
Asymptotically Stable Quaternion-valued
Hopfield-structured Neural Networks with Periodic

Projection-based Supervised Learning Rules

Tianwei Wang∗
The University of Edinburgh
t.w.wang@outlook.com

Xinhui Ma
University of Hull

xinhui.ma@hull.ac.uk

Wei Pang†

Heriot-Watt University
w.pang@hw.ac.uk

Abstract

Motivated by the geometric advantages of quaternions in representing rotations and
postures, we propose a quaternion-valued supervised learning Hopfield-structured
neural network (QSHNN) with a fully connected structure inspired by the classic
Hopfield neural network (HNN). Starting from a continuous-time dynamical model
of HNNs, we extend the formulation to the quaternionic domain and establish
the existence and uniqueness of fixed points with asymptotic stability. For the
learning rules, we introduce a periodic projection strategy that modifies standard
gradient descent by periodically projecting each 4× 4 block of the weight matrix
onto the closest quaternionic structure in the least-squares sense. This approach
preserves both convergence and quaternionic consistency throughout training.
Benefiting from this rigorous mathematical foundation, the experimental model
implementation achieves high accuracy, fast convergence, and strong reliability
across randomly generated target sets. Moreover, the evolution trajectories of
the QSHNN exhibit well-bounded curvature, i.e., sufficient smoothness, which is
crucial for applications such as control systems or path planning modules in robotic
arms, where joint postures are parameterized by quaternion neurons. Beyond
these application scenarios, the proposed model offers a practical implementation
framework and a general mathematical methodology for designing neural networks
under hypercomplex or non-commutative algebraic structures.

1 Introduction

Hopfield neural network (HNN) could be recognized as the precursor of many fundamental models
[28, 8, 11]. It has a symmetric network topology and recurrent connections, becoming an attractor
model with a dynamical structure, where neurons are activated and interact with each other at a
certain frequency and tend to discrete equilibria. These equilibria and the attracting landscape in
phase space embody the generalization capability of the neural network. We adopt the continuous
time HNN [12] governed by the evolution Eq. (1.1) to expand and rebuild QSHNN in this research.

dvj(t)
dt

= −γvj(t) + µ

n∑
i=1

wjiφ{vi(t)}+ µbj , j = 1, 2, ...n (1.1)

In a more condensed vector form v̇(t) = −γv(t) + µWφ(v) + µb, Vector v represents the list
of the neuron activations vj , matrix W arranges the connection weights wji in matrix-vector
multiplication, vector function φ imposes the activating function, typically hyperbolic tangent
φ(x) = (ex − e−x)/(ex + e−x), to each entry of vector v. b serves as the bias vector and is
significant to the representation ability of the network. Meaning of constant γ, µ in corresponds to the

∗School of Mathematics, t.wang-110@sms.ed.ac.uk
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

parameters of electronic components capacitance and resistor for the circuit implementation of classic
HNN. The stability of HNNs is fundamental to their function as associative memory systems, enabling
the convergence of network states to attractor patterns [12]. Earlier studies have extended HNNs to
quaternion-valued systems, mainly under discrete-time formulations with split activation functions
and fixed-point dynamics [10, 16]. More recently, continuous-time modern HNNs have also been
introduced [24, 1], where the state evolution follows ordinary differential equations. However, these
models remain largely confined to unsupervised paradigms driven by internal energy minimization,
lacking explicit target tracking, structural control, or generalized learning principles.

In contrast, our proposed model departs from this associative memory paradigm of HNN. We
introduce a quaternion-valued supervised Hopfield-structured neural network (QSHNN), formulated
as a continuous-time autonomous dynamical system. The system’s state evolves according to a
quaternionic differential equation, and the network is trained to converge asymptotically to externally
specified targets. The learning rule is derived analytically via Generalized HR (GHR) calculus [36]
and incorporates a projection mechanism to preserve the block-wise quaternion structure of the
weight matrix. GHR calculus has been established and verified as a complete and mature technique
to expand the neural network over the quaternionic domain [22, 38, 37, 5, 23, 30], where the normal
differential formulas are no longer valid because of the non-commutativity of quaternion algebra.
This design guarantees both convergence and structural consistency.

Although early Hopfield-type networks, including their quaternion-valued extensions, often rely on
directly encoding the weight matrix using Hebbian or outer-product formulations, this approach
suffers from several critical limitations. First, such weight constructions inherently lack scalability;
they can only stably store a small number of target states before spurious attractors emerge or
convergence fails [29, 4, 20]. Second, these methods assume all target patterns are fixed and known a
priori, making the network unsuitable for tasks requiring adaptability, generalization, or dynamic
reconfiguration [3, 20]. Third, direct encoding lacks an error-driven optimization mechanism,
preventing the network from refining its behavior in response to task-specific objectives [20, 18].
As a result, while analytically convenient, direct weight specification severely restricts the practical
applicability of Hopfield-type models in real-world control, learning, or representation settings.
Unlike classical or previously proposed quaternion-valued Hopfield neural networks [13, 15, 33], our
model operates under a supervised learning paradigm with continuous quaternion-valued trajectories,
offering smooth, controllable dynamics suitable for robotics, trajectory generation, and feedback
control systems. We position this work not as a generalization of existing QHNNs, but as the
formulation of a new class of quaternionic neural dynamical systems with rigorous theoretical
guarantees and task-driven behavior.

2 Background

Quaternion algebra Quaternion is a hypercomplex number with three imaginary components; we
separate the components into the scalar part s and the vector part v: q = s+xi+yj+zk = [s,v] ∈ H.
The vector part space matches the 3-dimensional Euclidean space R3. The region of quaternions
is denoted by H, where the coefficients associated with the imaginary units are x, y, z ∈ R. The
fundamental arithmetic of imaginary units are i ◦ j = −j ◦ i = k, j ◦ k = −k ◦ j = i, k ◦ i =
−i ◦ k = j, i2 = j2 = k2 = i ◦ j ◦ k = −1.

We denote the multiplication operation of two quaternions q1 and q2 by q1 ◦ q2. To distinguish other
types of multiplication, we neglect the symbol for matrix multiplication and scalar multiplication.
We denote the inner product by v1 · v2, and the cross product by v1 × v2. Consider quaternion
q1 = s1 + x1i+ y1j + z1k and q = s2 + x2i+ y2j + z2k, the plain expansion of multiplication
becomes: q1 ◦ q2 = (s1s2 − x1x2 − y1y2 − z1z2) + (s1x2 + s2x1 + y1z2 − y2z1)i + (s1y2 +
s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k.

