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Abstract

Electronic Health Records (EHR) data are collected as part of routine clinical1

practice and can be used to train predictive models that estimate and stratify2

disease risk at the population level. This is particularly valuable for conditions like3

dementia, where advances in disease-modifying treatments and early interventions4

have the potential to substantially reduce disease burden. Longitudinal analysis5

of EHR data can provide valuable insights into dementia risk. In this work, we6

investigate the utility of statistical learning, graph neural networks, and large7

language modelling approaches to predict dementia five years before diagnosis8

using time-course medical history data. We evaluate the performance and utility9

of five different modelling approaches using data from the UK Biobank (n=9,537)10

and present a risk stratification model.11

1 Introduction12

EHR data, routinely collected and stored digitally, capture longitudinal and multimodal information13

about an individual’s health. The ubiquity of EHR platforms across healthcare systems enables14

population-level and time-aware predictive modelling [1]. Such models can be deployed within15

existing health information infrastructures, facilitating efficient screening for future health risks16

without additional data collection or operational costs.17

Models of future disease risk could crucially support screening and early detection of prevalent,18

high-morbidity conditions by increasing the window of opportunity for risk-modifying treatment and19

early intervention. Dementia is one condition for which early prediction could improve the quality20

of life of individuals and alleviate pressures on healthcare systems [2, 3]. Although dementia is21

predominantly diagnosed in late life, dementia-related pathology and distinct comorbidity patterns22

have been observed up to two decades prior to formal diagnoses [3–6]. In this work, we explore23

methods capable of modelling the temporal and heterogeneous effects of comorbidities recorded in24

longitudinal structured EHR data to develop predictive models for dementia risk screening.25

2 Background & Related Work26

EHR data includes information collected during interactions with various units in healthcare systems,27

such as diagnostic information, clinical observations and measurements, interventions, and outcomes.28

Unlike other time-series data, EHR data is episodic and not continuous, meaning the intervals between29

entries can vary substantially [7]. Probabilistic and statistical learning models often depend on a30

set of predefined features to develop a predictive model and assume uniform time periods between31

events. While these models can be highly effective and scalable, the inherent noise and heterogeneity32

in EHR data make it challenging for models to generalise to wider contexts [8].33
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Large Language Model (LLM)s have proven effective in modelling EHR data and clinical notes [9,34

10]. Several models, pre-trained on EHR data, already exist, such as Med-BERT and Clinical BERT35

[11, 12]. However, research relying on EHR data often uses pre-processed and curated data sources36

such as the MIMIC dataset [13]. While these sources are very useful for developing and testing new37

methods and concepts, they do not reflect the real-world process of working with EHR data directly.38

In practice, this data can span decades, include repetitive entries and exhibit significant heterogeneity39

in the temporal dimension [8]. It is crucial to build models capable of capturing this heterogeneity40

and reflecting the complex effects of these interactions and associated comorbidities, especially in the41

context of conditions such as dementia.42

Conventional approaches to LLMs consider EHR data as a sequence of text over time representing the43

health trajectory of an individual. However, the temporal patterns and independent and interdependent44

effects of each comorbidity on the predictive outcome are highly variable. This requires special45

attention in modelling. Graph Neural Network (GNN)s are a promising alternative for modelling46

EHR data due to their ability to model complex, non-Euclidean relationships[8]. Message passing,47

the key learning mechanism of GNNs, enables the propagation of information from each node to its48

neighbours, allowing the model to learn interactions across components of EHR data [14]. Conse-49

quently, interactions between components of EHR data are preserved. Temporal edge aggregation50

provides a mechanism for representing temporal relationships between nodes [15, 16]. GNNs have51

previously been used to model temporal dependencies in EHR data [17], but they have not been used52

for risk prediction using temporal patterns of comorbidities in complex conditions such as dementia.53

3 Methods54

3.1 Data & cohort selection55

Data source All analyses were conducted using data from the UK Biobank, an ongoing study of56

more than 500,000 people living in the United Kingdom (UK). Up to 30 years of historical EHR57

data is available for each participant, with each diagnosis coded according to the ICD-10 system and58

accompanied by the date of diagnosis.59

Cohort selection Dementia and control cohorts were defined as follows: Participants were included60

in the dementia cohort if their historical EHR data contained an ICD-10 code beginning with F00 or61

G30 (Alzheimer’s disease (AD)), or F01(Vascular dementia (VD)), corresponding to the two most62

common forms of dementia. The control cohort was age- and sex-matched to the dementia cohort63

based on the date when each participant was diagnosed with dementia, and included participants64

with no record of a dementia diagnosis. Excluded codes are listed in Appendix A1. The final cohort65

consisted of 9,537 patients.66

Features Participants’ diagnosis histories at five years prior to their first dementia diagnosis or67

index date, for those in the control cohort, were used in this study. Two features were generated68

for each diagnosis in a participant’s EHR: a binary feature to indicate presence, and a continuous69

measure of the time (in days) between the diagnosis date and the date five years before a dementia70

diagnosis. Additionally, participants’ age, sex, and polygenic risk score (PRS) for AD were included.71

