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ABSTRACT

Vision Foundation Models (VFMs) have shown remarkable potential in image
forensics, yet their content-driven representations often suppress the subtle foren-
sic cues essential for manipulation localization, thereby exhibiting an inherent
representation conflict. Conventional full fine-tuning struggles to address this con-
flict, as it demands extensive parameter updates, risks overfitting, and erodes prior
knowledge, leading to poor generalization in diverse forgery detection scenarios.
We propose In-Context Alignment (ICA), a parameter-efficient framework that
reframes forgery localization as a visual in-context learning task. ICA introduces
two complementary prompting mechanisms within frozen VFMs: a Physical-
Aware Prompter (PAP) that enhances suppressed low-level forensic signals such
as noise and frequency artifacts via a Mixture-of-Experts for adaptive fusion, and
a Semantic-Aware Prompter (SAP) that encourages the model to expose semantic
inconsistencies in high-level features. With only a small fraction of parameters
updated, ICA achieves strong performance across diverse image forgery localiza-
tion benchmarks and can even compete with fully fine-tuned models. Our results
demonstrate that in-context alignment of semantic and forensic representations
offers a scalable, robust, and efficient paradigm for advancing visual forensics.

1 INTRODUCTION

The rapid advancement of deep generative models, such as GANs Zhu et al. (2025) and Diffusion
Models (DDPMs) He et al. (2025), has revolutionized image manipulation, enabling high-fidelity
alterations to visual content that challenge the authenticity of digital media. These manipulations,
including splicing (merging elements from different images), copy-move (duplicating and reposi-
tioning parts within an image), inpainting (contextually filling missing regions), and emerging AI-
driven techniques (Figure 1(a)), leave subtle forensic cues, such as physical inconsistencies (e.g.,
noise disruptions) or semantic dissonances (e.g., irrational object), that are critical for distinguish-
ing tampered from authentic regions, necessitating advanced methods to uncover such traces.

While Vision Foundation Models (VFMs) Siméoni et al. (2025); Kirillov et al. (2023); Xie et al.
(2021), pre-trained on massive datasets, excel in semantic understanding, their content-prioritized
representations often suppress the low-level cues essential for analyzing manipulated images, result-
ing in an inherent representation conflict. Existing Image Forgery Localization (IFL) methods Cui
et al. (2025); Zhu et al. (2024); Guillaro et al. (2023), which rely on specialized architectures to
target specific tampering artifacts or optimize feature encoding and fusion process (Figure 1(a)),
struggle to leverage VFMs’ capabilities effectively. Conventional full fine-tuning of VFMs is inef-
ficient, requiring extensive computational resources, risking catastrophic forgetting of generalizable
features, and limiting robustness to novel manipulations under data scarcity. Efforts to address data
limitations using large private datasets Guo et al. (2024); Guillaro et al. (2023) are often hindered by
inconsistent annotations and limited diversity in real-world post-processing, underscoring the need
for a parameter-efficient adaptation paradigm to align semantic and forensic representations.

Addressing these limitations requires a paradigm shift toward efficient VFM alignment, which forms
the core motivation of this work: resolving the fundamental machine learning challenge of adapting
large-scale VFMs to forgery-sensitive downstream tasks without eroding their general capabilities.
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We formalize this intuition as the Representation Conflict Hypothesis: VFMs’ pre-trained map-
ping fθ(·) (with parameters θ) projects inputs x into a content-oriented representation space Rpre

, while ideal forgery detection requires a forgery-sensitive space Rforg . The conflict is quanti-
fied as the expected divergence: C = Ex∼X [∆(fθ(x), fforg(x))], where ∆ is a distance metric
(e.g., ℓ2-norm), and fforg(·) is the oracle forgery detector. This hypothesis extends concepts from
transfer learning, where pre-trained representations often require careful adaptation to tasks with
conflicting objectives. Full fine-tuning minimizes C by optimizing all θ to θ′ via a surrogate loss:
θ′ = argminθ′ Ex,y[L(fθ′(x), y)] ≈ C, assuming L (the task-specific loss) aligns with the diver-
gence. However, under PAC learning theory Haussler & Warmuth (2018), its generalization error

bound is loose: O
(√

|θ|
n

)
, where n is the sample size. For VFMs with massive |θ| (e.g., billions),

this necessitates vast data to converge, increasing risks of overfitting and catastrophic forgetting,
where θ′ discards valuable priors encoded in θ.

Our objective is a minimal-intervention paradigm that seeks a lightweight prompt function g(ϕ;x)
(with |ϕ| ≪ |θ|) to inject forgery-relevant context into the model, yielding aligned representations

fθ(x ⊕ g(ϕ;x)) that approximate fforg(x). This yields a tighter bound: O
(√

|ϕ|
n

)
, theoretically

justifying prompt learning’s data efficiency and robustness. Here we further decompose C into two
approximately orthogonal components, assuming weak correlation between low-level signals and
high-level semantics. The physical component Cphysical represents the suppression of low-level
cues such as noise inconsistencies, whereas the semantic component Csemantic reflects high-level
plausibility biases such as semantic dissonances.
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Figure 1: Comparison of tuning paradigms. (a) Existing
methods fully fine-tune models to capture limited forgery
cues, incurring high computational costs and knowledge
loss. (b) ICA enables parameter-efficient tuning by inject-
ing dual-stream physical and semantic prompts into VFMs,
preserving prior knowledge and enhancing robustness.

To this end, we propose In-Context
Alignment (ICA), a parameter-
efficient paradigm that reframes
forgery localization as a visual in-
context learning task. Instead of
modifying the backbone, ICA intro-
duces two complementary prompting
mechanisms into frozen VFMs with-
out altering θ (Figure 1(b)). The
Physical-Aware Prompter (PAP) ex-
plicitly amplifies suppressed forensic
cues, such as noise and frequency
inconsistencies, and employs a
Mixture-of-Experts design to inte-
grate cues adaptively, minimizing
Cphysical. Complementarily, the
Semantic-Aware Prompter (SAP)
implicitly guides the model to reveal
semantic implausibilities embedded
within high-level representations,
where semantic prompts are decom-
posed into instance-specific and universal cues, minimizing Csemantic. By injecting these prompts
into intermediate layers, ICA aligns forensic evidence with semantic understanding, thus resolving
the representation conflict while reducing data dependency and retaining prior knowledge of VFMs.

Extensive experiments across diverse public benchmarks show that ICA achieves strong perfor-
mance while tuning only a small fraction of parameters. Without resorting to large-scale fine-tuning
or synthetic data, ICA consistently improves robustness against a wide range of manipulations, es-
tablishing a new paradigm for efficient and scalable visual forensics. Our contributions are fourfold:

• We introduce the representation conflict hypothesis for applying VFMs to forgery local-
ization, and decompose it into physical and semantic sub-conflicts, providing a principled
theoretical lens for understanding why traditional fine-tuning is inefficient.

• We propose In-Context Alignment (ICA), a parameter-efficient framework that integrates
a Physical-Aware Prompter and a Semantic-Aware Prompter into frozen VFMs, enabling
minimal-intervention alignment of semantic and forensic cues via in-context prompting.
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• ICA demonstrates how dual prompting can mitigate semantic-forensic mismatch, revealing
the complementarity of explicit physical amplification and implicit semantic guidance.

• Extensive experiments on multiple public benchmarks confirm that ICA achieves efficient
adaptation and strong generalization to diverse manipulation types, all while tuning only a
small fraction of parameters.