Quaternion left multiplication manifold Quaternion multiplication can be represented as real-
valued matrix–vector multiplication over R4 by Eq. 2.1), where each quaternion defines a 4 × 4
real matrix that acts on another quaternion interpreted as a 4-dimensional real vector. Due to
the non-commutative nature of quaternion algebra, there exist two distinct but equivalent matrix
representations: one for left multiplication and one for right multiplication. In this work, we adopt
the left multiplication form consistently, where each quaternion induces a left-linear action on the

2

quaternionic space. This operation is denoted by ◦ between two quaternions with the following form:

q1 ◦ q2 = (s1 + x1i+ y1j + z1k) ◦ (s2 + x2i+ y2j + z2k)

=

s1 −x1 −y1 −z1
x1 s1 −z1 y1
y1 z1 s1 −x1

z1 −y1 x1 s1


s2x2

y2
z2

 =

s2 −x2 −y2 −z2
x2 s2 z2 −y2
y2 −z2 s2 x2

z2 y2 −x2 s2


s1x1

y1
z1

 (2.1)

The collection of all real 4 × 4 matrices corresponding to quaternion left multiplication forms a
smooth 4-dimensional embedded submanifold of R4×4, denoted by L. This submanifold inherits
a natural algebraic structure from H and constitutes a real matrix Lie group under composition
[31, 26]. Specifically, L is isomorphic to the group (H, ◦), and the group operation corresponds
to matrix multiplication within L. Each matrix L(q) ∈ L is uniquely determined by a quaternion
q = s+ xi+ yj + zk, and the map q 7→ L(q) is a group isomorphism. The tangent space at the
identity element L(1) defines the associated Lie algebra, which consists of all real 4× 4 matrices that
can be written as linear combinations of the infinitesimal generators L(i), L(j), L(k).

L(1) = I4, L(i) =

0 1 0 0
− 0 0 0
0 0 0 1
0 0 − 0

 , L(j) =

0 0 1 0
0 0 0 −
− 0 0 0
0 1 0 0

 , L(k) =

0 0 0 1
0 0 1 0
0 − 0 0
− 0 0 0

 . (2.2)

Each element of the quaternion left multiplication manifoldL can be expressed as a linear combination
of four fixed basis matrices corresponding to the canonical quaternion basis {1, i, j,k}. Specifically,
for any quaternion q = s+ xi+ yj + zk ∈ H, its corresponding left multiplication matrix L(q) ∈ L
admits the decomposition: L(q) = sL(1)+xL(i)+y L(j)+z L(k), where L(1), L(i), L(j), L(k)
are fixed real 4× 4 matrices, as shown in Eq. (2.2), representing left multiplication by each of the
basis elements. This decomposition establishes a linear isomorphism between H and subspace L.

And we also define the conjugate of a quaternion by q† = s− xi− yj − zk = [s,−v], the modulus
or length of a quaternion by |q| =

√
q ◦ q† = (s2q + x2

q + y2q + z2q)
1/2, the inverse of a quaternion

by q ◦ q−1 = 1, where q−1 = q†/|q|. It is quite important to mention the geometric meaning and
advantages of quaternion, which is just one of our motivations. There is a compact and intuitive form
to represent 3-dimensional rotation by a quaternion.

Definition 2.1 (Quaternion rotation [34]). Rotating an arbitrary quaternion q = sq + vq by a
quaternion number parameterized by µ = |µ|(cosβ + vµsinβ) is equivalent to computing the
following:

Rµ(q) := µ ◦ q ◦ µ−1 ≡ qµ (2.3)
That is to make the 3-dimensional vector vq rotate by angle β about the axis vµ. When µ is a pure
unit quaternion (i, j,k), this manipulation is also named quaternion involution.
As a non-commutative algebra, quaternion is not compatible with general calculus theory. Hence, an
extension of differential is necessary to utilize the derivative of quaternion as well as the chain rule,
product rule, etc., for the practical purpose of theoretical deduction.

Definition 2.2 (Quaternion (left GHR) derivative [36]). Let q ∈ H and f : D → H, D ⊆ H, then
the left GHR derivatives, with respect to qµ and qµ∗ (µ ̸= 0,µ ∈ H) of a well-defined function f
are defined as:

∂f

∂qµ
=

1

4

(
∂f

∂qa

− ∂f

∂qb

◦ iµ − ∂f

∂qc

◦ jµ − ∂f

∂qd

◦ kµ

)
(2.4)

∂f

∂qµ† =
1

4

(
∂f

∂qa

+
∂f

∂qb

◦ iµ +
∂f

∂qc

◦ jµ +
∂f

∂qd

◦ kµ

)
(2.5)

where ∂f
∂qa

, ∂f
∂qb

, ∂f
∂qc

, and ∂f
∂qd

are the partial derivatives of f with respect to qa, qb, qc, and qd,
respectively, and {1, iµ, jµ, kµ} is an orthogonal basis of H as it has the same rotation factor µ.

Lyapunov stability theory For the unknown solution to the evolution equation, which is of high-
level nonlinearity and may not even exist in analytical form, we adopt Lyapunov theory for the
analysis of stability. There are three different types of stability for a dynamical system that are
in our consideration: Lyapunov stability, quasi-asymptotic stability, and asymptotic stability. The
justification can be drawn from directly using the following Thm. (2.1).

3

Theorem 2.1 (Lyapunov Theorem [27]). Consider the dynamical system of the form ẋ = f(x, t)
with the fixed point at the origin, where f(0, t) ≡ 0. If there exists a positive definite scalar function
V (x, t), also named the Lyapunov energy function, such that the time derivative dV

dt on the flow is
semi-negative definite, as shown in Eq. (2.6), we have the zero solution being Lyapunov stable.

dV (x, t)

dt
=

∂V

∂t
+

∂V

∂x
f(x, t) ≤ 0 (2.6)

Further, if the time derivative on the flow is strictly negative definite, then we have that the fixed point
is asymptotically stable. The critical step in applying this theorem is to find a suitable energy function.

3 Methodology

Structure of quaternion neuron To allow quaternion numbers to operate on the neural network,
we integrate four real-valued neurons as a quaternion neuron and impose specific internal evolution
regulations, as shown in Fig. (1). A single neuron contains four normal Hopfield neurons, each of
them represents a division component of a quaternion. Input vector will be qinput and output vector
will be qout. With a unit time delay, the output value loops into the neuron and is weighted, then
activates the linked neuron by a function φ. Every connection is allocated a weight wij , and four
weights are integrated as a quaternion weight ω.

Figure 1: Structure of quaternion neuron and its interfaces.
Four real-valued neurons are integrated together as a quater-
nion with respect to different component coefficients. The
internal operation or the self-connection can be fully char-
acterized by a single weight quaternion. Every numerical
factors are compatible by quaternions, projection and approx-
imation only exist in the training. Drawn by the authors.

Figure 2: Robotic arm with each joint
posture parameterized by quaternions
for each joint. Our model is capable
of high fidelity control and path plan-
ning. Figure drawn by the authors,
where the robotic arm is generated by
AI tool just for demonstration aim.

Consistency and compatibility of mathematical form Quaternion neuron structure is closely
related to the mathematical form of the evolution equation, where we embed this structure into the
classic HNN evolution Eq. (1.1). The quaternion-valued system is consistent with the original form
by directly replacing the real variables with quaternionic variables through Eq. (2.1). Explicitly, it
can be expressed in quaternion algebra and underlying linear algebra by:

d

dt


q1
q2
...
qn

 = −γ


q1
q2
...
qn

 + µ


ω11 ω12 . . . ω1n

ω21 ω22 . . . ω2n

...
...

. . .
...

ωn1 ωn2 . . . ωnn

 ◦

φ(q1)
φ(q2)

...
φ(qn)

+ µ


b1
b2
...
bn

 (3.1)

= −γ


q1
q2
...

q4n

+ µ


W11 W12 . . . W1n

W21 W22 . . . W2n

...
...

. . .
...

Wn1 Wn2 . . . Wnn



φ(q1)
φ(q2)

...
φ(q4n)

+ µ


b1
b2
...

b4n

 (3.2)

4

Or in a condensed form q̇ = −γq+µW ◦φ(q)+µb ≡ −γq+µWφ(q)+µb, where we denote the
quaternionic weight from neuron i to neuron j by ωji, and arrange all the connections as a quaternion
matrix W . Quaternionic matrix-vector multiplication is denoted by W ◦ q.