3.2 Model architecture & training72

Two baseline and three deep learning models were assessed for five-year dementia risk classification.73

Baseline To capture the relationship between presence and time features, two tree-based model74

architectures were assessed for baseline model training: Random Forests and XGBoost. Hyperparam-75

eters were tuned using a Bayesian search with 5-fold cross-validation. Each model pipeline included76

a SelectFromModel feature selection step to select the top 25% of features ranked by importance77

from the model being optimised.78

LLM: BioClinical BERT BioClinical BERT was used to capture the medical context and temporal79

relationship between a patient’s diagnoses. A single string was generated for each patient containing80

their sex, age, and AD PRS followed by each diagnosis and the corresponding time since they were81

diagnosed, e.g. "sex: male, age: 65, polygenic risk score: 0.125, hernia 6 months ago". Strings were82
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tokenised to the 512-token maximum of BioClinical BERT and fine-tuned for sequence classification83

to predict dementia.84

Multimodal modelling: BioClinical BERT + MLP Next, we assessed a multimodal classifier85

that encoded diagnoses and temporal components with the same text pipeline as the BioClinical86

BERT-only approach. Structured data (age, sex, PRS) were modelled separately using a two-layer87

Multilayer perceptron (MLP) with ReLU and dropout. The MLP embedding was concatenated with88

the BERT [CLS] embedding (i.e. the final hidden state of the classification token), and the resulting89

vector was passed to a classification head to produce two logits, one for each class.90

GNN architecture Each patient was represented by a complete bipartite star graph (K1,k) where91

the centre patient node was connected to each of the patient’s diagnoses. The features of the centre92

node were the patient’s sex, age, and PRS score, and each diagnosis node was only connected to the93

centre node. The node features of the diagnosis nodes were initially stored as placeholder vectors, and94

true diagnosis feature representations were generated during training using precomputed BioClinical95

BERT embeddings (dimension 768) or randomly initialised embeddings (dimension determined96

via hyperparameter tuning). Edge attributes were used to model the temporal component of each97

diagnosis, consisting of up to three temporal features: years since diagnosis, natural logarithm of days98

(loge(1 + x)) which highlights smaller time differences, and temporal decay, calculated by taking the99

exponential decay of days with a decay constant of 180 (Equation 3, Appendix). GINEConv (Graph100

Isomorphism Network with Edge features) was chosen as the GNN architecture, due to its ability to101

directly incorporate edge attributes (ej,i) during training (see Equation 1) [18, 19].102

x′
i = hΘ

(1 + ϵ) · xi +
∑

j∈N (i)

ReLU(xj + ej,i)

 (1)

Patient and diagnosis node embeddings were combined to run through two GINE layers. The resulting103

GINE embeddings were pooled, either by mean, addition, or max (determined via hyperparameter104

tuning), to receive a single graph-level representation. Two alternative classification head designs105

were evaluated: (1) a linear layer to map the pooled representation to the output, and (2) an MLP with106

a hidden layer, ReLU activation, and dropout, followed by the final output layer for classification of107

the two labels.108

Training For all models, data was split into training and testing sets at a ratio of 80:20. All109

models were evaluated using sensitivity, specificity, F1 score, and area under the receiver operating110

characteristic curve (AUCROC). The best overall model was selected using Youden’s J index (2).111

J = Sensitivity + Specificity − 1 (2)
The three deep learning methods all used weighted Adam for optimisation and cross-entropy as the112

loss function. The first two models were trained for up to 20 epochs, whereas the GNN-based models113

were trained for up to 50 epochs. In all cases, early stopping was implemented, and validation loss114

was monitored to avoid overfitting. Extensive hyperparameter tuning was conducted using Bayesian115

optimisation to determine multiple hyperparameter values (listed in Appendix Table A1).116

Risk stratification Predictions were stratified into three groups based on their predicted class117

probabilities. Stratification allows for focused prediction of those at greater or lesser risk and118

facilitates streamlined clinical decision-making. Youden’s J was used to determine the threshold that119

maximises J-index for the dementia class. Predictions for the stratified groups were reevaluated.120

Explainability SHapley Additive exPlanation (SHAP) values were calculated for the baseline121

model, and two GNN explainers, Gradient and Back Propagation Explainer, were used for GNN122

explainability [20]. The code was adapted from GraphXAI’s GitHub [21]. The overall sum and mean123

of the Explainer importance scores were used to identify the most influential diagnoses for dementia124

prediction, and mean absolute SHAP values were determined for baseline model features.125