2 RELATED WORKS

2.1 IMAGE FORGERY LOCALIZATION

Recent progress in image forgery localization (IFL) has largely been driven by the design of spe-
cialized deep architectures to capture manipulation artifacts. CNN-based approaches Huang et al.
(2025); Cui et al. (2025); Zhu et al. (2024); Dong et al. (2022) typically focus on modeling local
anomalies such as texture inconsistencies, boundary discontinuities, and noise residuals. For in-
stance, MVSS-Net Dong et al. (2022) integrates an edge-supervised branch with a noise-sensitive
branch to detect forgery edges and residual noise, showing the benefit of multi-branch forensic
cues. While effective, these CNN-based methods are inherently limited by local receptive fields and
often fail to capture long-range structural dependencies. To address this, Transformer-based solu-
tions Zeng et al. (2024); Wang et al. (2022); Lou et al. (2024); Ma et al. (2023); Kong et al. (2025);
Hao et al. (2021) have recently emerged, leveraging global self-attention to model long-range pixel
relationships. For example, IML-ViT Ma et al. (2023) fully fine-tunes a pre-trained Vision Trans-
former for IFL, demonstrating the promise of large-scale pre-training in forensic scenarios. Never-
theless, such approaches frequently require heavy backbone modification or full fine-tuning, which
not only incurs high computational costs but also risks catastrophic forgetting of upstream priors.
Moreover, their reliance on curated or synthetic datasets limits robustness when facing diverse, real-
world forgeries. In contrast, our work proposes a parameter-efficient paradigm that resolves the
representation conflict between content-oriented VFMs and forgery-sensitive forensic tasks. Instead
of redesigning or fully tuning the backbone, we introduce In-Context Alignment (ICA), which in-
jects dual prompts into frozen VFMs, to preserve semantic priors and enhance generalization.

2.2 VISUAL PROMPT LEARNING

Prompt learning Zhang et al. (2025); Shao et al. (2025) has emerged as an efficient strategy to
adapt large pre-trained models by training only a small set of learnable parameters. VPT Jia et al.
(2022) prepends task-specific prompt tokens to the input sequence of a frozen Transformer, while
EVP Liu et al. (2023a) incorporates frequency-domain prompts into intermediate layers to enhance
foreground segmentation. In the forensic domain, CLIP-IFDL Li et al. (2024a) extends CLIP with
a noise-aware adapter to improve manipulation detection. These approaches highlight the poten-
tial of prompts as lightweight adapters, yet most methods focus on either semantic or noise cues in
isolation, leaving the diversity of forgery traces underexplored. Our approach differs in two key as-
pects. First, we explicitly decompose forgery cues into physical (e.g., noise, frequency) and semantic
(e.g., contextual plausibility) components. Second, we introduce a dual prompting mechanism, the
Physical-Aware Prompter (PAP) and the Semantic-Aware Prompter (SAP), that jointly address both
perspectives. This design offers a more comprehensive and robust approach to forgery localization,
while maintaining the parameter efficiency and generalization benefits of prompt-based learning.

3 METHODOLOGY

3.1 MOTIVATION AND PROBLEM FORMULATION

The unparalleled efficacy of VFMs stems from their large-scale pre-training, which produces
content-prioritized representations highly effective for semantic tasks. However, this optimization
induces a systematic bias that is fundamentally misaligned with forgery-sensitive tasks such as im-
age forgery localization (IFL). This misalignment is termed the representation conflict, which mani-
fests as two complementary biases: Physical Suppression Bias, where low-level forensic cues (e.g.,
sensor noise, compression artifacts, frequency inconsistencies) are marginalized as nuisances dur-
ing pre-training, creating a modality gap between RGB-focused features and forensically relevant
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domains, and Semantic Overconfidence Bias, where pretrained models enforce global coherence,
often explaining away localized inconsistencies as natural variations, leading to a semantic gap that
conceals subtle manipulation artifacts. Formally, let Rpre denote the pretrained VFM represen-
tation space and Rforg the desired forgery-sensitive space. The conflict can be expressed as the
divergence:

C = Ex∼X [∥fpre(x)− fforg(x)∥2] , (1)

where fpre and fforg are the pretrained and oracle forgery-sensitive mappings, respectively, and X
is the data distribution. This C can be decomposed as C ≈ Cphysical + Csemantic, where Cphysical
quantifies the modality gap and Csemantic the semantic gap. Conventional full fine-tuning minimizes
C by updating all parameters, but this approach is computationally expensive, prone to catastrophic
forgetting (with generalization bounds O(

√
|θ|/n), where |θ| is the number of parameters and n

the sample size), and sample-inefficient. The core problem is the inefficiency in resolving C with-
out disrupting valuable priors. Our objective is to design a parameter-efficient strategy that learns
minimal, input-aware perturbations, implemented as prompts, to align Rpre with Rforg while pre-
serving priors. This reformulates IFL as a visual in-context alignment problem, where prompts serve
as lightweight interventions to minimize:

argmin
ϕ

Ex [∥fpre(x⊕ g(ϕ;x))− fforg(x)∥2] + λΩ(ϕ), (2)

with generalization bounds O(
√

|ϕ|/n), where |ϕ| ≪ |θ|, ensuring data efficiency and robustness.
Ω(ϕ) regularizes prompt complexity to prevent overfitting and ensure minimal changes.

Decomposing the objective naturally leads to dual-stream solutions: specialized prompts for each
sub-conflict, integrated to handle diverse forgeries. Consequently, we instantiate this formulation
through the In-Context Alignment framework, where the prompt function g(ϕ;x) is realized via two
complementary prompters with a small parameter set ϕ that enables parameter-efficient adaptation.

3.2 OVERVIEW

Our approach, termed In-Context Alignment (ICA), achieves this goal through dual-awareness
prompting mechanisms. As illustrated in Figure 2, ICA incorporates two complementary mod-
ules to resolve the decomposed conflict: the Physical-Aware Prompter (PAP), which bridges the
modality gap by enhancing sensitivity to low-level forensic cues via a Mixture-of-Experts design
for adaptive fusion, minimizing Cphysical, and the Semantic-Aware Prompter (SAP), which acts as
a contextual probe to expose semantic implausibilities, minimizing Csemantic. By integrating these
modules into a frozen VFM backbone, ICA preserves pretrained knowledge while aligning forensic
and semantic evidence for robust forgery localization with minimal parameter cost. This paradigm
not only mitigates the representation conflict but also extends to broader forgery detection tasks.

3.3 PRELIMINARIES

Vision Foundation Models (VFMs), such as Vision Transformer (ViT) Dosovitskiy et al. (2021);
Li et al. (2022); Oquab et al. (2023) and SegFormer Xie et al. (2021), are pre-trained on large-scale
vision tasks and consist of an encoder backbone for feature extraction and a decoder for task-specific
outputs. Given a manipulated image I ∈ RH×W×3, the encoder splits it into M patches {Ii}Mi=1,
projecting them into d-dimensional tokens {ti0 ∈ Rd}Mi=1. These tokens form the initial embedding
x0 ∈ RM×d. The embedding is processed through N transformer layers via xi = Li(xi−1). In
ICA, our objective is to adapts VFMs for forgery localization by constructing a model T̂ = {T,P},
where T is the frozen VFM backbone (with parameters θ) and P is a small set of trainable prompts
parameterized by ϕ (|ϕ| ≪ |θ|). By injecting P into the input sequence using the hybrid operator ⊕,
ICA refines token embeddings to detect manipulated regions while retaining pretrained priors.

3.4 IN-CONTEXT ALIGNMENT FOR IFL

In-Context Alignment (ICA) addresses representation conflicts in VFMs for image forgery local-
ization (IFL) through a dual-stream prompting framework, as shown in Figure 2. By decomposing
the conflict space C into physical (Cphysical) and semantic (Csemantic) components, ICA integrates two
complementary modules: the Physical-Aware Prompter (PAP) and the Semantic-Aware Prompter

4
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Figure 2: In-Context Alignment (ICA) pipeline for image forgery localization. ICA refines a frozen
Vision Foundation Model by injecting lightweight Physical-Aware Prompter (PAP) and Semantic-
Aware Prompter (SAP) prompts into the input sequence of transformer layers. PAP amplifies low-
level forensic cues (e.g., noise inconsistencies) using a Mixture-of-Experts fusion mechanism, while
SAP captures high-level semantic inconsistencies through contextual guidance.