Figure 3: The integration of quaternion neuron. It has
inside structure, self feedback connection and connec-
tion interfaces with other neurons. Activation will be
updated every unit impulse time. Drawn by the authors.

Figure 4: Structure of a fully connected
3-neuron network. Every connection from
j-th to i-th neuron is parameterized directly
by a quaternion ωij . Drawn by authors.

Single neuron response with linear activation In this subsection, we state the linear response
properties of the neuron structure determined above. Then we discuss the activation function we
choose for our model eventually. For a single neural feedback with linear activation φ : q → q, the
evolution equation becomes:

q̇(t) = −γq + µω ◦ q + µb := χ ◦ q + µb ≡ Xq + µb (3.3)
where the new quaternion coefficient χ = −γ + µω with respect to the left multiplication matrix
X . Thus, it becomes a linear differential system with a nonhomogeneous term µb. The solution of
the homogeneous equation can be calculated directly. Through the matrix method, firstly, we define
the fundamental matrix by Φ(t) = [ζ1 ζ2 ζ3 ζ4]. X is noticeable as an anti-symmetric matrix plus a
scalar times the identity matrix E.

Notice that this anti-symmetric matrix has only imaginary eigenvalues, which makes it easy to
know X has two different conjugate complex eigenvalues, and they all have the same algebraic
multiplicity, and the geometric multiplicity mg = 1, corresponding to complex eigenvalues λ =

±χ0 ∓ i(χ2
x + χ2

y + χ2
z)

1
2 . To make the formula compact, the square root of the square sum in terms

of weight parameters is denoted by α2 = χ2
x + χ2

y + χ2
z = β−2. Then we calculate the exponential

matrix, and it still has the form of a quaternionic anti-symmetric matrix. Through the adjacent matrix,
the matrix exponential associated with Φ is calculated by:

eXt = Φ(t)Φ(0)−1 =
eχ0t

α
·


βcosαt −χxsinαtα −χysinαt −χzsinαt

χxsinαt βcosαt −χzsinαt χysinαt

χysinαt χzsinαt βcosαt −χxsinαt

χzsinαt −χysinαt χxsinαt βcosαt


= eχ0tcosαt+

χxsinαt

α
i+

χysinαt

α
j +

χzsinαt

α
k := qe.

(3.4)

With the exponential of coefficient matrix and the initial activation q0 = s0 + x0i+ y0j + z0k, we
can write the general solution to the single neuron response to:

q(t) = eXtq0 + µeXt

[∫ t

0

(eXτ)
−1

dτ

]
b = eXtq0 + µX−1(eXt − I4)b

≡ qe ◦ q0 + µχ† ◦ (qe − 1) ◦ b
(3.5)

The entire expression perfectly integrates quaternion embeddings instead of through complex mapping
and splitting methods, where many required formalizations can be satisfied automatically. For higher
order neuron systems with nonlinear activation functions, the solution would be too complicated and
nonanalytic, shown in [19, 17], and machine learning approaches get involved to make a qualitative
control of this neural differential equation system.

5

Asymptotic Stability Analysis For the type of neural networks as a nonlinear dynamical system,
the evolution equation is demanded to be equipped with a series of good properties. The two most
fundamental of them are convergence and stability, which guarantee a deterministic activating value
of the neuron and that the neuron can correctly evolve to that value, respectively. Below we propose
two significant theorems guaranteeing the asymptotic stability of the QSHNN model. Firstly, we
demand the existence and uniqueness of the dynamical system; they are the foundation of further
analysis and critical for the capability of memory, and the stored memory will not be confused.

Theorem 3.1 (First weights constraint of QSHNN). For the differential dynamical system 3.2, the
existence and uniqueness of equilibrium are sufficient to be proven by the following inequality on
weight parameters. Li is the Lipschitz constant of the activation function on the i-th variable. µ and
γ are constants consistent with former notations.

µ

γ

n∑
i=1

Li|wij | < 1 (3.6)

The proof can be found in App. A. If we choose the hyperbolic tangent activation function everywhere,
which has a Lipschitz constant of 1, and set constant µ = γ = 1, then the weights constraint in Thm.
3.1 is necessary by doing the normalization on the infinite norm of matrix W by ||W ||∞ = 1− ε.
Here ϵ is a small constant to avoid the equality in the inequality 3.7. For the second significant
property, we derive the asymptotic stability based on the Lyapunov theorem 2.1. With the following
theorem, our model can be qualified with an asymptotically stable equilibrium.

Theorem 3.2 (Second weights constraint of QSHNN). For the differential dynamical system 3.2, the
equilibrium that is asymptotically stable can be established by the following inequality. µ and γ are
constants consistent with former notations.

µ

2γ

n∑
i=1

(|wji|+ |wij |) < 1 (3.7)

The proof can be found in App. B. Similarly, we have a natural way to satisfy this inequality, which
is sufficient to be proved after the process of normalization in training by ||W ||∞ = 1− ε. Thm. 3.1
and Thm. 3.2 guarantee that the network dynamics evolve to the designated target consistently. The
absolute error between the target and the flow also converges with rigorous deduction in App. G.

Smoothness of trajectories Let q(t) denote the state trajectory generated by the proposed QSHNN
under the network dynamics Eq. (3.2). Because the activation φ(·) is globally Lipschitz continuous
with constant Lφ = 1, and the weights are normalized by ||W ||∞ = 1 − ε < 1, we obtain the
curvature of the trajectories: κi(t) = |q̈i(t)|·[1+(q̇i(t))

2
]−

3
2 ≤ ||q̈||∞ ≤ 4. App. D gives the detailed

derivation and curvature evaluation comes from [7]. The upper bound κ ≤ 4 follows from the choice
of constants γ = µ = Lφ = 1. Hence, every component of q(t) possesses a uniformly bounded
second derivative. In particular, the curvature κi(t) remains finite for all quaternion elements qi and t,
guaranteeing the smoothness of the planned path on each joint motion of robotic manipulation. This
level of regularity is sufficient for robotic posture control since actuator commands derived from q̇ are
free of discontinuities, and bounded curvature precludes abrupt changes in end-effector acceleration.

Learning rules for QSHNN. The learning of neural networks could follow the Hebbian learning
rule [11] like HNN, which is unsupervised, local, and physically inspired, different from constructing
and minimizing the loss function, or the Delta learning rule [25, 35] which is supervised, global, and
optimization-driven. By taking the differential of the sensitivity function, we derive the gradient
direction in the weights parameter space for the loss function. This is the first stage of our model,
for that the trained weights do not preserve quaternion structure, where we demand every 4 × 4
block of the weights matrix is in the quaternion left multiplication submanifold. Hence we name the
model supervised learning Hopfield-structured neural network (SHNN). The critical properties such
as network stability and training accuracy are guaranteed with a rigorous mathematical mechanism
through Thm. 3.1 and 3.2. For the second stage, we apply a technical skill called periodic projection.
Every five iterations of strict gradient descent, we do a Frobenius orthogonal projection, as shown in
Thm. (3.3), which may violate the principle of minimizing but imposes quaternionic structure on
weight blocks. Globally, it will generate a periodic fluctuating path tending to the minimizer.

