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Abstract

Electronic Health Records (EHR) data are collected as part of routine clinical
practice and can be used to train predictive models that estimate and stratify
disease risk at the population level. This is particularly valuable for conditions like
dementia, where advances in disease-modifying treatments and early interventions
have the potential to substantially reduce disease burden. Longitudinal analysis
of EHR data can provide valuable insights into dementia risk. In this work, we
investigate the utility of statistical learning, graph neural networks, and large
language modelling approaches to predict dementia five years before diagnosis
using time-course medical history data. We evaluate the performance and utility
of five different modelling approaches using data from the UK Biobank (n=9,537)
and present a risk stratification model.

1 Introduction

EHR data, routinely collected and stored digitally, capture longitudinal and multimodal information
about an individual’s health. The ubiquity of EHR platforms across healthcare systems enables
population-level and time-aware predictive modelling [1]. Such models can be deployed within
existing health information infrastructures, facilitating efficient screening for future health risks
without additional data collection or operational costs.

Models of future disease risk could crucially support screening and early detection of prevalent,
high-morbidity conditions by increasing the window of opportunity for risk-modifying treatment and
early intervention. Dementia is one condition for which early prediction could improve the quality
of life of individuals and alleviate pressures on healthcare systems [2, 3]. Although dementia is
predominantly diagnosed in late life, dementia-related pathology and distinct comorbidity patterns
have been observed up to two decades prior to formal diagnoses [3—6]. In this work, we explore
methods capable of modelling the temporal and heterogeneous effects of comorbidities recorded in
longitudinal structured EHR data to develop predictive models for dementia risk screening.

2 Background & Related Work

EHR data includes information collected during interactions with various units in healthcare systems,
such as diagnostic information, clinical observations and measurements, interventions, and outcomes.
Unlike other time-series data, EHR data is episodic and not continuous, meaning the intervals between
entries can vary substantially [7]. Probabilistic and statistical learning models often depend on a
set of predefined features to develop a predictive model and assume uniform time periods between
events. While these models can be highly effective and scalable, the inherent noise and heterogeneity
in EHR data make it challenging for models to generalise to wider contexts [8].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

54

55

56
57
58
59

60
61
62
63
64
65
66

67
68
69
70
71

72

73

74
75
76
77
78

79
80
81
82

Large Language Model (LLM)s have proven effective in modelling EHR data and clinical notes [9,
10]. Several models, pre-trained on EHR data, already exist, such as Med-BERT and Clinical BERT
[11, 12]. However, research relying on EHR data often uses pre-processed and curated data sources
such as the MIMIC dataset [13]. While these sources are very useful for developing and testing new
methods and concepts, they do not reflect the real-world process of working with EHR data directly.
In practice, this data can span decades, include repetitive entries and exhibit significant heterogeneity
in the temporal dimension [8]. It is crucial to build models capable of capturing this heterogeneity
and reflecting the complex effects of these interactions and associated comorbidities, especially in the
context of conditions such as dementia.

Conventional approaches to LLMs consider EHR data as a sequence of text over time representing the
health trajectory of an individual. However, the temporal patterns and independent and interdependent
effects of each comorbidity on the predictive outcome are highly variable. This requires special
attention in modelling. Graph Neural Network (GNN)s are a promising alternative for modelling
EHR data due to their ability to model complex, non-Euclidean relationships[8]. Message passing,
the key learning mechanism of GNNs, enables the propagation of information from each node to its
neighbours, allowing the model to learn interactions across components of EHR data [14]. Conse-
quently, interactions between components of EHR data are preserved. Temporal edge aggregation
provides a mechanism for representing temporal relationships between nodes [15, 16]. GNNs have
previously been used to model temporal dependencies in EHR data [17], but they have not been used
for risk prediction using temporal patterns of comorbidities in complex conditions such as dementia.

3 Methods

3.1 Data & cohort selection

Data source All analyses were conducted using data from the UK Biobank, an ongoing study of
more than 500,000 people living in the United Kingdom (UK). Up to 30 years of historical EHR
data is available for each participant, with each diagnosis coded according to the ICD-10 system and
accompanied by the date of diagnosis.

Cohort selection Dementia and control cohorts were defined as follows: Participants were included
in the dementia cohort if their historical EHR data contained an ICD-10 code beginning with FOO or
G30 (Alzheimer’s disease (AD)), or FO1(Vascular dementia (VD)), corresponding to the two most
common forms of dementia. The control cohort was age- and sex-matched to the dementia cohort
based on the date when each participant was diagnosed with dementia, and included participants
with no record of a dementia diagnosis. Excluded codes are listed in Appendix Al. The final cohort
consisted of 9,537 patients.

