transformers (Vaswani et al., 2017) have been widely used in machine
learning community (Lin et al., 2021; Tay et al., 2020; Khan et al., 2021). Transformer-based models
are now among the best deep learning architectures on a variety of applications, including those
in natural language processing (Devlin et al., 2019; Al-Rfou et al., 2019; Dai et al., 2019; Child
et al., 2019; Raffel et al., 2020; Baevski & Auli, 2019; Brown et al., 2020; Dehghani et al., 2019),
computer vision (Dosovitskiy et al., 2021; Liu et al., 2021; Touvron et al., 2021a; Ramesh et al.,
2021; Radford et al., 2021; Fan et al., 2021; Liu et al., 2022), and reinforcement learning (Chen
et al., 2021; Janner et al., 2021). Transformers have also been well-known for their effectiveness in
transferring knowledge from pretraining tasks to downstream applications with weak supervision or
no supervision (Radford et al., 2018; 2019; Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019).

Contribution Despite having an appealing performance, the robustness of the conventional attention
module still remains an open question in the literature. In this paper, to robustify the attention
mechanism and transformer models, we first revisit the interpretation of the self-attention in the
transformer as the Nadaraya-Watson (NW) estimator (Nadaraya, 1964) in a non-parametric regression
problem in the recent work of Nguyen et al. (2022). Putting in the context of transformer, the NW
estimator is constructed mainly based on the kernel density estimators (KDE) of the keys and queries.
However, the KDE is not robust to the outliers (Kim & Scott, 2012), which leads to the robustness
issue of the NW estimator and the self-attention in transformer when there are outliers in the data.
To improve the robustness of the KDE, we first show that the KDE can be viewed as an optimal
solution of the kernel regression problem in the reproducing kernel Hilbert space (RKHS). Then, to
robustify the KDE, we can either robustify the loss function of the kernel regression problem via
some robust loss functions, such as the well-known Huber loss function (Huber, 1992), or reweight
the contaminated densities via scaling and projecting the original densities. The family of robust
KDE can be used to construct a set of novel robust attentions in transformer, which also improves the
robustness issue of the transformer. In summary, our contribution is two-fold:

• By connecting the dot-product self-attention mechanism in transformer with the nonpara-
metric kernel regression problem in reproducing kernel Hilbert space (RKHS), we propose
a novel robust transformer framework, based on replacing the dot-product attention by an
attention arising from a set of robust kernel density estimators associated with the robust
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kernel regression problem. Comparing to the standard soft-max transformer, the family of
robustified transformers only requires computing an extra set of weights.

• Extensive experiments on both vision and language modeling tasks demonstrate that our
proposed framework has favorable performance under various attacks. Furthermore, the
proposed robust transformer framework is flexible and can be incorporated into different
Transformer variants.

Organization The paper is organized as follows. In Section 2, we provide background on self-
attention mechanism in Transformer and its connection to the Nadaraya-Watson (NW) estimator in
the nonparametric regression problem, which can be constructed via KDE. In Section 3, we first
connect the KDE to a kernel regression problem in the reproducing kernel Hilbert space (RKHS)
and demonstrate that it is not robust to the outliers. Then, we construct the robust self-attention
mechanism for the Transformer by leveraging a set of robust KDE methods. We empirically validate
the advantage of the proposed robust self-attension mechanism, over the standard softmax transformer
along with other baselines over both language modeling and image classification tasks in Section 4.
Finally, we discuss the related works in Section 5 while conclude the paper in Section 6.

2 BACKGROUND: SELF-ATTENTION MECHANISM FROM A NON-PARAMETRIC
REGRESSION PERSPECTIVE

In this section, we first provide background on the self-attention mechanism in transformer in
Section 2. We then revisit the connection between the self-attention and the Nadaraya-Watson
estimator in a nonparametric regression problem in Section 2.2.

2.1 SELF-ATTENTION MECHANISM

Given an input sequence X = [x1, . . . ,xN ]⊤ ∈ RN×Dx of N feature vectors, the self-attention
transforms it into another sequence H := [h1, · · · ,hN ]⊤ ∈ RN×Dv as follows:

hi =
∑
j∈[N ]

softmax
(q⊤

i kj√
D

)
vj , for i = 1, . . . , N, (1)

where the scalar softmax((q⊤
i kj)/

√
D) can be understood as the attention hi pays to the input

feature xj . The vectors qi,kj , and vj are the query, key, and value vectors, respectively, and are
computed as follows:

[q1, q2, . . . , qN ]⊤ := Q = XW⊤
Q ∈ RN×D,

[k1,k2, . . . ,kN ]⊤ := K = XW⊤
K ∈ RN×D,

[v1,v2, . . . ,vN ]⊤ := V = XW⊤
V ∈ RN×Dv ,

(2)

where WQ,WK ∈ RD×Dx , WV ∈ RDv×Dx are the weight matrices. Equation 1 can be written as:

H = softmax
(QK⊤

√
D

)
V , (3)

where the softmax function is applied to each row of the matrix (QK⊤)/
√
D. equation 3 is also

called the “softmax attention”. For each query vector qi for i = 1, · · · , N , an equivalent form of
equation 3 to compute the output vector hi is given by

hi =
∑
j∈[N ]

softmax
(q⊤

i kj√
D

)
vj :=

∑
j∈[N ]

aijvj . (4)

In this paper, we call a transformer built with softmax attention standard transformer or transformer.