6

Sensitivity equation and strict gradient descent. Now we start the establishment of learning rules
from rigorous mathematics. In steady state we have the sensitivity equation, by setting the system Eq.
(3.2) to zero:

γq∗ = µWφ(q∗) + µb, (3.8)
where q, qd, b ∈ R4n, weights matrix W ∈ R4n×4n, and the hyperbolic tangent activation function
φ(q) = [φ(q1), . . . , φ(q4n)]

T . Differentiating the steady-state equation with respect to the element
wij of the weights matrix W with row entry i and column entry j (the bias b is treated as a constant
vector) by the chain rule:

γ
∂q∗

∂wij
= µ

[
W · ∂φ(q

∗)

∂q∗ · ∂q
∗

∂wij
+ eiφ(q

∗
j)

]
(3.9)

where ei is the i-th standard base of vector space R4n×4n. Yields the sensitivity relation:

∂q∗

∂wij
=

[
I4n −

µ

γ
W · Jφ(q∗)

]−1
µ

γ
φ(q∗j) ei, (3.10)

where Jφ(q) = diag [φ′(q1), . . . , φ
′(qn)], and I is a identity matrix of a compatible size. For the

quadratic loss function defined as E(q) = 1
2 ||q − qd||2. Aiming to derive the gradient direction of

the loss function about the weights. Substituting this sensitivity into the chain-rule expression gives
the complete gradient formula:

∂E

∂wij
=

∂E

∂(q∗ − qd)
· ∂(q

∗ − qd)

∂q∗ · ∂q
∗

∂wij
=

(q∗ − qd)
T

E
· ∂q

∗

∂wij
(3.11)

=
µ

γE
φ(qj)(q

∗ − qd)
T

[
I4n −

µ

γ
W · Jφ(q)

]−1

ei =
µφ(qj)

γE
δTS−1ei. (3.12)

which embodies the error term δ = (q∗ − qd)
T , the nonlinear activation contribution φ(q∗j), and the

inverse of the sensitivity matrix S = I4n − µ
γW · Jφ(q). The biases b do not appear in the derivative

because they are independent of wij . Denote the training iteration number by superscript (·)(k) and
learning rate by η ∈ R. From above, we get the weight update scheme of strict gradient descent:

w
(k+1)
ij = w

(k)
ij − η

∂E

∂wij
= w

(k)
ij − η

µφ(qj)

γE
δTS−1ei (3.13)

The application of GHR calculus. Strict gradient descent is effective for the learning process,
but the quaternion structure of the weights matrix W could not be preserved, where we should have
every 4 × 4 block to be negative symmetric, except for the elements on the leading diagonal, like
we have seen in the matrix expression of quaternionic multiplication by Eq. (2.1). GHR gradient
descent over H can be solved from the following system. The first equation is the derivative of the
loss function E(q) = |q−qd|2 through Def. 2.2, where q is the stable state of the evolution equation
and I = {i, j,k}. The second equation is by taking the differential of the sensitivity Eq. (3.8). For
ϱ ∈ J = {1, i, j,k}, the following differential could be calculated by:

∂E

∂qϱ
=

1

4

[
∂E

∂qs

−
∑
σ∈I

∂E

∂qσ

◦ σ

]ϱ
(3.14)

∂qϱ

∂ω†
ij

=
µ

γ

[
W ϱ ◦ ∂qϱ

∂ω†
ij

+
∂W ϱ

∂ω†
ij

◦ qϱ

]
(3.15)

where subscript (·)ϱ is for quaternion components q = qs + qxi+ qyj + qzk, and superscript is
for quaternion involution introduced in Def. 2.1. This section shows that the quaternion structure-
preserving descent exists, providing the foundation of the projection approach. But we would not
apply this scheme for the algorithm. Formulas of quaternion calculus applied in this section could be
found in [36], especially the generalized chain rule deriving Eq. (3.15). These lead to the steepest
descent direction, which is the gradient of the loss function E(q∗):

∂E

∂ω†
ij

=
∑
ϱ∈J

∂E

∂(q∗)ϱ
◦ ∂(q

∗)ϱ

∂ω†
ij

. (3.16)

And the update of weights over H during the learning process under GHR calculus is thereby:

ω
(k+1)
ij = ω

(k)
ij − η

∂E

∂ω†
ij

. (3.17)

7

Periodic Projection Method. As we have found in the above paragraph, direct gradient descent
preserving the quaternionic structure by GHR calculus is too complicated and computationally costly.
Therefore, we propose a strategy for the weights update named periodic projection. The main idea is
to periodically do a Frobenius orthogonal projection with the following theorem every K = 5 to 10
iterations of weights update in the training procedure. The proof of theorem is given in App. C.
Theorem 3.3 (Frobenius orthogonal projection). Let L = span{L(1), L(i), L(j), L(k)} ⊂ R4×4

be the quaternion left multiplication submanifold with base Eq. (2.2). For any matrix M ∈ R4×4,
define its orthogonal projection onto L under the Frobenius inner product as:

M̃ =
∑

µ∈{1,i,j,k}

cµL(µ) :=
∑

µ∈{1,i,j,k}

⟨M,L(µ)⟩F
∥L(µ)∥2F

L(µ). (3.18)

Then for any A ∈ L, we have ∥M−A∥2F ≥ ∥M−M̃∥2F , which means M̃ is the closest approximation
of M in L under the meaning of the Frobenius measure.

4 Experiments
Algorithm and Configurations. We built an experimental model of QSHNN with four quaternion
neurons in Python and executed it on a PC with an Apple Silicon M1 chip, 16GB unified memory,
aiming to verify the theoretical results including asymptotic stability, smoothness of trajectories, and
the effectiveness of learning rules. The algorithm below gives the choice of hyper-parameters for the
experiments and how the approaches in Sec. 3 are implemented, especially the difference made by
the periodic projection method. Training results and characterization are shown in Fig 5 ∼ 7b.

Algorithm 1: Projection-based QSHNN learning algorithm

Input: Target d ∈ R4N , where uniform distribution is obeyed by di ∼ U(−1, 1).
Output: Trained weight matrix W ∈ R4N×4N , Loss and accuracy evolution.
Initialization: Learning rate η = 0.001 ∼ 0.2 with adaptive adjustment, projection period
P = 10, maximum epochs Tmax = 30000, error tolerance τ = 10−6, bias b = 0.125 ∼ 0.2,
network parameters µ = γ = 1 by default, Weights initialization wij ∼ U(−1, 1). Weights
normalization by W = W/(ε+ ||W ||∞), where ε = 10−12 ≪ 0 an arbitrary small number.

for i = 1 to Tmax do // main training loop
Solve q̇ = −γq + µW φ(q) + µb // by Runge-Kutta numerical method
δ ← q∗ − d // compute error vector
for i = 1, . . . , N do

for j = 1, . . . , N do
S = I4n − µ

γW · Jφ(q) // compute sensitivity matrix

wij ← wij − η
µφ(qj)

γ δTS−1ei // strict gradient Eq.(3.13)

if i ≡ 0 (mod P) then // block-wise projection Eq.(3.18)
W ← W̃ = c1L(1) + ciL(i) + cjL(j) + ckL(k)

if
∑

n |δ
(n)|2 < τ and P|i and accuracy=1.0 then // stop criteria

break;

Remove the projection process, we have the naive supervised learning Hopfield neural network
(SHNN). It does not have the activation evolution in the quaternion region, whereby the Eq. (1.1).
The training process and outcome for both QSHNN and SHNN are displayed in Fig. 5 ∼ 8. Based on
the periodic projection algorithm, we construct a prototype of robotic applications and demonstrate
the effectiveness of the QSHNN in Fig. 8, where we also list the benchmark problems and baselines
in App. E and F for the development of a complete module in robotic planning and control. They aim
to embody the advantages of QSHNN in these important tasks.

