

000 INPUTDSA : DEMIXING THEN COMPARING RECUR- 001 RENT AND EXTERNALLY DRIVEN DYNAMICS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT 008

009 In control problems and basic scientific modeling, it is important to compare ob-
010 servations with dynamical simulations. For example, comparing two neural sys-
011 tems can shed light on the nature of emergent computations in the brain and deep
012 neural networks. Recently, Ostrow et al. (2023) introduced Dynamical Similar-
013 ity Analysis (DSA), a method to measure the similarity of two systems based on
014 their recurrent dynamics rather than geometry or topology. However, DSA does
015 not consider how inputs affect the dynamics, meaning that two similar systems,
016 if driven differently, may be classified as different. Because real-world dynam-
017 ical systems are rarely autonomous, it is important to account for the effects of
018 input drive. To this end, we introduce a novel metric for comparing both intrinsic
019 (recurrent) and input-driven dynamics, called InputDSA (iDSA). InputDSA ex-
020 tends the DSA framework by estimating and comparing both input and intrinsic
021 dynamic operators using a variant of Dynamic Mode Decomposition with control
022 (DMDc) based on subspace identification. We demonstrate that InputDSA can
023 successfully compare partially observed, input-driven systems from noisy data.
024 We show that when the true inputs are unknown, surrogate inputs can be substi-
025 tuted without a major deterioration in similarity estimates. We apply InputDSA on
026 Recurrent Neural Networks (RNNs) trained with Deep Reinforcement Learning,
027 identifying that high-performing networks are dynamically similar to one another,
028 while low-performing networks are more diverse. Lastly, we apply InputDSA to
029 neural data recorded from rats performing a cognitive task, demonstrating that it
030 identifies a transition from input-driven evidence accumulation to intrinsically-
031 driven decision-making. Our work demonstrates that InputDSA is a robust and
032 efficient method for comparing intrinsic dynamics and the effect of external input
033 on dynamical systems.

034 1 INTRODUCTION

035 Identifying that two seemingly disparate complex systems have the same underlying structure is
036 a widespread objective across many scientific fields, including deep learning (Huh et al., 2024),
037 computational and systems neuroscience (Yamins et al., 2014; Aldarondo et al., 2024; Prinz et al.,
038 2004), and physics (Hohenberg & Halperin, 1977; Feigenbaum, 1978). One common approach to
039 characterizing the similarity of two systems (e.g., brains, minds, computational models, or physical
040 objects) is to compare the geometry of their states. Well-known methods to do so are Representa-
041 tional Similarity Analysis, Centered Kernel Alignment, Procrustes Analysis, Canonical Correlation
042 Analysis, and Pearson Correlation (Kriegeskorte et al., 2008; Kornblith et al., 2019; Williams et al.,
043 2022; Gallego et al., 2018; Raghu et al., 2017; Schrimpf et al., 2018). Neural networks can also be
044 characterized by the topology of their activations, (Chaudhuri et al., 2019; Gardner et al., 2022; Lin
045 & Kriegeskorte, 2024), a more invariant measure than geometry, which depends on the particular
046 sampling of neurons from the network. However, common to all is that they do not capture similarity
047 in temporal dynamics (Galgali et al., 2023; Maheswaranathan et al., 2019; Ostrow et al., 2023).

048 Metrics such as Dynamical Similarity Analysis (DSA, Ostrow et al. 2023) offer an important com-
049plementary lens to structure characterization, by proposing a similarity metric on the level of dy-
050 namics. DSA provides an efficient and theoretically grounded dynamical similarity metric that has
051 been successfully applied to recurrent network dynamics, training dynamics, and biological neural
052 data (Redman et al., 2024a; Huang et al., 2025; Codol et al., 2024a; Guilhot et al., 2024; Versteeg
053 et al., 2025; Lazzari & Saxena, 2025). Briefly, DSA nonlinearly embeds dynamics into a high-
dimensional space and estimates a linear state-transition operator from observed trajectories, which

is then compared across systems. Recent work introduced other methods for dynamics comparison (Redman et al., 2024b; Vermani et al., 2024; Cotler et al., 2023; Gosztolai et al., 2025; Chen et al., 2024; Nejatbakhsh et al., 2024) based on other computational techniques such as neural networks and shape metrics. Notably, none of these methods consider the effect of external input.

In neuroscientific settings such as central pattern generators or working memory circuits, dynamics may be treated as approximately autonomous (Marder & Bucher, 2001; Grillner, 2006; Kiehn, 2016; Fuster & Alexander, 1971; Funahashi et al., 1989; Goldman-Rakic, 1995; Compte et al., 2000; Wang, 1999). Prior methods work well for comparisons in these settings. However, when activity is the result of both intrinsic dynamics and input drive, comparisons can be confounded by inputs. Most systems of interest in neuroscience and machine learning are non-autonomous, receiving sensory signals or communication from other subsystems (Eisen et al., 2025). They are driven by complex external inputs and can receive observations that are contingent on the systems’ outputs (Madhav & Cowan, 2020; Kao & Hennequin, 2019; Rajan et al., 2010).

Despite the ubiquity of input, current dynamical similarity methods ignore input-driven dynamics and do not incorporate estimation of how inputs affect states. To bridge this gap, we introduce InputDSA (iDSA), a method that disentangles intrinsic dynamics from input-drive, thereby enabling joint or separate metric comparisons of input-driven and intrinsic dynamics. InputDSA extends the DSA framework by explicitly estimating both the intrinsic (state-transition) operator and the input-to-state mapping, which not only defines a new notion of similarity that incorporates the effect of inputs, but also in turn improves estimation of the intrinsic operator.

Contributions We extend DSA to non-autonomous systems that are driven by external input, which we call InputDSA. To do so, we develop a novel similarity metric and variant of the dynamic mode decomposition (DMD), demonstrating that they can together provide complementary insights on both intrinsic as well as input-driven dynamical similarity. We demonstrate InputDSA first on systems with known ground truth. We next show that similarity scores can be robust to surrogate or noisy inputs, provided that they have sufficient similarity to the real inputs. Finally, we apply InputDSA to two datasets: RNNs trained with Reinforcement Learning, and neural population data (spiking) from rats performing a sensory decision-making task. We show that InputDSA distinguishes high- from low-performing models and reveals how dynamics reorganize across different task periods.

2 METHODS

2.1 DYNAMICAL SIMILARITY ANALYSIS (DSA)

In dynamical systems, a key notion of similarity is called topological conjugacy: the existence of a homeomorphism that maps trajectories of one system onto those of another. When two systems are conjugate, they have the same qualitative structure, including the same number and type of fixed points. Given two dynamical systems $f : X \rightarrow X$ and $g : Y \rightarrow Y$ with mapping $\phi : X \rightarrow Y$, (semi-) conjugacy is defined as:

$$g \circ \phi = \phi \circ f \quad (1)$$

The existence of such a mapping entails a one-to-one alignment between topological features of each system such as invariant manifolds. Note that this is not geometric because distances and angles are not necessarily preserved under this mapping. In general, such a function can be arbitrarily complex, which can make searching for the true conjugacy map challenging in all but the simplest settings. DSA attempts to circumvent the optimization problem by approximating the Koopman Operator, which linearizes nonlinear dynamical systems via high-dimensional embeddings (Koopman, 1931;

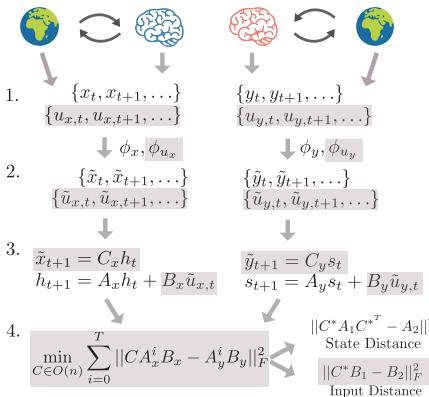


Figure 1: **InputDSA schematic** (1), state and input data are collected from two systems. (2) data are embedded in a high-dimensional space (3) linear state-space models are fit to the data (4) Controllability, state, and input similarity are computed on learned state-space models. Gray indicates extensions from DSA.

Budišić et al., 2012). In the linear space, conjugacy maps are linear and therefore easier to identify. The methodology of DSA is therefore as follows: First, approximate your systems as linear in some high-dimensional space, yielding dynamics models $x_{t+1} = Ax_t$. Then similarity is defined on the linear operators using the following metrics:

$$\text{DSA}(A_1, A_2) := \min_{C \in O(n)} \|CA_1C^T - A_2\|_F \quad (2)$$

$$\text{DSA}(\Lambda_1, \Lambda_2) := \min_{P \in \Pi(n)} \|P\Lambda_1P^T - \Lambda_2\|_F \quad (3)$$

Where Λ_i is the eigenvalue matrix of A_i , and $O(n)$, $\Pi(n)$ the groups of $n \times n$ dimensional orthogonal and permutation matrices. The latter metric was introduced by (Redman et al., 2024b) and is a special case of the former (Ostrow et al., 2023). These metrics are reminiscent of Procrustes Analysis, which seeks an orthogonal transformation to align two data matrices, hence Ostrow et al. (2023) termed the first one Procrustes Analysis over Vector Fields. The latter metric is inspired from Koopman Operator Theory based on the relationships between Koopman Operators of conjugate systems (Budišić et al., 2012). Other notions of similarity on the Koopman Operator are defined in (Mezić & Banaszuk, 2004; Mezić, 2016).

2.2 INPUTDSA

Inspired by DSA’s approach for autonomous systems, consider two *linear* dynamical systems

$$\dot{x} = A_1x + B_1u(t) \quad \dot{y} = A_2y + B_2u(t). \quad (4)$$

A key feature of input-driven systems is their *controllability*: the ability for an input sequence to drive the state to arbitrary points in finite time. In linear systems, this is encoded in the T-step controllability matrix (with T typically taken as the dimension of the system):

$$K_1(T) = (B_1 \quad A_1B_1 \quad A_1^2B_1 \quad \dots \quad A_1^{T-1}B_1) \quad (5)$$

and its corresponding Gramian, which encodes the geometry of controllability.

$$W_c(T) = K_1K_1^T = \sum_{i=0}^T A_1^i B_1 (A_1^i B_1)^T \quad (6)$$

Intuitively, directions with small eigenvalues are easier to control, because they are more responsive to the effect of input. Controllability, as measured by the eigenvalues of the Gramian, is only preserved under orthogonal transformations between state spaces:

$$y = Cx \implies A_1 = CA_2C^T, B_1 = CB_2 \quad K_1 = CK_2 \quad (7)$$

This motivates our proposed dissimilarity metric, which extends DSA:

$$\text{InputDSA } (A_1, A_2, B_1, B_2, T) = \min_{C \in O(n)} \sum_{i=0}^T \|CA_1^i B_1 - A_2^i B_2\|_F^2 = \min_{C \in O(n)} \|CK_1 - K_2\|_F^2 \quad (8)$$

We also provide a theoretical extension of Eq. 3 in Appendix G.1, which we note is highly susceptible to numerical instability. Although Eq. 2 requires iterative optimization, Eq. 8 is solved via Procrustes alignment, which yields an *exponential* acceleration of prior work. We provide theoretical discussion in Appendix G. After solving for C^* , we can study the joint state and input scores:

$$\text{InputDSA}_{\text{state}}(A_1, A_2, C^*) = \|C^* A_1 C^{*T} - A_2\|_F^2 \quad (9)$$

$$\text{InputDSA}_{\text{input}}(B_1, B_2, C^*) = \|C^* B_1 - B_2\|_F^2 \quad (10)$$

If the inputs directly applied to the system are known, as in computational models, Eq. 8 is sufficient. However, when the true input is some modification of a surrogate input, it may be necessary to align the input as well. This is relevant in settings such as the comparison of two brain regions, when the surrogate input u is a behavioral or sensory variable that is transformed by upstream regions. We therefore can extend Eq. 8 to consider joint alignment of the input, without significant differences in the optimization problem. For further technical details, see Appendix F.

This metric motivates the following approach as in Ostrow et al. (2023): identify the best linear approximation of an input-driven system, following which comparison can be done efficiently between the approximations. To do so, Ostrow et al. (2023) applied the Dynamic Mode Decomposition (Schmid, 2022), which we introduce and extend to fit our setting next.

162 2.3 ESTIMATING LINEAR OPERATORS
163164 As in DSA, We fit linear operators via the Dynamic Mode Decomposition (DMD) family of meth-
165 ods. The DMD (Schmid, 2010; 2022) identifies the linear dynamics that best explain the data:

166
$$\phi(x_{t+1}) = A\phi(x_t). \quad (11)$$

167

168 Here x_t represents the measured state of the system at time t , ϕ is a nonlinear embedding of the
169 data that typically expands the dimensionality of the state space, and A is a matrix that is identified
170 using some variant of least-squares regression. The goal of the Dynamic Mode Decomposition is
171 to approximate the Koopman Operator (Koopman, 1931), a theoretical object that exists for all dy-
172 namical systems which encodes the linear dynamics of observables (functions that act on the true
173 system state) under the system dynamics. Prior work has explored many different choices of ϕ . For
174 example, ϕ can be a kernel function, a delay embedding, or even a neural network (Williams et al.,
175 2016; Brunton et al., 2017; Arbabi & Mezić, 2017; Lusch et al., 2018). Intuitively, the dimension-
176 ality expansion acts similarly to the kernel trick (Smola & Schölkopf, 1998), where embedding into
177 higher dimensions ‘unfolds’ the nonlinearity. The DMD can be applied in non-autonomous systems,
178 although this risks mixing driving and intrinsic dynamics (Proctor et al., 2016a).179 **Incorporating Control into DMD and Koopman** While the original Koopman theory assumed
180 autonomous dynamics, prior work has sought to incorporate control into the theory (Korda & Mezić,
181 2018; Proctor et al., 2016b; Strässer et al., 2025; Asada & Solano-Castellanos, 2024; Haseli et al.,
182 2025). Likewise, the DMD can be generalized to driven systems: When given control inputs u_t , we
183 can instead apply DMD with control (DMDc, Proctor et al. 2016a;b):

184
$$\phi_1(x_{t+1}) = A\phi_1(x_t) + B\phi_2(u_t) \quad (12)$$

185

186 Here, ϕ_1 and ϕ_2 can be distinct nonlinearities. While DMDc was originally only applied with no
187 nonlinearity ($\phi_1, \phi_2 = \text{Id}$), it too can be generalized to high-dimensional nonlinear embeddings. As
188 in DMDc, we assume that inputs are known or a useful surrogate can be constructed (Section 3.2).
189 Further algorithmic details are in Appendix B.190 **Issues of Partial Observation** While estimating A and B via DMDc is an intuitive extension to
191 input-driven systems, it has a hidden failure mode in the analysis of partially-observed systems. This
192 is particularly important in the analysis of neural data, in which a small subset of neurons in a vast
193 population are recorded. Generically, an input-driven system that is partially observed receives input
194 to both the observed and unobserved components. The input at time t therefore affects the observed
195 state at time t (instantaneously) and in future time steps through the unobserved state (Fig. 2A).
196 This means that simply applying DMDc in this setting will bias the B matrix towards the intrinsic
197 dynamics of the system. We develop a formal description of this problem for linear systems in
198 Appendix D. We solve this problem by introducing **Subspace DMDc**, an extension of Subspace
199 DMD (Takeishi et al., 2017b) that incorporates input. In brief, Subspace DMDc utilizes subspace
200 identification algorithms from classical control theory (Verhaegen & Verdult, 2007), which seek to
201 identify linear dynamical systems of the form:

202
$$x_{t+1} = Ax_t + Bu_t \quad y_t = Cx_t \quad (13)$$

203

204 Here, only y_t and u_t are observed. The situation of partial observability is a special case of this
205 problem. In practice, we use the well-known N4SID or PO-MOESP algorithms to estimate A and B
206 (Van Overschee & De Moor, 1994; Verhaegen, 1994) in Eq. 13 on lifted states (thereby leveraging
207 the power of nonlinear DMD algorithms such as Williams et al. 2016). The algorithmic idea behind
208 subspace identification is similar to that of instrumental variable regression: the lifted state data
209 to-be-predicted (future data y_{t+1}) is projected onto the basis of the past input and lifted state data
210 (y_t, u_t) before estimating a A and B via linear regression. This has the added benefit of projecting
211 out observation and process noise, thereby providing noise robustness (Verhaegen, 1994; Verhaegen
212 & Verdult, 2007). For technical details on the subspace identification algorithm, see Appendix E.213 **Tuning SubspaceDMDc for InputDSA** SubspaceDMDc has three key hyperparameters: the
214 rank of the linear operator, the number of delays used in subspace identification, and the type of
215 nonlinear basis used for linearizing the dynamics. In practice, the most general method we use
to tune SubspaceDMDc is to pick the smallest rank model that best predicts future states of the

system. Because SubspaceDMDc must infer the latent state from prior data, we utilize Kalman Filtering (Kalman, 1963) for efficient next-step prediction. This is effectively done with the Akaike Information Criterion (AIC) along with other metrics we discuss in Appendix I.