2.2 A NON-PARAMETRIC REGRESSION PERSPECTIVE OF SELF-ATTENTION

We now review the connection between the self-attention mechanism in equation 4 and the non-
parametric regression, which has been discussed in the recent work (Nguyen et al., 2022). Assume

2



Under review as a conference paper at ICLR 2023

we have the key and value vectors {kj ,vj}j∈[N ] that is collected from the following data generating
process:

v = f(k) + ε, (5)

where ε is some noise vectors with E[ε] = 0, and f is the unknown function that we want to estimate.
We consider a random design setting where the key vectors {kj}j∈[N ] are i.i.d. samples from the
distribution p(k), and we use p(v,k) to denote the joint distribution of (v,k) defined by equation 5.
Our target is to estimate f(q) for any new queries q.

Nadaraya (1964) provides a non-parametric approach to estimate the function f , which is known
as the the Nadaraya-Watson (NW) estimator, the kernel regression estimator or the local constant
estimator. The main idea of the NW estimator is that

f(k) = E[v|k] =
∫
RD

v · p(v|k)dv =

∫
RD

v · p(v,k)
p(k)

dv, (6)

where the first equation comes from the fact that E[ε] = 0, the second equation comes from
the definition of conditional expectation and the last inequality comes from the definition of the
conditional density. With equation 6, we know, to provide an estimation of f , we just need to obtain
estimations for both the joint density function p(v,k) and the marginal density function p(k). One
of the most popular approaches for the density estimation problem is the kernel density estimation
(KDE) (Rosenblatt, 1956; Parzen, 1962), which requires a kernel kσ with the bandwidth parameter σ
satisfies

∫
RD kσ(x− x′)dx = 1,∀x′, and estimate the density as

p̂σ(v,k) =
1

N

∑
j∈[N ]

kσ ([v,k]− [vj ,kj ]) , p̂σ(k) =
1

N

∑
j∈[N ]

kσ(k − kj), (7)

where [v,k] denotes the concatenation of v and k. Specifically, when kσ is the isotropic Gaussian
kernel kσ(x− x′) = exp

(
−∥x− x′∥2/(2σ2)

)
, we have

p̂σ(v,k) =
1

N

∑
j∈[N ]

kσ(v − vj)kσ(k − kj). (8)

Given the kernel density estimators equation 7 and equation 8, as well as the formulation in equation 6,
we obtain the NW estimator of the function f :

f̂σ(k) =

∫
RD

v · p̂σ(v,k)
p̂σ(k)

dv =

∫
RD

v ·
∑

j∈[N ] kσ(v − vj)kσ(k − kj)∑
j∈[N ] kσ(k − kj)

dv

=

∑
j∈[N ] kσ(k − kj)

∫
v · kσ(v − vj)dv∑

j∈[N ] kσ(k − kj)

=

∑
j∈[N ] vjkσ(k − kj)∑
j∈[N ] kσ(k − kj)

. (9)

Now we show how the self-attention mechanism is related to the NW estimator. Note that

f̂σ(q) =

∑
j∈[N ] vj exp

(
−∥q − kj∥2/2σ2

)∑
j∈[N ] exp (−∥q − kj∥2/2σ2)

=

∑
j∈[N ] vj exp

[
−
(
∥q∥2 + ∥kj∥2

)
/2σ2

]
exp

(
q⊤kj/σ

2
)∑

j∈[N ] exp [− (∥q∥2 + ∥kj∥2) /2σ2] exp (q⊤kj/σ2)
. (10)

If the keys {kj}j∈[N ] are normalized, we can further simplify f̂σ(qi) in equation 9 to

f̂σ(qi) =

∑
j∈[N ] vj exp

(
qk⊤

j /σ
2
)∑

j∈[N ] exp
(
qk⊤

j /σ
2
) =

∑
j∈[N ]

softmax
(
q⊤kj/σ

2
)
vj . (11)

Such an assumption on the normalized key {kj}j∈[N ] can be mild, as in practice we always have
an normalization step on the key to stabilize the training of the transformer (Schlag et al., 2021).
If we choose σ2 =

√
D, where D is the dimension of q and kj , then f̂σ(qi) = hi. As a result,

the self-attention mechanism in fact performs a non-parametric regression with NW-estimator and
isotropic Gaussian kernel when the keys are normalized.
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(a) (b) (c)

Figure 1: Contour plots of density estimation of the 2-dimensional query vector embedding in an
attention layer of the transformer when using (b) KDE (equation 12) and (c) RKDE (equation 13)
with Huber loss (equation 14), where (a) is the true density function. We draw 1000 samples (gray
circles) from a multivariate normal density and 100 outliers (red cross) from a gamma distribution as
the contaminating density. RKDE can be less affected by outliers when computing self-attention as
nonparametric regression.

