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Abstract

Electronic Health Records (EHR) data are collected as part of routine clinical
practice and can be used to train predictive models that estimate and stratify
disease risk at the population level. This is particularly valuable for conditions like
dementia, where advances in disease-modifying treatments and early interventions
have the potential to substantially reduce disease burden. Longitudinal analysis
of EHR data can provide valuable insights into dementia risk. In this work, we
investigate the utility of statistical learning, graph neural networks, and large
language modelling approaches to predict dementia five years before diagnosis
using time-course medical history data. We evaluate the performance and utility of
different modelling approaches using data from the UK Biobank (n=9,537) and
present a risk stratification model.

1 Introduction

EHR data, routinely collected and stored digitally, capture longitudinal and multimodal information
about an individual’s health. The ubiquity of EHR platforms across healthcare systems enables
population-level and time-aware predictive modelling [1]. Such models can be deployed within
existing health information infrastructures, facilitating efficient screening for future health risks
without additional data collection or operational costs.

Models of future disease risk could be crucial for supporting screening and early detection of
prevalent, high-morbidity conditions such as dementia by increasing the window of opportunity for
risk-modifying treatment and early intervention [2, 3]. Although dementia is predominantly diagnosed
in late life, dementia-related pathology and distinct comorbidity patterns have been observed up to
two decades prior to formal diagnoses [3—6]. In this work, we explore methods capable of modelling
the temporal and heterogeneous effects of comorbidities recorded in longitudinal structured EHR
data to develop predictive models for dementia risk screening.

2 Background & Related Work

EHR data includes diagnoses, clinical observations, interventions, and outcomes recorded over time
during patient interactions in healthcare settings. Unlike conventional time-series data, EHR data is
episodic and irregular, with highly variable intervals between entries [7]. Traditional probabilistic and
statistical models often assume uniform time periods between events and rely on predefined features,
limiting their ability to handle the inherent noise and heterogeneity in EHR data [8].
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Large language models (LLMs), such as Med-BERT and Clinical BERT [9, 10], have proven effective
in modelling both structured and unstructured EHR data [11, 12]. However, most existing models
are trained on pre-processed and curated data sources such as the MIMIC dataset [13], which do not
adequately represent the temporal variability and complexity of real-world EHR data. In practice,
longitudinal health record data can span decades, include repetitive or missing entries, and exhibit
substantial temporal heterogeneity [8]. It is therefore crucial that models capture this variability and
reflect the temporal and interacting effects of comorbidities on future health risk.

Conventional LLM-based approaches represent EHR-derived health trajectories as sequences of text,
but do not account for the irregular time intervals between events. Graph Neural Network (GNN)s,
which are capable of modelling complex, non-Euclidean relationships between features, provide a
promising alternative [8]. Through message passing, GNNs propagate information between connected
nodes, capturing interactions between comorbidities and other components of EHR data [14], while
temporal edge aggregation encodes the timing between diagnoses [15, 16]. While GNNs have
previously been used to model temporal dependencies in EHR data [17], their use for risk prediction
based on comorbidity trajectories in dementia remains unexplored.

3 Methods

3.1 Data & cohort selection

Data source All analyses were conducted using data from the UK Biobank, an ongoing study of
more than 500,000 people living in the United Kingdom (UK). Up to 30 years of historical EHR
data is available for each participant, with each diagnosis coded according to the ICD-10 system and
accompanied by the date of diagnosis. Here, diagnosis features represent ICD-10 blocks and not each
individual ICD-10 code.

Cohort selection Dementia and control cohorts were defined as follows: Participants were included
in the dementia cohort if their historical EHR data contained an ICD-10 code beginning with FOO
or G30 (Alzheimer’s disease (AD)), or FO1(Vascular dementia (VD)), corresponding to the two
most common forms of dementia. The control cohort was sex-matched to the dementia cohort, and
included participants with no record of a dementia diagnosis. Excluded codes are listed in Appendix
Al. The final cohort consisted of 9,537 patients. A comparison study using an exact age-sex matched
control cohort was conducted, the results of which are presented in the Appendix.