(SAP). These prompters collectively form the lightweight prompt function g(ϕ;x), where ϕ de-
notes minimal trainable parameters (|ϕ| ≪ |θ|, with θ representing the VFM’s parameters), en-
suring parameter efficiency while preserving priors. The prompts refine token embeddings in the
frozen VFM to bridge physical and semantic gaps. Specifically, the PAP enhances low-level foren-
sic cues (e.g., noise inconsistencies) suppressed by VFMs’ content-prioritized representations. It
generates physical prompts PP = {P i−1

P }Ni=1, where P i−1
P is the prompt for the input to the i-

th encoder layer, and N is the number of transformer layers. We then perform additive injection
where these prompts are added to the input sequence, shifting representations toward a forensic-
sensitive subspace and minimizing Cphysical by amplifying forgery-sensitive signals. Conversely,
the SAP addresses high-level semantic implausibilities by providing contextual guidance. It pro-
duces semantic prompts PS = {P i−1

S }Ni=1, which are concatenated to the input sequence, enabling
self-attention to capture semantic inconsistencies and minimize Csemantic. To instantiate the abstract
prompt injection x ⊕ g(ϕ;x) from the optimization objective, the layer-wise input is defined as
xi = [xi−1+P i−1

P , P i−1
S ] = xi−1⊕g(ϕ;x), where ϕ = {ϕP , ϕS} denotes the trainable parameters

for prompt generation. The hybrid operator ⊕ combines addition (+) for physical modulation (e.g.,
adjusting features) and concatenation ([·, ·]) for semantic extension (e.g., incorporating contextual in-
formation). The enhanced input xi is processed by the i-th transformer layer to yield xi+1 = Li(xi).
After processing through all N layers, the output embeddings are fed into a lightweight mask de-
coder to predict the forgery mask Y . By integrating PAP and SAP, ICA aligns low-level forensic
cues with high-level semantic reasoning, resolving representation conflicts with minimal parameter
overhead, as the small |ϕ| ensures efficiency while preserving VFM prior knowledge.

3.5 PHYSICAL-AWARE PROMPTER (PAP)

The Physical-Aware Prompter (PAP) mitigates the suppression of low-level forensic cues (e.g., noise
or frequency artifacts) in VFMs, which contributes to the physical conflict space Cphysical. As shown
in the PAP component of Figure 2, PAP generates input-adaptive prompts to amplify these cues,
minimizing the modality gap. It integrates three specialized experts: Noise-Aware Expert, Embed-
ding Expert, and Frequency-Aware Expert, whose outputs are combined via a Mixture-of-Experts
(MoE) mechanism to ensure robustness across diverse forgery patterns.
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Noise-Aware Expert. To extract noise-related forensic cues, we first apply specialized filters to
the input image I ∈ RH×W×3: BayarConv Bayar & Stamm (2018) adaptively learns manipulation
traces, SRMConv Fridrich & Kodovsky (2012) detects structural edges and textures resilient to com-
pression, and the Sobel filter captures strong boundaries. These filters yield noise-aware features:

Fnoi = Concat([Fbayar(I), Fsrm(I), Fsobel(I)]), (3)
Next, we adopt a patch embedding strategy Xie et al. (2021) that leverages a convolutional layer to
enable robust token extraction. Fnoi is partitioned into M patches matching the VFM backbone’s
patch size and projected into a c-dimensional space via a tunable linear layer (Tune Layer), yielding
F ′
noi ∈ RM×c, where c = d/r and r is a scale factor controlling parameter efficiency. To ensure

effective adaptation across all layers, we introduce a Prompt Adjustment (PA) Layer consisting of
two lightweight MLPs with GELU activation. The first MLP layer learns distinct prompts for each
PA layer, while the second layer, MLPs, is a shared up-projection layer across all PA layers to
match the backbone feature dimensions. Each PA layer uses F ′

noi to derive the noise-aware prompt:
Pnoi = MLPs(GELU(MLP (F ′

noi))) ∈ RM×d, (4)

Embedding Expert. To enhance the frozen patch embeddings of the VFM, we adapt the initial
embedding x0 ∈ RM×d derived from I . A Tune Layer projects x0 into a lower-dimensional space,
producing Femb ∈ RM×c, where c = d/r. This feature is then processed by a PA Layer identical to
that in the Noise-Aware Expert, generating the tuned and adapted embedding prompt as follows:

Pemb = MLPs(GELU(MLP (Femb))) ∈ RM×d, (5)
This prompt refines the VFM’s content-prioritized embeddings to capture subtle manipulation traces,
enhancing forgery sensitivity without altering the frozen backbone.

Frequency-Aware Expert. While many frequency-based methods rely on direct frequency ex-
traction, which often leads to overfitting to specific training data, our approach introduces a novel
frequency-space learning method that enhances forgery traces through selective modulation of fre-
quency components. First, the image tokens x0 ∈ RM×d are derived and transformed into the
frequency domain using the Fast Fourier Transform (FFT ) as:

Ffre = Fam + Fph · j = FFT (x0), (6)
where Fam and Fph are the amplitude and phase spectra, respectively and j is the imaginary unit.
Linear layers recalibrate each spectrum to amplify forgery-relevant frequencies as follows:

F ′
am = Fam · σ(Linearam(Fam)), F ′

ph = Fph · σ(Linearph(Fph)), (7)
where σ(·) is the Sigmoid function. The recalibrated spectra are converted back to the feature space
via the inverse FFT (IFFT ), producing enhanced embeddings F ′

fre as follows:

F ′
fre = IFFT (F ′

am + F ′
ph · j), (8)

The enhanced F ′
fre is subsequently projected into a c-dimensional feature space through a Tune

Layer, resulting in F ′′
fre ∈ RM×c. Similar to the PA layer used in the Noise-Aware Expert, F ′′

fre is
processed through a PA layer to generate the frequency-aware prompt defined as:

Pfre = MLPs(GELU(MLP (F ′′
fre))) ∈ RM×d, (9)

Mixture-of-Experts Fusion. To adaptively integrate the noise-aware (Pnoi), embedding (Pemb),
and frequency-aware (Pfre) prompts, PAP employs a Mixture-of-Experts (MoE) design with a
parameter-free cosine router that performs lightweight, input-aware reweighting. Given the layer
input xi−1 and expert prompts {Pk}Kk=1 (K = 3), we compute cosine similarities as:

sk(xi−1) =
〈 xi−1

∥xi−1∥ ,
Pk

∥Pk∥
〉
, wk(xi−1) = Softmax

(
sk(xi−1)

τ

)
, (10)

where τ is a temperature. We then form hybrid expert weights by a convex interpolation between
learnable coefficients αk and the cosine router weights, controlled by a factor β (set to 0.5) as:

α̃k(xi−1) = (1− β)αk + β wk(xi−1), (11)
Finally, the fused physical prompt can be obtained as:

P i−1
P =

K∑
k=1

α̃k(xi−1)Pk, Pk ∈ {Pnoi, Pemb, Pfre}. (12)

Overall, the final PP is produced by an adaptive fusion over multiple experts, enabling effective
integration of multi-view forensic cues and yielding robust generalization to diverse forgery types.
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3.6 SEMANTIC-AWARE PROMPTER (SAP)

The Semantic-Aware Prompter (SAP) addresses the semantic overconfidence bias in Vision Foun-
dation Models (VFMs), where pretrained representations enforce global coherence, often masking
localized semantic implausibilities (e.g., illogical object interactions). SAP minimizes Csemantic by
generating contextual prompts that guide the VFM to probe high-level inconsistencies, as shown in
the SAP component of Figure 2. SAP produces two types of prompts: instance-specific prompts
(Pspe) to capture localized forgery cues and general prompts (Pgen) to encode universal forgery
characteristics, forming the complete semantic prompt set PS = {P i−1

S }Ni=1.