3 ROBUSTIFY TRANSFORMER WITH ROBUST KERNEL DENSITY ESTIMATION

As we have seen in Section 2, the self-attention mechanism can be interpreted as an NW estimator
for the unknown function where the density is estimated with KDE using the isotropic Gaussian
kernel. In this section, we first re-interpret KDE as a regression in the Reproducing Kernel Hilbert
Space (RKHS), which shows that the vanilla KDE is sensitive to the data corruption. Instead, we
observe that, variants of the kernel density estimation such as robust KDE (Kim & Scott, 2012)
and scaled projection KDE (Vandermeulen & Scott, 2014), can down-weight the importance of the
potential corrupted data and obtain a robust density estimator. Based on the variants, we derive
the corresponding robust version of the NW-estimator, and show how to use this to replace the
self-attention mechanism, and eventually lead to a more robust Transformer variants.

3.1 KDE AS A REGRESSION PROBLEM IN RKHS

We start from the formal definition of the RKHS. The space Hk = {f | f : X → R} is called
an RKHS associated with the kernel k, where k : X × X → R, if it is a Hilbert space with the
following two properties: (1) k(x, ·) ∈ Hk,∀x ∈ X ; (2) the reproducing property: ∀f ∈ H,
f(x) = ⟨f, k(x, ·)⟩Hk

, where ⟨·, ·⟩Hk
denotes the RKHS inner product. With slightly abuse of

notation, we define kσ(x,x′) = kσ(x− x′). By the definition of the RKHS and the KDE estimator,
we know p̂σ = 1

N

∑
j∈[N ] kσ(xj , ·) ∈ Hkσ

. In fact, p̂σ is the optimal solution of the following
least-square regression problem in RKHS:

p̂σ = argmin
p∈Hkσ

∑
j∈[N ]

1

N
∥kσ(xj , ·)− p∥2Hkσ

. (12)

Note that, in equation 12, we have the same weight 1/N on each of the error ∥kσ(xj , ·)− p∥2Hkσ
.

This works well if there are no outliers in {kσ(xj , ·)}j∈[N ]. However, when we have outliers (e.g.,
when there exists some j, such that ∥kσ(xj , ·)∥Hkσ

≫ ∥kσ(xi, ·)∥Hkσ
, ∀i ∈ [N ], i ̸= j), the error

on the outliers will dominate the whole error and lead to substantially worse estimation on the entire
density. We illustrate the robustness issue of the KDE in Figure 1.

Combining the viewpoint that KDE is not robust to outliers with the interpretation of section 2.2
implies that the transformer is also not robust when there are outliers in the data. The robustness issue
of transformer has mostly been studied in the vision domain, such as (Mahmood et al., 2021; Mao
et al., 2022; Zhou et al., 2022). These works modify the original architectures of vision transformer
and introduces extra parameters. A representative one is Mao et al. (2022), which proposed position-
based attention by adding on another fully connected layer. However, this approach will cause
bi-directional information flow for positional-sensitive dataset such as text or sequences and is
therefore limited to image data. We take a different view of the robustness problem in the RKHS
domain and provide a unified framework for different data modalities.
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3.2 ROBUST KDE

Motivated by the robust regression (Fox & Weisberg, 2002), Kim & Scott (2012) proposed a robust
version of KDE, by replacing the least-square loss in equation 12 with a robust loss function ρ:

p̂robust = argmin
p∈Hkσ

∑
j∈[N ]

ρ
(
∥kσ(xj , ·)− p∥Hkσ

)
. (13)

Examples of the robust loss functions ρ include the Huber loss (Huber, 1992), Hampel loss (Hampel
et al., 1986), Welsch loss (Welsch & Becker, 1975) and Tukey loss (Fox & Weisberg, 2002). We
empirically evaluate different loss functions in our experiments. For simplicity, we use the Huber
loss function as the demonstrating example, which is defined as follows:

ρ(x) :=

{
x2/2, 0 ≤ x ≤ a

ax− a2/2, a < x,
(14)

where a is a constant. Kim & Scott (2012) shows the solution of this robust regression problem has
the following form:

Proposition 1. Assume the robust loss function ρ is non-decreasing in [0,∞], ρ(0) = 0 and
limx→0

ρ(x)
x = 0. Define ψ(x) := ρ′(x)

x and assume ψ(0) = limx→0
ρ′(x)
x exists and finite. Then the

optimal p̂robust can be written as

p̂robust =
∑
j∈[N ]

ωjkσ(xj , ·),

where ω = (ω1, · · · , ωN ) ∈ ∆N , and ωj ∝ ψ
(
∥kσ(xj , ·)− p̂robust∥Hkσ

)
. Here ∆n denotes the

n-dimensional simplex.

The proof of this proposition can be found in Appendix A. For Huber loss function, we have that

ψ(x) :=

{
1, 0 ≤ x ≤ a

a/x, a < x.