Features Participants’ diagnosis histories at five years prior to their first dementia diagnosis or
index date, for those in the control cohort, were used in this study. Two features were generated
for each diagnosis in a participant’s EHR: a binary feature to indicate presence, and a continuous
measure of the time (in days) between the diagnosis date and the date five years before a dementia
diagnosis. Additionally, participants’ age, sex, and polygenic risk score (PRS) for AD were included.

3.2 Model architecture & training

Two baseline and three deep learning models were assessed for five-year dementia risk classification.

Baseline To capture the relationship between presence and time features, two tree-based model
architectures were assessed for baseline model training: Random Forests and XGBoost. Hyperparam-
eters were tuned using a Bayesian search with 5-fold cross-validation. Each model pipeline included
a SelectFromModel feature selection step to select the top 25% of features ranked by importance
from the model being optimised.

LLM: BioClinical BERT BioClinical BERT was used to capture the medical context and temporal
relationship between a patient’s diagnoses. A single string was generated for each patient containing
their sex, age, and AD PRS followed by each diagnosis and the corresponding time since they were
diagnosed, e.g. "sex: male, age: 65, polygenic risk score: 0.125, hernia 6 months ago". Strings were
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tokenised to the 512-token maximum of BioClinical BERT and fine-tuned for sequence classification
to predict dementia.

Multimodal modelling: BioClinical BERT + MLP Next, we assessed a multimodal classifier
that encoded diagnoses and temporal components with the same text pipeline as the BioClinical
BERT-only approach. Structured data (age, sex, PRS) were modelled separately using a two-layer
Multilayer perceptron (MLP) with ReLU and dropout. The MLP embedding was concatenated with
the BERT [CLS] embedding (i.e. the final hidden state of the classification token), and the resulting
vector was passed to a classification head to produce two logits, one for each class.

GNN architecture Each patient was represented by a complete bipartite star graph (K ;) where
the centre patient node was connected to each of the patient’s diagnoses. The features of the centre
node were the patient’s sex, age, and PRS score, and each diagnosis node was only connected to the
centre node. The node features of the diagnosis nodes were initially stored as placeholder vectors, and
true diagnosis feature representations were generated during training using precomputed BioClinical
BERT embeddings (dimension 768) or randomly initialised embeddings (dimension determined
via hyperparameter tuning). Edge attributes were used to model the temporal component of each
diagnosis, consisting of up to three temporal features: years since diagnosis, natural logarithm of days
(log, (1 + x)) which highlights smaller time differences, and temporal decay, calculated by taking the
exponential decay of days with a decay constant of 180 (Equation 3, Appendix). GINEConv (Graph
Isomorphism Network with Edge features) was chosen as the GNN architecture, due to its ability to
directly incorporate edge attributes (e; ;) during training (see Equation 1) [18, 19].

Xg = heo (]. + 6) - X; + Z RGLU(Xj + ej,i) (1)
JEN(2)

Patient and diagnosis node embeddings were combined to run through two GINE layers. The resulting
GINE embeddings were pooled, either by mean, addition, or max (determined via hyperparameter
tuning), to receive a single graph-level representation. Two alternative classification head designs
were evaluated: (1) a linear layer to map the pooled representation to the output, and (2) an MLP with
a hidden layer, ReLU activation, and dropout, followed by the final output layer for classification of
the two labels.

Training For all models, data was split into training and testing sets at a ratio of 80:20. All
models were evaluated using sensitivity, specificity, F1 score, and area under the receiver operating
characteristic curve (AUCROC). The best overall model was selected using Youden’s J index (2).

J = Sensitivity + Specificity — 1 )
The three deep learning methods all used weighted Adam for optimisation and cross-entropy as the
loss function. The first two models were trained for up to 20 epochs, whereas the GNN-based models
were trained for up to 50 epochs. In all cases, early stopping was implemented, and validation loss
was monitored to avoid overfitting. Extensive hyperparameter tuning was conducted using Bayesian
optimisation to determine multiple hyperparameter values (listed in Appendix Table Al).

Risk stratification Predictions were stratified into three groups based on their predicted class
probabilities. Stratification allows for focused prediction of those at greater or lesser risk and
facilitates streamlined clinical decision-making. Youden’s J was used to determine the threshold that
maximises J-index for the dementia class. Predictions for the stratified groups were reevaluated.

Explainability SHapley Additive exPlanation (SHAP) values were calculated for the baseline
model, and two GNN explainers, Gradient and Back Propagation Explainer, were used for GNN
explainability [20]. The code was adapted from GraphXATI’s GitHub [21]. The overall sum and mean
of the Explainer importance scores were used to identify the most influential diagnoses for dementia
prediction, and mean absolute SHAP values were determined for baseline model features.