Instance-Specific Prompt Generation. To capture localized forgery cues, SAP employs a two-
step process: Feature Extraction and Tuning. In Feature Extraction, the input image I ∈ RH×W×3 is
processed by a multi-branch Inception Module with 1×1, 3×3, 5×5 convolutions and Max-Pooling,
to extract multi-scale local features. These features are fed into a shallow ConvNet with sequential
3×3 stride-2 convolutional layers, progressively doubling the channel dimensions while reducing
spatial resolution. The output is adaptively pooled to a fixed resolution h× w, yielding:

Fconv = Pool(ConvNet(Inception(I))) ∈ Rh×w×c0 , (13)
where c0 is the output channel dimension. In Feature Tuning, Fconv is flattened and projected into a
d-dimensional sequence via a tunable linear layer, aligning with the VFM’s token dimensionality:

Pspe = FeatureTuning(Fconv) ∈ Rn×d, (14)
where n = h × w is the number of spatial tokens. Pspe provides instance-specific forensic cues,
enabling the VFM to detect localized semantic inconsistencies.

General Prompt Generation. To enhance generalization to unseen forgery types, SAP introduces
m learnable tokens as the general prompt Pgen ∈ Rm×d, inspired by Visual Prompt Tuning Jia et al.
(2022). These tokens are randomly initialized and shared across all training images, capturing uni-
versal forgery characteristics. During training, Pgen interacts with image tokens in each transformer
layer via self-attention, learning forgery patterns in a data-driven manner. The complete semantic
prompt is formed by concatenating the instance-specific and general prompts:

P i−1
S = [Pspe, Pgen] ∈ R(n+m)×d, (15)

where the prompts are shared across layers for efficiency. SAP enhances the VFM’s ability to detect
semantic implausibilities, minimizing Csemantic while maintaining parameter efficiency.

3.7 COMPLEXITY AND OPTIMIZATION

The ICA framework introduces minimal additional parameters through PP (PAP) and PS (SAP),
ensuring parameter efficiency. For instance, with a SegFormer-B4 backbone Xie et al. (2021) (64M
parameters), PAP contributes ≈ 0.35M parameters, and SAP contributes ≈ 1.67M parameters,
amounting to only 0.55% and 2.61% of the total model parameters, respectively. Only the prompts
and localization decoder are trainable, while the VFM backbone remains frozen, significantly re-
ducing storage and computational costs. During training, we optimize the prompt parameters and
decoder using binary cross-entropy (BCE) loss, where Y is the predicted mask and Ygt is the GT:

arg min
PP ,PS ,θdecoder

Lbce(Y, Ygt). (16)

To ensure balanced utilization of the three experts in PAP’s Mixture-of-Experts (MoE) fusion, we
introduce a load-balancing loss to encourage a uniform routing distribution:

w̄ =
1

B

B∑
b=1

wb, Lbal =

∥∥∥∥w̄ − 1

K
1

∥∥∥∥2
2

, (17)

where wb ∈ RK (K = 3) is the cosine router’s weight vector for the b-th sample, B is the batch
size, and 1

K1 is the uniform distribution over experts. The total loss combines both terms:
L = Lbce + λLbal. (18)

with λ = 0.1 balancing the contributions. This optimization strategy minimizes the objective intro-
duced in problem formulation by learning the parameters ϕ of the prompt function g(ϕ;x), which is
composed of PP and PS , thereby aligning the pretrained representation space Rpre to the forgery-
sensitive space Rforg, achieving SoTA performance with minimal data and computational demands.
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Table 1: Comparison of SoTA methods on cross-dataset pixel-level localization. Reported metrics
are F1 scores(%)(↑), with best results in bold and quoted results marked by ’*’.

Methods NIST16 Columbia CASIAv1+ IMD COVER DSO-1 DEF-12K In-Wild Korus AVG
Full model training or tuning methods.
FCN Long et al. (2015) 16.70 22.30 44.10 21.00 19.90 6.80 13.00 19.20 12.20 19.50
U-Net Ronneberger et al. (2015) 17.30 15.20 24.90 14.80 10.70 12.40 4.50 17.50 11.70 14.30
DeepLabv3 Chen et al. (2017) 23.70 44.20 42.90 21.60 15.10 16.40 6.80 22.00 12.00 22.70
MFCN* Salloum et al. (2018) 24.30 18.40 34.60 17.00 14.80 15.00 6.70 16.10 11.80 17.60
RRU-Net Bi et al. (2019) 20.00 26.40 29.10 15.90 7.80 8.40 3.30 17.80 9.70 15.40
ManTra-Net Wu et al. (2019) 15.80 45.20 18.70 16.40 23.60 25.50 6.70 31.40 11.00 21.60
HPFCN* Li & Huang (2019) 17.20 11.50 17.30 11.10 10.40 8.20 3.80 12.50 9.70 11.30
H-LSTM* Bappy et al. (2019) 35.70 14.90 15.60 20.20 16.30 14.20 5.90 17.30 14.30 17.20
SPAN Hu et al. (2020) 21.10 50.30 14.30 14.50 14.40 8.20 3.60 19.60 8.60 17.20
ViT-B Dosovitskiy et al. (2021) 25.40 21.70 28.20 15.40 14.20 16.90 6.20 20.80 17.60 18.50
Swin-ViT Liu et al. (2021) 22.00 36.50 39.00 30.00 16.80 18.30 15.70 26.50 13.40 24.20
SegFormer-B4 Xie et al. (2021) 21.80 31.60 41.60 21.60 10.00 15.10 6.40 21.70 10.80 20.10
PSCC-Net Liu et al. (2022) 17.30 50.30 33.50 19.70 22.00 29.50 7.20 30.30 11.40 24.60
MVSS-Net++ Dong et al. (2022) 30.40 66.00 51.30 27.00 48.20 27.10 9.50 29.50 10.20 33.20
CAT-Net Kwon et al. (2022) 10.20 20.60 23.70 25.70 21.00 17.50 20.60 21.70 8.50 18.80
TruFor* Ma et al. (2023) 26.80 82.90 53.20 35.90 28.00 21.30 14.80 36.10 12.20 34.60
MPC* Lou et al. (2024) 29.10 67.60 44.80 48.50 41.00 36.90 22.00 43.30 25.10 39.80
IML-ViT Ma et al. (2023) 33.10 78.00 72.10 32.70 43.50 7.70 21.60 16.70 4.70 34.50
PIM* Kong et al. (2025) 28.00 68.00 56.60 41.90 25.10 25.30 16.70 41.80 23.40 36.30

Parameter-efficient tuning methods.
VPT-Deep Jia et al. (2022) 25.50 47.30 50.40 31.20 8.80 1.90 17.10 19.30 11.00 23.60
AdaptFormer Chen et al. (2022) 26.90 78.60 53.30 36.40 22.40 5.80 19.10 27.30 12.10 31.30
EVPv1 Liu et al. (2023a) 29.40 63.80 54.30 35.00 18.20 4.60 16.80 29.10 13.30 29.40
EVPv2 Liu et al. (2023b) 30.50 61.00 55.70 38.00 22.80 15.10 17.10 29.60 16.20 31.80
ICA (Ours) 34.90(+4.4) 81.50(+2.9) 77.60(+21.9) 41.80(+3.8) 33.40(+10.6) 19.20(+4.1) 22.50(+3.4) 33.00(+3.4) 19.40(+3.2) 40.30(+8.5)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. To ensure comprehensive and fair comparisons with existing algorithms, we conduct
experiments utilizing multiple scales of benchmark datasets with various tampering types, encom-
passing both homologous datasets and cross-dataset evaluations. The two types of experiments are
described as follows: In cross-dataset experiments, following previous studies Dong et al. (2022);
Kong et al. (2025); Lou et al. (2024), all models are trained exclusively on the CASIAv2 Dong
et al. (2013) dataset and subsequently test on the 9 additional datasets: CASIAv1+ Dong et al.
(2013), NIST16 Guan et al. (2019), Columbia Hsu & Chang (2006), IMD Novozamsky et al. (2020),
COVER Wen et al. (2016), DSO-1 Carvalho et al. (2015), DEF-12K Mahfoudi et al. (2019), In-
Wild Huh et al. (2018), and Korus Korus & Huang (2016). In homologous dataset experiments,
following Wu et al. (2019); Zhou et al. (2023), our model uses only four benchmark datasets for
training and evaluation as detailed in the Supplementary Material A.