Hence, when the error ∥kσ(xj , ·), · − p̂robust∥Hkσ
is over the threshold a, the final estimator will

down-weight the importance of kσ(xj , ·). This is in sharp contrast with the standard KDE method,
which will assign uniform weights to all of the kσ(xj , ·). One additional issue is that, the estimator
provided in Proposition 1 is circularly defined, as p̂robust is defined via ω, and ω depends on p̂robust. To
address this issue, Kim & Scott (2012) proposed to estimate ω with an iterative algorithm termed
as kernelized iteratively re-weighted least-squares (KIRWLS) algorithm. The algorithm starts with
some randomly initialized ω(0) ∈ ∆n, and perform the following iterative updates:

p̂
(k)
robust =

∑
j∈[N ]

ω
(k−1)
i kσ(xj , ·), ω

(k)
j =

ψ

(∥∥∥kσ(xj , ·)− p̂
(k)
robust

∥∥∥
Hkσ

)
∑

j∈[N ] ψ

(∥∥∥kσ(xj , ·)− p̂
(k)
robust

∥∥∥
Hkσ

) . (15)

Note that, the optimal p̂robust is the fixed point of this iterative updates, and Kim & Scott (2012) shows
that the proposed algorithm converges under standard regularity conditions. Furthermore, one can
directly compute the term

∥∥∥kσ(xj , ·)− p̂
(k)
robust

∥∥∥
Hkσ

via the reproducing property:

∥∥∥kσ(xj , ·)− p̂
(k)
robust

∥∥∥2
Hkσ

= ⟨kσ(xj , ·), kσ(xj , ·)⟩Hkσ
− 2

〈
kσ(xj , ·), p̂(k)robust

〉
Hkσ

+
〈
p̂
(k)
robust, p̂

(k)
robust

〉
Hkσ

=kσ(xj ,xj)− 2
∑

m∈[N ]

ω(k−1)
m kσ(xm,xj)

+
∑

m∈[N ],n∈[N ]

ω(k−1)
m ω(k−1)

n kσ(xm,xn).

Therefore, the weights can be updated without mapping the data to the Hilbert space.
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Algorithm 1 Procedure of Computing Attention Vector of Transformer-RKDE/SPKDE
1: Input: Q = {qi}i∈[N ], K = {kj}j∈[N ], V = {vl}l∈[N ], initial weights ω(0)

2: Normalize K = {kj}j∈[N ] along the head dimension.
3: Compute kernel function between each pair of sequence: kσ(Q,K) = {kσ(qi − kj)}i,j∈[N ].
4: (Optional) apply attention mask on kσ(Q,K).

5: [RKDE] Update weights ω(0) for marginal/joint density by ω
(1)
j =

ψ

(∥∥∥kσ(kj ,·)−p̂
(k)
robust(k)

∥∥∥
Hkσ

)
∑

j∈[N] ψ

(∥∥∥kσ(kj ,·)−p̂
(k)
robust(k)

∥∥∥
Hkσ

) .
6: [SPKDE] Obtain optimal weights for marginal/joint density via solving equation 17.

7: Obtain attention vector via robust self-attention ĥi =
∑

j∈[N] vjω
joint
j kσ(qi−kj)∑

j∈[N] ω
marginal
j kσ(qi−kj)

.

Scaled Projection KDE (SPKDE) Vandermeulen & Scott (2014) is one other option of robust KDE in
the RKHS space. It essentially scale the original KDE and project it to its nearest weighted KDE
in the L2 norm. The resulting weighted KDE can allocate more weight to high density regions and
truncate the weights for anomalous samples. Specifically, given the scaling factor β > 1, and let CN

σ
be the convex hull of kσ(x1, ·), . . . , kσ(xN , ·) ∈ Hkσ

, i.e., the space of weighted KDEs, the optimal
density p̂robust is given by

p̂robust = arg min
p∈CN

σ

∥ β
N

∑
j∈[N ]

kσ(xj , ·)− p∥2Hkσ
, (16)

which is guaranteed to have a unique minimizer since we are projecting in a Hilbert space and CN
σ is

closed and convex. Note that, p̂robust can also be represented as p̂robust =
∑

j∈[N ] ωjkσ(xj , ·), ω ∈
∆N , which is similar to robust KDE by Kim & Scott (2012). Then equation 16 can be written as a
quadratic programming (QP) problem over ω. Let G be the Gram matrix of kσ and q = G1 β

N , then
the QP can be written as follows

min
ω

ω⊤Gω − 2q⊤ω, subject to ω ∈ ∆N . (17)

Since the Gram matrix G is defined to be positive-semidefinite, this QP is convex. In practice, one
can leverage commonly used solvers to efficiently obtain the solution and the optimal density p̂robust.

3.3 ROBUST SELF-ATTENTION MECHANISM

Now we describe the robust self-attention mechanism we use. We consider the density estimator of
the joint distribution and the marginal distribution from the robust KDE:

p̂robust(v,k) =
∑
j∈[N ]

ωjoint
j kσ([vj ,kj ], [v,k]), p̂robust =

∑
j∈[N ]

ωmarginal
j kσ(kj ,k).