Fundamental Training Evaluation. We design benchmark datasets by generating random sets of
target quaternion states. Each target contains N quaternion-valued desired states qd ∈ HN , with each
component sampled uniformly from the interval [−1, 1]. For each benchmark, we report three metrics:
(i). Accuracy: the percentage of target sets for which the equilibrium state successfully converges

8

below the error threshold τ1 = 10−6. More specifically, the proportion of quaternion components
satisfying q∗i − di < τ is defined by accuracy ∈ [0, 1], which is included in the training stop criteria
as accuracy = 1.0. (ii). Maximum iterations: the number of iterations allowed to conduct gradient
descent and meet the convergence criteria on the randomly generated target set. Tmax = 30000 for
QSHNN, and Tmax = 10000 for SHNN, which evaluates the effectiveness of the learning scheme.
(iii). Equilibrium error: the neural system should be equipped with a unique equilibrium, and all
randomly generated initial values can converge with an error less than τ2 = 10−6, which is the
indicator of asymptotic stability. Metric of error is mean square error (MSE) or Euclidean distance.

(a) Loss and Accuracy Curves of SHNN (b) Loss and Accuracy Curves of QSHNN

Figure 5: (a). Loss and accuracy curves over training iterations of strict gradient descent Eq. (3.13).
It implements a sufficient convergence rapidly but will not preserve the quaternionic structure, shown
in Fig. 6a. (b). Loss and accuracy curved over training iterations with periodic projection Eq. (3.18),
which perform good error reduction and preserve quaternionic structure simultaneously. Curves
fluctuate more sharply since the projection disturb continuous gradient descent, shown in Fig. 6b∼6d.

(a) SHNN Heat Map (b) QSHNN Heat Map I (c) QSHNN Heat Map II (d) QSHNN Heat Map III

Figure 6: Heat map of network training outcome. Depth of the color indicates the magnitude of
the absolute value of the weights. (a). Weights distribution trained by strict gradient descent Eq.
(3.13). There are no obvious structure on blocks, thus this scheme is unable to keep quaternion
correspondence by Eq. (2.1) on matrix. (b). Weights distribution trained by periodic projections Eq.
(3.3). 4×4 blocks are quaternion symmetric matrix. The average deviation between the start configure
and the target configure is σ = 0.2. (c). Weights distribution trained with periodic projections Eq.
(3.3). We still have average deviation σ = 0.2, but with another random generation of initialization
and target. (d). Weights distribution trained with periodic projections Eq. (3.3). Components of ith
neuron qi have the same target, where qi

s = qi
x = qi

y = qi
z . Trained weights will concentrate on the

main diagonal of the matrix. The model adapt its block-wise quaternionic structure to target-specific
symmetries, a behaviour not apparent in the fully heterogeneous case shown in Fig. 6b and 6c.

5 Discussion
Benchmark problems and Baselines. Based on the theoretical foundation of the proposed model,
we plan to develop a complete application for robotic manipulator planning in the follow-up pub-
lication. Benchmark problems we consider are stated in App. E. Through these three levels of
benchmarking, we can cover the widely recognized standard environment in the academic community
and verify the versatility and scalability of direct sampling targets in industrial simulation, thereby
fully demonstrating the combined advantages of QSHNN in terms of response speed, control accuracy,
and online computing cost. Respectively, the baselines are the performance of current industrial
algorithms, which are stated in App. F. In terms of the weaknesses mentioned of these baseline
methods, QSHNN has the potential to outperform traditional strategies. Besides the guarantees
on dynamical properties, powerful representation capability of QSHNN allows small-scale neural
networks to complete tasks, thereby significantly improving the online planning reaction speed and
reducing response time with the adjustment of the target.

9

(a) Training curve of QSHNN (b) Trajectory of trained QSHNN dynamics

Figure 7: (a). Training curve of equilibrium for the neural dynamical system governed by Eq. (3.2).
Each color set represent the components of a quaternion neuron activation and converges to the
target. (b). Evolution curve of the neural differential system governed by Eq. (3.2). Embody the
asymptotical stability and smoothness of trajectories guaranteed by Thm. 3.7 and Thm. 3.6.

Figure 8: Robotic simulation with QSHNN as the path planning mod-
ule. The scenario is aligned with Fig. 2. Here we conducted prelimi-
nary simulations in standard robotic environments PyBullet (generic
physical simulation engine for robotics and control system in Python)
to confirm that QSHNN can drive a robotic manipulator with four full-
freedom joints from arbitrary initial joint configurations to a specified
end-effector posture with the smoothness and convergence properties
proven in the paper, we plan to develop the mature application in a
follow-up publication with a complete evaluation of existing bench-
marks App. E and comparison with baselines App. F.

Comparative Analysis. Regarding how QSHNN becomes an exclusive approach by its features
with respect to traditional models, we make the following comparisons. (i): Supervised quaternion
networks (QSNN), which only perform static regression from inputs to outputs without continuous-
time stability guarantees or the ability to manipulate dynamical patterns. (ii): naïve quaternion-valued
Hopfield neural network (QHNN) with a supervised readout, where the attractor dynamics are fixed
after unsupervised weight initialization, so the supervised layer merely maps from pre-existing
equilibrium states to outputs, and thus cannot modify the underlying attractor dynamics. (iii):
proposed bio-inspired neural network (QSHNN), which generates continuous-time trajectories with
provable global convergence and modifiable dynamics with physical information embedded.

Limitations. Throughout this research, we explore the potential to combine the memory-type
Hopfield neural network with the mainstream method based on error propagation. The recent research
on neuroscience revealed the surprising fact that the echo-location system of bats consists of only
a small number of neurons as a core module [9], which motivates us to exploit the potential of
bio-inspired recurrent neural networks. To implement this principle, we begin with the modification
of continuous HNN and specify a concrete task in robotics by embedding physical information with
quaternion. Though the theoretical foundation is established, only the development of the complete
application with sufficient tests on the benchmark problems and comparison App. E with baselines
App. F can make it more trustworthy, thereby giving us the confidence to further exploit the principle
of general learning theory behind it, which is far more than the value of a single model.

6 Conclusions
We presented a quaternion-valued Hopfield-structured neural network that integrates structural
consistency with smooth and stable learning dynamics. Modern HNN is mature in [24], there are also
many hypercomplex-valued versions [13, 15, 33], but the plasticity of supervision is usually weak,
and the global stability is insufficient, where our model fills the gap in exploration in this aspect. By
combining supervised training with periodic projection, the model preserves quaternionic structure
while achieving accurate and reliable convergence. The bounded curvature of trajectories ensures
smooth evolution, and the network’s design enables robust performance across randomly generated
targets. Beyond orientation and control tasks, this approach also illustrates how embedding algebraic
constraints into neural systems can yield both theoretical guarantees and practical benefits, offering a
systematic path forward for structured learning in hypercomplex and non-commutative domains.