Features Participants’ medical histories at five years prior to their first dementia diagnosis or index
date, for those in the control cohort, were used in this study. Two features were generated for each
pre-existing condition in a participant’s EHR: a binary feature to indicate presence, and a continuous
measure of the time (in days) between the pre-existing condition’s diagnosis date and the date five
years before a dementia diagnosis. Supplementary figure A2 illustrates the feature selection process.
Additionally, participants’ age, sex, and polygenic risk score (PRS) for AD were included.

3.2 Model architecture & training

Two baseline and three deep learning models were assessed for five-year dementia risk classification.

Baseline To capture the relationship between presence and time features, two tree-based model
architectures were assessed for baseline model training: Random Forests and XGBoost [18, 19].
Hyperparameters were tuned using a Bayesian search with 5-fold cross-validation. Each model
pipeline included a SelectFromModel feature selection step to select the top 25% of features ranked
by importance from the model being optimised.

LLM: BioClinical BERT BioClinical BERT was used to capture the medical context and temporal
relationship between a patient’s diagnoses [20]. A single string was generated for each patient
containing their sex, age, and PRS for AD followed by each diagnosis block and the corresponding
time since they were diagnosed, e.g. "sex: male, age: 65, polygenic risk score: 0.125, hernia 6
months ago". Strings were tokenised to the 512-token maximum of BioClinical BERT and fine-tuned
for sequence classification to predict dementia.



Multimodal modelling: BioClinical BERT + MLP Next, we assessed a multimodal classifier
that encoded diagnoses and temporal components with the same text pipeline as the BioClinical
BERT-only approach. Structured data (age, sex, PRS) were modelled separately using a two-layer
Multilayer perceptron (MLP) with ReLU and dropout. The MLP embedding was concatenated with
the BERT [CLS] embedding (i.e. the final hidden state of the classification token), and the resulting
vector was passed to a classification head to produce two logits, one for each class.

GNN architecture Each patient was represented by a complete bipartite star graph (K ) where
the centre patient node was connected to each of the patient’s diagnoses. The features of the centre
node were the patient’s sex, age, and PRS score, and each diagnosis node was only connected to the
centre node. The node features of the diagnosis nodes were initially stored as placeholder vectors, and
true diagnosis feature representations were generated during training using precomputed BioClinical
BERT embeddings (dimension 768) or randomly initialised embeddings (dimension determined
via hyperparameter tuning). Edge attributes were used to model the temporal component of each
diagnosis, consisting of up to three temporal features: years since diagnosis, natural logarithm of days
(log. (1 + z)) which highlights smaller time differences, and temporal decay, calculated by taking the
exponential decay of days with a decay constant of 180 (Equation 3, Appendix). GINEConv (Graph
Isomorphism Network with Edge features) was chosen as the GNN architecture, due to its ability to
directly incorporate edge attributes (e; ;) during training (see Equation 1) [21, 22].
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where x; € R? is the feature vector of node i, A/ (i) denotes the set of neighbours of node ¢, ej; € R
represents the edge features between nodes j and ¢, € is a learnable scalar or fixed hyperparameter, b
is a learnable bias term, hg(-) is a neural network (e.g., an MLP) with parameters ©, and ReLU(+)
is the rectified linear unit activation function. The term m provides normalisation over the

neighbourhood size.

Patient and diagnosis node embeddings were combined to run through two GINE layers. The resulting
GINE embeddings were pooled, either by mean, addition, or max (determined via hyperparameter
tuning), to receive a single graph-level representation. Two alternative classification head designs
were evaluated: (1) a linear layer to map the pooled representation to the output, and (2) an MLP with
a hidden layer, ReLU activation, and dropout, followed by the final output layer for classification of
the two labels.

Training For all models, data was split into training and testing sets at a ratio of 80:20. All
models were evaluated using sensitivity, specificity, F1 score, and area under the receiver operating
characteristic curve (AUCROC). The best overall model was selected using Youden’s J index (2)
[23].