3 EXPERIMENTS

3.1 INPUTDSA DISCRIMINATES INTRINSIC DYNAMICS FROM INPUT-DRIVEN DYNAMICS

To demonstrate that InputDSA can capture similarities in both intrinsic and input-driven dynamics, we simulated partially observed random RNNs with the following equations:

$$x_{t+1} = A(x_t + gF \tanh(x_t)) + B(u_t + \tanh(u_t)) \quad (14)$$

$$y_t = (\mathbf{I}_d \quad \mathbf{0}_{n-d}) x_t + \epsilon_t \quad (15)$$

Where F and g are fixed across all simulations, and ϵ_t is observation noise. We randomly sampled two matrices for $A \in \mathbb{R}^{n \times n}$, and two for $B \in \mathbb{R}^{n \times 1}$, from which we constructed 4 systems: Systems 1 and 2 (3 and 4) share the same intrinsic dynamics matrix A_1 (A_2), while Systems 1 and 3 (2 and 4) share the same input matrix B_1 (B_2). We randomly sampled low-pass filtered white noise as the input drive (four times for each system), each with random initial conditions, yielding 16 systems in each distance matrix. In our experiments, we simulated 20-dimensional ($x \in \mathbb{R}^{20}$) systems and observed 2 dimensions ($y \in \mathbb{R}^2$) for 5,000 time points. For simulation details, see Appendix J. We computed 5 distance matrices for each dataset, across 100 random seeds: (1) the DSA score using a delay-embedded DMD (Hankel DMD, or Hankel Alternative View of Koopman Arbabi & Mezić 2017; Brunton et al. 2017), (2) the state distance using a delay-embedded DMDc, (3) the state distance using the SubspaceDMDc, (4) the input distance using the DMDc, and (5) the input distance using the SubspaceDMDc. Note that DSA does not have the ability to compare inputs, so it is left out. For a discussion on hyperparameter tuning, see Appendix J). For the sake of space, we report the jointly optimized input distance (Input DSA, Eq. 10) and the individually optimized state distance (State DSA, Eq. 9) as these are the most interpretable, although the jointly optimized state distance was highly similar.

In Fig. 2B we visualize the observed input and one dimension of the observed output for a sample set of systems, noting that it is not obvious at all a priori, let alone from the geometry, of any similarity relationships. We present sample state distance matrices from one random seed in Fig. 2C. While the DMD and the DMDc have notable structure pertaining to the true state similarity, the SubspaceDMDc similarity scores are noticeably sharper. Quantifying these matrices with the silhouette score (a measure of cluster separability and dispersal, 1.0 is best) utilizing ground-truth state labels, the DMD scores 0.6, DMDc scores 0.68, and the Subspace DMDc scores 0.94. In Fig. 2D, we present the respective input scores for each method. As predicted by our previous discussion on the effects of partial observation on input matrix estimation, the input DSA score computed with DMDc does not align with ground truth, reporting a silhouette score of 0.19. The silhouette score of the SubspaceDMDc is 0.83, indicating robust separation. We also compute the total similarity matrices (Eq. 8, Appendix Fig. 6), for which the SubspaceDMDc reports correctly that each type of system is altogether unique. We swept over 100 seeds in Fig. 2E and found that the SubspaceDMDc-based InputDSA consistently yielded the best separability.

To assess the effect of partial observation, we ran the above analysis for different-sized systems (ranging from 2 to 1000 dimensions) with only 2 observed dimensions, for which we present the average silhouette scores for InputDSA in Fig. 2F. The state similarity scores for each method gracefully degrade with the total state size, and SubspaceDMDc has a noticeable improvement over the other methods. The DMDc input score appears to never be robust. However, the SubspaceDMDc input similarity is robust across all system sizes. We also assess the effect of hyperparameters, input dimensionality, and process noise on SubspaceDMDc (Appendix Figs. 8, 9, 10 respectively). Together, this suggests that SubspaceDMDc can be used to measure the dynamical similarity of partially observed, input-driven, noisy dynamical systems.

3.2 ROBUSTNESS TO INPUT NOISE AND TRANSFORMATION

In real-world settings such as neural populations, the true inputs driving the system are rarely accessible. Instead, what we observe are often noisy or partial measurements, limited by sensor resolution,

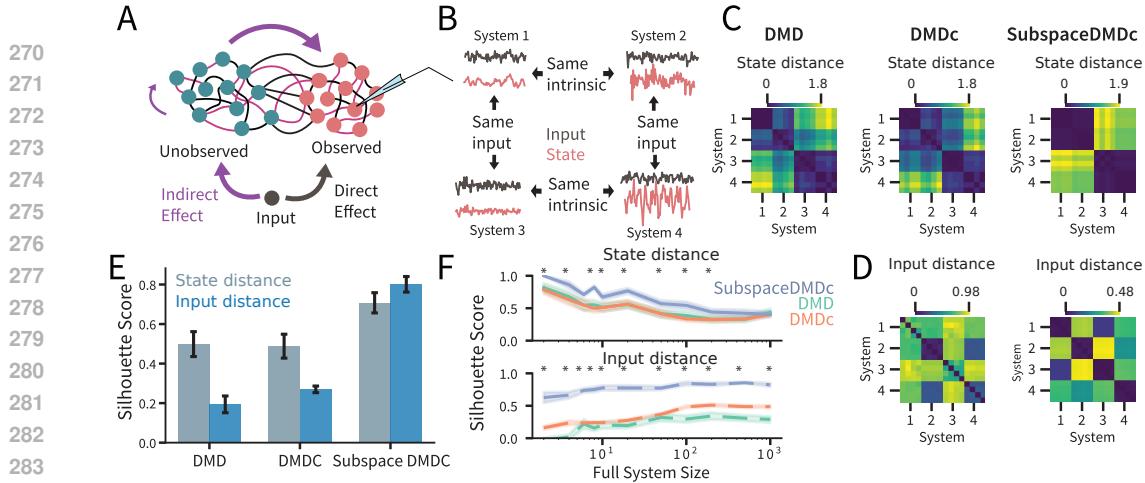


Figure 2: **InputDSA SubspaceDMDc is robust to partial observation** **(A)** Inputs can affect observed states (red nodes) in the future via the unobserved states (green nodes), biasing estimates of input driven-dynamics. Purple arrows indicate indirect propagation of input. **(B)** Sample inputs and observed states from 4 dynamical systems, which have alternate pairings of the same intrinsic and input-driven dynamics denoted by arrows. **(C)** Sample state distance matrices based on the DMD, DMDc and SubspaceDMDc on data generated as in (B). Four iterations of each system are generated, each with unique inputs and initial conditions. **(D)** Sample input distance matrices on the same data as in (C). The DMD does not learn an input operator. **(E)** Aggregate silhouette scores of each similarity matrix across 100 random seeds, each generated as in (C,D). Baseline input-label silhouette score for DMD is computed on the state matrix with the ground-truth input labels. Bars denote standard error. **(F)** Silhouette scores for each DMD and similarity type as the system is increased from 2- to 1000-dimensional. Each size was repeated across 20 seeds. Shading denotes standard error, asterisks indicate that SubspaceDMDc scores are significantly greater than both DMD and DMDc (one-side Mann-Whitney U-Test).

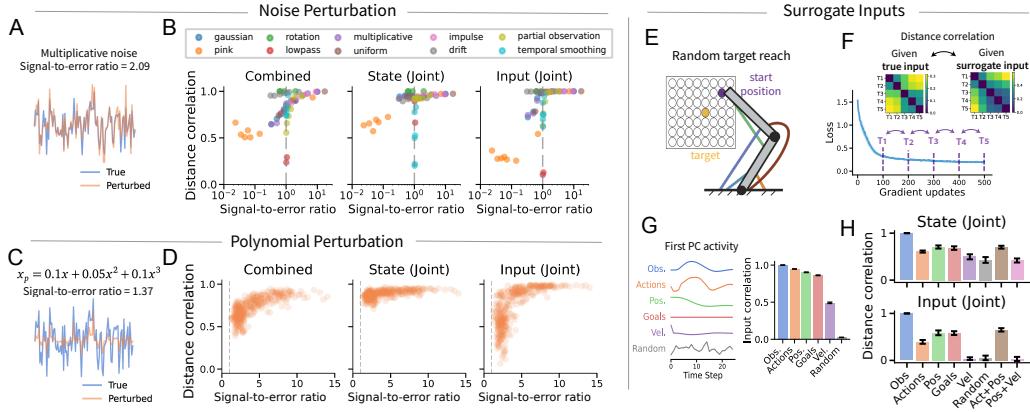
sampling rates, or inherent partial observability. As a consequence, researchers often rely on behavioral variables, task instructions, or environmental features as proxies when modeling neural circuits (Vinograd et al., 2024; Sani et al., 2024; Burak & Fiete, 2009b; Schaeffer et al., 2020; Mante et al., 2013b). This raises a key question for applying InputDSA : if the true inputs are unknown, can *surrogate inputs* that are correlated with the ground truth still yield accurate distance estimates?

We begin by examining how well the true InputDSA distance matrix when the provided input is noise-corrupted. We repeated the simulation and comparison in Fig. 2C, this time applying different types of noise perturbations to the input used in SubspaceDMDc (example in 3A). For complete details on the noise perturbations, see Appendix M. We applied 10 types of perturbations inspired by different real-world situations, such as partial observation, temporal smoothing, or multiplicative Gaussian noise, and repeated each perturbation across a range of parameters (e.g. standard deviation in the noise settings or filter width in the smoothing setting).

To measure the deviation of the signal consistently across perturbation types, we compute the signal-to-error ratio (SER) for each perturbation: given a time series $X \in \mathbb{R}^{t \times d}$ and its perturbed version $\tilde{X} = f(X)$, SER is defined as $SER(X, \tilde{X}) = \frac{\text{Var}(X)}{\text{Var}(\tilde{X} - X)}$. SER generalizes signal-to-noise ratio for non-additive perturbations. Despite the prevalence of noisy inputs, we found that InputDSA distances remain robust, decaying slowly below the $SER < 1$ threshold (Fig. 3B): High SERs lead to high correlations with ground truth distances, and correlations tend to remain above $r > 0.75$ even as SER approaches 1. This robustness arises due to the delay embedding and reduced-rank regression in Subspace DMDc: delay embedding incorporates the history of inputs, while reduced-rank regression removes noisy modes with spurious correlations.

To generalize this analysis to more complicated transformations, we repeated the analysis using inputs transformed by random polynomials (Fig. 3C,D). Specifically, we sampled 500 random 4-th order polynomials with coefficients drawn uniformly from $[-0.1, 0.1]$, which we applied dimension-wise to the inputs as a new perturbation. To generate inputs with higher SERs, we also generated 200 polynomials where the linear coefficient was fixed at 0.9, while all other coefficients were sampled

324 from the same range. As in the previous analysis, we find a similar pattern across SER: the state
 325 DSA correlations are the most robust, followed by the combined and the input DSA scores. This
 326 suggests that up to reasonable SER, the InputDSA scores are robust to input perturbations.
 327



341 **Figure 3: InputDSA provides robust distance estimates under input noise and surrogate in-**
 342 **puts.** (A) Example of multiplicative Gaussian noise added to input data. (B) Effect of different
 343 noise perturbations on the InputDSA similarity matrices in Fig. 2 (see Appendix Section M for
 344 further technical details on the noise). The y-axis indicates the correlation between the InputDSA
 345 matrices given the true input and the perturbed input. The x-axis indicates the signal to error ratio
 346 $\text{Var}(X)/\text{Var}(\tilde{X} - X)$. From left to right: joint controllability DSA (Eq. 8), jointly optimized state
 347 DSA (Eq. 9; jointly optimized input DSA (Eq. 10). (C) Example of a polynomial function applied
 348 to the same input as in (A). (D) Similar analysis as in (B), with various random polynomial functions
 349 applied to the input. (E) Random target task schematic. (F) We compare RNNs dynamics across
 350 multiple time points in training with InputDSA. We study changes in the distance matrix when
 351 applying surrogate inputs. (G) Example first Principal Component for different surrogate inputs and
 352 their correlation with the true input (Obs). (H) Correlation between InputDSA distances estimated
 353 using the ground truth input and surrogate inputs. Error bars indicate standard error across 10 training
 354 runs. Jointly optimized state and input DSA are presented.

355 Next, we evaluated whether task-relevant surrogate inputs could be used in place of ground truth,
 356 instead of perturbed versions of the true input. We analyzed trained RNNs from the Random Target
 357 Reach task (Fig. 3E, Codol et al. 2024b), a widely used paradigm for studying neural control of
 358 movement from which rich neural and behavioral dynamics emerge (Hatsopoulos et al., 2007; Flint
 359 et al., 2012; Churchland et al., 2012). Across 20 epochs equally spaced in training, we recorded
 360 the RNN’s hidden states, observations (the true input), actions (behavioral output), and other task
 361 variables (Fig. 3F, only 5 epochs shown for visualization purpose). For a detailed description of the
 362 task and training, see Appendix O. Passing the hidden states of the RNN and the ground truth inputs
 363 through InputDSA, we obtained two distance matrices that characterize how the network’s intrinsic
 364 and input-driven dynamics change over learning. We repeated this process for various task-related
 365 surrogates: RNN output (actions), position, velocity, task instruction, and various combinations.
 366 We also included random inputs sampled from the uniform distribution on $[0, 1]$ as a baseline.
 367 Among surrogates, the actions maintain the highest trial-averaged correlation with the ground truth
 368 input (Fig. 3G). We find that InputDSA intrinsic (state) distances estimated with surrogate inputs
 369 have strong correlation with the ground truth distance, even with random inputs (Fig. 3H). For input-
 370 driven comparisons, more highly-correlated surrogates tend to yield more accurate similarities, with
 371 the RNN’s combined action and positions providing strong correlations with the ground truth dis-
 372 tance (Fig. 3H). Overall, our analysis suggests that state similarities are robust to perturbations of
 373 many different types, while the combined and input similarities are still robust, albeit less so.

4 APPLICATIONS

4.1 INPUTDSA TRACKS THE EVOLUTION OF INDIVIDUAL DIFFERENCE OVER LEARNING

374 In closed-loop Reinforcement Learning (RL) environments, stochastic action selection and small
 375 differences in policies can shift the distribution of sensory inputs encountered across training. To
 376 understand divergence between agents, it is crucial to study how inputs interact with dynamics and
 377

378 shape agent performance. The Plume Tracking task (Fig. 4A) provides an ideal testbed because the
 379 agents must balance between memory-based intrinsic dynamics with stimulus-driven responses.
 380

381 In this task, artificial flies (RNNs) trained by deep RL navigate to the source of a simulated
 382 turbulent odor plume in a windy 2D arena. At each timestep, the agent senses only
 383 local cues (intermittent odor concentration and wind direction) and takes actions to move its
 384 position. Due to the stochastic nature of sensory observations and exploration, agents di-
 385 verge across training, producing a wide variation of success rates (Fig. 3B). This raises a
 386 key question: do performance differences reflect variations in intrinsic dynamics (the abil-
 387 ity to form and maintain task-relevant representations) or input-driven responses to stimuli?
 388

389 We trained 15 independent
 390 agents on the Plume Tracking
 391 task. We selected the five
 392 best-performing (“Top”) agents
 393 with 65% to 20% success rate
 394 at locating the odor source
 395 across 200 evaluation episodes,
 396 and five worst-performing
 397 (“Bottom”) agents who never
 398 succeeded on any episode
 399 (Fig. 4B). Applying InputDSA
 400 revealed that the input-driven
 401 dynamics of the Top agents
 402 were significantly more similar
 403 to each other and clearly sepa-
 404 rated from those of the Bottom
 405 agents, whereas intrinsic dy-
 406 namics were not significantly
 407 different between groups (Fig.
 408 4D). This suggests that suc-
 409 cessful plume tracking heavily
 410 depends rapid input-driven
 411 responses to wind direction and
 412 odor concentration. To probe
 413 how the input-driven dynamics
 414 differ between Top and Bottom
 415 agents, we examined the sin-
 416 gular values of the input-mapping
 417 B in Fig. 4E. Singular values
 418 of the operator quantify how
 419 strongly input directions are
 420 injected into RNN state space.