10

References

[1] B. Achilli, L. Ambrogioni, C. Lucibello, M. Mézard, and E. Ventura. The Capacity of Modern
Hopfield Networks under the Data Manifold Hypothesis, 2025.

[2] Y. S. Aljamali and M. Juhairi Aziz Safar. Smooth and Collision-free Path Planning for Holo-
nomic Mobile Robot Based RRT-Connect. Journal of Physics: Conference Series, 2023.

[3] N. Alonso and J. Krichmar. A Sparse Quantized Hopfield nNetwork for Online-continual
Memory. Nature Communications, 2024.

[4] R. A. Athale and C. W. Stirk. Compact Architectures For Adaptive Neural Nets. Annual
Meeting Optical Society of America: Technical Digest Series, 1988.

[5] P. Bourigault, D. Xu, and D. P. Mandic. Quaternion Recurrent Neural Network with Real-
Time Recurrent Learning and Maximum Correntropy Criterion. In 2024 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2024.

[6] S. R. Buss and J. S. Kim. Selectively Damped Least Squares for Inverse Kinematics. Journal of
Graphics Tools, 10(3):37–49, 2005.

[7] C. Bär. Elementary Differential Geometry, page 22–80. Cambridge University Press, 2010.

[8] K. Du. Recurrent Neural Networks: Associative Memory and Optimization. Journal of
Information Technology & Software Engineering, 01, 01 2011.

[9] A. Forli, W. Fan, K. K. Qi, and M. M. Yartsev. Replay and Representation Dynamics in the
Hippocampus of Freely Flying Bats. Nature, 645:974–980, 2025.

[10] A. B. Greenblatt and S. S. Agaian. Introducing Quaternion Multi-valued Neural Networks with
Numerical Examples. Information Sciences, 423:326–342, 2018.

[11] J. J. Hopfield. Brain, Neural Networks, and Computation. Reviews of Modern Physics, 1999.

[12] J. J. Hopfield. Hopfield Network. Scholarpedia, 2(5):1977, 2007. revision #196687.

[13] T. Isokawa, H. Nishimura, N. Kamiura, and N. Matsui. Associative Memory in Quaternionic
Hopfield Neural Network. International Journal of Neural Systems (IJNS), 18(02):135–145,
2008. PMID: 18452247.

[14] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP: Stochastic
Trajectory Optimization for Motion Planning. In IEEE International Conference on Robotics
and Automation, pages 4569–4574, 2011.

[15] M. Kobayashi. Hybrid Quaternionic Hopfield Neural Network. IEICE Transactions on Funda-
mentals, E98-A(7):1512–1518, July 2015.

[16] M. Kobayashi. Gradient Descent Learning for Quaternionic Hopfield Neural Networks. Neuro-
computing, 260:174–179, 2017.

[17] K. I. Kou and Y. Xia. Linear Quaternion Differential Equations: Basic Theory and Fundamental
Results. Studies in Applied Mathematics, 2018.

[18] J. Launay, I. Poli, and F. Krzakala. Principled Training of Neural Networks with Direct Feedback
Alignment, 2019.

[19] J. Lv, J. Wang, and R. Liu. Hyers-Ulam Stability of Linear Quaternion-Valued Differential
Equations. Electronic Journal of Differential Equations, 2023.

[20] A. Ororbia, A. Mali, A. Kohan, B. Millidge, and T. Salvatori. A Review of Neuroscience-
Inspired Machine Learning, 2024.

[21] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder, V. Kumar, and W. Zaremba. Multi-Goal Reinforcement Learning:
Challenging Robotics Environments and Request for Research, 2018.

[22] J. Pöppelbaum and A. Schwung. Quaternion Backpropagation, 2022.

11

[23] J. Pöppelbaum and A. Schwung. Time Series Compression Using Quaternion Valued Neural
Networks and Quaternion Backpropagation. Neural Networks, 188:107465, 2025.

[24] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleitner,
M. Pavlović, G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and
S. Hochreiter. Hopfield Networks is All You Need, 2021.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by Back-
propagating Errors. Nature, 323:533–536, 1986.

[26] S. M. Salamon. Differential Geometry of Quaternionic Manifolds. In Annales scientifiques de
l’Ecole normale supérieure, 1986.

[27] S. Sastry. Lyapunov Stability Theory, pages 182–234. Springer, New York, 1999.

[28] B. Scellier. A Deep Learning Theory for Neural Networks Grounded in Physics. CoRR, 2021.

[29] S. Schmidgall, R. Ziaei, J. Achterberg, L. Kirsch, S. P. Hajiseyedrazi, and J. Eshraghian. Brain-
inspired learning in artificial neural networks: A review. APL Machine Learning, 2(2):021501,
05 2024.

[30] K. Takahashi, E. Tano, and M. Hashimoto. Remarks on Quaternion Multi–Layer Neural
Network Based on the Generalised HR Calculus. In 2021 Australian & New Zealand Control
Conference (ANZCC), pages 126–130, 2021.

[31] K. Tapp. Matrix Groups for Undergraduates: Second Edition. American Mathematical Society,
2010.

[32] E. Todorov. Convex and Analytically-invertible Dynamics with Contacts and Constraints:
Theory and Implementation in MuJoCo. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 6054–6061, 2014.

[33] M. E. Valle. A Novel Continuous-Valued Quaternionic Hopfield Neural Network. In 2014
Brazilian Conference on Intelligent Systems, pages 97–102, 2014.

[34] J. P. Ward. Quaternions and Cayley Numbers: Algebra and Applications, volume 403. Springer
Science & Business Media, 2012.

[35] B. Widrow and M. Lehr. 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and
Backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

[36] D. Xu, C. Jahanchahi, C. C. Took, and D. P. Mandic. Enabling Quaternion Derivatives: the
Generalized HR Calculus. Royal Society Open Science, 2(8):150255, Aug. 2015.

[37] D. Xu, Y. Xia, and D. P. Mandic. Optimization in Quaternion Dynamic Systems: Gradient,
Hessian, and Learning Algorithms. IEEE Transactions on Neural Networks and Learning
Systems, 27(2):249–261, 2016.

[38] D. Xu, L. Zhang, and H. Zhang. Learning Algorithms in Quaternion Neural Networks Using
GHR Calculus. Neural Network World, 27(3):271, 2017.

[39] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, K. Lin, A. Maddukuri, S. Nasiriany,
and Y. Zhu. Robosuite: A Modular Simulation Framework and Benchmark for Robot Learning,
2025.