J = Sensitivity + Specificity — 1 )
The three deep learning methods all used weighted Adam for optimisation and cross-entropy as the
loss function. The first two models were trained for up to 20 epochs, whereas the GNN-based models
were trained for up to 50 epochs. In all cases, early stopping was implemented, and validation loss
was monitored to avoid overfitting. Extensive hyperparameter tuning was conducted using Bayesian
optimisation to determine multiple hyperparameter values (listed in Appendix Table A2).

Risk stratification Predictions were stratified into three groups based on their predicted class
probabilities for the best performing baseline and deep learning models. Stratification allows for
focused prediction of those at greater or lesser risk and facilitates streamlined clinical decision-
making. Youden’s J was used to determine the threshold that maximises J-index for the dementia
class. Predictions for the stratified groups were reevaluated.

Explainability SHapley Additive exPlanation (SHAP) values were calculated for the baseline
model, and two GNN explainers, Gradient and Back Propagation Explainer, were used for GNN
explainability [24, 25]. The code was adapted from GraphXAI’s GitHub [26]. The overall sum and
mean of the Explainer importance scores were used to identify the most influential diagnoses for
dementia prediction, and mean absolute SHAP values were determined for baseline model features.



4 Results

A GNN with a linear classification head, using trainable, randomly initialised vectors (GNN+RV)
achieved the best overall performance. The hyperparameters selected during training are in Appendix
Section A4. Performance on all models is outlined in Table AS5. Following risk stratification,
performance on both the XGBoost and GNN+RV models improved, with XGBoost marginally
outperforming GNN+RV on the J-index. Stratification thresholds can be seen in Appendix Table A3.

Table 1: Five-year dementia risk model performance. RV = random initialised diagnosis vectors,
BioClinical = BioClinical BERT initialised diagnosis vectors

Models before risk stratification F1 Sensitivity  Specificity J AUCROC
GNN+MLP+RV 0.709 0.696 0.735 0.428 0.780
GNN+RV 0.716 0.761 0.673 0.434 0.777
GNN+BioClinical 0.709 0.746 0.672 0.415 0.775
GNN+MLP+BioClinical 0.713 0.753 0.673 0.426 0.770
BioClinical BERT pure 0.707 0.726 0.670 0.396 0.767
Multimodal BioClinical BERT+MLP 0.704 0.694 0.714 0.408 0.776
XGBoost 0.708 0.705 0.711 0.416 0.773
Models after risk stratification F1 Sensitivity Specificity J AUCROC
GNN + RV 0.816 0.834 0.758 0.592 0.838
XGBoost 0.810 0.821 0.780 0.601 0.844

Explainability methods were applied to the XGBoost and GNN+RV models. Both GNN Explainers
identified hypertension, arthropathies, and diseases of oesophagus, as the top three most influential
nodes in the risk classification. The Gradient Explainer identified "general symptoms and signs",
"symptoms and signs involving the digestive system and abdomen", and "symptoms, signs and
abnormal clinical and laboratory findings, not elsewhere classified" to be the next most predictive.
Back Propagation Explainer similarly identified these categories and additionally ranked "factors
influencing health status and contact with health services" among the top ten most influential nodes.
Age and PRS had the strongest influence on XGBoost predictions, followed by hypertension presence,
and time since "factors influencing health status and contact with health services" and diabetes
mellitus diagnosis blocks. The full table of importance scores can be found in Appendix Table A6.

5 Discussion

Across models, GNNs achieved the highest predictive performance. In dementia, both the duration
of comorbidities and the interactions between them are key determinants of risk [3], and GNNs are
well-suited to capture both. Here, temporal information was encoded as edge weights, representing co-
morbidity duration, while message passing modelled the combined influence of co-existing diagnoses
on dementia risk [14]. Unlike other deep learning approaches, GNNs also provide explainability, a
critical property for clinical prediction models [26], and can naturally handle non-Euclidean data
structures such as the irregular temporal intervals characteristic of EHR data. This capability enables
more faithful representation of heterogeneous patient trajectories and could support simulation of
alternative risk trajectories through adjustment of comorbidity profiles and/or duration [8].