421 We found that the singular values of B for Top agents decay more slowly than for Bottom agents.
 422 This implies that inputs excite more dimensions of the RNN in Top agents (Fig. 4E), allowing them
 423 to directly control each dimension with the input, rather than indirectly through other dimensions.
 424

425 We next ask how individual variability in neural dynamics evolves during training. To this end, we
 426 computed pairwise dynamical similarity among Top and Bottom agents every 20 gradient updates
 427 (Fig. 4F). While within-group input similarity decreases over training for both Top and Bottom, the
 428 Top agents ultimately converge to a more consistent set of input-driven dynamics, whereas the Bot-
 429 tom agents diverge toward heterogeneous, idiosyncratic dynamics. This is reminiscent of the “Anna
 430 Karenina principle”, in which effective solutions are similar to each other, while worse ones are
 431 highly varied. We repeated this comparison using DMDc, finding that it identified similar structure
 432 in the input-driven dynamics but not the intrinsic dynamics (Appendix Fig. 17).

4.2 INPUTDSA CAPTURES DIFFERENCES IN NEURAL POPULATION DYNAMICS ACROSS TIME

433 Lastly, we apply InputDSA to a recently published dataset in which neural population activities were
 434 recorded from six frontal and striatal regions with Neuropixels probes during an auditory evidence

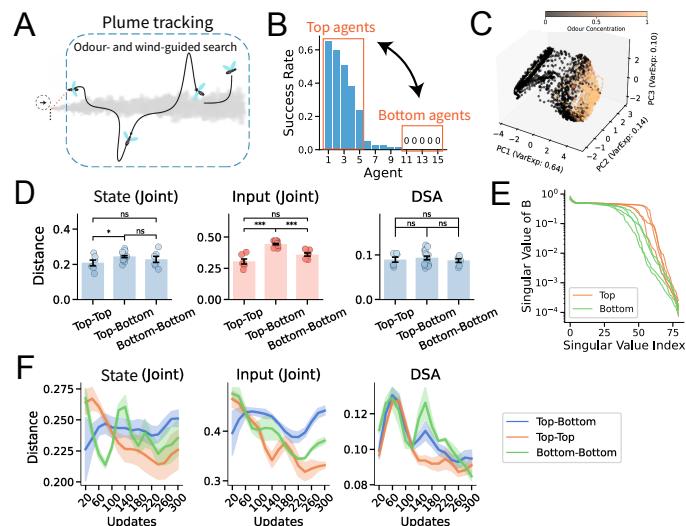
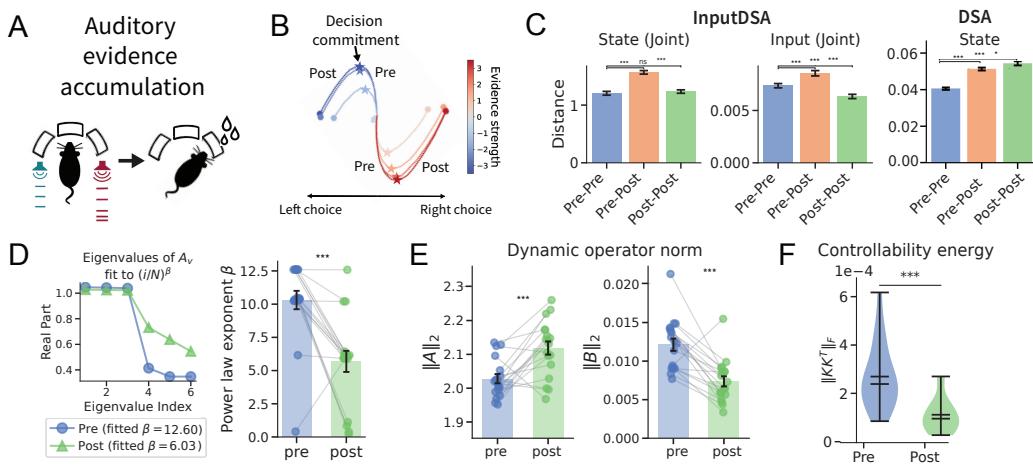


Figure 4: **InputDSA identifies how successful and unsuccessful agents differ over training.** (A) The Plume Tracking environment schematic adapted from Singh et al. (2023). (B) Average performance (success rate) of 15 independently trained agents. The 5 most performant (“Top”) and 5 failed (“Bottom”) agents are studied further. (C) Neural dynamics of trained agents are organized in a low-dimensional space and reflective of behaviorally relevant variable (i.e. the odor concentration). (D) Average distance computed within the 5 Top Agents, within the 5 Bottom agents, and across groups (Top–Bottom). (E) The singular value spectrum of the input-mapping operator B from Top and Bottom agents. (F) The evolution of similarity within and across groups over learning. Shaded area indicates standard error.

432 accumulation task (Luo et al. 2025, Fig. 5A). During this task, rats were trained to listen to auditory
 433 pulses from speakers on the either side of the animal, and to turn to the side with more auditory
 434 pulses. This dataset contains 12 rats across 115 daily sessions with a median of 327 neurons recorded
 435 and 455 trials completed per session. We chose 4 rats with more than 15 recorded sessions for
 436 our analysis to ensure accurate estimation of neural dynamics. In the original study, the authors
 437 define the *neural time of commitment (nTc)* as the internal moment during perceptual decision-
 438 making when an animal has effectively committed to a choice (Fig. 5B). To examine how neural
 439 population dynamics reorganize across this point, we applied InputDSA to neural activities during
 440 the stimulus presentation period before and after the nTc. Spiking activity was binned in 50 ms
 441 windows, smoothed with a causal Gaussian kernel ($\sigma = 250$ ms), and dimensionality reduced with
 442 PCA to preserve 99% of variance. The activity was then embedded into three dimensions using
 443 Isomap, and InputDSA was applied with hyperparameters detailed in Appendix Q. We construct the
 444 inputs as two-dimensional time series encoding the number of auditory pulses from the left and right
 445 within each bin. An analysis of the input revealed that this input structure was sufficient to robustly
 446 identify a B operator (i.e it is persistently exciting, Appendix Fig. 21).



463 **Figure 5: InputDSA quantifies differences in neural population dynamics across task epoch.**
 464 (A) Auditory evidence accumulation task schematic (adapted from Luo et al. 2025). (B) Trial-
 465 averaged neural trajectories visualized in the top two Principal Components. Stars indicate a "neu-
 466 ral time of commitment" (nTc): the time point when the curvature of trial-averaged trajectories is
 467 maximum (marked by stars). (C) Similarity of neural dynamics before and after the nTc for rat
 468 T223. Bars denote standard error across 21 sessions. (D) Distribution of top real eigenvalues of
 469 state-transition matrix A and fit power law for pre- vs. post-commitment activity. Left, sample
 470 distribution. Right, distribution of power law exponents across sessions. Dots denote individual
 471 sessions, lines indicate paired periods within session, likewise in E and F. (E) Effects of intrinsic
 472 and input-driven dynamics in pre vs. post periods, measured by L2-norm of the SubspaceDMDc op-
 473 erator. (F) Distribution of Frobenius norms of Controllability Gramians for SubspaceDMDc models
 474 for all sessions of one rat. $p < 0.001$, Mann Whitney U-Test.

475 Comparing neural dynamics before and after the nTc ("Pre" vs. "Post"), we found significant shifts
 476 in both intrinsic and input-driven dynamics, consistent with the changes at nTc reported in (Luo
 477 et al., 2025) (Fig. 5C). To probe how the intrinsic dynamics change, we analyzed the eigenspectrum
 478 of the state-transition matrix A estimated by SubspaceDMDc before and after the nTc. Each spec-
 479 trum was fit with a power law $\lambda_i \propto \left(\frac{i}{N}\right)^\beta$, where λ_i are the i -th eigenvalue sorted in descending
 480 order. We found that the post-commitment periods consistently showed smaller β , indicating slower
 481 decay and thus longer-lasting intrinsic dynamics (Fig. 5D). This is directly related to the *control-
 482 lability* of the dynamical system, which describes how easy it is for an input sequence to drive the
 483 system to arbitrary points in state space (Luenberger, 1979). Smaller DMD eigenvalues implies
 484 greater input controllability, which would be expected for a more input-driven system as Luo et al.
 485 (2025) identified is the case in the pre-nTc regime. Likewise, the average magnitude of the intrinsic
 486 dynamics strengthen while the input-driven dynamics weaken in the Post-nTc period, reflecting a
 487 transition into more autonomous, less input-sensitive regime after the nTc (Fig. 5E).

486 Lastly, we computed the Frobenius norms of the controllability Gramians for each SubspaceDMDc
 487 model, which measures how easy it is to control the system into arbitrary directions. In Fig. 5F,
 488 we report the distribution of norms for one rat pre- and post-nTc. The distribution significantly
 489 decays ($p < 0.001$, Mann-Whitney U-test), indicating that the neural dynamics become less input-
 490 controllable over time. We found similar results for all other animals in the dataset (Appendix Fig.
 491 22). The median percent change in controllability energy was -47.63% (standard error 15.15%). To-
 492 gether, these results suggest that population activity undergoes a regime shift at the nTc : transitioning
 493 from an input-driven, evidence-accumulation phase into an intrinsically dominated, decision-
 494 commitment phase, as suggested by (Luo et al., 2025). Applying the DMDc for comparison did not
 495 reveal similar results, almost certainly due to partial observation (Fig. 19).

497 5 DISCUSSION

498 We introduced a theoretically-motivated method (InputDSA) to quantitatively compare the intrinsic
 499 dynamics and effects of input between two dynamical systems, from data alone. We extended the
 500 DSA framework (Ostrow et al., 2023) to account for input-driven systems, which required a novel
 501 variant of the Dynamic Mode Decomposition with Control (Proctor et al., 2016a) called Subspace
 502 DMDc. We also developed a novel optimization algorithm for our similarity metric that is multiple
 503 orders of magnitude faster than prior work.

504 We demonstrated that InputDSA can effectively estimate similarity from partially-observed systems
 505 (Fig. 2), which is necessary when dealing with most physical and biological systems. In many
 506 settings, the true input is not known (for example the signal from one brain region to another), but
 507 we demonstrated that even approximate or noisy inputs can provide reasonable input and intrinsic
 508 similarity estimates (Fig. 3). Since many models in computational neuroscience tend to utilize proxy
 509 inputs (Nair et al., 2023; Sohn et al., 2019; Burak & Fiete, 2009a; Mante et al., 2013a; Sussillo
 510 et al., 2015), our work provides principled methodological support to this practice. Inputs could
 511 also be estimated via another computational method (e.g. Perich et al. 2020; Luo et al. 2025) before
 512 applying InputDSA. As Fig. 3 suggests, even utilizing weakly correlated proxy inputs can increase
 513 the robustness of the intrinsic comparison with InputDSA.

514 InputDSA could be used for further validation of computational models with perturbation as in
 515 O’Shea et al. (2022). Known optogenetic or electrical impulse perturbations could be applied to
 516 both a model and biological neural circuit, following which both their internal dynamics and im-
 517 pulse responses could be compared. This can provide more stringent tests than comparing intrinsic
 518 dynamics alone. Other subspace identification methods could be used in place of SubspaceDMDc,
 519 such as Eigensystem Realization (ERA, Juang & Pappa 1985). In a similar vein, InputDSA could
 520 potentially be used to identify the information content in cross-brain-region communication – mul-
 521 tiple models could be constructed with different surrogate inputs, and the most similar input should
 522 have the lowest input distance to the data (Fig. 3).

523 Although we only applied InputDSA to biological neural data and recurrent neural networks, it
 524 can be applied to any time series data. Indeed, the constraints on the method are based on the
 525 capabilities of systems identification and Koopman Operator approximation. For example, if the
 526 input is not persistently exciting, state modes will be under-approximated. If a viable basis is not
 527 identified, the linear model may not be able to capture enough structure for effective comparison.
 528 However, there exists a wide range of work in both fields designed to tackle these problems (Wu
 529 et al., 2021; Colbrook et al., 2023; Takeishi et al., 2017a; Ichinaga et al., 2024). It is also worth
 530 noting that near-perfect estimation is not necessary for informative comparison.

531 InputDSA has other limitations. The method assumes additive input, which may not be able to ap-
 532 proximate the effects of multiplicative input (Logiaco et al., 2021; Shine et al., 2021). Disentangling
 533 the contribution of state and input can also be challenging or intractable when they are synchro-
 534 nized (Rajan et al., 2010) or the input is a linear function of the state (Verhaegen & Verdult 2007,
 535 although methods exist for subspace identification in closed loop Van Der Veen et al. 2013). From
 536 a computational complexity standpoint, the bottleneck is fitting the SubspaceDMDc, as comparison
 537 is extremely fast. Regardless, we found that even for reasonably sized systems (e.g. 50 dimensions,
 538 10,000 timepoints) and hyperparameters (100 delays), the method requires a $O(1$ minute) on M1 Pro
 539 Mac, and is even faster on a GPU.

540 REPRODUCIBILITY STATEMENT
541

542 The description of all algorithms utilized in our paper is sufficiently detailed in order to reproduce
543 InputDSA (pseudocode, mathematical details, hyperparameter tuning) and our results. We built
544 upon publically-available code from Ostrow et al. (2023) to create InputDSA . For our RNN studies,
545 we used open source code, and have detailed the hyperparameters we used in the simulations as well
546 as in our analyses. For our neural data analysis, we used public data and processed it generically,
547 thereby making reproduction easy, if desirable. We are thankful for prior open source work and we
548 will release our method open source upon acceptance. We hope InputDSA is not only used and but
549 also improved upon.

550
551 REFERENCES
552

553 Diego Aldarondo, Josh Merel, Jesse D Marshall, Leonard Hasenclever, Ugne Klibaite, Amanda
554 Gellis, Yuval Tassa, Greg Wayne, Matthew Botvinick, and Bence P Ölveczky. A virtual rodent
555 predicts the structure of neural activity across behaviours. *Nature*, 632(8025):594–602, 2024.

556 Hassan Arbabi and Igor Mezić. Ergodic Theory, Dynamic Mode Decomposition, and Computation
557 of Spectral Properties of the Koopman Operator. *SIAM Journal on Applied Dynamical Systems*,
558 (4):2096–2126, 2017.

559 H. Harry Asada and Jose A. Solano-Castellanos. Control-coherent koopman modeling: A physical
560 modeling approach, 2024. URL <https://arxiv.org/abs/2403.16306>.

561 Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, Eurika Kaiser, and J. Nathan Kutz.
562 Chaos as an Intermittently Forced Linear System. *Nature Communications*, 8(1):19, December
563 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-00030-8. URL <http://arxiv.org/abs/1608.05306>. arXiv:1608.05306 [nlin].

564 Marko Budišić, Ryan Mohr, and Igor Mezić. Applied Koopmanism. *Chaos: An Interdisciplinary
565 Journal of Nonlinear Science*, 22(4):047510, December 2012.

566 Yoram Burak and Ila R Fiete. Accurate path integration in continuous attractor network models of
567 grid cells. *PLoS computational biology*, 5(2):e1000291, 2009a.

568 Yoram Burak and Ila R Fiete. Accurate path integration in continuous attractor network models of
569 grid cells. *PLoS Comput. Biol.*, 5(2):e1000291, February 2009b.

570 Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic
571 attractor manifold and population dynamics of a canonical cognitive circuit across waking and
572 sleep. *Nature neuroscience*, 22(9):1512–1520, 2019.

573 Ruiqi Chen, Giacomo Vedovati, Todd Braver, and ShiNung Ching. Dform: Diffeomorphic vector
574 field alignment for assessing dynamics across learned models. *arXiv preprint arXiv:2402.09735*,
575 2024. doi: 10.48550/arXiv.2402.09735.

576 Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul Nuyu-
577 jukian, Stephen I. Ryu, and Krishna V. Shenoy. Neural population dynamics during reaching.
578 *Nature*, 487(7405):51–56, 2012.

579 Olivier Codol, Nanda H Krishna, Guillaume Lajoie, and Matthew G Perich. Brain-like neural dy-
580 namics for behavioral control develop through reinforcement learning. *bioRxiv*, pp. 2024–10,
581 2024a.

582 Olivier Codol, Jonathan A. Michaels, Mehrdad Kashefi, J. Andrew Pruszynski, and Paul L. Gribble.
583 Motornet: A python toolbox for controlling differentiable biomechanical effectors with artificial
584 neural networks. *eLife*, 13:RP88591, 2024b. doi: 10.7554/eLife.88591.

585 Matthew J. Colbrook, Lorna J. Ayton, and Máté Szőke. Residual dynamic mode decomposition:
586 robust and verified koopmanism. *Journal of Fluid Mechanics*, 955, 2023. ISSN 1469-7645. doi:
587 10.1017/jfm.2022.1052.

594 Albert Compte, Nicolas Brunel, Patricia S. Goldman-Rakic, and Xiao-Jing Wang. Synaptic mech-
 595 anisms and network dynamics underlying spatial working memory in a cortical network model.
 596 *Cerebral Cortex*, 10(9):910–923, 2000. doi: 10.1093/cercor/10.9.910.