Implementation Details. The ICA framework is implemented on PyTorch, utilizing the AdamW
optimizer Loshchilov & Hutter (2019) with a learning rate of 5×10−4. Training is conducted with a
batch size of 8 and an input crop size of 512×512, using a cosine decay schedule for the learning rate.
The PAP produces PP tokens aligned with the number of image tokens, while the SAP generates
Pspe and Pgen tokens, empirically set to 64 and 10, respectively. A scale factor of r = 4 controls
prompt dimensionality to enhance parameter efficiency. Parameter-efficient tuning methods are built
upon the SegFormer-B4 backbone Xie et al. (2021) with a lightweight MLP-based mask decoder.
Additional experimental results and analysis are provided in the Supplementary Material A.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Cross-dataset Experiments. We conduct a comprehensive cross-dataset evaluation of ICA
against 19 existing full fine-tuning forgery localization methods and segmentation algorithms. In ad-
dition, we also consider comparisons with parameter-efficient tuning-based methods. Table 1 shows
the pixel-level F1 performance of these methods. Despite the 9 testing datasets exhibiting diverse
distributions, ICA achieves the highest average F1 score, which outperforms previous methods and
demonstrates its strong generalization capability across diverse datasets. While some parameter-
efficient methods show reasonable results, ICA consistently performs better across most datasets,
These results highlight ICA’s high localization precision and robustness in real-world applications.

Homologous-dataset Experiments. Following Zhou et al. (2023), we validate the efficacy of our
approach across various datasets, including traditional approaches and deep learning-based models,
many of which utilize pre-training on additional synthetic datasets. To ensure consistent comparison
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Table 2: Homologous-dataset evaluation with
pixel-level AUC scores. AT: Additional Training
Data, CAS.: CASIAv1+, COV.: COVER, NIS.:
NIST, Col.: Columbia.

Methods AT COV. CAS. NIS. Col. IMD AVG
ELA Abd Warif et al. (2015) × 58.3 61.3 42.9 58.1 - -
NOI Mahdian & Saic (2009) × 58.7 61.2 48.7 54.6 - -
CFA Ferrara et al. (2012) × 48.5 52.2 50.1 72.0 - -
J-LSTM Bappy et al. (2017) ✓ 61.4 - 76.4 - - -
ManTra-Net Wu et al. (2019) 64K 81.9 81.7 79.5 82.4 - -
RGB-N Zhou et al. (2018) 42K 81.7 79.5 93.7 85.8 - -
SPAN Hu et al. (2020) 96K 93.7 83.8 96.1 - 75.0 -
ObjectFormer Wang et al. (2022) 62K 95.7 88.2 99.6 - - -
IF-OSN Wu et al. (2022) ✓ 88.3 83.3 76.4 - - -
PSCC-Net Liu et al. (2022) 100K 94.1 87.5 99.1 - 80.6 90.3
MVSS-Net Chen et al. (2021) 60K 82.4 75.3 73.7 72.6 53.8 71.6
MVSS-Net++ Dong et al. (2022) 60K 52.5 77.1 71.5 56.3 88.6 69.2
PCL Zeng et al. (2023) 100K 91.7 75.1 94.6 76.1 82.3 84.0
TruFor Guillaro et al. (2023) ✓ 92.5 95.7 87.7 94.7 - -
HiFiNet Guo et al. (2023) 100K 93.2 85.8 87.0 98.3 82.9 89.4
NGNet Zhu et al. (2024) 60K 94.1 87.2 90.0 98.5 85.2 91.0
NCL Zhou et al. (2023) × 92.8 86.4 91.2 94.3 88.9 90.7
EVPv1 Liu et al. (2023a) × 89.0 89.1 88.5 96.4 86.3 89.8
Adaptformer Chen et al. (2022) × 84.2 89.9 87.1 98.1 83.7 88.6
ICA (Ours) × 98.5 96.9 96.0 99.9 90.2 96.3

Table 3: Robustness analysis under common
post-processing distortions. We report pixel-
level AUC scores (higher is better), including (i)
Resize, scale factor ×), (ii) Gaussian blur with
kernel size k, (iii) additive Gaussian noise with
standard deviation σ, and (iv) JPEG compres-
sion with quality factor q.

Distortion SPAN ObjectFormer NCL Ours
w/o distortion 0.836 0.872 0.912 0.960
Resize(0.78×) 0.832 0.872 0.856 0.936
Resize(0.25×) 0.803 0.863 0.831 0.889
GaussianBlur(k = 3) 0.831 0.860 0.840 0.950
GaussianBlur(k = 15) 0.792 0.803 0.806 0.874
GaussianNoise(σ = 3) 0.752 0.796 0.795 0.818
GaussianNoise(σ = 15) 0.673 0.782 0.714 0.737
JPEGCompress(q = 100) 0.836 0.864 0.843 0.960
JPEGCompress(q = 50) 0.807 0.862 0.819 0.953

Table 4: Ablation study of In-Context Alignment
(ICA) on pixel-level F1 scores (%).

Settings Trainable
Param. (M)

Pixel-level F1 (%)

NIS CAS COV Col AVG

Full-tuning 64.00 24.6 56.6 19.4 34.6 33.8
OnlyDecoder 3.15 19.3 26.3 11.3 19.1 19.0

Decoder + Pemb 3.23 (+0.08) 25.3 54.9 16.9 22.6 29.9
+ Pnoi 3.33 (+0.10) 25.9 52.5 19.9 31.3 32.4
+ Pfreq (PAP) 3.50 (+0.17) 24.8 63.3 26.4 36.8 37.8
+ Pspe 5.06 (+1.56) 28.7 63.6 28.8 43.0 41.0
+ Pgen (PAP + SAP) 5.17 (+0.11) 31.2 67.6 23.7 45.3 41.9
w/o MoE (static weights) 5.17 (+0.00) 29.8 65.5 22.9 43.9 40.5
w/o Lbal 5.17 (+0.00) 30.1 64.8 23.2 44.2 40.6
w/o shared MLP 5.87 (+0.70) 31.4 66.3 26.8 47.9 43.1

Figure 3: Impact of scale factor r on perfor-
mance on CASIAv1+ dataset.

 

with most methods, we report AUC as the global metric, as it is less sensitive to pixel imbalance. As
shown in Table 2, traditional methods yield low AUC scores, while deep models with pre-training
improve performance. Certain designs, like NCL achieve strong results without extra data, showing
the importance of architecture. Our ICA attains the highest average score even without pre-training.

4.3 ROBUSTNESS EVALUATION

We apply different image distortion methods on raw images from the NIST16 dataset and report
AUC scores to evaluate the robustness of our ICA. We include four types of distortions: 1) resizing
images to different scales, 2) applying Gaussian blur with a kernel size k, 3) adding Gaussian noise
with a deviation σ, and 4) applying JPEG compression with a quality factor q. Table 3 shows that
our method exhibits robustness to various distortion operations, outperforming others.

4.4 ABLATION STUDIES

We conduct ablation studies to assess the impact of each key component and its trainable param-
eters, with results detailed in Table 4. It shows that full fine-tuning is inefficient, while adding
tailored prompts progressively boosts performance with minimal parameter overhead. Physical- and
semantic-aware prompts deliver the largest gains, and further analysis confirms that MoE routing
and balanced loss are crucial for stable improvements. Besides, we analyze the impact of the scale
factor r, which controls tunable parameters. As shown in Figure 3, increasing r leads to fewer train-
able parameters. At r = 4, our model achieves an optimal balance between accuracy and efficiency.