Our findings show that both GNN and XGBoost models can identify dementia risk up to five
years before diagnosis using only time-course ICD-10 codes, PRS, age, and sex. The consistent
outperformance of GNNs across all metrics likely reflects their ability to model both temporal and
relational dependencies in the data. While the use of only standardised ICD-10 code blocks from the
EHR enhances the transferability of this framework across healthcare systems, future work should
explore adding additional EHR modalities such as medication, laboratory, and surgical procedure
data into the proposed GNN architecture. Taken together, these results demonstrate the potential
of GNN-based models for time-aware, EHR-driven dementia risk prediction and early intervention
planning.
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Al Exclusion criteria

Participants with ICD-10 diagnoses beginning with F02, FO3, F04, FOS5, F06.7, G31, G32, or Q90 were excluded
from both cohorts.

A2 Data & feature selection

5 years

Training data Excluded

Time-course EHR data
Dementia
‘ | ‘ | ‘ Diagnosis

DX1 DX2 DX3 DX4 DX5 DX6 DX7

—L—

DX1_present: 1  DX1_time:6209 DX4_present: 1  DX4_time:883 DX7_present: @  DX7_time:0

Figure Al: Dataset and feature description. Training data comprised all diagnoses recorded a
participant’s EHR more than five years prior to a dementia diagnosis. For control participants, an
index date was assigned to match the diagnosis date of the corresponding dementia case. For each
pre-existing diagnosis, two features were generated: a binary feature indicating the presence or
absence of the diagnosis, and a temporal feature representing the interval between the diagnosis entry
and the five-year pre-dementia time point. DX: Diagnosis.

A2.1 Demographics

Table Al: Demographics: Age reported as mean [min, max].

| Age ‘ Sex
Male: 2400

Control ‘ 70.5 [39.0, 81.0] ‘ Female: 2342
Male: 2433

Dementia | 66.9 [38.0, 80.0] ‘

Female: 2362

A3 Graph Neural Network Architecture

Formula 3 was used to apply a temporal decay to the time since diagnosis. Diagnoses that happened more
recently are assigned a number closer to one.

f(days) = exp (—%) 3)

A4 Hyperparameter tuning search space

The hyperparameter search space values for all models are provided in Table A2. The GNN model with trainable,
randomly initialised vectors had the best overall performance recorded at epoch 14. The optimal hyperparameter
values were as follows: pool: mean, hidden dimension (MLP): 128, learning rate for trainable embeddings:
0.00016, random initialised embedding dimension: 96, dropout: 0.474, learning rate: 0.00016, weight decay:
0.00016. The hyperparameters for the best performing XGBoost model were: minimum child rate: 1, gamma:
4.999, subsample ratio: 1.0, column subsampling ratio: 0.4 and maximum depth: 10.

AS Stratification thresholds

The thresholds for the stratification of the best performing model (GNN+RV) and the XGBoost can be seen in
A3. These were determined using Youden’s J index (Equation 2), which provides a balance between sensitivity
and specificity.



Table A2: Hyperparameter search space

Hyperparameter Search space Applicable models

Learning rate log-uniform [3 x 1075, 3 x 1073]  All neural models

Trainable embeddings [True, False] All GNN-based models
Learning rate for trainable embeddings log-uniform [3 x 1074, 3 x 1073]  GNN models (trainable emb.)
Random initialised embeddings dimension  [96, 128, 192, 256] GNN models (random. emb.)
Batch size {8,16, 32} All neural models

Dropout uniform [0.0, 0.5] BERT/MLP heads

Hidden dim (MLP) {32,64,96,128} MLP components

Weight decay log-uniform [1 x 1076, 1 x 1073]  All neural models

Pooling method [mean, add, max] All GNN-based models

Min child weight {1,2,...,10} XGBoost

gamma log-uniform [0.1, 5] XGBoost

Subsample ratio uniform [0.4, 1.0] XGBoost

Column subsampling ratio uniform [0.4, 1.0] XGBoost

Max depth {3,4,...,10} XGBoost

RV: randomly initialised diagnosis vectors

Table A3: The threshold values for the stratification method, determined using Youden’s J index.
Model | Green (Control) | Amber (Uncertain) | Red (Dementia)