4 Results

A GNN with a linear classification head, using trainable, randomly initialised vectors (GNN+RV)
achieved the best overall performance. The hyperparameters selected during training are in Ap-
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pendix Section A3. Performance on all models is outlined in Table 1. Following risk stratification,
performance on both the XGBoost and GNN+RV models improved, with XGBoost marginally
outperforming GNN+RV on the J-index. Stratification thresholds can be seen in Appendix Table A2.

Table 1: Five-year dementia risk model performance. RV = random initialised diagnosis vectors,
BioClinical = BioClinical BERT initialised diagnosis vectors

Models before risk stratification F1 Sensitivity Specificity J AUCROC
GNN+MLP+RV 0.709 0.696 0.735 0.428 0.780
GNN+RV 0.716 0.761 0.673 0.434 0.777
GNN+BioClinical 0.709 0.746 0.672 0.415 0.775
GNN+MLP+BioClinical 0.713 0.753 0.673 0.426 0.770
BioClinical BERT pure 0.707 0.726 0.670 0.396 0.767
Multimodal BioClinical BERT+MLP  0.704 0.694 0.714 0.408 0.776
XGBoost 0.708 0.705 0.711 0.416 0.773
Models after risk stratification F1 Sensitivity Specificity J AUCROC
GNN + RV 0.816 0.834 0.758 0.592 0.838
XGBoost 0.810 0.821 0.780 0.601 0.844

Explainability methods were applied to the XGBoost and GNN+RV models. Both GNN Explainers
identified hypertension, arthropathies, and diseases of oesophagus, as the top three most influential
nodes in dementia risk classification. The Gradient Explainer identified "general symptoms and
signs", "symptoms and signs involving the digestive system and abdomen", and "symptoms, signs
and abnormal clinical and laboratory findings, not elsewhere classified" to be the next most predictive.
Back Propagation Explainer similarly identified these categories and additionally ranked "factors
influencing health status and contact with health services" among the top ten most influential nodes.
Age and PRS had the strongest influence on XGBoost predictions, followed by hypertension presence,
and time since "factors influencing health status and contact with health services" and diabetes

diagnoses. The full table of importance scores can be found in Appendix Table A3.

5 Discussion

Across all models, GNNs achieved higher performance. In dementia, both the duration of comorbidi-
ties and the interactions between them influence risk [3]. GNNs represent both of these factors by
(1) encoding the temporal influence of comorbidity duration in the graph edges, and (2) modelling
the influence of co-existing diagnoses on dementia risk through message passing [14]. Unlike other
deep learning methods, they offer explainability, a crucial feature of clinical predictive models [21].
GNN s are therefore well-suited to represent the complex temporal interactions between pre-existing
conditions while offering insight into the features driving model decisions.

Our models were designed to classify dementia risk while meeting clinically relevant performance
metrics with a particular focus on deriving insights into how comorbidities and their temporal patterns
contribute to dementia risk. Beyond prediction, our GNNs provide a framework that can handle
incomplete data and simulate how changes in comorbidity duration or profile may alter risk levels.

We chose a five-year prediction time-frame because it offers a "window of opportunity" for disease-
modifying interventions [6, 22], while balancing the degree of uncertainty in risk prediction [23]. The
implemented risk stratification system allows for streamlined clinical decision-making and follow-up
by categorising patients into high, moderate, and low risk categories.

Our findings show that the GNN and XGBoost models can successfully assess dementia risk five
years before diagnosis using only the time-course ICD10 codes, PRS, age, and sex. Due to the
standardised nature of ICD-10 codes, models developed using this framework can be used in a wide
variety of clinical settings. These findings demonstrate the potential for GNN-based models to be
used for time-course-aware, EHR-based dementia risk screening.
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Al Exclusion criteria

Participants with ICD-10 diagnoses beginning with F02, FO3, F04, FOS5, F06.7, G31, G32, or Q90 were excluded
from both cohorts.

A2 Graph Neural Network Architecture

Formula 3 was used to apply a temporal decay to the time since diagnosis. Diagnoses that happened more
recently are assigned a number closer to one.

d
f(days) = exp (—%) 3)

A3 Hyperparameter tuning search space

Table Al: Hyperparameter search space

Hyperparameter Search space Applicable models

Learning rate log-uniform [3 x 1076, 3 x 1073]  All neural models

Trainable embeddings [True, False] All GNN-based models
Learning rate for trainable embeddings log-uniform [3 x 1074, 3 x 1073]  GNN models (trainable emb.)
Random initialised embeddings dimension  [96, 128, 192, 256] GNN models (random. emb.)
Batch size {8,16, 32} All neural models