5 CONCLUSION

In this paper, we address the representation conflict in VFMs for image forgery localization, where
physical and semantic cues are suppressed, limiting generalization. We propose In-Context Align-
ment, a parameter-efficient framework that resolves this conflict through dual-stream prompting.
The Physical-Aware Prompter adaptively amplifies low-level forensic cues via MoE fusion, while
the Semantic-Aware Prompter audits high-level inconsistencies using specific and general prompts.
With a small fraction of parameters, ICA achieves robust generalization across diverse forgery types.
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the Appendix A. We fix random seeds for all frameworks where applicable and disable nondeter-
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researchers to replicate our results with minimal effort.
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A APPENDIX

This is the supplementary file for our ICA approach and additional experiment results. Contents are
organized as follows:

• More details of datasets. 1

• More details of ICA. 2

• Additional comparative results. 3

• Training data usage and efficiency. 4

• Additional ablation experiments. 5

• Additional qualitative results. 6

• LLM usage statement. 7

A.1 MORE DETAILS OF DATASETS

The disparity in scale, quality, and construction methods of existing public datasets has led to in-
consistencies in the training and evaluation protocols for image forgery localization (IFL) methods.
These inconsistencies hinder fair and meaningful comparisons across different approaches. To ad-
dress this issue, we adhere to two widely recognized and rigorous evaluation protocols:

Protocol-1: Introduced by MVSS-Net Dong et al. (2022), this protocol trains models exclusively on
the CASIAv2 dataset, which consists of 5,123 high-quality tampered images, and directly evaluates
them on other datasets without additional fine-tuning. This protocol serves as a robust measure of
the model’s generalization capabilities.

Protocol-2: Used by methods such as PSCC-Net Liu et al. (2022) and CAT-Net Kwon et al. (2022),
this protocol trains models on a combined, synthesized dataset. This dataset typically includes
CASIAv2 Dong et al. (2013), Fantastic Reality Kniaz et al. (2019), IMD Novozamsky et al. (2020),
tampered COCO Lin et al. (2014), tampered RAISE Dang-Nguyen et al. (2015), and other privately
synthesized datasets. For example, MVSS-Net Dong et al. (2022) and TruFor Guillaro et al. (2023)
are trained on approximately 84,000 and 800,000 synthesized tampered images, respectively.

To overcome these challenges without resorting to large-scale, synthesized pre-training datasets,
we propose leveraging a vision foundation model with a prompting mechanism to effectively ad-
dress IFL tasks. In addition, for localizing tampering in Artificial Intelligence-Generated Content
(AIGC) images, we include the CoCoGlide dataset in our analysis. CoCoGlide, created by Guillaro
et al. (2023), is a diffusion-based dataset comprising 512 images generated from the COCO 2017
validation set using the GLIDE diffusion model. More visualizations are provided in Figure 4.

A.1.1 TRAINING AND TESTING PROTOCOLS

To ensure comprehensive and fair comparisons with existing methods, we implement both cross-
dataset and homologous-dataset evaluation strategies:

1. Cross-Dataset Evaluation (Protocol-1): Following MVSS-Net Dong et al. (2022); Ma
et al. (2023); Kong et al. (2025), we train our model exclusively on the CASIAv2 dataset
and evaluate its performance on nine additional datasets: CASIAv1+ Dong et al. (2013),
NIST16 Guan et al. (2019), Columbia Hsu & Chang (2006), IMD Novozamsky et al.
(2020), COVER Wen et al. (2016), DSO-1 Carvalho et al. (2015), DEF-12K Mahfoudi
et al. (2019), In-Wild Huh et al. (2018), and Korus Korus & Huang (2016). The detailed
information for each dataset can be found in Table 5. This protocol provides a clear bench-
mark for evaluating the generalization capabilities of the model.

2. Homologous-Dataset Evaluation (Protocol-2): Unlike existing methods, which often
rely on extensively synthesized datasets, we limit our training to the benchmark training
splits of four datasets, avoiding any additional synthesized data. This process, referred to as
benchmark training, ensures a fairer comparison by mitigating the influence of synthesized
pre-training. For homologous experiments, following Wu et al. (2019); Zhou et al. (2023),
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Table 5: Detailed information about the selected public datasets. Splicing, Copy-move, Inpainting,
and Others are shortened as Cpmv., Spli., Inpa. and Ot., respectively.

Dataset Type Manipulation Type

Authentic Fake Spli. Cpmv. Inpa. Ot.

CASIAv2 Dong et al. (2013) 7,491 5,063 3,235 1,828 - -

CASIAv1+ Dong et al. (2013) 800 920 459 461 - -
Columbia Hsu & Chang (2006) 183 180 180 - - -

COVER Wen et al. (2016) 100 100 - 100 - -
IMD Novozamsky et al. (2020) 414 2,010 - - - 2,010

NIST16 Guan et al. (2019) - 564 288 68 208 -
DSO-1 Carvalho et al. (2015) 100 100 100 - - -

DEF-12K Mahfoudi et al. (2019) 6,000 6,000 2,000 2,000 2,000 -
In-Wild Huh et al. (2018) - 201 201 - - -

Korus Korus & Huang (2016) 220 220 - - - 220
CoCoGlide Guillaro et al. (2023) - 512 - - - 512

our model uses only four benchmark datasets for training and evaluation without incor-
porating additional synthetic datasets. This benchmark training method only utilizes four
benchmark datasets: CASIA Dong et al. (2013), NIST16 Guan et al. (2019), Columbia Hsu
& Chang (2006), and COVER Wen et al. (2016). The training and testing splits follow the
widely accepted practices in Wu et al. (2019); Zhou et al. (2023). The datasets are divided
into training and testing subsets as described in Zhou et al. (2023); Wu et al. (2019), as
follows:

• NIST16: 414 images for training, 150 for testing.
• Columbia: 130 images for training, 50 for testing.
• COVER: 75 images for training, 25 for testing.
• CASIAv1+: CASIAv2 for training.

To simulate real-world tampering artifacts and visual degradation, following Ma et al. (2024); Dong
et al. (2022); Li et al. (2024b), common data augmentation techniques are applied across all methods,
including flipping, blurring, compression, and various naive manipulations such as copy-moving or
inpainting rectangular areas within a single image implemented using OpenCV.

Evaluation Metric. We evaluate the performance of our model in the task of image forgery lo-
calization, similar to previous works Kong et al. (2025); Zhou et al. (2023); Ma et al. (2024). We
report the Area Under Curve (AUC) and pixel-level F1 score using the fixed 0.5 thresholds. The
average F1 and AUC values of each test dataset are reported as the statistical performance of forgery
localization algorithms.

A.2 MORE DETAILS OF ICA

In this study, we employ two distinct Vision Foundation Model (VFM) architectures to evaluate the
performance of ICA: the single-scale plain Vision Transformer (ViT) Dosovitskiy et al. (2021) and
the hierarchical Vision Transformer (SegFormer) Xie et al. (2021). These architectures were chosen
to explore the effectiveness of our method across both plain and hierarchical transformer-based
designs.

For the plain ViT, we utilize the pre-trained ViT-Base/16 model as the backbone. Since ViT is
originally designed for classification tasks, we replace its decoder with a more suitable one for
our application. Specifically, we adopt the decoder structure from SETR Zheng et al. (2021), which
combines a plain ViT backbone with a progressive upsampling convolutional network as the decoder.
This combination facilitates effective feature decoding for pixel-level prediction tasks.

For the hierarchical architecture, we follow the original SegFormer Xie et al. (2021) design, utilizing
the MiT-B4 backbone. MiT-B4 is a hierarchical transformer backbone with four stages, enabling
multi-scale feature extraction and better handling spatial hierarchies in manipulated images.

Consistent with prior studies Dong et al. (2022); Kong et al. (2025); Zhou et al. (2023), we resize
input images to 512× 512 for both training and inference phases. If the original image dimensions
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Table 6: Comparison of image forgery localization performance across different models and
datasets. The Pixel-level IoU scores (%) (with a fixed threshold: 0.5) are reported. The best scores
are highlighted in bold and quoted results marked by ’*’.