597 Jordan Cotler, Kai Sheng Tai, Felipe Hernández, Blake Elias, and David Sussillo. Analyz-
 598 ing populations of neural networks via dynamical model embedding, 2023. URL <https://arxiv.org/abs/2302.14078>.

600 Adam J Eisen, Mitchell Ostrow, Sarthak Chandra, Leo Kozachkov, Earl K Miller, and Ila R Fi-
 601 ete. Characterizing control between interacting subsystems with deep jacobian estimation. *arXiv*
 602 *preprint arXiv:2507.01946*, 2025.

603 Mitchell J Feigenbaum. Quantitative universality for a class of nonlinear transformations. *Journal*
 604 *of statistical physics*, 19(1):25–52, 1978.

605 Robert D. Flint, Eric W. Lindberg, Luke R. Jordan, Lee E. Miller, and Marc W. Slutsky. Accurate
 606 decoding of reaching movements from field potentials in the absence of spikes. *Journal of Neural*
 607 *Engineering*, 9(4):046006, 2012.

608 Shintaro Funahashi, Charles J. Bruce, and Patricia S. Goldman-Rakic. Mnemonic coding of visual
 609 space in the monkey’s dorsolateral prefrontal cortex. *Journal of Neurophysiology*, 61(2):331–349,
 610 1989. doi: 10.1152/jn.1989.61.2.331.

611 Joaquin M. Fuster and Gary E. Alexander. Neuron activity related to short-term memory. *Science*,
 612 173(3997):652–654, 1971. doi: 10.1126/science.173.3997.652.

613 Aniruddh R. Galgali, Maneesh Sahani, and Valerio Mante. Residual dynamics resolves recurrent
 614 contributions to neural computation. *Nature Neuroscience*, 2023.

615 Juan A. Gallego, Matthew G. Perich, Stephanie N. Naufel, Christian Ethier, Sara A. Solla, and
 616 Lee E. Miller. Cortical population activity within a preserved neural manifold underlies multiple
 617 motor behaviors. *Nature Communications*, 9:4233, October 2018. ISSN 2041-1723. doi: 10.
 618 1038/s41467-018-06560-z. URL <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185944/>.

619 Richard J Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A Baas, Benjamin A
 620 Dunn, May-Britt Moser, and Edvard I Moser. Toroidal topology of population activity in grid
 621 cells. *Nature*, 602(7895):123–128, 2022.

622 Patricia S. Goldman-Rakic. Cellular basis of working memory. *Neuron*, 14(3):477–485, 1995. doi:
 623 10.1016/0896-6273(95)90304-6.

624 Adam Gosztolai, Robert L. Peach, Alexis Arnaudon, Mauricio Barahona, and Pierre Vandergheynst.
 625 MARBLE: interpretable representations of neural population dynamics using geometric deep
 626 learning. *Nature Methods*, 22(3):612–620, March 2025. ISSN 1548-7105. doi: 10.1038/
 627 s41592-024-02582-2. URL <https://doi.org/10.1038/s41592-024-02582-2>.

628 Sten Grillner. Biological pattern generation: The cellular and computational logic of networks in
 629 motion. *Neuron*, 52(5):751–766, 2006. doi: 10.1016/j.neuron.2006.11.008.

630 Quentin Guilhot, Michał J Wójcik, Jascha Achterberg, and Rui Ponte Costa. Dynamical similarity
 631 analysis uniquely captures how computations develop in rnns. 2024.

632 Masih Haseli, Igor Mezić, and Jorge Cortés. Two roads to koopman operator theory for control: In-
 633 finite input sequences and operator families, 2025. URL <https://arxiv.org/abs/2510.15166>.

634 Nicholas G. Hatsopoulos, Qingqing Xu, and Yali Amit. Encoding of movement fragments in the mo-
 635 tor cortex. *Journal of Neuroscience*, 27(19):5105–5114, May 2007. doi: 10.1523/JNEUROSCI.
 636 3570-06.2007. URL <https://www.jneurosci.org/content/27/19/5105>.

637 P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. *Rev. Mod. Phys.*, 49:
 638 435–479, Jul 1977. doi: 10.1103/RevModPhys.49.435. URL <https://link.aps.org/doi/10.1103/RevModPhys.49.435>.

648 Ann Huang, Satpreet H Singh, Flavio Martinelli, and Kanaka Rajan. Measuring and controlling
 649 solution degeneracy across task-trained recurrent neural networks. *ArXiv*, pp. arXiv–2410, 2025.
 650

651 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
 652 hypothesis, 2024. URL <https://arxiv.org/abs/2405.07987>.

653 Sara M. Ichinaga, Francesco Andreuzzi, Nicola Demo, Marco Tezzele, Karl Lapo, Gianluigi
 654 Rozza, Steven L. Brunton, and J. Nathan Kutz. PyDMD: A Python package for robust dy-
 655 namic mode decomposition, February 2024. URL <http://arxiv.org/abs/2402.07463> [stat].
 656 arXiv:2402.07463 [stat].

657 J. N. Juang and R. S. Pappa. An Eigensystem Realization Algorithm (ERA) for modal param-
 658 eter identification and model reduction. April 1985. URL <https://ntrs.nasa.gov/citations/19850022899>.

661 R. E. Kalman. Mathematical Description of Linear Dynamical Systems. *Journal of the Society*
 662 *for Industrial and Applied Mathematics Series A Control*, 1(2):152–192, January 1963. ISSN
 663 0887-4603. doi: 10.1137/0301010. URL <http://pubs.siam.org/doi/10.1137/0301010>.

665 Ta-Chu Kao and Guillaume Hennequin. Neuroscience out of control: control-theoretic perspectives
 666 on neural circuit dynamics. *Current opinion in neurobiology*, 58:122–129, 2019.

668 Matthew B. Kennel, Reggie Brown, and Henry D. I. Abarbanel. Determining embedding dimension
 669 for phase-space reconstruction using a geometrical construction. *Phys. Rev. A*, 45:3403–3411,
 670 Mar 1992. doi: 10.1103/PhysRevA.45.3403. URL <https://link.aps.org/doi/10.1103/PhysRevA.45.3403>.

672 Ole Kiehn. Decoding the organization of spinal circuits that control locomotion. *Nature Reviews*
 673 *Neuroscience*, 17(4):224–238, 2016. doi: 10.1038/nrn.2016.9.

675 B. O. Koopman. Hamiltonian systems and transformation in hilbert space. *Proceedings of the*
 676 *National Academy of Sciences*, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL <https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315>.

678 Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
 679 meets model predictive control. *Automatica*, 93:149–160, 2018. ISSN 0005-1098. doi: <https://doi.org/10.1016/j.automatica.2018.03.046>. URL <https://www.sciencedirect.com/science/article/pii/S000510981830133X>.

682 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neu-
 683 ral Network Representations Revisited, July 2019. URL <http://arxiv.org/abs/1905.00414>. arXiv:1905.00414 [cs, q-bio, stat].

685 Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis —
 686 connecting the branches of systems neuroscience. *Frontiers in Systems Neuroscience*, 2:4, 2008.
 687 doi: 10.3389/neuro.06.004.2008.

689 John Lazzari and Shreya Saxena. Multitasking recurrent networks utilize compositional strategies
 690 for control of movement. *bioRxiv*, pp. 2025–09, 2025.

692 Baihan Lin and Nikolaus Kriegeskorte. The topology and geometry of neural representa-
 693 tions. *Proceedings of the National Academy of Sciences*, 121(42):e2317881121, 2024. doi:
 694 10.1073/pnas.2317881121. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2317881121>.

696 Laureline Logiaco, LF Abbott, and Sean Escola. Thalamic control of cortical dynamics in a model
 697 of flexible motor sequencing. *Cell reports*, 35(9), 2021.

698 David G Luenberger. Dynamic systems, 1979.

700 Thomas Zhihao Luo, Timothy Doyeon Kim, Diksha Gupta, Adrian G Bondy, Charles D Kopec,
 701 Verity A Elliott, Brian DePasquale, and Carlos D Brody. Transitions in dynamical regime and
 neural mode during perceptual decisions. *Nature*, pp. 1–11, 2025.

702 Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear embed-
 703 dings of nonlinear dynamics. *Nature Communications*, 9(1):4950, November 2018. ISSN 2041-
 704 1723. doi: 10.1038/s41467-018-07210-0. URL <https://www.nature.com/articles/s41467-018-07210-0>.

705

706 Manu S Madhav and Noah J Cowan. The synergy between neuroscience and control theory: the
 707 nervous system as inspiration for hard control challenges. *Annual Review of Control, Robotics,
 708 and Autonomous Systems*, 3(1):243–267, 2020.

709

710 Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
 711 versality and individuality in neural dynamics across large populations of recurrent networks. In
 712 *Advances in neural information processing systems*, pp. 15629–15641, 2019.

713

714 Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
 715 computation by recurrent dynamics in prefrontal cortex. *nature*, 503(7474):78–84, 2013a.

716

717 Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. Context-dependent
 718 computation by recurrent dynamics in prefrontal cortex. *Nature*, 503(7474):78–84, November
 719 2013b. ISSN 1476-4687. doi: 10.1038/nature12742. URL <https://www.nature.com/articles/nature12742>. Number: 7474 Publisher: Nature Publishing Group.

720

721 Eve Marder and Dirk Bucher. Central pattern generators and the control of rhythmic movements.
 722 *Current Biology*, 11(23):R986–R996, 2001. doi: 10.1016/S0960-9822(01)00581-4.

723

724 Igor Mezic. On Comparison of Dynamics of Dissipative and Finite-Time Systems Using Koop-
 725 man Operator Methods**The funding provided by ARO Grant W911NF-11-1-0511. *IFAC-
 726 PapersOnLine*, 49:454–461, December 2016. doi: 10.1016/j.ifacol.2016.10.207.

727

728 Igor Mezić and Andrzej Banaszuk. Comparison of systems with complex behavior. *Physica
 729 D: Nonlinear Phenomena*, 197(1):101–133, October 2004. ISSN 0167-2789. doi: 10.1016/
 730 j.physd.2004.06.015. URL <https://www.sciencedirect.com/science/article/pii/S0167278904002507>.

731

732 Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J Schnitzer, Scott W Linderman,
 733 David J Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus encodes
 734 an aggressive state. *Cell*, 186(1):178–193, 2023.

735

736 Amin Nejatbakhsh, Victor Geadah, Alex H Williams, and David Lipshutz. Comparing noisy neural
 737 population dynamics using optimal transport distances. *arXiv preprint arXiv:2412.14421*, 2024.

738

739 Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond geometry: Comparing the
 740 temporal structure of computation in neural circuits with dynamical similarity analysis. *Advances
 741 in Neural Information Processing Systems*, 36, 2023.

742

743 Mitchell Ostrow, Adam Eisen, and Ila Fiete. Delay embedding theory of neural sequence models.
 744 *arXiv preprint arXiv:2406.11993*, 2024. URL <https://arxiv.org/abs/2406.11993>.

745

746 Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the identification
 747 of combined deterministic-stochastic systems. *Automatica*, 30:75–93, 1994. URL <https://api.semanticscholar.org/CorpusID:28586805>.

748

749 Daniel J O’Shea, Lea Duncker, Werapong Goo, Xulu Sun, Saurabh Vyas, Eric M Trautmann, Ilka
 750 Diester, Charu Ramakrishnan, Karl Deisseroth, Maneesh Sahani, et al. Direct neural perturbations
 751 reveal a dynamical mechanism for robust computation. *bioRxiv*, pp. 2022–12, 2022.

752

753 Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,
 754 Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, et al. Inferring brain-
 755 wide interactions using data-constrained recurrent neural network models. *BioRxiv*, pp. 2020–12,
 2020.

756

757 Astrid A Prinz, Dirk Bucher, and Eve Marder. Similar network activity from disparate circuit
 758 parameters. *Nature Neuroscience*, 7(12):1345–1352, December 2004. ISSN 1546-1726. doi:
 759 10.1038/nn1352. URL <https://doi.org/10.1038/nn1352>.

756 Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control.
 757 *SIAM Journal on Applied Dynamical Systems*, 15(1):142–161, 2016a.
 758

759 Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing Koopman Theory to al-
 760 low for inputs and control, February 2016b. URL <http://arxiv.org/abs/1602.07647>.
 761 arXiv:1602.07647 [math].

762 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singular Vec-
 763 tor Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability, November
 764 2017. URL <http://arxiv.org/abs/1706.05806>. arXiv:1706.05806 [cs, stat].

765 Kanaka Rajan, L. F. Abbott, and Haim Sompolinsky. Stimulus-dependent suppression of chaos in
 766 recurrent neural networks. *Physical Review E*, 82(1):011903, July 2010. doi: 10.1103/PhysRevE.
 767 82.011903.

768 William Redman, Francisco Acosta, Santiago Acosta-Mendoza, and Nina Miolane. Not so griddy:
 769 Internal representations of rnns path integrating more than one agent. *Advances in Neural Infor-
 770 mation Processing Systems*, 37:22657–22689, 2024a.

772 William T. Redman, Juan Bello-Rivas, Maria Fonoberova, Ryan Mohr, Yannis G. Kevrekidis,
 773 and Igor Mezić. Identifying equivalent training dynamics. In A. Globerson, L. Mackey,
 774 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
 775 ral Information Processing Systems*, volume 37, pp. 23603–23629. Curran Associates, Inc.,
 776 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2a07348a6a7b2c208ab5cb1ee0e78ab5-Paper-Conference.pdf.

778 Omid G. Sani, Bijan Pesaran, and Maryam M. Shanechi. Dissociative and prioritized modeling of
 779 behaviorally relevant neural dynamics using recurrent neural networks. *Nature Neuroscience*, 27
 780 (10):2033–2045, 2024. doi: 10.1038/s41593-024-01731-2. URL <https://www.nature.com/articles/s41593-024-01731-2>.

782 Rylan Schaeffer, Mikail Khona, Leenoy Meshulam, Brain Laboratory International, and Ila Fi-
 783 ete. Reverse-engineering recurrent neural network solutions to a hierarchical inference task
 784 for mice. In *Advances in Neural Information Processing Systems*, volume 33, pp. 4584–4596.
 785 Curran Associates, Inc., 2020. URL <https://papers.nips.cc/paper/2020/hash/30f0641c041f03d94e95a76b9d8bd58f-Abstract.html>.

788 Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. *Jour-
 789 nal of Fluid Mechanics*, 656:5–28, August 2010. ISSN 0022-1120, 1469-7645. doi:
 790 10.1017/S0022112010001217. URL https://www.cambridge.org/core/product/identifier/S0022112010001217/type/journal_article.

792 Peter J Schmid. Dynamic mode decomposition and its variants. *Annual Review of Fluid Mechanics*,
 793 54(1):225–254, 2022.

794 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Ko-
 795 hitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel
 796 L. K. Yamins, and James J. DiCarlo. Brain-Score: Which Artificial Neural Network for Ob-
 797 ject Recognition is most Brain-Like? preprint, Neuroscience, September 2018. URL <http://biorxiv.org/lookup/doi/10.1101/407007>.

800 James M Shine, Eli J Müller, Brandon Munn, Joana Cabral, Rosalyn J Moran, and Michael Break-
 801 spear. Computational models link cellular mechanisms of neuromodulation to large-scale neural
 802 dynamics. *Nature neuroscience*, 24(6):765–776, 2021.

803 Satpreet H Singh, Floris van Breugel, Rajesh PN Rao, and Bingni W Brunton. Emergent behaviour
 804 and neural dynamics in artificial agents tracking odour plumes. *Nature Machine Intelligence*, 5
 805 (1):58–70, 2023.

806 Alexander J Smola and Bernhard Schölkopf. *Learning with kernels*, volume 4. GMD-
 807 Forschungszentrum Informationstechnik Berlin, Germany, 1998.

808 Hansem Sohn, Devika Narain, Nicolas Meirhaeghe, and Mehrdad Jazayeri. Bayesian computa-
 809 tion through cortical latent dynamics. *Neuron*, 103(5):934–947, 2019.

810 Robin Strässer, Karl Worthmann, Igor Mezić, Julian Berberich, Manuel Schaller, and Frank
 811 Allgöwer. An overview of koopman-based control: From error bounds to closed-loop guaran-
 812 tees, 2025. URL <https://arxiv.org/abs/2509.02839>.

813 David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural network
 814 that finds a naturalistic solution for the production of muscle activity. *Nature Neuroscience*, 18
 815 (7):1025–1033, 2015.

816 Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning Koopman Invariant Subspaces
 817 for Dynamic Mode Decomposition. In *Advances in Neural Information Processing Systems*, vol-
 818 umne 30. Curran Associates, Inc., 2017a. URL <https://papers.nips.cc/paper/2017/hash/3a835d3215755c435ef4fe9965a3f2a0-Abstract.html>.