[40] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A.
Bagnell, and S. S. Srinivasa. Chomp: Covariant Hamiltonian Optimization for Motion Planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Every claim can be found a detailed elaboration in the main body.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Dedicated paragraph in Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: Every theorem is proved in line or in appendices from fundamental and widely
acknowledged knowledge with suitable citations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: algorithms, codes, and environments are open to the public and can be found
in the paper. The experiments can be reproduced by the readers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the settings are included in section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We tested 5 different ways to generate the random target sets and eliminate the
misleading of the experimental results caused by statistical factors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the hardware and software specifications used to implement
our experimental results in section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Have read and verified.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work are highly related to theory and not tied to particular applications.
There are no obvious paths that lead to potential harm.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work is foundational and not tied to particular applications.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our work does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing and human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only use LLMs to do the grammar check and draw a part of the figure 2
with a proper description.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Appendices

A Proof of Thm. 3.1: Existence and uniqueness of equilibrium

Firstly, the activation functions selected are usually bounded. For this reason, we define a constant
upper bound for all of the activation functions appearing in the below defined as φ ≤ M . We do
not strictly demand that the activation function be uniformly continuous, but satisfying the Lipschitz
condition. Out of a similar reason, we allocate each activation function a Lipschitz constant with
respect to the subscript of notions as: |φi(x)− φi(y)| ≤ Li|x− y|.
To prove the existence of at least one critical point of the dynamic system 3.2, which is to say when
we replace the variable of the differential with zero, and by definition, every solution point of the
variable functions vi counts. Here is to say the below equation system is solvable.

vi =
µ

γ

 n∑
j=1

wijφj(vj) + bi

 (A.1)

established for x ∈ R, i = 1, 2, . . . n. We denote the linear combination of symbols as matrix
A = {µγwij}n×n and bias or external current ζ = {µγ bi}n×1. And vector multiple value function
φi : R → R, define F := {f |f : R → R, f is Lipschitz continuous}, then φ ∈ Fn ⊗ Rn is to
be: φ(v) = {φi(vi)}n×1. The system governed by Eq. (3.2) can then be rewritten in matrix form:

v = Aφ(v) + ζ := F (v) (A.2)

if we regard the right-hand side as a mapping F from Rn to Rn, then the solution v can be treated as
the fixed point of the mapping, allowing the analytic method in the proof.

||F (v)||2 =

n∑
i=1

µ
γ

(
n∑

j=1

wijφj(vj) + bi

)2

≤
n∑

i=1

µ2

γ2

[ n∑
j=1

|wij |M

+ |Ii|

]2
:= ρ2

(A.3)

From ρ we form a bounded convex set Ω = {v : ||v|| ≤ ρ}, whereby Brouwer fixed point theorem
applies to the proposition. Since F is a continuous mapping, there exists a v∗ ∈ Ω satisfying
F (v∗) = v∗, which implies the existence of the critical point in the system governed by Eq. (3.2).
The uniqueness of the system can be proved by inequality skills; the demand is converted to constraints
of weights. Through reduction to absurdity, suppose there exist two different critical points v∗, u∗.
Consider L1 norm of v − u to be:

||u,v||1 =

n∑
i=1

|ui − vi| =
n∑

i=1

∣∣∣∣∣∣µγ
n∑

j=1

wij [φj(uj)− φj(vj)]

∣∣∣∣∣∣ ≤
n∑

i=1

µ

γ

n∑
j=1

|wij | · Li · |uj − vj |

=

n∑
i=1

n∑
j=1

µ

γ
Li · |wij | · |uj − vj | =

n∑
j=1

(
n∑

i=1

µ

γ
Li|wij |

)
· |uj − vj | <

n∑
j=1

|ui − vi|

(A.4)
This inequality leads to a contradiction when the weights are restricted by

n∑
i=1

µ

γ
Li|wij | < 1 (A.5)

With the above constraints on weights, simply put, the sum of weights cannot be too large; then the
network operation has a certain single convergent point for bounded input. The essential conclusion
provides us with a theoretical base for complex network behaviour design and learning rules, which
have not been clearly stated and summarized in the previous articles. The research on Hopfield

20

neural network is relatively thorough, regardless of the stability or convergent pattern design. We
transfer these basic theories and extend them to the construction of quaternion-valued network, in
combination with knowledge of metric space and functional analysis.

For simplification, when we use the inequality A.5 for deeper deduction, we will suppose the
coefficients in the front of weights to be a unit constant. And for the practical network operation, this
condition will be satisfied during the procedure of weights normalization, where we set the norm of
the weights matrix to be a constant and the significant information will not be lost.

B Proof of Thm. 3.2: Lyapunov stability criterion

We want to do some research on the stability of the quaternion-valued modified neural network. In
the methodology Sec. 3, we will summarize the process to verify it has a semi-negative derivative
function, concluding the asymptotic stability. Rj and Cj are the resistances of the neuron simulated
by the electronic circuit. To judge the stability, we will be more specific here since there is a little
possibility for a system to diverge to infinity, whereas merely being stable will not meet the whole
requirement. The value of the output is expected to attach to a single point which, strictly speaking,
is a critical point to be asymptotically stable, making the undesired situation such as chaos disappear.

V (t) =
1

2γ

n∑
j=1

x2
j (B.1)

By Brouwer’s fixed point theorem, we conclude the existence of a critical point, meaning B.2
established for any j from 1 to n. By calculating the difference between the sum of the L2 metric of
two critical points, we conclude the uniqueness of the critical point, where:

ẋ = Fj(t,x) = 0 (B.2)

Suppose Ki is the Lipschitz constant of the function φi(x), as the model of HNN is an autonomous
system, we have Fj(t,x) = Fj(x) for every j = 1, 2, ..., n. Notice that:

dV (t)

dt
=

1

γ

n∑
j=1

xj ẋj

=
1

γ

n∑
j=1

xj

[
−γxj + µ

n∑
i=1

wjiφi(xi)

]

≤
n∑

j=1

(
−xj

2 +
µ

γ

n∑
i=1

|wji|Lixixj

)

≤
n∑

j=1

[
−xj

2 +
µ

2γ

n∑
i=1

|wji|Li(xi
2 + xj

2)

]

=

n∑
j=1

[
−1 + µ

2γ

n∑
i=1

(|wji|+ |wij |)

]
xj

2

≤ 0

(B.3)

By Lyapunov stability theory, the zero solution of the system is asymptotically stable such that the
critical point of the original system is stable when the constraint of weights

µ

2γ

n∑
i=1

(|wji|+ |wij |) < 1 (B.4)

applies. Throughout the whole procedure, we notice that the activating function does not need to
possess smoothness or continuity, but satisfy the Lipschitz condition.

21

C Proof of Thm. 3.3: Projection to quaternion left multiplication manifold

Let L = span{L(1), L(i), L(j), L(k)} ⊂ R4×4. For any matrix M ∈ R4×4, denote its orthogonal
projection onto L under the Frobenius inner product as

M̂ =
∑

µ∈{1,i,j,k}

⟨M,L(µ)⟩F
∥L(µ)∥2F

L(µ). (C.1)

Then for any A ∈ L, we have
∥M −A∥2F ≥ ∥M − M̂∥2F . (C.2)

Proof: Let L = span{L(1), L(i), L(j), L(k)} ⊂ R4×4. We equip R4×4 with the Frobenius inner
product

⟨A,B⟩F = tr(ATB), ∥A∥F =
√
⟨A,A⟩F . (C.3)

A direct calculation using the quaternion relations shows that for all µ, ν ∈ {1, i, j, k},

⟨L(µ), L(ν)⟩F = tr
(
L(µ)TL(ν)

)
= 4 δµν , (C.4)

so {L(1), L(i), L(j), L(k)} is an orthogonal basis of L with ∥L(µ)∥F = 2.