GNN+RV [0, 0.305) [0.305, 0.697) [0.697, 1]
XGBoost [0, 0.315) [0.315,0.731) [0.731, 1]

A6 GNN Explainers

Gradient Explainer uses backpropagation to calculate importance scores. The explainer uses the magnitude of a
node’s final derivative to assign importance. The larger the magnitude, the more important the node, due to the
removal of the node having a larger impact on the predictions [25].

BackProp Explainer follows the same approach as Gradient Explainer, but differs by not considering negative
gradients, regarding them as noise [25]. Consequently, BackProp Explainer only focuses on nodes contributing
in a positive manner to predictions.

A7 Fairness analysis

The performance of each model was assessed across sexes to investigate any key differences in model fairness.
Metrics are outlined in Table A4.

Table A4: Five-year dementia risk predictive model performance, by sex
Model Sex F1 Sensitivity Specificity AUCROC

XGBoost F  0.699 0.688 0.711 0.773
M  0.709 0.704 0.714 0.770
GNN+RV F  0.702 0.761 0.671 0.777
M  0.702 0.761 0.671 0.777

A8 Explainability results

Table A6 provides the numerical results for the different explainability methods. The GNN Explainers are
evaluated using both the overall sum of importance for a node and the mean, providing an overview of the
influence at both a global (sum across all occurrences) and per-occurrence (mean) level.



A9 Exact age-matched cohort results

Table A5: Five-year dementia risk model performance on age-sex matched cohort. RV = random
initialised diagnosis vectors, BioClinical = BioClinical BERT initialised diagnosis vectors

Models before risk stratification F1 Sensitivity  Specificity J AUCROC
GNN+MLP+BioClinical 0.655 0.689 0.623 0.312 0.710
XGBoost 0.636 0.593 0.737 0.330 0.721
Models after risk stratification F1 Sensitivity Specificity J AUCROC
GNN+MLP+BioClinical 0.660 0.617 0.767 0.384 0.731
XGBoost 0.703 0.647 0.815 0.462 0.763

A10 Implementation Details

The models were run with Python 3.11.13. The following packages were used: Pandas (v. 2.3.1), NumPy (v.
1.26.4), PyTorch (v. 2.7.0), PyTorch Geometric (v. 2.6.1), transformers (v. 4.54.1) and scikit learn (v. 1.7.1).
The deep learning models were run on one NVIDIA A100 80 GB GPU. Weights & Biases (WandB) was used to
perform hyperparameter tuning.
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Table A6: Explainability results. RV = randomly initialised vectors

Gradient Explainer applied to GNN+RV

Top 5 features Sum of scores Mean of scores
Hypertensive diseases 147.626 0.214
Arthropathies 113.739 0.228
Diseases of oesophagus, stomach and duo- 78.090 0.174
denum

General symptoms and signs 67.089 0.200
Symptoms, signs and abnormal clinical and 53.574 0.147

laboratory findings, not elsewhere classified

Guided Backpropagation Explainer applied to GNN+RV

Top 5 features Sum of scores Mean of scores

Hypertensive diseases 74.295 0.108

Arthropathies 71.554 0.144

Diseases of oesophagus, stomach and duo- 40.193 0.090

denum

Factors influencing health status and con- 33.037 0.774

tact with health services

General symptoms and signs 32.244 0.096
Mean absolute SHAP values for XGBoost

Top 7 features SHAP

PRS 0.547

Age 0.470

Hypertensive diseases: present 0.090

Factors influencing health status and con- 0.088

tact with health services: time

Diabetes mellitus: time 0.059

Diabetes mellitus: present 0.047

Disorders of lens: present 0.045