819 Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Subspace dynamic mode decompositon
 820 for stochastic Koopman analysis. *Physical Review E*, 96(3):033310, September 2017b. ISSN
 821 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.96.033310. URL <https://link.aps.org/doi/10.1103/PhysRevE.96.033310>.

822 Gijs Van Der Veen, Jan-Willem Van Wingerden, Marco Bergamasco, Marco Lovera, and Michel
 823 Verhaegen. Closed-loop subspace identification methods: an overview. *IET Control Theory & Ap-
 824 plications*, 7(10):1339–1358, July 2013. ISSN 1751-8644, 1751-8652. doi: 10.1049/iet-cta.2012.
 825 0653. URL <https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-cta.2012.0653>.

826 Peter Van Overschee and Bart De Moor. N4sid: Subspace algorithms for the identification of com-
 827 bined deterministic-stochastic systems. *Automatica*, 30(1):75–93, 1994.

828 Michel Verhaegen. Identification of the deterministic part of mimo state space models given in
 829 innovations form from input-output data. *Automatica*, 30(1):61–74, 1994.

830 Michel Verhaegen and Vincent Verdult. *Subspace model identification*, pp. 292–344. Cambridge
 831 University Press, 2007.

832 Ayesha Vermani, Josue Nassar, Hyungju Jeon, Matthew Dowling, and Il Memming Park.
 833 Meta-dynamical state space models for integrative neural data analysis. *arXiv preprint
 834 arXiv:2410.05454*, 2024. revised 2025.

835 Christopher Versteeg, Jonathan D McCart, Mitchell Ostrow, David M Zoltowski, Clayton B Wash-
 836 ington, Laura Driscoll, Olivier Codol, Jonathan A Michaels, Scott W Linderman, David Sussillo,
 837 et al. Computation-through-dynamics benchmark: Simulated datasets and quality metrics for
 838 dynamical models of neural activity. *bioRxiv*, 2025.

839 Amit Vinograd, Aditya Nair, Joseph H. Kim, Scott W. Linderman, and David J. Anderson.
 840 Causal evidence of a line attractor encoding an affective state. *Nature*, 634(8035):910–918,
 841 2024. doi: 10.1038/s41586-024-07915-x. URL <https://www.nature.com/articles/s41586-024-07915-x>.

842 Xiao-Jing Wang. Synaptic basis of cortical persistent activity: The importance of nmda receptors to
 843 working memory. *Journal of Neuroscience*, 19(21):9587–9603, 1999. doi: 10.1523/JNEUROSCI.
 844 19-21-09587.1999.

845 Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott W. Linderman. Generalized shape metrics
 846 on neural representations. 2022. URL <https://arxiv.org/abs/2110.14739>.

847 Matthew O. Williams, Clarence W. Rowley, and Ioannis G. Kevrekidis. A kernel-based method for
 848 data-driven koopman spectral analysis. *Journal of Computational Dynamics*, 2(2):247–265, May
 849 2016. ISSN 2158-2491. doi: 10.3934/jcd.2015005. URL <https://www.aimscolleges.org/article/doi/10.3934/jcd.2015005>.

850 Ziyou Wu, Steven L. Brunton, and Shai Revzen. Challenges in dynamic mode decomposition.
 851 *Journal of The Royal Society Interface*, 18(185):20210686, 2021. doi: 10.1098/rsif.2021.
 852 0686. URL <https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2021.0686>.

864 Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
865 DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
866 cortex. *Proceedings of the national academy of sciences*, 111(23):8619–8624, 2014.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921

Appendix

OUTLINE

- A. LLM Usage Statement
- B. Dynamic Mode Decomposition With Control (DMDc)
- C. Relationship Between DMD (Regular) and DMDc
- D. Partial Observation Induces Biases in Input Operator B
- E. De-Biasing B under Partial Observation With Subspace Identification
- F. Misaligned Input Spaces
- G. Solving for Optimal Orthogonal C Efficiently
- H. InputDSA Pseudocode
- I. Hyperparameter Tuning for InputDSA
- J. Partially Observed System Comparison: Further Detail
- K. Process Noise Effect on InputDSA
- L. Establishing a Noise Floor for InputDSA Score
- M. Input Noise Generation
- N. Ordinary Least Squares Biases in Estimates of A in the Presence of Input Noise
- O. Random Target Reach Task
- P. Plume Tracking Task
- Q. Neural Dataset

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **A LLM USAGE STATEMENT**
 973

974 We used LLMs in preliminary phases of conducting this research, in particular for brainstorming
 975 research ideas and literature review, as well as writing simple boilerplate code (e.g. plotting). All
 976 code, math, and writing was checked by at least one author before including it in the paper.
 977

978 **B DYNAMIC MODE DECOMPOSITION WITH CONTROL (DMDc)**
 979

980 Dynamic Mode Decomposition with control (DMDc) (Proctor et al., 2016a) extends standard DMD
 981 to dynamical systems with external inputs. It provides a data-driven approximation of both the
 982 intrinsic dynamics A and input couplings B , enabling system identification and forecasting for non-
 983 autonomous dynamical systems. Here, we briefly review the formulation of DMDc. For full details,
 984 please refer to Proctor et al. (2016a). In practice, we can apply DMDc whenever the state is fully
 985 observed. When this is not the case, refer to Sections D and E.

986 We consider the input-driven linear model
 987

$$988 \quad x_{k+1} = Ax_k + Bu_k, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times p}, \quad (16)$$

989 where $x_k \in \mathbb{R}^n$ are state snapshots and $u_k \in \mathbb{R}^p$ are input signals. For an input-driven dynamical
 990 system, we collect pairs of the system states and input signals into
 991

$$992 \quad X = [x_1 \quad x_2 \quad \cdots \quad x_{m-1}], \quad (17)$$

$$993 \quad X' = [x_2 \quad x_3 \quad \cdots \quad x_m], \quad (18)$$

$$994 \quad U = [u_1 \quad u_2 \quad \cdots \quad u_{m-1}], \quad (19)$$

995 where $X, X' \in \mathbb{R}^{n \times (m-1)}$ and $U \in \mathbb{R}^{p \times (m-1)}$. We can rewrite equation 16 into
 996

$$997 \quad 998 \quad X' = G\Omega = [A \quad B] \begin{bmatrix} X \\ U \end{bmatrix} \quad (20)$$

999 where $\Omega \in \mathbb{R}^{(n+p) \times (m-1)}$ and $G \in \mathbb{R}^{n \times (n+p)}$.
 1000

1001 The optimal operator is then obtained by solving
 1002

$$1003 \quad G = \arg \min_{\tilde{G}} \|X' - \tilde{G}\Omega\|_F = X' \Omega^+, \quad (21)$$

1004 where $(\cdot)^+$ denotes the Moore–Penrose pseudoinverse.
 1005

1006 Let the truncated SVD of Ω be
 1007

$$1008 \quad \Omega \approx \tilde{U} \tilde{\Sigma} \tilde{V}^*, \quad \Omega^+ \approx \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}^*. \quad (22)$$

1009 Partition \tilde{U} into state and input blocks:
 1010

$$1011 \quad \tilde{U} = \begin{bmatrix} \tilde{U}_x \\ \tilde{U}_u \end{bmatrix}, \quad \tilde{U}_x \in \mathbb{R}^{n \times \tilde{r}}, \quad \tilde{U}_u \in \mathbb{R}^{p \times \tilde{r}}. \quad (23)$$

1012 The system matrices are then estimated as
 1013

$$1014 \quad A = X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_x^*, \quad B = X' \tilde{V} \tilde{\Sigma}^{-1} \tilde{U}_u^*. \quad (24)$$

1015 We can further project A and B into the system's state space using
 1016

$$1017 \quad X \approx U_r \Sigma_r V_r^*, \quad U_r \in \mathbb{R}^{n \times r}, \quad (25)$$

$$1018 \quad \tilde{A} = U_r^* A U_r, \quad \tilde{B} = U_r^* B. \quad (26)$$

1019 It is useful to perform SVD independently on X and U , assuming there is minimal correlation among
 1020 the variables. This is especially useful when using nonlinear embeddings such as delay embeddings
 1021 in the regression. This changes the algorithm of DMDc but not significantly. In particular, we can
 1022 now write:
 1023

1026

1027

$$\Omega = \begin{pmatrix} U_x & 0 \\ 0 & U_u \end{pmatrix} \begin{pmatrix} \Sigma_x & 0 \\ 0 & \Sigma_u \end{pmatrix} \begin{pmatrix} V_x^T \\ V_u^T \end{pmatrix} \quad (27)$$

1029

1031 This enables us to pick ranks separately for X and U components. In practice, we apply the
 1032 techniques used in HAVOK (Brunton et al., 2017) to estimate the DMD. We do regression in the
 1033 eigen-time-delay (pca-whitened) spaces of X and U (Hankelized), which allows us to select ranks
 1034 separately for the X and the U space.

1035

1036

B.1 ON NONLINEAR EMBEDDINGS IN DMDc

1037

1038

1039 In the standard DMDc formulation (above), an SVD is taken across Ω , which concatenates the state
 1040 data X with the input data U . Although this has the benefit of whitening across all regressors, it
 1041 can bias the estimation of A and B depending on the relative scalings and dimensionalities of X
 1042 and U . This has a critical effect when applying high-dimensional nonlinear embeddings to only X
 1043 (U) individually, as the SVD will be increasingly dominated by signal from X (U) if the data is
 1044 sufficiently rich. Therefore, whenever we apply delay embeddings or other nonlinear embeddings
 1045 to X , we do so commensurately to U .

1046

1047

C RELATIONSHIP BETWEEN DMD (REGULAR) AND DMDc

1048

1049

$$A_x^c = \left[\begin{pmatrix} X^T X & X^T U \\ U^T X & U^T U \end{pmatrix}_{1:m}^{-1} \begin{pmatrix} X^T \\ U^T \end{pmatrix} \right] X_{n+1}$$

1050

1051

$$A_x = (X^T X)^{-1} X^T X_{n+1}$$

1052

1053

1054

1055

$$S = (U^T U - U^T X (X^T X)^{-1} X^T U)$$

1056

1057

$$A_x^c = \left[\begin{pmatrix} (X^T X)^{-1} + \underbrace{(X^T X)^{-1} X^T U}_{A_u} S^{-1} U^T X (X^T X)^{-1}, -(X^T X)^{-1} X^T U S^{-1} \end{pmatrix} \begin{pmatrix} X^T \\ U^T \end{pmatrix} \right] X_{n+1}$$

1058

1059

1060

1061

$$A_x^c = (X^T X)^{-1} X^T X_{n+1} + A_u S^{-1} A_u^T X^T X_{n+1} - A_u S^{-1} U^T X_{n+1}$$

1062

1063

1064

1065

1066

1067

$$A_x^c = A_x + A_u S^{-1} A_u^T X^T X_{n+1} - A_u S^{-1} U^T X_{n+1}$$

1068

1069

D PARTIAL OBSERVATION INDUCES BIASES IN INPUT OPERATOR B

1070

1071

Consider a partially observed linear system:

1072

1073

1074

1075

1076

1077

1078

1079

$$\begin{pmatrix} x^o \\ x^u \end{pmatrix}_t = \begin{pmatrix} A_{oo} & A_{ou} \\ A_{uo} & A_{uu} \end{pmatrix} \begin{pmatrix} x^o \\ x^u \end{pmatrix}_{t-1} + \begin{pmatrix} B_o \\ B_u \end{pmatrix} u_{t-1} \quad (28)$$

We observe states x^o . This system can also be formulated as a Vector-Autoregressive model with exogenous inputs (VAR-X). To see this formulation, we recursively substitute the definition of x_t^u with its dynamical equation, hence arriving at a formulation of x_t^o as a function of past observed states and inputs:

1080
 1081
 1082
$$x_t^o = A_o x_{t-1}^o + A_{ou} x_t^u + B_o u_t \quad (29)$$

 1083
$$= A_o x_{t-1}^o + A_{ou} [A_{uo} x_{t-2}^o + A_{uu} x_{t-2}^u + B_u u_{t-1}] \quad (30)$$

 1084
$$= \dots \quad (31)$$

 1085
 1086
$$= A_o x_{t-1}^o + \sum_{i=1}^{\infty} A_{ou} A_u^{i-1} (A_{uo} x_{t-1}^o + B_u u_{t-i}) + B_{ou} u_t \quad (32)$$

 1087
 1088

1089 We take an infinite sum here for completeness, but in practice i can be capped up to marginal error
 1090 based on the decay rates (eigenvalues) of A_u . We can write this equation as a function of the delay-
 1091 embedded observed state and inputs:

1092
 1093
 1094
 1095
$$x_{t+1}^o = [A_o \ A_{ou} A_{uo} \ A_{ou} A_u A_{uo} \ \dots \ A_{ou} A_u^{d-1} A_{uo}] \begin{bmatrix} x_t^o \\ x_{t-1}^o \\ \dots \\ x_{t-d}^o \end{bmatrix} \quad (33)$$

 1096
 1097
 1098
 1099
$$+ [B_o \ A_{ou} B_u \ A_{ou} A_u B_u \dots A_{ou} A_u^{d-1} B_u] \begin{bmatrix} u_t \\ u_{t-1} \\ \dots \\ u_{t-d} \end{bmatrix} \quad (34)$$

 1100
 1101
 1102

1103 These equations show that when performing regression as in *DMDc* on partially-observed, delay-
 1104 embedded data, the estimates of B become biased by the intrinsic dynamics in the unobserved states.
 1105 Biases in B emerges when utilizing delay embeddings as dimensionality expansions, as we can see
 1106 from the above formulation. Although we display the formal connection with linear systems above,
 1107 it is simple to observe that the same problem occurs with nonlinear dynamics as well.

1108
 1109 **E DE-BIASING B UNDER PARTIAL OBSERVATION WITH SUBSPACE**
 1110 **IDENTIFICATION**
 1111

1112 In this section, we introduce SubspaceDMDc, a natural extension of two DMD models in the literature: Subspace DMD (Takeishi et al., 2017b) and DMDc (Proctor et al., 2016a). SubspaceDMDc
 1113 has a notable difference from SubspaceDMD, as Takeishi et al. (2017b) utilize the subspace identifi-
 1114 cation approach to handle observation noise, whereas we utilize subspace identification to handle
 1115 input affecting future timesteps (although we gain noise robustness through similar means). In the
 1116 control theory literature, there are a number of subspace identification algorithms, two of the most
 1117 famous are Multivariable Output-Error State sPace (MOESP) modeling and Numerical Algorithms
 1118 for Subspace State Space System Identification (N4SID) (Verhaegen & Verdult, 2007; Verhaegen,
 1119 1994; Van Overschee & De Moor, 1994). In order to be brief, we will discuss only N4SID, which is
 1120 the method we chose to implement. In general, the algorithms have similar behavior, except on ill-
 1121 conditioned data. Practically speaking, either method could be used in DSA; it is up to the user and
 1122 their respective performances on the dataset. The extension of these methods to SubspaceDMDc
 1123 is the introduction of a lifting feature space: polynomials, kernels, random feature maps, neural
 1124 networks, or nonlinear features can be used in order to find a best-predicting nonlinear basis upon
 1125 which the features evolve linearly.