With the similar computation, the robust self-attention mechanism we use is defined as

ĥi =

∑
j∈[N ] vjω

joint
j kσ(qi − kj)∑

j∈[N ] ω
marginal
j kσ(qi − kj)

, (18)

where ωjoint and ωmarginal are obtained via either the KIRWLS algorithm or results from the QP solver.
We term the transformer models that employ robust KDE and SPKDE as Transformer-RKDE and
Transformer-SPKDE, respectively. We will show in our experiments on language modeling and
image classification that SPKDE performs better empirically as it finds the optimal set of weights.
Remark 1. Note that, the computation of {ωmarginal

j }j∈[N ] and {ωjoint
j }j∈[N ] are separate as ωjoint

j
involves both keys and values vectors. During the empirical evaluation, we concatenate the keys
and values along the head dimension to obtain the weights for the joint density p̂robust(v,k) and
only use the key vectors for obtaining the set of weights for the marginal p̂robust(k). In addition,
ωmarginal, ωjoint ∈ Rj×i for i, j = 1, . . . , N are 2-dimensional matrices that includes the pairwise
weights between each position of the sequence and the rest of the positions. The weights are initialized
uniformly across a certain sequence length dimension. For experiments related to language modeling,
we can leverage information from attention mask to initialize the weights on the unmasked part of
sequence. To speed up the computation for Transformer-RKDE, we use a single-step iteration on
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Table 1: Perplexity (PPL) and negative likelihood loss (NLL) of our methods and baselines on WikiText-103
dataset. The best results are highlighted in bold font and the second best results are highlighted in underline.
Transformer-RKDE and Transformer-SPKDE achieve competitive performance to the baseline methods while
shows much better PPL and NLL under random swap with outlier words.

Method
Clean Data Word Swap

Valid PPL/Loss Test PPL/Loss Valid PPL/Loss Test PPL/Loss
Standard Softmax 33.52/3.51 34.59/3.54 72.28/4.45 74.56/4.53
Transformer-KDE 33.34/3.51 34.37/3.54 71.94/4.43 73.75/4.49

Transformer-RKDE (Huber) 33.22/3.50 34.29/3.54 52.14/3.92 55.68/3.99
Transformer-RKDE (Hampel) 33.24/3.50 34.35/3.54 55.61/3.98 57.92/4.03

Transformer-SPKDE 33.05/3.49 34.18/3.53 51.36/3.89 54.97/3.96

equation 15 to approximate the optimal set of weights. Empirical results have shown that this one-step
iteration can achieve sufficiently accurate results. For Transformer-SPKDE, we find the optimal set
of weights via the QP solver. This strategy is shown to be effective during the empirical evaluation on
both image and text data. The procedure of computing the attention vector for Transformer-RKDE
and Transformer-SPKDE can be found at Algorithm 1.

4 EXPERIMENTAL RESULTS

In this section, we empirically validate the advantage of our proposed transformer integrated with
robust KDE attention (Transformer-RKDE/SPKDE) over the standard softmax transformer and its
nonparametric regression variant (Transformer-KDE in equation 9) on two large-scale datasets: lan-
guage modeling on WikiText-103 dataset (Merity et al., 2016) (Section 4.1) and image classification
on Imagenet (Russakovsky et al., 2015; Deng et al., 2009) and Imagenet-C (Hendrycks & Dietterich,
2019) (Section 4.2). Our experiments have shown that: (1) Transformer with robust KDE attention
can reach competitive performance with baseline methods on a variety of tasks with different data
modalities, this can be achieved without modifying the model architecture or introducing extra
parameters; (2) the advantage of Transformer with robust KDE attention is more prominent when
there is contamination of samples in either text or image data. All of our experiments are performed
on the NVIDIA A-100 GPUs. For each experiment, we compare Transformer-RKDE/SPKDE with
other baselines under the same hyper-parameter configurations. The implementation to reproduce our
results can be found at anonymous.4open.science/r/robust-transformer-D7AB/README.md.

4.1 ROBUST LANGUAGE MODELING

Dataset: WikiText-103 is a language modeling dataset that contains collection of tokens extracted
from good and featured articles from Wikipedia, which is suitable for models that can leverage
long-term dependencies. The dataset contains around 268K words and its training set consists of
about 28K articles with 103M tokens, this corresponds to text blocks of about 3600 words. The
validation set and test sets consist of 60 articles with 218K and 246K tokens respectively. We follow
the standard configurations in Merity et al. (2016); Schlag et al. (2021) and splits the training data
into L-word independent long segments. During evaluation, we process the text sequence using a
sliding window of size L and feed into the model with a batch size of 1. The last position of the
sliding window is used for computing perplexity except in the first segment, where all positions are
evaluated as in Al-Rfou et al. (2019); Schlag et al. (2021).