Dropout uniform [0.0, 0.5] BERT/MLP heads

Hidden dim (MLP) {32, 64,96, 128} MLP components

Weight decay log-uniform [1 x 107%, 1 x 1073]  All neural models

Pooling method [mean, add, mazx] All GNN-based models

Min child weight {1,2,...,10} XGBoost

gamma log-uniform (0.1, 5] XGBoost

Subsample ratio uniform [0.4, 1.0] XGBoost

Column subsampling ratio uniform [0.4, 1.0 XGBoost

Max depth {3,4,...,10} XGBoost

RV: randomly initialised diagnosis vectors

The hyperparameter search space values for all models are provided in Table A1l. The GNN model with trainable,
randomly initialised vectors had the best overall performance recorded at epoch 14. The optimal hyperparameter
values were as follows: pool: mean, hidden dimension (MLP): 128, learning rate for trainable embeddings:
0.00016, random initialised embedding dimension: 96, dropout: 0.474, learning rate: 0.00016, weight decay:
0.00016. The hyperparameters for the best performing XGBoost model were: minimum child rate: 1, gamma:
4.999, subsample ratio: 1.0, column subsampling ratio: 0.4 and maximum depth: 10.

A4 Stratification thresholds

The thresholds for the stratification of the best performing model (GNN+RV) and the XGBoost can be seen in
A2. These were determined using Youden’s J index (equation 2).

Table A2: The threshold values for the stratification method, determined using Youden’s J index.
Model | Green (Control) | Amber (Uncertain) | Red (Dementia)

GNN+RV [0, 0.305) [0.305, 0.697) [0.697, 1]
XGBoost [0,0.315) [0.315,0.731) [0.731, 1]

AS GNN Explainers

Gradient Explainer uses backpropagation to calculate importance scores. The explainer uses the magnitude of a
node’s final derivative to assign importance. The larger the magnitude, the more important the node, due to the
removal of the node having a larger impact on the predictions [20].
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BackProp Explainer follows the same approach as Gradient Explainer, but differs by not considering negative
gradients, regarding them as noise [20]. Consequently, BackProp Explainer only focuses on nodes contributing
in a positive manner to predictions.

A6 Explainability results

Table A3 provides the numerical results for the different explainability methods. The GNN Explainers are
evaluated using both the overall sum of importance for a node and the mean, providing an overview of the
influence at both a global (sum across all occurrences) and per-occurrence (mean) level.

Table A3: Explainability results. RV = randomly initialised vectors
Gradient Explainer applied to GNN+RV

Top 5 features Sum of scores Mean of scores
Hypertensive diseases 147.626 0.214
Arthropathies 113.739 0.228
Diseases of oesophagus, stomach and duo- 78.090 0.174
denum

General symptoms and signs 67.089 0.200
Symptoms, signs and abnormal clinical and 53.574 0.147

laboratory findings, not elsewhere classified

Guided Backpropagation Explainer applied to GNN+RV

Top 5 features Sum of scores Mean of scores

Hypertensive diseases 74.295 0.108

Arthropathies 71.554 0.144

Diseases of oesophagus, stomach and duo- 40.193 0.090

denum

Factors influencing health status and con- 33.037 0.774

tact with health services

General symptoms and signs 32.244 0.096
Mean absolute SHAP values for XGBoost

Top 7 features SHAP

PRS 0.547

Age 0.470

Hypertensive diseases: present 0.090

Factors influencing health status and con- 0.088

tact with health services: time

Diabetes mellitus: time 0.059

Diabetes mellitus: present 0.047

Disorders of lens: present 0.045

A7 Fairness analysis

The performance of each model was assessed across sexes to investigate any key differences in model fairness.
Metrics are outlined in Table A4

Table A4: Five-year dementia risk predictive model performance, by sex
Model Sex F1 Sensitivity  Specificity AUCROC

XGBoost F 0.699 0.688 0.711 0.773
M 0.709 0.704 0.714 0.770
GNN+RV F  0.702 0.761 0.671 0.777
M  0.702 0.761 0.671 0.777
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A8 Implementation Details

The models were run with Python 3.11.13. The following packages were used: Pandas (v. 2.3.1), NumPy (v.
1.26.4), PyTorch (v. 2.7.0), PyTorch Geometric (v. 2.6.1), transformers (v. 4.54.1) and scikit learn (v. 1.7.1).
The deep learning models were run on one NVIDIA A100 80 GB GPU. Weights & Biases (WandB) was used to
perform hyperparameter tuning.

A9 Acknowledgements

This research has been conducted using the UK Biobank resources under application number [number to be
included post review]. We are incredibly grateful to the UK Biobank participants for their contributions to this
research and the broader research community.