1126
 1127 **E.1 SUBSPACE DMD**
 1128

1129 Subspace DMD (Takeishi et al., 2017b) is designed to handle the estimation of the Koopman operator
 1130 given data that is contaminated with observational and process noise. Assuming that the
 1131 dynamics and the noise are independent, one can project out the contribution of the noise in the
 1132 data and leave only the component that is explainable with past data (via delay embedding, step 2
 1133 of the algorithm below). We assume real data, although the method works for complex data as well.
 Algorithm 2 in the paper reads:

1134 1. Construct data matrices $Y_p = [Y_0^T \ Y_1^T]^T$ $Y_f = [Y_2^T \ Y_3^T]^T$ where $Y_t =$
 1135 $[g(x_t) \dots g(x_{t-m+1})]$
 1136

1137 2. Compute the orthogonal projection of the future data onto the past data: $O = Y_f \mathbb{P}_{Y_p^T}$
 1138 where the projector $\mathbb{P}_{Y_p^T} = Y_p^T (Y_p Y_p^T)^\dagger Y_p$.
 1139

1140 3. Compute the compact SVD (e.g., the SVD with no zero rows or columns): $O = U_q S_q V_q^T$
 1141 and define U_{q1}, U_{q2} by taking the first and last n rows of U_q . This is done in order to
 1142 split the projection matrix into the observability matrix and the state matrix: $O = \Gamma X$, up
 1143 to right / left multiplication by an invertible matrix. The observability matrix looks like
 1144 $\Gamma = (C \ CA \ \dots \ CA^n)$. Because this matrix encodes the time-shifted structure of the
 1145 dynamics, we split into the top n and last n rows to get U_{q1} and U_{q2} upon which we do
 1146 reduced-rank regression in the next step.
 1147

1148 4. Compute the compact SVD of $U_{q1} = USV^T$ and define the operator $\tilde{A} = U^T U_{q2} V S^{-1}$.
 1149

1150 5. If desirable, dynamic modes are defined as $w = \lambda^{-1} U_{q2} V S^{-1} \tilde{w}$ for eigenvalues λ , eigen-
 1151 vectors \tilde{w} of \tilde{A} .
 1152

1153 E.2 N4SID
 1154

1155 Numerical Algorithms for Subspace State Space System Identification (N4SID) (Van Overschee &
 1156 De Moor, 1994) utilizes a similar approach as the above to jointly estimate A, B, C, D operators
 1157 in a state space model from data Y and U . Here we briefly describe the algorithm that we apply
 1158 to estimate A and B that are used for comparison of partially observed systems, as first defined by
 1159 Overschee & Moor (1994). We used code from <https://github.com/spmvn/nfoursid/tree/master> for
 1160 our implementation of n4sid. For the Subspace DMDc, we lift to a nonlinear space *before* state
 1161 estimation.
 1162

1163 For state estimation to succeed, standard conditions on the data state and input apply. In particular
 1164 (1) the state vector is sufficiently excited (it explores all relevant dimensions of the state space), or
 1165 the system is reachable, (2) the input sequence is persistently exciting, i.e., the Hankel matrix of
 1166 the inputs is full rank, and (3) there is no linear state feedback, i.e. the state and the input are not
 1167 collinear. Note that nonlinear feedback is permissible provided they are not collinear. Prediction in
 1168 the SubSpaceDMDc is done with Kalman filtering, because state estimation must first take place.
 1169

1170 Briefly, we explain the key computations behind N4SID. There are two slightly different approaches.
 1171 The first algorithm is similar in spirit to Subspace DMD which we detail here:
 1172

1173 E.2.1 PROJECTION-BASED N4SID
 1174

1175 As above, we create a Hankel data matrix of the observations, but also the input too, splitting this into
 1176 past and future. First, we project out the data explained by U_f in the future observations Y_f , but also
 1177 the past observations and inputs $Z_p = [U_p \ Y_p]$, thereby removing its influence. Then to remove
 1178 measurement and process noise biases, we project the future states onto the space explainable by
 1179 the states and inputs in the past, Z_p . This yields our matrix $O = \Gamma X$, which we split using SVD as
 1180 before to get Γ , the extended observability matrix, and the states X up to similarity. Noting again
 1181 that our extended observability matrix has time-shifted structure, we can perform regression on the
 1182 shifted components of X given the instantaneous U , to arrive at A, B . The observability matrix Γ
 1183 also encodes C in its top rows, which we can directly read out. However, we found this algorithm
 1184 in practice to be less stable than the next one.
 1185

1186 In pseudocode form, we have the following:
 1187

1188 **Algorithm 1** Subspace DMD with Control (N4SID on lifted states)

1189 **Require:** Output data $\mathbf{Y} \in \mathbb{R}^{p_{out} \times N}$, Input data $\mathbf{U} \in \mathbb{R}^{m \times N}$, past window p , future window f ,
1190 system order n , regularization λ

1191 **Ensure:** Estimated system matrices $\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}$

1192 1: **procedure** BUILDHANKELMATRICES($\mathbf{Y}, \mathbf{U}, p, f$)
 1193 2: $T \leftarrow N - p - f + 1$
 1194 3: Construct Hankel matrices $\mathbf{Y}_p, \mathbf{U}_p, \mathbf{Y}_f, \mathbf{U}_f$
 1195 4: $\mathbf{Z}_p \leftarrow \begin{bmatrix} \mathbf{U}_p \\ \mathbf{Y}_p \end{bmatrix}$
 1196 5: **return** $(\mathbf{Y}_f, \mathbf{U}_f, \mathbf{Z}_p, T)$
 1197 6: **end procedure**

1198 7: **procedure** OBLIQUEPROJECTION($\mathbf{Y}_f, \mathbf{U}_f, \mathbf{Z}_p, \lambda, T$)
 1199 8: $\Pi_{\mathbf{U}_f^T}^\perp \leftarrow \mathbf{I}_T - \mathbf{U}_f^T (\mathbf{U}_f \mathbf{U}_f^T + \lambda \mathbf{I})^{-1} \mathbf{U}_f$
 1200 9: $\mathbf{Y}_{f,\perp} \leftarrow \mathbf{Y}_f \Pi_{\mathbf{U}_f^T}^\perp$
 1201 10: $\mathbf{Z}_{p,\perp} \leftarrow \mathbf{Z}_p \Pi_{\mathbf{U}_f^T}^\perp$
 1202 11: $\mathbf{O} \leftarrow \mathbf{Y}_{f,\perp} \mathbf{Z}_{p,\perp}^\dagger$ ▷ Oblique projection via pseudoinverse
 1203 12: **return** \mathbf{O}
 1204 13: **end procedure**

1205 14: **procedure** ESTIMATESTATEFROMPROJECTION(\mathbf{O}, n)
 1206 15: $\mathbf{U}_o, \mathbf{S}_o, \mathbf{V}_o \leftarrow \text{SVD}(\mathbf{O})$
 1207 16: Truncate to rank n : $\mathbf{U}_n, \mathbf{S}_n, \mathbf{V}_n$
 1208 17: $\hat{\Gamma}_f \leftarrow \mathbf{U}_n \sqrt{\mathbf{S}_n}$ ▷ Estimated observability matrix
 1209 18: $\hat{\mathbf{X}} \leftarrow \sqrt{\mathbf{S}_n} \mathbf{V}_n^T$ ▷ Estimated state sequence
 1210 19: **return** $(\hat{\Gamma}_f, \hat{\mathbf{X}})$
 1211 20: **end procedure**

1212 21: $\mathbf{Y}_f, \mathbf{U}_f, \mathbf{Z}_p, T \leftarrow \text{BUILDHANKELMATRICES}(\mathbf{Y}, \mathbf{U}, p, f)$
 1213 22: $\mathbf{O} \leftarrow \text{OBLIQUEPROJECTION}(\mathbf{Y}_f, \mathbf{U}_f, \mathbf{Z}_p, \lambda, T)$
 1214 23: $\hat{\Gamma}_f, \hat{\mathbf{X}} \leftarrow \text{ESTIMATESTATEFROMPROJECTION}(\mathbf{O}, n)$
 1215 24:
 1216 25: ▷ Align data for regression
 1217 26: $\hat{\mathbf{X}}_{\text{current}} \leftarrow \hat{\mathbf{X}}[:, 0 : T - 1]$
 1218 27: $\hat{\mathbf{X}}_{\text{next}} \leftarrow \hat{\mathbf{X}}[:, 1 : T]$
 1219 28: $\mathbf{U}_{\text{mid}} \leftarrow \mathbf{U}[:, p : p + T - 1]$
 1220 29:
 1221 30: ▷ Solve for system matrices
 1222 31: $[\hat{\mathbf{A}} \quad \hat{\mathbf{B}}] \leftarrow \hat{\mathbf{X}}_{\text{next}} \begin{bmatrix} \hat{\mathbf{X}}_{\text{current}} \\ \mathbf{U}_{\text{mid}} \end{bmatrix}^\dagger$
 1223 32: $\hat{\mathbf{C}} \leftarrow \text{first } p_{out} \text{ rows of } \hat{\Gamma}_f$
 1224 33:
 1225 34: **return** $\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}$

F MISALIGNED INPUT SPACES

For any orthogonal matrix C , the following equivalence holds:

$$y = Cx \iff \dot{y} = CA_1C^T x + CB_1 u(t) \quad (35)$$

Now consider the case where inputs are not equivalent in each system, but that they are also related by a coordinate transform:

$$u_y(t) = C_u u_x(t)$$

Then Eq. 38 resolves to:

$$\dot{y} = CA_1C^T x + CB_1C_u u_y(t) \quad (36)$$

1242 This motivates the dissimilarity metric that seeks to jointly optimize C and C_u , with the second term
 1243 in Eq. 8 generalizing to

$$1244 \min_{C_u \in O(n)} \|CB_1C_u - B_2\|$$

1245 when $\alpha = 0$, equation 8 is the so-called two-sided Procrustes problem, which when solved jointly
 1246 resolves to comparing the singular values of B_1, B_2 : $\|\Sigma_1 - \Sigma_2\|$, which can be computed efficiently.
 1247 When $\alpha \neq 0$, the two minimizations need to be jointly optimized. The method of optimization from
 1248 Ostrow et al. (2023) can be effectively generalized to do so, with note that this is a larger optimization
 1249 problem and requires longer optimization time (but see next section).

1250
 1251 If the inputs that are directly applied to the system are known, as in RNN or RL models ($\dot{x} =$
 1252 $f(x, u)$), this joint optimization procedure can be discarded. Likewise, when the inputs are aligned
 1253 in time, Procrustes or other spatial alignment methods can be directly applied to the inputs first.
 1254 Note that this input comparison does not directly compare the dynamics of the input, but rather how
 1255 the input is read into the system. If one is interested in comparing the dynamics of the input as well,
 1256 then DSA can be run on the input directly.

1258 G SOLVING FOR OPTIMAL ORTHOGONAL C EFFICIENTLY

1259 The InputDSA formulation allows for efficient solving of the optimal $C \in O(n)$. Recall that

$$1263 DSA(A_x, A_y) = \min_{C \in O(n)} \|A_x - CA_y C^T\|_F^2 \quad (37)$$

1264 Is a non-convex optimization problem, and hence has to be solved iteratively Ostrow et al. (2023).
 1265 However, the addition of the control constraint, $\|B_x - CB_y\|_F^2$ means that we can solve this prob-
 1266 lem using convex optimization for $\alpha = 0.5$. Observe that under similarity,

$$1269 \tilde{A} = CAC^T, \tilde{B} = CB \implies \tilde{A}\tilde{B} = CAB$$

1270 This suggests that we can identify C via Procrustes alignment on the controllability matrix $K =$
 1271 $(B \ AB \ A^2B \ \dots \ A^nB)$, where $A \in \mathbb{R}^{n \times n}$:

$$1275 \min_{C \in O(n)} \|K_1 - CK_2\|_F^2 \quad (38)$$

1276 The minimizer C^* has a closed-form solution via orthogonal Procrustes. Likewise, jointly aligning
 1277 the input dimension via C_u (Appendix Sec. F) can be done in closed form as well via the two-sided
 1278 Procrustes solution. This results in an acceleration of multiple orders, with the computation of C
 1279 taking $O(1$ millisecond), as opposed to $O(1$ second).

1280 However, this formulation can result in C^* that are biased towards the more controllable directions,
 1281 i.e. B can have an inordinate effect or can dominate. In practice, we found that using this approach
 1282 with a ground truth C resulted in the state similarity score becoming biased near dimension 30 (that
 1283 is, $A \in \mathbb{R}^{30 \times 30}$). While this is still quite large, and the biases are small (average deviation $O(0.01)$
 1284 per element), we can do better. We can add further constraints to C , by noticing that A^T also holds
 1285 in the previous implication under similarity:

$$1288 \tilde{A} = CAC^T, \tilde{B} = CB \implies \tilde{A}^T\tilde{B} = CA^T B$$

1289 Thus, we can concatenate these powers as well to K , giving:

$$1291 K = (B \ AB \ A^T B \ \dots \ A^n B \ A^{T^n} B)$$

1292 Where the metric is once again Eq. 38. This improves the optimization stability on A until at
 1293 least dimension 150 for $O(0.001)$ error per element error, which is more than enough in practice
 1294 for InputDSA. We have the following lemma which states that this metric captures equivalency
 1295 between two linear systems.

1296 **Lemma G.1.** *Given two linear systems $x_{t+1} = A_x x_t + B_x u_t$ and $y_{t+1} = A_y y_t + B_y u_t$, Eq. 38 is
1297 equal to zero if and only if $y = Cx$ for some $C^T C = I$.*
1298

1299 *Proof.* Let us first consider the forward direction. Assuming $y = C^* x$, then we have the equivalence
1300 relationships $A_x = C^{*T} A_y C^*$ and $B_x = C^{*T} B_y$. Applying this relationship to K_x , we have
1301

$$1302 \quad K_x = \begin{pmatrix} C^{*T} B_y & C^{*T} A_y B_y & C^{*T} A_y^T B_y & \dots & C^{*T} A_y^n B_y \end{pmatrix} \\ 1303 \\ 1304 \quad = C^{*T} K_y$$

1305 For which $\min_{C \in O(n)} \|K_x - CK_y\|_F^2 = 0$ evidently at C^* .
1306

1307 Now consider the reverse direction. We can expand Eq. 38 as:

$$1308 \quad \|K_x - CK_y\|_F^2 = \|B_x - CB_y\|_F^2 + \|A_x B_x - CA_y B_y\|_F^2 + \|A_x^T B_x - CA_y^T B_y\|_F^2 + \dots$$

1309 For $\min_{C \in O(n)} \|K_x - CK_y\|_F^2 = 0$, each subterm must be zero for minimizer \tilde{C} . This immediately
1310 gives $B_x = \tilde{C} B_y$. Inspecting the next term, we substitute this relationship, giving
1311

$$1312 \quad 0 = \|A_x B_x - \tilde{C} A_y B_y\|_F^2 = \|A_x \tilde{C} B_y - \tilde{C} A_y B_y\|_F^2 \quad (39)$$

$$1313 \quad = \|(A_x \tilde{C} - \tilde{C} A_y) B_y\|_F^2 \quad (40)$$

$$1314 \quad \implies A_x \tilde{C} = \tilde{C} A_y \quad (41)$$

1315 (42)

1316 With the last step following from $B_y \neq 0$. This in turn gives $A_x = \tilde{C} A_y \tilde{C}^T$. We can similarly
1317 apply this reasoning to the next expression, which gives the same result. Reversing the previous
1318 logic, we have $x_{t+1} = \tilde{C} A_y \tilde{C}^T x_t + \tilde{C} B_y u_t \implies y = \tilde{C}^T x$. \square
1319

1320 For a given A, B , the standard right Procrustes problem is written as:
1321

$$1322 \quad C^* = \operatorname{argmin}_{C \in O(n)} \|CA - B\|_F^2 \quad (43)$$

$$1323 \quad = \operatorname{argmax}_{C \in O(n)} \langle CA, B \rangle_F = \operatorname{Tr}[(CA)^T B] \quad (44)$$

1324 Writing the form of this problem with K_1, K_2 , we can separate out individual elements in the Frobenius
1325 inner product, giving
1326

$$1327 \quad \langle CK_1, K_2 \rangle_F = \sum_{i=0}^n \langle CA_x^i B_x, A_y^i B_y \rangle_F + \langle CA_x^{T^i} B_x, A_y^{T^i} B_y \rangle_F \quad (45)$$

$$1328 \quad = \sum_{i=0}^n \langle C, A_y^i B_y (A_x^i B_x)^T \rangle_F + \langle C, A_y^{T^i} B_y (A_x^{T^i} B_x)^T \rangle_F \quad (46)$$

$$1329 \quad = \langle C, \sum_{i=0}^n A_y^i B_y (A_x^i B_x)^T + A_y^{T^i} B_y (A_x^{T^i} B_x)^T \rangle_F \quad (47)$$

1330 With the last steps due to linearity of the inner product and the second step using the trace permutation
1331 identity. This gives the maximum over $C \in O(n)$ to be
1332

$$1333 \quad C^* = UV^T \quad \text{where} \quad \sum_{i=0}^n A_y^i B_y (A_x^i B_x)^T + A_y^{T^i} B_y (A_x^{T^i} B_x)^T = USV^T$$

1334 In practice, taking large matrices A to many powers results in numerical instability issues, especially
1335 when $\lambda_{\max}(A) > 1$. Algorithmically, we check the condition number of A^n before choosing to
1336 include the term in the controllability matrix. If it is too small or too large, we stop.
1337

1350

G.1 GENERALIZING THE WASSERSTEIN DISTANCE FOR INPUTDSA

1351

Recall the Wasserstein distance over DMD eigenvalues,

1352

1353

1354

1355

$$\text{DSA}(\Lambda_1, \Lambda_2) := \min_{P \in \Pi(n)} \|P\Lambda_1 P^T - \Lambda_2\|_F \quad (48)$$

1356

This metric respects the notion of equivalency under general similarity transforms, $A \rightarrow CAC^{-1}$ for invertible C's, given that only eigenvalues are preserved under these transformations. We would like to identify a similar metric for input driven systems. To motivate our metric, consider applying a diagonalizing transform to the dynamics of our input-driven system:

1361

1362

1363

$$x_{t+1} = Ax_t + Bu_t \quad (49)$$

1364

$$= V\Lambda V^{-1}x_t + Bu_t \quad (50)$$

1365

$$V^{-1}x_{t+1} = \Lambda V^{-1}x_t + V^{-1}Bu_t \quad (51)$$

1366

We observe that the corresponding feature of the input to each eigenvalue λ is the row vectors on $V^{-1}B$, which we henceforth term the eigenmode-input interaction matrix. We can easily show that these features are invariant to any invertible transform. Given a transform $A \rightarrow CAC^{-1}, B \rightarrow CB$,

1370

1371

$$V\Lambda V^{-1} \rightarrow CV\Lambda V^{-1}C^{-1} := \tilde{V}\Lambda\tilde{V}^{-1} \quad (52)$$

1372

Hence $V \rightarrow CV$

1373

1374

$$V^{-1}B \rightarrow (CV)^{-1}CB = V^{-1}C^{-1}CB = V^{-1}B \quad (53)$$

1375

1376

Thus, a natural extension to Eq. 48 is the joint Wasserstein distance over $[\Lambda_i, (V^{-1}B)_i]$. Denoting Λ^1 the set of eigenvalues for system one, and denoting π a permutation map,

1377

1378

1379

$$\text{InputDSA}(\Lambda^1, \Lambda^2, V_1^{-1}B_1, V_2^{-1}B_2, \alpha) = \min_{\pi} \sum_i [\alpha(\Lambda_i^1 - \Lambda_{\pi(i)}^2)^2 + (1 - \alpha)|(\Lambda_i^1 - \Lambda_{\pi(i)}^2)|_2^2] \quad (54)$$

1380

1381

1382

1383

This metric is intuitive: $V^{-1}B$ describes how input direction interacts with the independent eigenmodes, which is related to the controllability of that mode. However, this metric has numerical stability issues. First, eigenvalues can only be identified up to an arbitrary phase-hence, we are forced to study instead the norms of each eigenmode-input interaction, $|(V_1^{-1}B_1)_i|_2$. This loses information but works reasonably for small systems. Identifying the eigenvectors of an arbitrary matrix is challenging for poorly-conditioned matrices. Hence, we suggest evaluating the conditioning of the DMD matrix before applying this metric.