4 Results126

A GNN with a linear classification head, using trainable, randomly initialised vectors (GNN+RV)127

achieved the best overall performance. The hyperparameters selected during training are in Ap-128
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pendix Section A3. Performance on all models is outlined in Table 1. Following risk stratification,129

performance on both the XGBoost and GNN+RV models improved, with XGBoost marginally130

outperforming GNN+RV on the J-index. Stratification thresholds can be seen in Appendix Table A2.131

Table 1: Five-year dementia risk model performance. RV = random initialised diagnosis vectors,
BioClinical = BioClinical BERT initialised diagnosis vectors
Models before risk stratification F1 Sensitivity Specificity J AUCROC
GNN+MLP+RV 0.709 0.696 0.735 0.428 0.780
GNN+RV 0.716 0.761 0.673 0.434 0.777
GNN+BioClinical 0.709 0.746 0.672 0.415 0.775
GNN+MLP+BioClinical 0.713 0.753 0.673 0.426 0.770
BioClinical BERT pure 0.707 0.726 0.670 0.396 0.767
Multimodal BioClinical BERT+MLP 0.704 0.694 0.714 0.408 0.776
XGBoost 0.708 0.705 0.711 0.416 0.773

Models after risk stratification F1 Sensitivity Specificity J AUCROC
GNN + RV 0.816 0.834 0.758 0.592 0.838
XGBoost 0.810 0.821 0.780 0.601 0.844

Explainability methods were applied to the XGBoost and GNN+RV models. Both GNN Explainers132

identified hypertension, arthropathies, and diseases of oesophagus, as the top three most influential133

nodes in dementia risk classification. The Gradient Explainer identified "general symptoms and134

signs", "symptoms and signs involving the digestive system and abdomen", and "symptoms, signs135

and abnormal clinical and laboratory findings, not elsewhere classified" to be the next most predictive.136

Back Propagation Explainer similarly identified these categories and additionally ranked "factors137

influencing health status and contact with health services" among the top ten most influential nodes.138

Age and PRS had the strongest influence on XGBoost predictions, followed by hypertension presence,139

and time since "factors influencing health status and contact with health services" and diabetes140

diagnoses. The full table of importance scores can be found in Appendix Table A3.141

5 Discussion142

Across all models, GNNs achieved higher performance. In dementia, both the duration of comorbidi-143

ties and the interactions between them influence risk [3]. GNNs represent both of these factors by144

(1) encoding the temporal influence of comorbidity duration in the graph edges, and (2) modelling145

the influence of co-existing diagnoses on dementia risk through message passing [14]. Unlike other146

deep learning methods, they offer explainability, a crucial feature of clinical predictive models [21].147

GNNs are therefore well-suited to represent the complex temporal interactions between pre-existing148

conditions while offering insight into the features driving model decisions.149

Our models were designed to classify dementia risk while meeting clinically relevant performance150

metrics with a particular focus on deriving insights into how comorbidities and their temporal patterns151

contribute to dementia risk. Beyond prediction, our GNNs provide a framework that can handle152

incomplete data and simulate how changes in comorbidity duration or profile may alter risk levels.153

We chose a five-year prediction time-frame because it offers a "window of opportunity" for disease-154

modifying interventions [6, 22], while balancing the degree of uncertainty in risk prediction [23]. The155

implemented risk stratification system allows for streamlined clinical decision-making and follow-up156

by categorising patients into high, moderate, and low risk categories.157

Our findings show that the GNN and XGBoost models can successfully assess dementia risk five158

years before diagnosis using only the time-course ICD10 codes, PRS, age, and sex. Due to the159

standardised nature of ICD-10 codes, models developed using this framework can be used in a wide160

variety of clinical settings. These findings demonstrate the potential for GNN-based models to be161

used for time-course-aware, EHR-based dementia risk screening.162
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A1 Exclusion criteria220

Participants with ICD-10 diagnoses beginning with F02, F03, F04, F05, F06.7, G31, G32, or Q90 were excluded221

from both cohorts.222

A2 Graph Neural Network Architecture223

Formula 3 was used to apply a temporal decay to the time since diagnosis. Diagnoses that happened more224

recently are assigned a number closer to one.225

f(days) = exp

(
−days

180

)
(3)

A3 Hyperparameter tuning search space226

Table A1: Hyperparameter search space
Hyperparameter Search space Applicable models