Methods Publication NIST16 Columbia CASIAv1+ IMD COVER DSO-1 DEF-12K In-Wild Korus
AVG
Full model training or tuning methods.
FCN Long et al. (2015) 11.4 17.7 36.7 15.8 11.7 4.3 8.9 14.0 8.9 14.4
U-Net Ronneberger et al. (2015) 12.8 9.7 20.4 10.5 7.2 8.2 3.1 12.1 8.2 10.2
DeepLabv3 Chen et al. (2017) 19.1 35.3 36.1 15.9 10.6 11.2 5.0 16.2 8.4 17.5
MFCN* Salloum et al. (2018) 19.3 12.3 29.1 12.4 10.0 10.3 5.0 11.2 8.3 13.1
RRU-Net Bi et al. (2019) 15.6 19.6 24.4 11.9 5.7 5.7 2.4 13.1 6.8 11.7
ManTra-Net Wu et al. (2019) 9.8 30.1 11.1 9.8 13.9 15.3 3.9 20.1 6.1 13.3
HPFCN* Li & Huang (2019) 12.6 7.6 13.7 7.6 7.0 5.4 2.6 8.4 6.4 7.92
H-LSTM* Bappy et al. (2019) 27.6 9.0 10.1 13.1 10.8 8.4 3.7 10.6 9.4 11.4
SPAN Hu et al. (2020) 15.6 39.0 11.2 10.0 10.5 4.9 2.4 13.2 5.5 12.5
ViT-B Dosovitskiy et al. (2021) 19.7 16.4 23.2 19.2 10.1 12.1 4.5 15.2 13.0 14.8
Swin-ViT Liu et al. (2021) 16.7 29.7 35.6 24.3 12.4 13.2 12.9 21.4 10.3 19.6
SegFormer-B4 Xie et al. (2021) 17.2 24.2 36.5 16.7 7.0 10.4 5.0 16.2 8.2 15.7
PSCC-Net Liu et al. (2022) 10.8 36.0 23.2 12.0 13.0 18.5 4.2 19.3 6.6 16.0
MVSS-Net++ Dong et al. (2022) 23.9 57.3 39.7 20.0 38.4 18.8 7.6 21.9 7.5 26.1
CAT-Net Kwon et al. (2022) 6.2 14.0 16.5 18.3 14.1 11.0 15.2 14.4 4.9 12.7
TruFor* Guillaro et al. (2023) 21.2 78.1 48.1 29.7 21.5 15.9 12.1 30.3 9.5 29.6
MPC* Lou et al. (2024) 23.1 61.7 41.2 40.1 30.2 28.8 17.5 34.9 19.1 33.0
IML-ViT Ma et al. (2023) 25.4 68.7 64.8 35.6 37.2 4.6 24.6 12.7 2.9 30.7
PIM* Kong et al. (2025) 22.5 60.4 51.2 34.0 18.8 19.4 13.3 33.8 18.2 30.2

Parameter-efficient tuning methods.
VPT-Deep Jia et al. (2022) 18.8 35.8 41.8 24.0 5.4 1.1 13.6 14.5 8.3 18.1
AdaptFormer Chen et al. (2022) 20.1 71.1 46.8 29.2 16.2 3.9 15.6 21.3 9.2 25.9
EVPv1 Liu et al. (2023a) 25.7 56.1 48.8 28.9 13.3 3.3 13.9 23.6 10.4 24.9
EVPv2 Liu et al. (2023b) 23.7 51.9 49.7 30.9 16.9 10.7 14.0 23.8 12.6 26.0
ICA (Ours) 28.9 76.5 71.0 35.6 28.5 14.6 19.1 27.8 15.6 35.3

Table 7: Comparison with state-of-the-art parameter-efficient tuning methods on single-scale Plain
ViT (SETR Zheng et al. (2021)). The AUC and F1 scores are reported using both the best and fixed
thresholds, with the highest scores highlighted in bold.

Methods COVER CASIAv1+ NIST16 Columbia
AUC Best F1 Fixed F1 AUC Best F1 Fixed F1 AUC Best F1 Fixed F1 AUC Best F1 Fixed F1

Full-tuning 0.589 0.277 0.070 0.661 0.306 0.111 0.617 0.254 0.095 0.589 0.481 0.082
Only Decoder 0.551 0.263 0.085 0.671 0.340 0.175 0.640 0.258 0.098 0.592 0.477 0.109
VPT-Deep Jia et al. (2022) 0.560 0.259 0.091 0.681 0.338 0.196 0.645 0.256 0.121 0.579 0.475 0.178
AdaptFormer Chen et al. (2022) 0.577 0.273 0.086 0.684 0.339 0.200 0.647 0.276 0.108 0.624 0.498 0.094
EVPv1 Liu et al. (2023a) 0.607 0.279 0.118 0.708 0.350 0.195 0.631 0.261 0.126 0.600 0.485 0.142
EVPv2 Liu et al. (2023b) 0.585 0.276 0.110 0.700 0.339 0.168 0.645 0.266 0.131 0.572 0.468 0.155
ICA (Ours) 0.708 0.350 0.200 0.714 0.364 0.215 0.661 0.297 0.168 0.619 0.502 0.207

differ from this resolution, we uniformly resize them to ensure compatibility. For ablation studies,
we use a lower resolution of 256×256 to improve computational efficiency. Specifically, the single-
scale ViT (SETR) experiments are conducted at this resolution with the following parameter settings
for fair comparisons with parameter-efficient tuning methods: 50 prompt tokens for VPT, a middle
dimension of 24 for AdaptMLP, a scaling factor r = 6 for EVPv1, and r = 32 for EVPv2.

For model initialization, the plain ViT (SETR) experiments utilize the ViT-Base model pre-trained
on the ImageNet21k dataset Deng et al. (2009) and the hierarchical SegFormer experiments use
the MiT-B4 pre-trained on the ImageNet-1k dataset Deng et al. (2009). The localization decoder is
initialized using Xavier initialization to ensure a fair comparison.

A.3 ADDITIONAL COMPARATIVE RESULTS

Tables 6 present the pixel-level localization performance of various SoTA methods on nine unseen
datasets using IoU metrics. The methods are divided into two categories: full model training meth-
ods (upper section) and parameter-efficient tuning methods (lower section). Among the full model
training methods, traditional approaches such as FCN and DeepLabv3 show limited performance,
while more advanced methods like IML-ViT achieve a higher average score (AVG) of 33.0, demon-
strating improved cross-dataset generalization. However, these gains come at the cost of significant
computational resources due to full model retraining or fine-tuning.

For parameter-efficient tuning methods, our proposed ICA outperforms all baselines, achieving the
highest scores on six of nine datasets (NIST16, Columbia, CASIAv1+, IMD, COVER, and DEF-
12K) and an overall AVG of 35.3, significantly surpassing EVPv2 (26.6). Notably, ICA achieves
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Figure 4: Qualitative comparison between our ICA model and eight full-tuning and different prompt-
ing models on seven datasets. The columns, from left to right, present the input images, ground truth
(GT) masks, and the predicted masks generated by ManTra-Net Wu et al. (2019), RRU-Net Bi et al.
(2019), MVSS-Net Dong et al. (2022), TruFor Guillaro et al. (2023), IF-OSN Wu et al. (2022),
VPT Jia et al. (2022), AdaptFormer Chen et al. (2022), EVP Liu et al. (2023a), and our proposed
ICA model. Detailed differences are more discernible upon zooming in.

exceptional scores of 76.5 and 71.0 on the Columbia and CASIAv1+ datasets, respectively, high-
lighting its robustness in diverse forgery localization scenarios. While methods like AdaptFormer
and EVPv2 perform well on individual datasets (e.g., Columbia or CASIAv1+), their inconsistent
performance across other datasets results in lower average scores.

Overall, ICA demonstrates superior cross-dataset performance and stability. Compared to both full
model training and parameter-efficient methods, it strikes an effective balance between efficiency
and accuracy, making it well-suited for forgery localization tasks under computational constraints.