1384

1385

1386

1387

1388

1389

1390

1391

H INPUTDSA PSEUDOCODE

1392

1393

1394

Algorithm 2 InputDSA

Require: $X_1, X_2 \in \mathbb{R}^{n \times t \times d}, U_1, U_2 \in \mathbb{R}^{n \times t \times \ell}$, number of delays q , nonlinear lifting functions ϕ_1, ϕ_2

1: rank for state-space r ,

Ensure: Similarity transform distance d between the two dynamical systems

2: $A_1, B_1 \leftarrow \text{SUBSPACEDMDC}(\phi_1(X_1), \phi_2(U_1), r)$

3: $A_2, B_2 \leftarrow \text{SUBSPACEDMDC}(\phi_1(X_2), \phi_2(U_2), r)$

4: $d = \min_{\substack{C \in O(n) \\ C_u \in O(n)}} \alpha \|CA_1C^\top - A_2\|_F + (1 - \alpha) \|CB_1C_u - B_2\|_F$

5: **return** d

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413

Algorithm 3 Dynamic Mode Decomposition with Control (DMDc)

1414 **Require:** Delay-embedded states H_X , inputs H_U , truncation ranks $r_{\text{all}}, r_{\text{state}}$, ridge regularization λ
 1415 **Ensure:** Dynamics operator A and B

1416

1417 1: **procedure** **BUILDSNAPSHOTS**(H_X, H_U)
 1418 2: $X_- \leftarrow H_X[:, 1:-1]$, $X_+ \leftarrow H_X[:, 2:]$
 1419 3: $U_- \leftarrow H_U[:, 1:-1]$
 1420 4: $\Omega \leftarrow \begin{bmatrix} X_- \\ U_- \end{bmatrix}$
 1421 5: **return** (X_+, X_-, U_-, Ω)
 1422 6: **end procedure**

1423

1424 7: **procedure** **SVDS**(X_+, Ω)
 1425 8: $(U_p, \Sigma_p, V_p) \leftarrow \text{SVD}(\Omega)$
 1426 9: Partition $U_p = \begin{bmatrix} U_{p1} \\ U_{p2} \end{bmatrix}$ into state/input blocks
 1427 10: $(U_r, \Sigma_r, V_r) \leftarrow \text{SVD}(X_+)$
 1428 11: **return** $(U_{p1}, U_{p2}, \Sigma_p, V_p, U_r)$
 1429 12: **end procedure**

1430

1431 13: **procedure** **REDUCERANK**($U_{p1}, U_{p2}, \Sigma_p, V_p, U_r$)
 1432 14: Truncate to r_{all} : $U_{p1} \leftarrow U_{p1}[:, 1:r_{\text{all}}]$, $U_{p2} \leftarrow U_{p2}[:, 1:r_{\text{all}}]$, $V_p \leftarrow V_p[:, 1:r_{\text{all}}]$, $\Sigma_p \leftarrow \Sigma_p[1:r_{\text{all}}]$
 1433 15: Truncate to r_{state} : $U_r \leftarrow U_r[:, 1:r_{\text{state}}]$
 1434 16: **return** $(U_{p1}, U_{p2}, \Sigma_p, V_p, U_r)$
 1435 17: **end procedure**

1436

1437 18: **procedure** **COMPUTEROOPERATORS**($X_+, V_p, \Sigma_p, U_{p1}, U_{p2}, U_r, \lambda$)
 1438 19: $\Sigma_p^\dagger(\lambda) \leftarrow \text{diag}\left(\frac{\sigma_i}{\sigma_i^2 + \lambda}\right)$
 1439 20: $A \leftarrow X_+ V_p \Sigma_p^\dagger(\lambda) U_{p1}^\top$
 1440 21: $B \leftarrow X_+ V_p \Sigma_p^\dagger(\lambda) U_{p2}^\top$
 1441 22: Project to the state space $\tilde{A} \leftarrow U_r^\top A U_r$, $\tilde{B} \leftarrow U_r^\top B$ **return** (\tilde{A}, \tilde{B})
 1442 23: **end procedure**

1443

1444 24: $X_+, X_-, U_-, \Omega \leftarrow \text{BUILDSNAPSHOTS}(H_X, H_U)$
 1445 25: $U_{p1}, U_{p2}, \Sigma_p, V_p, U_r \leftarrow \text{SVDS}(X_+, \Omega)$
 1446 26: $U_{p1}, U_{p2}, \Sigma_p, V_p, U_r \leftarrow \text{REDUCERANK}(\cdot)$
 1447 27: $A, B \leftarrow \text{COMPUTEROOPERATORS}(X_+, V_p, \Sigma_p, U_{p1}, U_{p2}, U_r, \lambda)$
 1448 28: **return** A, B

1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 I HYPERPARAMETER TUNING FOR INPUTDSA

1460 **Delay** In InputDSA, the delay parameter controls the size of the delay embedding used to estimate
 1461 the dynamics operator. If too few delays are chosen, the embedding may distort the data and amplify
 1462 noise. Conversely, too many delays fold the data into unnecessarily high dimensions, making it more
 1463 difficult to model the dynamics with DMD (Ostrow et al., 2024).

1465 **Rank** SubspaceDMDc involves one rank parameter r , corresponding to the dimensionality of the
 1466 latent state space. In practice, selecting an r slightly higher than the true state dimension often yields
 1467 a better estimation of the A matrix.

1468 **Hyperparameter tuning pipeline** We suggest jointly optimize the delay and the rank r according
 1469 to the following criteria:

1471 • **Prediction accuracy:** The delay embedding should enable accurate modeling of the dy-
 1472 namics. To evaluate this, we split the dataset into training and test sets, fit InputDSA (via
 1473 SubspaceDMDc) on the training set, and assess performance on the test set using the mean
 1474 absolute standardized error (MASE), a standard metric for time-series forecasting. MASE
 1475 compares the forecast error of the model against that of a naïve persistence baseline pre-
 1476 dictor and is defined as

$$1477 \text{MASE} = \frac{\frac{1}{T} \sum_{t=1}^T |y_t - \hat{y}_t|}{\frac{1}{T-1} \sum_{t=2}^T |y_t - y_{t-1}|}.$$

1479 A value $\text{MASE} < 1$ indicates that DMDc predicts next-step activity (using the estimated
 1480 operators A and B) more accurately than simply copying the current time step.

1482 • **Model complexity:** The estimated operators A and B should not be overly complex or
 1483 dominated by spurious features (e.g., many small eigenvalues clustered near zero). To
 1484 assess this, we compute the Akaike Information Criterion (AIC) for next-step prediction on
 1485 the test set. AIC balances predictive accuracy against model complexity and, in our setting,
 1486 is given by

$$1487 \text{AIC} = \ln \left(\frac{1}{N} \sum_{j=1}^N (x_j - y_j)^2 \right) + \frac{2(r^2 + 1)}{N}.$$

1490 Overall, we aim to select a rank that is small enough to avoid inflating the AIC, while still yielding
 1491 good predictive accuracy (i.e., low MASE). In many low-dimensional dynamical systems, both AIC
 1492 and MASE exhibit a characteristic elbow-shaped curve (for example, see Figure P.1 and Figure Q).
 1493 We recommend selecting the rank at this elbow point, and then choosing a delay that yields a low
 1494 MASE at that rank.

1496 J PARTIALLY OBSERVED SYSTEM COMPARISON FURTHER DETAIL

1498 We discretely simulated the following equations (repeated from 14):

$$1501 x_{t+1} = A(x_t + gF \tanh(x_t)) + B(u_t + \tanh(u_t)) \quad (55)$$

$$1502 y_t = (\mathbf{I}_d \quad \mathbf{0}_{n-d}) x_t + \epsilon_t \quad (56)$$

1504 We generated two matrices A_1, A_2 , sampling each element i.i.d. from a standard normal distribution.
 1505 To enforce stability of these matrices, we globally rescaled the matrices by a term ρ/λ_{max} , where
 1506 λ_{max} is the max eigenvalue of the sampled matrix and $0 < \rho < 1$. We arbitrarily picked $\rho_1 = 0.92$
 1507 and $\rho_2 = 0.82$ to ensure a significant difference in the intrinsic dynamics, but not so large as to make
 1508 the data obviously different. We set $g = 0.1$ for each system, and fixed F to be the matrix defined as
 1509 $F_{ij} = \delta_{ij} \delta_{i \leq d}$ where d is the number of observed states in the observation matrix $C = (\mathbf{I}_d \quad \mathbf{0}_{n-d})$.
 1510 We sampled B_1, B_2 from normal distributions as well, with $B_{1,ij} \sim N(0, g_1)$, $B_{2,ij} \sim N(0, g_2)$,
 1511 setting $g_1 = 0.5, g_2 = 2.0$. We sampled $\epsilon_i \sim N(0, 0.01)$ for each observed index for each time-
 1512 point.

1512 Across Figs. 2b,c,d,e, we simulated 20-dimensional systems with only 2 dimensions observed,
 1513 for 5000 timepoints. For every type of DMD, we applied delay embeddings of size 150, and fit
 1514 state space / dynamics matrices with rank 20. We chose these parameters by inspecting the spectral
 1515 distribution of the estimated observability matrix (line 16 of Algorithm 1) across multiple delays. We
 1516 added delays under the largest modes before the spectral drop-off point stopped changing (similar to
 1517 the idea of a false neighbors analysis, Kennel et al. 1992), then picked the elbow of that curve. We
 1518 selected the maximum of those values for each of the four systems. We observe these curves in Fig.
 1519 7. However, we note that InputDSA is robust to a number of different ranks (Fig. 8), both larger and
 1520 smaller than the true system size.

1521 We computed silhouette score using Scikit-Learn on the precomputed InputDSA distance. Based
 1522 on some given label (here, state or input ground-truth similarity), the dataset is divided into subsets
 1523 C_1, C_2, \dots, C_n with each data point x_1, x_2, \dots, x_N belonging to one subset. Define the labels (cluster
 1524 index) of each point as c_1, c_2, \dots, c_N . Next, the mean intra-cluster and the minimum mean inter-cluster
 1525 distance is computed for each data point:

1526

1527

$$1528 \quad a(i) = \frac{1}{|C_{c(i)}|} \sum_{\substack{C_{c(j)}=C_{c(i)}, \\ i \neq j}}^N d(x_i, x_j)$$

$$1531 \quad b(i) = \min_{j \neq c(i)} \frac{1}{|C_j|} \sum_{\substack{c(k)=j}}^N d(x_i, x_k)$$

1533

1534

1535 Where $|C_{c(i)}|$ denotes the cardinality of the set, and $d(\cdot, \cdot)$ denotes the distance function to be used.
 1536 In our setting, we use the InputDSA input or state distances for d . Lastly, the silhouette score is
 1537 computing as:

1538

1539

1540

1541

1542

$$S = \frac{1}{N} \sum_{i=1}^N \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

1543

1544

1545

1546

1547

The silhouette score approaches 1 when all points in each class are strongly separated and there is
 minimal distance between the points within each class, while it is 0 if the inter- and intra-cluster
 distances are equivalent. It is notable that a silhouette score of 0.7 can correspond to perfect lin-
 ear classification of all classes, as deviations from 1.0 can be caused by within-class variance that
 remains non-overlapping with other classes.

1548

1549

J.1 ROBUSTNESS TO HYPERPARAMETERS

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Here, using partially observed nonlinear systems with known ground-truth similarity structure, we
 test InputDSA’s robustness to changes in hyperparameters. For 20-dimensional systems with only
 2 observed dimensions, we vary both the delay and the rank used in fitting InputDSA. As shown
 in Fig. 8, rank and delay affect state similarity more than input similarity, while the Silhouette
 score for input similarity remains nearly invariant across hyperparameters. When the chosen rank
 is too small relative to the true system dimensionality ($N = 20$), the learned dynamics operator A
 cannot adequately capture the state dynamics, yielding low Silhouette scores on the fitted distance
 matrix. Once the rank is large enough to capture the high-variance directions of the system, even if
 still lower than the true dimensionality, the Silhouette score approaches 1, indicating nearly perfect
 clustering accuracy. In other words, the rank used for InputDSA does not need to match the ground-
 truth dimensionality; it only needs to be high enough to capture the dominant dynamical modes.
 Beyond this threshold, the estimated similarity structure becomes robust to small increases in rank.
 However, in real-world noisy systems, choosing a rank that is too high may incorporate spurious,
 noise-driven dimensions into the dynamic operator. We therefore recommend selecting rank via a
 hyperparameter sweep as described in Appendix I.

1566

For the delay, following (Ostrow et al., 2024), choosing too few delays can distort the embedding and
 amplify noise, whereas too many delays fold the data into unnecessarily high dimensions, making it

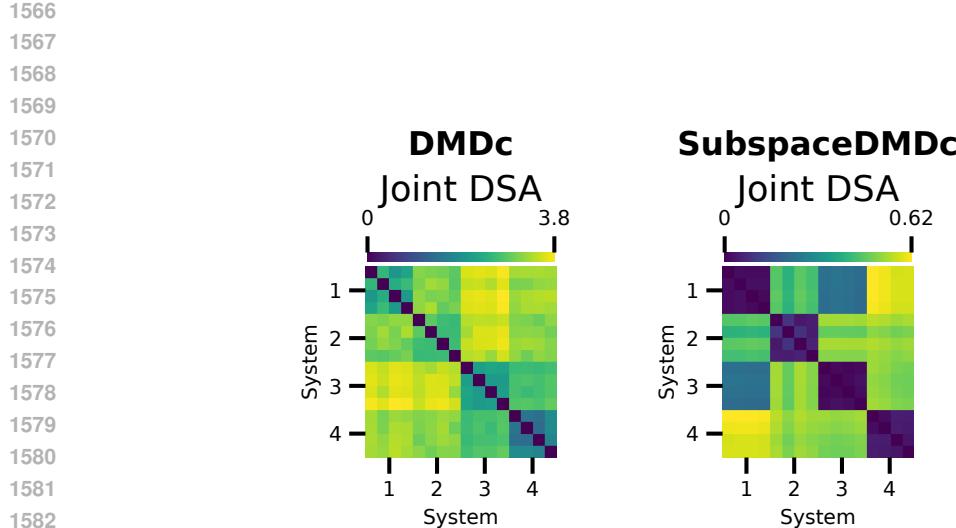


Figure 6: **Joint InputDSA Comparison using DMDc and SubspaceDMDc** The sum of jointly-optimized state and input distances is presented here, with $\alpha = 0.5$. Comparisons were generated on the same dataset as in Fig. 2c and d. DMDc Silhouette score on state, input: 0.235, 0.088. SubspaceDMDc Silhouette score on state, input: 0.368, 0.55.