Learning rate log-uniform [3× 10−6, 3× 10−3] All neural models
Trainable embeddings [True, False] All GNN-based models
Learning rate for trainable embeddings log-uniform [3× 10−4, 3× 10−3] GNN models (trainable emb.)
Random initialised embeddings dimension [96, 128, 192, 256] GNN models (random. emb.)
Batch size {8, 16, 32} All neural models
Dropout uniform [0.0, 0.5] BERT/MLP heads
Hidden dim (MLP) {32, 64, 96, 128} MLP components
Weight decay log-uniform [1× 10−6, 1× 10−3] All neural models
Pooling method [mean, add,max] All GNN-based models
Min child weight {1, 2, . . . , 10} XGBoost
gamma log-uniform [0.1, 5] XGBoost
Subsample ratio uniform [0.4, 1.0] XGBoost
Column subsampling ratio uniform [0.4, 1.0] XGBoost
Max depth {3, 4, . . . , 10} XGBoost

RV: randomly initialised diagnosis vectors

The hyperparameter search space values for all models are provided in Table A1. The GNN model with trainable,227

randomly initialised vectors had the best overall performance recorded at epoch 14. The optimal hyperparameter228

values were as follows: pool: mean, hidden dimension (MLP): 128, learning rate for trainable embeddings:229

0.00016, random initialised embedding dimension: 96, dropout: 0.474, learning rate: 0.00016, weight decay:230

0.00016. The hyperparameters for the best performing XGBoost model were: minimum child rate: 1, gamma:231

4.999, subsample ratio: 1.0, column subsampling ratio: 0.4 and maximum depth: 10.232

A4 Stratification thresholds233

The thresholds for the stratification of the best performing model (GNN+RV) and the XGBoost can be seen in234

A2. These were determined using Youden’s J index (equation 2).235

Table A2: The threshold values for the stratification method, determined using Youden’s J index.
Model Green (Control) Amber (Uncertain) Red (Dementia)

GNN+RV [0, 0.305) [0.305, 0.697) [0.697, 1]
XGBoost [0, 0.315) [0.315, 0.731) [0.731, 1]

A5 GNN Explainers236

Gradient Explainer uses backpropagation to calculate importance scores. The explainer uses the magnitude of a237

node’s final derivative to assign importance. The larger the magnitude, the more important the node, due to the238

removal of the node having a larger impact on the predictions [20].239
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BackProp Explainer follows the same approach as Gradient Explainer, but differs by not considering negative240

gradients, regarding them as noise [20]. Consequently, BackProp Explainer only focuses on nodes contributing241

in a positive manner to predictions.242

A6 Explainability results243

Table A3 provides the numerical results for the different explainability methods. The GNN Explainers are244

evaluated using both the overall sum of importance for a node and the mean, providing an overview of the245

influence at both a global (sum across all occurrences) and per-occurrence (mean) level.246

Table A3: Explainability results. RV = randomly initialised vectors
Gradient Explainer applied to GNN+RV

Top 5 features Sum of scores Mean of scores
Hypertensive diseases 147.626 0.214
Arthropathies 113.739 0.228
Diseases of oesophagus, stomach and duo-
denum

78.090 0.174

General symptoms and signs 67.089 0.200
Symptoms, signs and abnormal clinical and
laboratory findings, not elsewhere classified

53.574 0.147

Guided Backpropagation Explainer applied to GNN+RV
Top 5 features Sum of scores Mean of scores
Hypertensive diseases 74.295 0.108
Arthropathies 71.554 0.144
Diseases of oesophagus, stomach and duo-
denum

40.193 0.090

Factors influencing health status and con-
tact with health services

33.037 0.774

General symptoms and signs 32.244 0.096

Mean absolute SHAP values for XGBoost
Top 7 features SHAP
PRS 0.547
Age 0.470
Hypertensive diseases: present 0.090
Factors influencing health status and con-
tact with health services: time

0.088

Diabetes mellitus: time 0.059
Diabetes mellitus: present 0.047
Disorders of lens: present 0.045

A7 Fairness analysis247

The performance of each model was assessed across sexes to investigate any key differences in model fairness.248

Metrics are outlined in Table A4

Table A4: Five-year dementia risk predictive model performance, by sex
Model Sex F1 Sensitivity Specificity AUCROC
XGBoost F 0.699 0.688 0.711 0.773

M 0.709 0.704 0.714 0.770
GNN+RV F 0.702 0.761 0.671 0.777

M 0.702 0.761 0.671 0.777

249
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A8 Implementation Details250

The models were run with Python 3.11.13. The following packages were used: Pandas (v. 2.3.1), NumPy (v.251

1.26.4), PyTorch (v. 2.7.0), PyTorch Geometric (v. 2.6.1), transformers (v. 4.54.1) and scikit learn (v. 1.7.1).252

The deep learning models were run on one NVIDIA A100 80 GB GPU. Weights & Biases (WandB) was used to253

perform hyperparameter tuning.254
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