To further enhance our approach, we adopt the plain ViT architecture as the backbone for our vi-
sual feature model (VFM), detailed in Section A.2. Table 7 compares ICA with state-of-the-art
parameter-efficient tuning methods using single-scale Plain ViT (SETR). ICA consistently achieves
the highest AUC and F1 scores under both best and fixed thresholds, demonstrating its robustness
and adaptability even with a simplified backbone like Plain ViT. This performance can be attributed
to the explicit and implicit prompting mechanisms, which integrate knowledge from multiple foren-
sic domains and effectively leverage and transfer the frozen VFM knowledge to efficiently address
forgery localization tasks. Furthermore, the proposed method performs well across different archi-
tectures, including plain ViT and SegFormer, underscoring its generality and effectiveness in various
settings.

Table 8 presents quantitative results to assess the effectiveness of our method in AIGC tampering
localization. CNN-based methods (MVSS-Net) struggle with diverse tampering patterns, achieving
only 15.0% F1. Transformer-based models (IML-ViT) performance (20.1% F1) by modeling global
relationships but remain limited in capturing diverse forgery patterns. In contrast, our ICA strat-
egy significantly outperforms all existing methods, achieving 33.9% F1 and 27.6% IoU, effectively
capturing both low-level forensic traces and high-level semantic inconsistencies and improving gen-
eralization.
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Table 8: Quantitative comparison on AI-generated content detection using the CoCoGlide dataset.
Method MVSS-Net VPT AdaptFormer EVPv1 IML-ViT Ours
Pixel-level F1 (%) 15.0 15.6 17.4 16.2 20.1 33.9
IoU (%) 10.7 10.5 12.3 11.7 15.8 27.6

Table 9: Comparison of models in terms of training data usage, parameter size, computational cost,
and AUC performance. Our ICA achieves state-of-the-art AUC with minimal training data and
competitive efficiency.

Model Training Data (K) Params (M) FLOPs (G) AUC
MVSS-Net 96.60 142.79 327.14 0.716
ObjectFormer - 257.97 402.80 0.884
TruFor 900.25 262.05 519.91 0.927
UnionFormer 832.50 210.63 392.82 0.929
EVP 5.12 64.54 86.77 0.898
Adaptformer 5.12 64.05 85.48 0.886
ICA (Ours) 5.12 67.51 121.28 0.963

A.4 TRAINING DATA USAGE AND EFFICIENCY

Table 9 provides a comparative analysis of various models (MVSS-Net Dong et al. (2022), Object-
Former Wang et al. (2022), TruFor Guillaro et al. (2023), EVP Liu et al. (2023a), UnionFormer Li
et al. (2024b), Adaptformer Chen et al. (2022)) in terms of training data requirements, parameter
size, computational cost (measured in FLOPs), and performance (measured by average AUC across
five datasets). ICA achieves the highest AUC of 0.963, significantly outperforming all baselines
while using only 5.12K training images. In contrast, full model training methods such as TruFor
and UnionFormer require up to 900.25K and 832.50K samples, respectively, while achieving lower
AUCs of 0.927 and 0.929. This underscores ICA’s ability to achieve superior performance with just
0.57% of the training data required by TruFor.

Among parameter-efficient methods, EVPv1 and AdaptFormer have comparable parameter sizes
(64.54M and 64.05M) but achieve lower AUCs (0.898 and 0.886). While ICA has slightly higher
FLOPs (121.28G compared to 86.77G for EVPv1), the AUC improvement of up to 7.2% justifies
the marginal increase in computational cost.

These results demonstrate that ICA achieves an optimal balance of minimal training data usage,
compact model size, and superior accuracy, making it highly suitable for practical forgery localiza-
tion tasks where computational resources and training data are constrained.

A.5 ADDITIONAL ABLATION EXPERIMENTS

To evaluate the contributions of different stages in ICA, we performed ablation studies by varying the
tunable stages within the SegFormer backbone. The SegFormer encoder comprises four hierarchical
stages, each responsible for extracting features at different scales. In our experiments, the inclusion
of tunable prompting at a specific stage is denoted as Stagex, where x corresponds to one or more
stages (e.g., x = 1, 2, 3, 4).

In Table 10, the results reveal that performance improves consistently across datasets as the num-
ber of tunable stages increases, demonstrating the effectiveness of our prompting method. Notably,
the most significant performance gain occurs when transitioning from Stage1,2 to Stage1,2,3, indi-
cating that tuning Stage3 contributes the most to overall improvement. It is important to note that
in SegFormer-B4, the number of transformer blocks in each stage is 3, 8, 27, and 3, respectively.
This observation suggests that the performance of ICA is positively correlated with the number of
prompted transformer blocks, particularly when intermediate stages with a higher number of blocks
(e.g., Stage3) are included in the tuning process.
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Table 10: Ablation studies across different tuning stages of the SegFormer backbone on multiple
datasets. Metrics include trainable parameters and F1 scores.

Tuning Stage Trainable Param. CASIAv1+ COVER Columbia
Stage1 4.84M 0.447 0.157 0.303
Stage1,2 4.91M 0.568 0.155 0.300
Stage1,2,3 6.21M 0.667 0.229 0.437
Stage1,2,3,4 6.90M 0.678 0.236 0.440

Frequency ICAFrozen VFMBayarConv SAPSRMGTForged PredictionSobel

Figure 5: Visualization of diverse features. From left to right: image, GT mask, noise-aware prompts
(SRM, BayarConv, Sobel), frequency-aware prompts, and CAMs of feature maps from frozen VFM,
SAP, and ICA framework, followed by the final prediction.

A.6 ADDITIONAL QUALITATIVE RESULTS

Figure 4 provides a qualitative comparison between our proposed ICA model and eight baseline
models across seven datasets. Each row corresponds to a specific dataset, while columns present
input images, ground truth (GT) masks, and the predicted masks generated by competing methods,
including ManTra-Net Wu et al. (2019), RRU-Net Bi et al. (2019), MVSS-Net Dong et al. (2022),
TruFor Guillaro et al. (2023), IF-OSN Wu et al. (2022), VPT Jia et al. (2022), AdaptFormer Chen
et al. (2022), EVP Liu et al. (2023a), and ICA.

Our ICA model demonstrates superior localization accuracy, particularly in complex scenarios with
subtle or irregular forgery patterns. As shown in Figure 4, the predicted masks produced by ICA are
visually closer to the ground truth, exhibiting finer granularity and better boundary preservation com-
pared to other methods. On the CASIA1 and COVER datasets, ICA effectively highlights tampered
regions with minimal noise, outperforming traditional full-tuning models such as MVSS-Net and
IF-OSN. On datasets with more challenging real-world scenarios, such as In-Wild and IMD, ICA
captures subtle forgery artifacts that other models often fail to detect, as evidenced by its cleaner and
more accurate masks. Furthermore, compared to parameter-efficient models like VPT and Adapt-
Former, ICA generates more detailed and precise predictions, demonstrating its superiority.

Besides, Figure 5 illustrates the noise-aware, frequency-aware features, and prompt-guided
heatmaps in ICA. In Columns 1–6, some images appear natural in RGB view but reveal tampered ar-
tifacts when analyzed in noise or frequency domains. Column 7 presents the heatmap from a frozen
VFM, while Column 8 demonstrates how the model, guided by SAP, focuses on forgery regions.
Column 9 highlights ICA’s ability to locate tampered areas more precisely, leveraging forgery cues
for accurate predictions. More qualitative results are provided in the Supplementary Material.

These qualitative results are consistent with the quantitative metrics, further underscoring the ro-
bustness and effectiveness of ICA in diverse forgery localization tasks.

A.7 LLM USAGE STATEMENT

In accordance with the ICLR policy on the use of large language models (LLMs), we disclose their
role in the preparation of this paper. LLMs (e.g., ChatGPT4o) were employed solely as a general-
purpose writing assistant. Specifically, they were used to polish grammar, improve clarity, and
suggest alternative phrasings for certain sections of the manuscript. All research ideas, methodolog-
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ical designs, experiments, and analyses were entirely conceived and conducted by the authors. The
LLMs did not contribute to research ideation, experimental design.
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