Implementation Details: We used the language models developed by Schlag et al. (2021) in our
experiments. The dimensions of key, value, and query are set to 128, and the training and evaluation
context length are set to 256. As for self-attention, we set the number of heads as 8, the dimension of
feed-forward layer as 2048, and the number of layers as 16. To avoid numerical instability, we apply
the log-sum-exp trick in equation 9 when computing the attention probability vector through the
Gaussian kernel. We apply similar tricks when computing the weights of KIRWLS algorithm, where
we first obtain the weights in log space, followed by the log-sum-exp trick to compute robust
self-attention as in equation 18.
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Table 2: Top-1, top-5 accuracy (%) and mean corruption error (mCE) of DeiT with different attentions. The
best results are highlighted in bold font and the second best are highlighted in underline. RVT (Mao et al., 2022)
achieves better results on clean data and corrupted imagenet; DieT with robust KDE attention achieve better
results under different adversarial attacks while still achieve competitive performance on corrupted imagenet.

Method
Clean Data FGSM PGD SPSA Imagenet-C

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 mCE↓

Baseline DeiT 72.23 91.13 52.61 82.26 41.84 76.49 48.34 79.36 42.38 71.14

RVT 74.37 93.89 53.67 84.11 43.39 77.26 51.43 80.98 45.64 68.57

DeiT-KDE 72.58 91.34 52.25 81.52 41.38 76.41 48.61 79.68 42.63 70.78

DeiT-RKDE (Huber) 72.83 91.44 55.83 85.89 44.15 79.06 52.42 82.03 45.58 68.69

DeiT-RKDE (Hampel) 72.94 91.63 55.92 85.97 44.23 79.16 52.48 82.07 45.61 68.67

DeiT-SPKDE 73.22 91.95 56.03 86.12 44.51 79.47 52.64 82.33 44.76 69.34

Results: In Table 1, we report the validation and test PPL of Transformer-RKDE (with Huber and
Hampel loss functions), Transformer-RKDE versus the softmax transformer and its nonparametric
regression variant. Based on the derivation in equation 11, we would expect Transformer-KDE to
have similar performance with softmax transformer. Meanwhile, Transformer-RKDE and SPKDE is
able to improve baselines PPL and NLL in both validation and test sets.

We can observe more obvious improvement when the dataset is under a word swap attack, which
randomly replace selected keywords of input data by a generic token “AAA” during evaluation. Our
method, particularly SPKDE-based robust attention, achieves much better results for down-weighting
rare words, and therefore more robust to such kind of attack. Our implementation on word swap is
based on the public code TextAttack by Morris et al. (2020)1, while we use the greedy search method
with the constraints on stop-words modification from the TextAttack library.

4.2 IMAGE CLASSIFICATION UNDER ADVERSARIAL ATTACK

Dataset: We use the full ImageNet dataset that contains 1.28M training images and 50K validation
images. The model learns to predict the class of the input image among 1000 categories. We report
the top-1 and top-5 accuracy on all experiments. For robustness on common image corruptions,
we use ImageNet-C (Hendrycks & Dietterich, 2019) which consists of 15 types of algorithmically
generated corruptions with five levels of severity. ImageNet-C uses the mean corruption error (mCE)
as metric, while the smaller mCE means the more robust of the model under corruptions.

Implementation Details: Our method uses the same training configurations as DeiT-Tiny (Touvron
et al., 2021b). Given that all approaches do not modify the model architecture, each employed model
has 5.7M parameters. We also implemented a state-of-the-art robust vision transformer (RVT) model
(Mao et al., 2022) as a baseline. For a fair comparison, we only implemented its position-aware
attention scaling without further modifications on model architecture. The resulting model has around
7.2M parameters. To evaluate adversarial robustness, we apply adversarial examples generated by
untargeted white-box attacks including single-step attack method FGSM (Goodfellow et al., 2014),
multi-step attack method PGD (Madry et al., 2017) and score-based black-box attack method SPSA
(Uesato et al., 2018). The attacks are applied on 100% of the validation set of ImageNet. Both these
attacks perturb the input image with perturbation budget ϵ = 1/255 under l∞ norm; while PGD
attack uses 20 steps with step size α = 0.15.

Results: We summarize the results in Table 2. RVT achieves better performance on clean and
corrupted imagenet. The set of DeiT with robust KDE attention can also obtain very close results
with RVT under these settings while leading to much better results under different adversarial attacks.
Figure 2 shows the relationship between accuracy versus perturbation budget using three attack
methods. Our proposed methods can improve the accuracy under different perturbation budget and
exhibits greater advantage with higher perturbation strength. We provide more ablation studies in
Appendix B regarding to different design choices of the proposed robust KDE attention.

1Implementation available at github.com/QData/TextAttack
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Figure 2: The top-1 classification accuracy v.s. perturbation budget × 255 curves on ImageNet against three
untargeted attack methods under the l∞ norm. Among all the competing methods, DeiT with robust KDE
attention models show better robustness under all attack methods with different perturbation budgets.