Now take any M ∈ R4×4. By orthogonal decomposition, there exist unique coefficients cµ and a
residual E ∈ L⊥ such that

M =
∑
µ

cµ L(µ) + E. (C.5)

Taking the inner product of both sides with L(ν) gives

⟨M,L(ν)⟩F =
∑
µ

cµ ⟨L(µ), L(ν)⟩F = 4 cν , (C.6)

hence,

cν =
1

4
⟨M,L(ν)⟩F =

1

4
tr
(
MTL(ν)

)
. (C.7)

Define:

M̂ =
∑
µ

⟨M,L(µ)⟩F
4

L(µ) (C.8)

to be the projection of M onto L. Then for any A ∈ L, since (M −M̂) ⊥ (M̂ −A), the Pythagorean
theorem yields

∥M −A∥2F = ∥M − M̂∥2F + ∥M̂ −A∥2F ≥ ∥M − M̂∥2F , (C.9)

with equality if and only if A = M̂ . This shows M̂ is the unique Frobenius-least-squares projection
of M onto L.

D Proof of smoothness: Curvature bound for the smoothness

Start at the equation of quaternion neurons,

q̇i = −qi + f(zi) := Fi(q1, . . . , qn) (D.1)

where we referred
zi :=

∑
j

Wijϕ(qj) + bj

Thus the second derivative of quaternion variables is:

q̈i =
∑
k

∂Fi

∂qk
=
∑
k

(δik +
∂f

∂zi
Wik)q̇k (D.2)

22

From where we could write the Jacobian matrix of the function q̈ about the variable q̇ since there is
no explicit appearance of any other variables and their relation is linear.

q̈ = J q̇, J := Jq̇(q̈) (D.3)

where:

Jik =
∂q̈i

∂q̇k

= −δik +
∂f

∂zi
Wik (D.4)

Now we will estimate the norm of different parts in D.3

||q̇||∞ = max
i
| − qi + f(zi)|

≤ max
i
|qi|+max

i
|f(zi)|

≤ 2

(D.5)

The last inequality step is because we set the activation function f to be hyperbolic tangent, and for
the quaternion variable. Consider the region surrounding the origin where the modulus is less than 1.
For the Jacobian, we also have:

||J ||∞ = max
i

n∑
k=1

∣∣∣∣−δik +
∂f

∂zi
Wik

∣∣∣∣
≤ 1 + max

i

n∑
k=1

|Wik|

≤ 2

(D.6)

Combine D.6 and D.5 with D.3, we have a rough estimation of the 2nd derivative of q(t):

||q̈||∞ ≤ ||J ||∞ · ||q̇||∞ ≤ 2 · 2 = 4 (D.7)

Therefore, every component variable of q(t) has an upper bound of 4 on the second derivative. It
gives a loose curvature bound on the trajectory in Rn. In simpler terms, the path that q(t) traces
through space is guaranteed to change direction smoothly. There are no sudden jerks, kinks, or
high-frequency oscillations. The maximum bending or concavity of the trajectory is limited, which is
important for smooth motion in control systems. If the actual engineering demands, we could get a
more strict and smaller curvature κ defined by [7]:

κi(t) =
|q̈i(t)|(

1 + (q̇i(t))
2
)3/2 ≤ ||q̈||∞ ≤ 4 (D.8)

which is no more than the second derivative of qi(t) whereby less than the estimated upper bound we
deduced in this section, for any component with index i in the trajectory of network evolution.

E Benchmark problems

I. Robosuite PandaReach [39] Robosuite’s Franka Panda Reach mission only requires end-to-
target position and pose alignment, which is closer to the real industrial scene. The environment has
6 degrees of freedom + claws, allowing us to focus on evaluating attitude control rather than grabbing
strategies.

II. OpenAI Gym FetchReach [21] FetchReach is a 7-degree-of-freedom Fetch robotic arm target-
alignment task. The target position is randomly generated in the environment (expandable to
quaternions with attitude constraints), and the observation includes the relative position and direction
of the end effector and the target, and the action directly gives the joint speed. In this environment,
we can evaluate the response time, final error, and step time overhead of the QSHNN drive joint angle
evolution to a specified quaternion pose.

III. Random Workspace Target Alignment [32] Build a UR5 or KUKA LBR model directly in
MuJoCo, uniformly sample the attitude targets (including position and quaternion direction) in their
workspace, and test them on a large number of random initial-target pairs.

23

F Baselines

I. Damped Least-Squares Inverse Kinematics (IK) [6]: A closed-loop control law that solves
joint increments directly based on Jacobian matrices and can be run online in milliseconds. It ensures
local asymptotic convergence, but it is strongly dependent on the initial point and often only achieves
a low accuracy of rad.

II. Covariant Hamiltonian Optimization for Motion Planning (CHOMP) [40]: Optimized
trajectory planning to generate smooth paths, but requires offline parameter adjustment and is time-
consuming online.

III. Stochastic Trajectory Optimization for Motion Planning (STOMP) [14]: An iterative trajec-
tory optimizer that samples noisy perturbations of an initial guess and weights them by smoothness
and collision-avoidance costs; while it generates low-curvature paths, it depends heavily on the
initial trajectory and requires tens to hundreds of milliseconds per planning episode, lacking global
convergence guarantees.

IV. RRT-Connect + B-Spline Smoothing [2]: First, use a fast random tree (RRT-Connect) to
quickly generate a feasible path, and then use B-Spline or quadratic programming to smooth the path.
This not only retains the efficient connectivity of the sampling algorithm, but also obtains a certain
degree of smoothing effect. However, the continuity and convergence lack strict guarantees.

G Absolute error to the target

The rapid convergence of exact error between the target state and the network state is already
guaranteed by exponential or asymptotic stability under the framework of Lyapunov theory. Here we
supplement a deduction for an explicit expression. Recall the notations for the trajectory and target
are q(t) ∈ C2([0,+∞])n, qd ∈ Rn, and the square error is expressed by:

E(t) =
1

4γ
∥q(t)− qd∥2. (G.1)

Take the time derivative of E(t) by the chain rule:

dE(t)

dt
=

1

γ
[q(t)− qd] ·

d

dt
[q(t)− qd] (G.2)

=
1

γ
[q(t)− qd]

T · [−γI+ µWJφ(q)] · [q(t)− qd] (G.3)

≤ −4γE(t) +
µ

γ
[q(t)− qd]

T ·W · [q(t)− qd] (G.4)

=

n∑
j=1

[
−1 + µ

2γ

n∑
i=1

(|wji|+ |wij |)

]
· [qj(t)− dj]

2 (G.5)

≤ −4λE(t), (G.6)

where the first equality simply comes from the evolution equation of QSHNN and the inequality
comes from the direct computation in App. B, Eq. (B.3). The coefficient λ is defined by:

λ := γ − µ

2

n∑
i=1

(|wji|+ |wij |) > 0. (G.7)

The inequality above is guaranteed by Thm. 3.2. Hence, the error evolution over time satisfies:

∥q(t)− qd∥ ≤ ∥q(0)− qd∥e−2λt. (G.8)

Thus, the exact distance between the network state and the target will exponentially descend to
infinitesimal (E ≪ 1) and be negligible in practical operation. For the error between the equilibrium
of the QSHNN and the target, which is the loss function of the training process, the model is already
verified on a large enough set of targets, and the training ends consistently with the criterion that the
mean square error is less than 10−6, which is stated in Para. 4 of Sec. 4.

24

	Introduction
	Background
	Methodology
	Experiments
	Discussion
	Conclusions
	Proof of Thm. 3.1: Existence and uniqueness of equilibrium
	Proof of Thm. 3.2: Lyapunov stability criterion
	Proof of Thm. 3.3: Projection to quaternion left multiplication manifold
	Proof of smoothness: Curvature bound for the smoothness
	Benchmark problems
	Baselines
	Absolute error to the target