5 RELATED WORKS

Robustness of Transformer: Vision Transformer (ViT) models (Dosovitskiy et al., 2020; Touvron
et al., 2021b) recently achieved exemplary performance on a variety of vision tasks that can be used
as a strong alternative to CNNs. To ensure its generalization ability on different datasets, many
works (e.g., Subramanya et al., 2022; Paul & Chen, 2022; Bhojanapalli et al., 2021) have studied
the robustness of ViT under different types of attacks. Mahmood et al. (2021) empirically shows
that ViT is vulnerable to white-box adversarial attack but a simple ensemble defense can achieve
unprecedented robustness without sacrificing clean accuracy. Mao et al. (2022) performs robustness
analysis on different building blocks of ViT and proposed position-aware attention scaling and patch-
wise augmentation that improved robustness and accuracy of ViT models. More recently, Zhou et al.
(2022) proposed fully attentional networks to improve the self-attention and achieved state-of-the-art
accuracy on corrupted images. However, these works focus on improving the architectural design of
ViT targeted for some specific tasks, which lacks a general framework on improving the robustness
of transformers. In addition, most of the recent works studying robustness of transformer concentrate
on vision related tasks and cannot generalize across different data modalities.

Theoretical Frameworks of Attention Mechanisms: Attention mechanisms in transformers have
been recently studied from different perspectives. Tsai et al. (2019) shows that attention can be derived
from smoothing the inputs with appropriate kernels. Katharopoulos et al. (2020); Choromanski et al.
(2021); Wang et al. (2020) further linearize the softmax kernel in attention to attain a family of
efficient transformers with both linear computational and memory complexity. These linear attentions
are proven in Cao (2021) to be equivalent to a Petrov-Galerkin projection (Reddy, 2004), thereby
indicating that the softmax normalization in dot-product attention is sufficient but not necessary. Other
frameworks for analyzing transformers that use ordinary/partial differential equations include Lu
et al. (2019); Sander et al. (2022). In addition, the Gaussian mixture model and graph-structured
learning have been utilized to study attentions and transformers (Tang & Matteson, 2021; Gabbur
et al., 2021; Zhang & Feng, 2021; Wang et al., 2018; Shaw et al., 2018; Kreuzer et al., 2021).

6 CONCLUSION AND FUTURE WORKS

In this paper, via the connection between the dot-product self-attention mechanism in transformer
with nonparametric kernel regression problem, we developed a family of robustified transformers
by leveraging robust kernel density estimation as a replacement of dot-product attention to alleviate
the effect from outliers. We show that the optimal estimation of potentially contaminated density
functions via robust KDE requires computing a set of weights, which can be flexibly integrated when
computing attentions in commonly used transformer models. Empirical evaluations have shown that
Transformer-RKDE can improve performance on clean data while demonstrate robust results under
various attacks on both vision and language modeling tasks. The robust KDE attention we developed
has the merit of generalizing to the whole family of transformer models, which we intended to
demonstrate as a future work. Meanwhile, we will also investigate better and more efficient approach
to estimate the set of weights for robust kernel density estimations.
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doubly stochastic attention. In International Conference on Artificial Intelligence and Statistics,
pp. 3515–3530. PMLR, 2022.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

12

http://jmlr.org/papers/v21/20-074.html


Under review as a conference paper at ICLR 2023

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464–468,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-2074. URL https://aclanthology.org/N18-2074.

Akshayvarun Subramanya, Aniruddha Saha, Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and
Hamed Pirsiavash. Backdoor attacks on vision transformers. arXiv preprint arXiv:2206.08477,
2022.

Binh Tang and David S. Matteson. Probabilistic transformer for time series analysis. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=HfpNVDg3ExA.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
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Supplementary Material of “Robustify Transformers with Robust
Kernel Density Estimation”

A PROOF OF PROPOSITION

Proposition 2. Assume the robust loss function ρ is non-decreasing in [0,∞], ρ(0) = 0 and
limx→0

ρ(x)
x = 0. Define ψ(x) := ρ′(x)

x and assume ψ(0) = limx→0
ρ′(x)
x exists and finite. Then the

optimal p̂robust can be written as

p̂robust =
∑
j∈[N ]

ωjkσ(xj , ·),

where ω = (ω1, · · · , ωN ) ∈ ∆N , and ωj ∝ ψ
(
∥kσ(xj , ·)− p̂robust∥Hkσ

)
. Here ∆n denotes the

n-dimensional simplex.

Proof. The proof of Proposition 2 is mainly adapted from the proof in Kim & Scott (2012). Here, we
provide proof of completeness. For any p ∈ Hkσ , we denote

J(p) =
1

N

∑
j∈[N ]

ρ
(
∥kσ(xj , ·)− p∥Hkσ

)
.

Then we have the following lemma regarding the Gateaux differential of J and a necessary condition
for p̂robust to be optimal solution of the robust loss objective function in equation 13.

Lemma 1. Given the assumptions on the robust loss function ρ in Proposition 2, the Gateaux
differential of J at p ∈ Hkσ

with incremental h ∈ Hkσ
, defined as δJ(p;h), is

δJ(p;h) := lim
τ→0

J(p+ τh)− J(p)

τ
= −⟨V (p), h⟩Hkσ

,

where the function V : Hkσ → Hkσ is defined as:

V (p) =
1

N

∑
j∈[N ]

ψ
(
∥kσ(xj , ·)− p∥Hkσ

)
(kσ(xj , ·)− p).

A necessary condition for p̂robust is V (p̂robust) = 0.

The proof of Lemma 1 can be found in Lemma 1 of Kim & Scott (2012). Based on the necessary
condition for p̂robust in Lemma 1, i.e., V (p̂robust) = 0, we have

1

N

∑
j∈[N ]

ψ
(
∥kσ(xj , ·)− p̂robust∥Hkσ

)
(kσ(xj , ·)− p̂robust) = 0.

Direct algebra indicates that p̂robust =
∑

j∈[N ] ωjkσ(xj , ·) where ω = (ω1, · · · , ωN ) ∈ ∆N , and
ωj ∝ ψ

(
∥kσ(xj , ·)− p̂robust∥Hkσ

)
. As a consequence, we obtain the conclusion of the proposition.

B ABLATION STUDIES
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Table 3: Text PPL/NLL loss versus the parameter a of Huber loss function defined in equation 14
(upper) and Hampel loss function (Kim & Scott, 2012) (lower; we use 2× a and 3× a as parameters
b and c) on original and word-swapped Wiki-103 dataset. The best results are highlighted in bold
font and the second best are highlighted in underline. We choose a = 0.4 in rest of the experiments.

Robust Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 34.92/3.57 34.87/3.56 34.29/3.54 34.38/3.54 34.46/3.54 34.48/3.54

Word Swap 56.82/4.01 55.97/3.99 55.68/3.99 57.89/4.03 58.26/4.04 58.37/4.04

Clean Data 34.67/3.55 34.32/3.54 34.35/3.54 34.47/3.54 34.53/3.54 34.58/3.54

Word Swap 58.02/4.03 57.86/4.03 57.92/4.03 58.24/4.04 58.37/4.04 58.43/4.04

Table 4: Top-1 classification accuracy on ImageNet versus the parameter a of Huber loss function
defined in equation 14 under different settings. The best results are highlighted in bold font and the
second best are highlighted in underline. We choose a = 0.2 in rest of the experiments.

Huber Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.45 72.83 71.62 71.07 70.65 70.34

FGSM 56.72 55.83 55.34 54.87 54.02 52.98

PGD 46.37 44.15 43.87 43.25 42.69 41.96

SPSA 52.38 52.42 51.69 51.34 50.97 48.22

Imagenet-C 45.37 45.58 45.63 45.26 44.63 43.76

Table 5: Top-1 classification accuracy on ImageNet versus the parameter a of Hampel loss function
defined in Kim & Scott (2012) under different settings. We use 2× a and 3× a as parameters b and
c. The best results are highlighted in bold font and the second best are highlighted in underline. We
choose a = 0.2 in rest of the experiments.

Hampel Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.63 72.94 71.84 71.23 70.87 70.41

FGSM 56.42 55.92 55.83 55.66 54.97 53.68

PGD 45.18 44.23 43.89 43.62 43.01 42.34

SPSA 52.96 52.48 52.13 51.46 50.92 50.23

Imagenet-C 44.76 45.61 46.04 46.13 45.82 45.31

Table 6: Top-1 classification accuracy on ImageNet versus the parameter β of SPKDE defined in
equation 16 under different settings. β = 1

1−ε > 1, where ε is the percentage of anomalous samples.
A larger β indicates a more robust model. The best results are highlighted in bold font and the second
best are highlighted in underline. We choose β = 1.4 in rest of the experiments.

β 1.05 1.2 1.4 1.6 1.8 2

Clean Data 74.25 73.56 73.22 73.01 72.86 72.64

FGSM 53.69 55.08 56.03 55.37 54.21 53.86

PGD 42.31 43.68 44.51 44.32 44.17 43.71

SPSA 51.29 52.02 52.64 52.84 52.16 51.39

Imagenet-C 44.68 45.49 44.76 44.21 43.96 43.33
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Table 7: Top-1 classification accuracy on ImageNet versus the number of iterations of the KIRWLS
algorithm in equation 15 employed in Transformer-RKDE. Since the increased number of iterations
does not lead to significant improvements of performance while the computational cost is much
higher, we use the single-step iteration of the KIRWLS algorithm in Transformer-RKDE.

Huber Loss Hampel Loss

Iteration # 1 2 3 5 1 2 3 5

Clean Data 72.83 72.91 72.95 72.98 72.94 72.99 73.01 73.02

FGSM 55.83 55.89 55.92 55.94 55.92 55.96 55.97 55.99

PGD 44.15 44.17 44.17 44.18 44.23 44.26 44.28 44.31

SPSA 52.42 52.44 52.45 52.45 52.48 52.53 52.55 52.56

Imagenet-C 45.58 45.61 45.62 45.62 45.61 45.66 45.68 45.71

Table 8: Computation time (measured by seconds per iteration) of baseline methods, Transformer-
SPKDE and Transformer-RKDE with different number of KIRWLS iterations. Transformer-SPKDE
requires longer time since it directly obtains the optimal set of weights via the QP solver.

Iterations of KIRWLS
DeiT RVT SPKDE

1 2 3 5

Time (s/it) 0.43 0.51 0.68 0.84 0.35 0.41 1.45
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