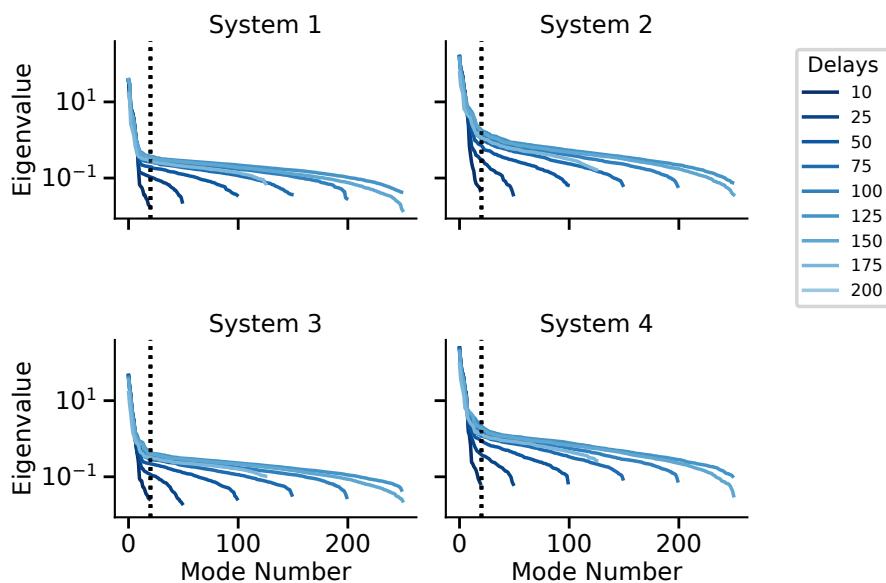


Figure 7: Spectral content of the Extended Observability Matrix from Subspace DMDc for each system in Fig. 2b across multiple delays. Dotted line indicates rank 20.

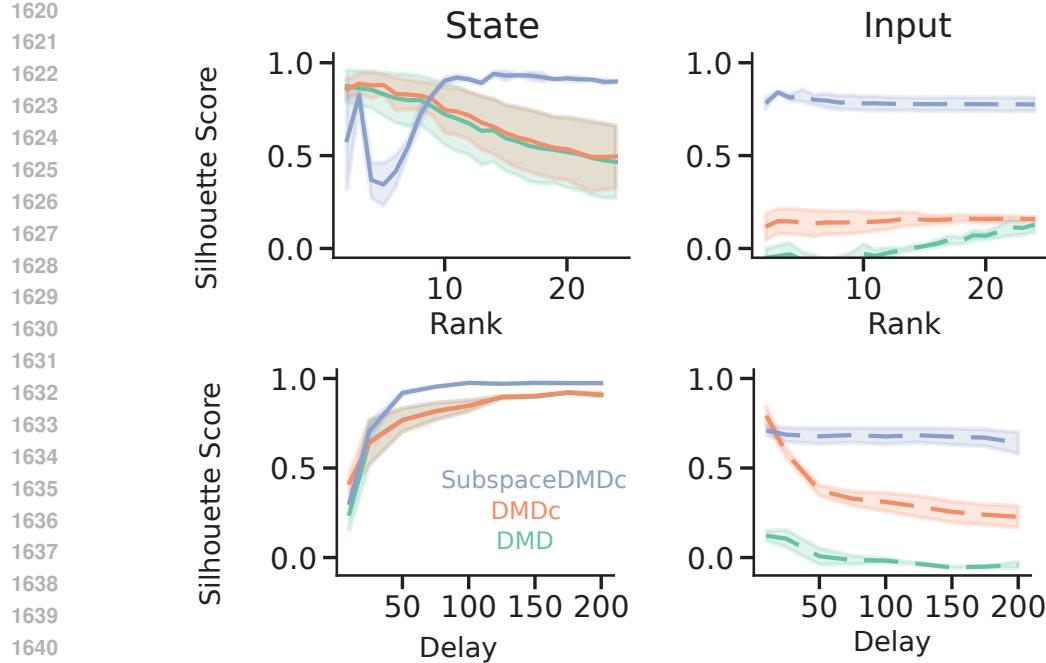


Figure 8: Effect of rank and delay in each DMD algorithm on clustering scores, utilizing 20 dimensional systems with 2 dimensions observed, and 1000 datapoints per dataset. When varying the rank, we fix the number of delays to be 150 and when varying the delay, we fix the rank to be the true rank of the system, i.e. $N = 20$.

harder for DMD to model the dynamics effectively. Here, we demonstrate that InputDSA's estimated similarity structure is robust to delay choice within a reasonable range—as long as the delay is sufficiently large for the delay-embedded state to span a rich enough basis to fit a linear dynamic operator.

J.2 EFFECT OF INPUT DIMENSIONALITY ON SYSTEM IDENTIFICATION

In Fig. 2, we analyzed partially observable systems driven by low-pass filtered one-dimensional white noise. Here, we vary the dimensionality of the input and evaluate how the Silhouette score (computed against ground-truth labels) changes as partial observability increases, using InputDSA distance estimates based on Subspace DMDc. As shown in Fig. 9, increasing the dimensionality of the input provides only a modest improvement in recovering the latent state similarity structure, while simultaneously reducing the identifiability of the input-driven dynamics.

K PROCESS NOISE EFFECT ON INPUTDSA

In real-world systems such as neural circuits, process noise is pervasive: intrinsic stochasticity in the biophysics, fluctuations in synaptic and network activity, and unobserved perturbations all contribute to variability in the dynamics. We tested InputDSA's robust to process noise added to the state in Section 3.1. We again consider the partially observed nonlinear dynamical system parameterized by this set of equations:

$$x_{t+1} = A(x_t + gF \tanh(x_t)) + B(u_t + \tanh(u_t)) + \eta_t \quad (57)$$

$$y_t = (\mathbf{I}_d \quad \mathbf{0}_{n-d}) x_t + \nu_t \quad (58)$$

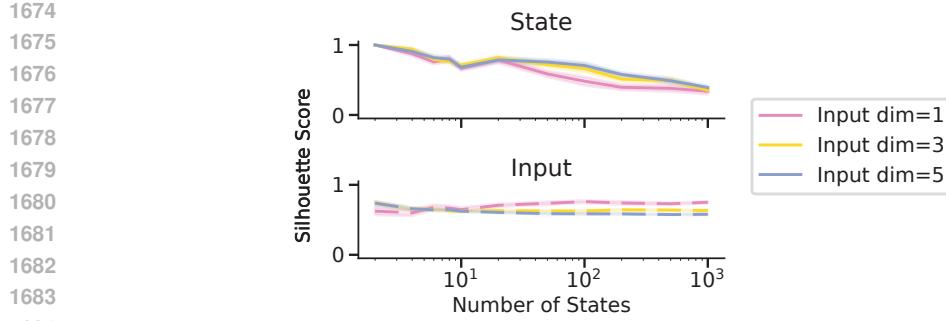


Figure 9: **Effect of input dimensionality on InputDSA performance under partial observability.** Silhouette scores for InputDSA based on Subspace DMDc as the system is increased from 2-dimensional to 1000-dimensional, while only 2 dimensions observed. Each size was repeated across 20 random seeds. Shading denotes standard error.

Here, $\nu_t \sim \mathcal{N}(0, \sigma^2)$ is the process noise added to the latent state at time t . We generate the data exactly as in Section 3.1. The state-space similarity structure estimated by InputDSA remains highly robust to process noise, exhibiting an almost unchanged Silhouette score as σ increases (Fig. \ref{fig:process_noise}B). On the other hand, the Silhouette score of the input-driven similarity structure decreases smoothly with increasing σ , reflecting a graceful degradation in the identifiability of input-driven dynamics under higher process noise.

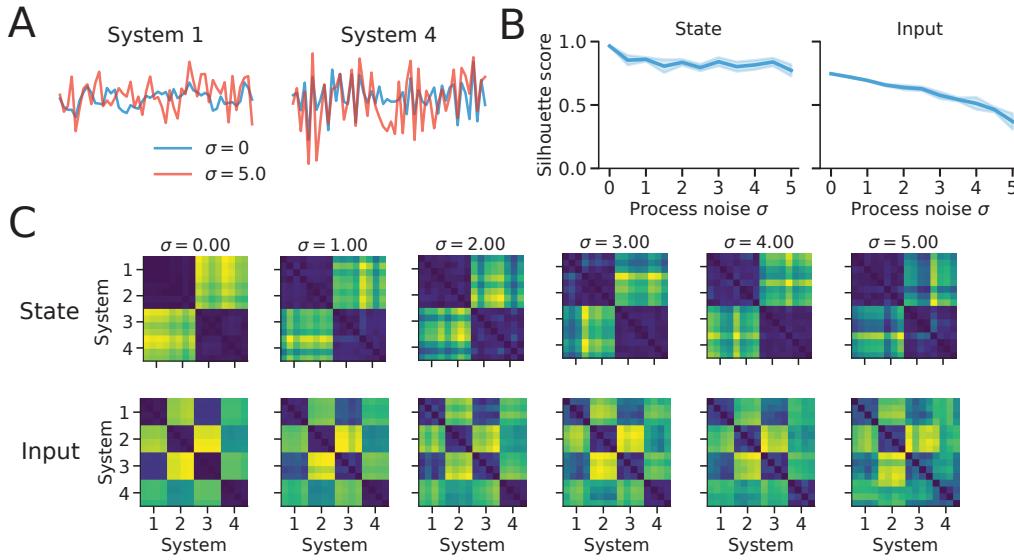


Figure 10: **InputDSA remains robust to moderate levels of process noise.** (A) Example latent state activity x_t over time sampled from two different dynamical systems, overlaid with the state trajectory under process noise sampled from $\mathcal{N}(0, \sigma)$ where $\sigma = 5.0$. (B) Silhouette score against the groundtruth label when the systems are clustered based on the InputDSA state or input similarity structure. (C) Example distance matrices underlying varying levels of σ .

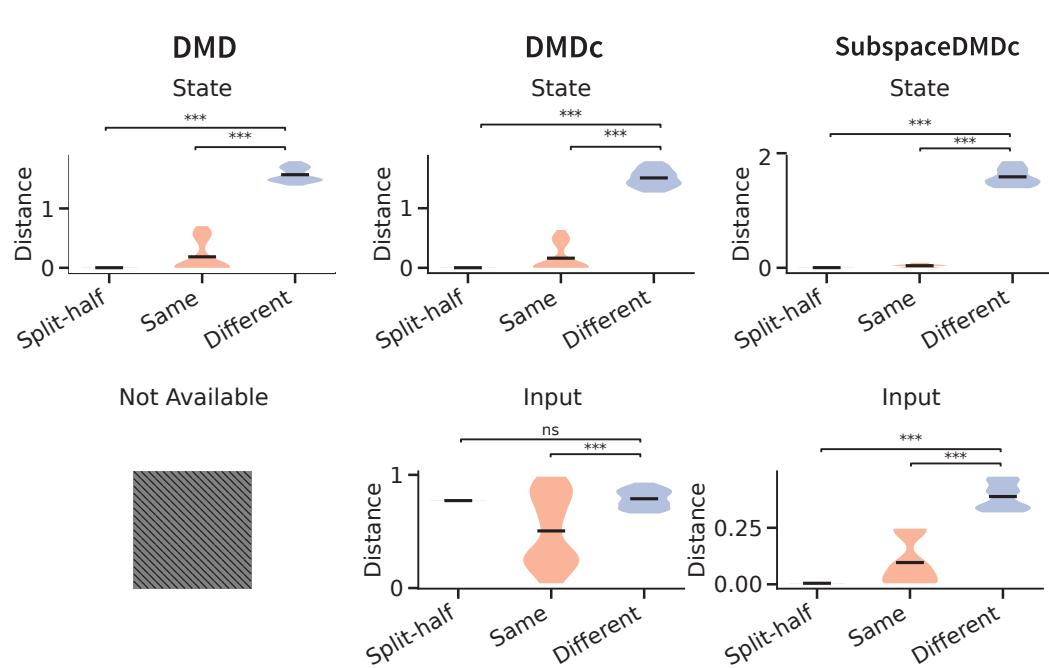
L ESTABLISHING A NOISE FLOOR FOR INPUTDSA SCORE

It is often desirable to establish a statistically insignificant noise floor for the InputDSA score, below which two systems can be considered effectively identical. To estimate this noise floor, we can split the state and input time series of a single system into two halves (or multiple segments, if sufficient data are available) and compute the InputDSA score between these segments. The resulting

1728 within-system scores provide an empirical noise floor against which cross-system comparisons can
 1729 be evaluated.

1730 Here, using the partially observed nonlinear system examples in Fig. 2, we computed and compared
 1731 three quantities for the state distance and input distance (1) *Split-half*: the split-half noise
 1732 floor, established by computing the distance between segments of state and input trajectory of the
 1733 same system driven by identical input, (2) *Same*: the distance between systems sharing identical
 1734 groundtruth state / input dynamic operator, but driven by inputs with different random initial
 1735 conditions, (3) *Different*: the distance between systems with different state / input dynamic operator.
 1736 In other words, both *Split-half* and *Same* are within-system distances, while *Different* measures
 1737 cross-system distances estimated by different methods.

1738 As shown in Fig. 11, the *Split-half* and *Same* distances are typically similar, and both are markedly
 1739 smaller than the *Different* distances. This provides a basic sanity check that the comparison methods
 1740 tested here can reliably distinguish between different dynamical systems. One exception is the input
 1741 distance estimated by DMDc, where the *Split-half* and *Different* scores are comparable, indicating
 1742 that DMDc fails to recover input-driven dynamics correctly in partially observed nonlinear systems.



1766 **Figure 11: Noise floor analysis for state and input distances in partially observed nonlinear**
 1767 **systems.** We compare three quantities: (1) *Split-half*, the within-system noise floor estimated by
 1768 comparing segments of the same trajectory; (2) *Same*, the distance between systems sharing identical
 1769 state/input dynamics but driven by different input initializations; and (3) *Different*, the distance
 1770 between systems with different underlying dynamics. For both state and input distances, *Split-*
 1771 *half* and *Same* are similarly small and substantially below *Different*, demonstrating that the tested
 1772 methods reliably distinguish different dynamical systems. DMDc is an exception for input distance,
 1773 where *Split-half* and *Different* are comparable, indicating poor recovery of input-driven dynamics
 1774 under partial observability.

1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 **M INPUT NOISE GENERATION**
17831784 To assess the robustness of InputDSA to noisy or corrupted inputs, we systematically added different
1785 types of noise or transformations to the input time series of the nonlinear dynamical systems we
1786 created. Below we describe how each type of noise was generated. We visualize examples of the
1787 noise-corrupted input in Fig. 12 and Fig. 13 .
17881789 **Gaussian (white) noise.** White Gaussian noise was added independently to each input channel:
1790

1791
$$\tilde{u}(t) = u(t) + \mathcal{N}(0, \sigma^2),$$

1792 where σ is set by the noise level.
17931794 **Pink noise.** Pink ($1/f$) noise was generated in the frequency domain with power spectrum propor-
1795 tional to $1/f^\alpha$ (with $\alpha = 1$ by default), then inverse Fourier transformed and scaled to the desired
1796 amplitude.
17971798 **Rotation.** For two-dimensional input signals, we applied a random planar rotation:
1799

1800
$$\tilde{u}(t) = R(\theta) u(t), \quad R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

1801

1802 with rotation angle θ proportional to the noise level.
18031804 **Low-pass filtering.** Inputs were smoothed using a digital Butterworth low-pass filter with cutoff
1805 frequency set by the noise level. Larger values corresponded to stronger filtering.
18061807 **Multiplicative noise.** Each input channel was scaled by a random Gaussian factor:
1808

1809
$$\tilde{u}(t) = u(t) \cdot \eta, \quad \eta \sim \mathcal{N}(1, \sigma^2),$$

1810

1811 where σ is set by the noise level.
18121813 **Uniform noise.** Additive noise sampled uniformly from $[-a, a]$ was added to each channel, where
1814 a is the noise level.
18151816 **Impulse noise.** At each time point, with probability p , an impulse of magnitude $\pm \alpha$ (set by the
1817 noise level) was added to the input.
18181819 **Baseline drift.** A slow oscillatory drift was added to each channel:
1820

1821
$$d(t) = A \sin(2\pi ft) + \frac{A}{2} \sin(4\pi ft),$$

1822

1823 where A is the drift amplitude (noise level) and f is a low drift rate.
18241825 **Partial observability.** A random fraction of input time series was masked with zeros, with mask-
1826 ing probability given by the noise level.
18271828
1829
1830
1831
1832
1833
1834
1835

Table 1: Noise levels used in experiments for each noise type.

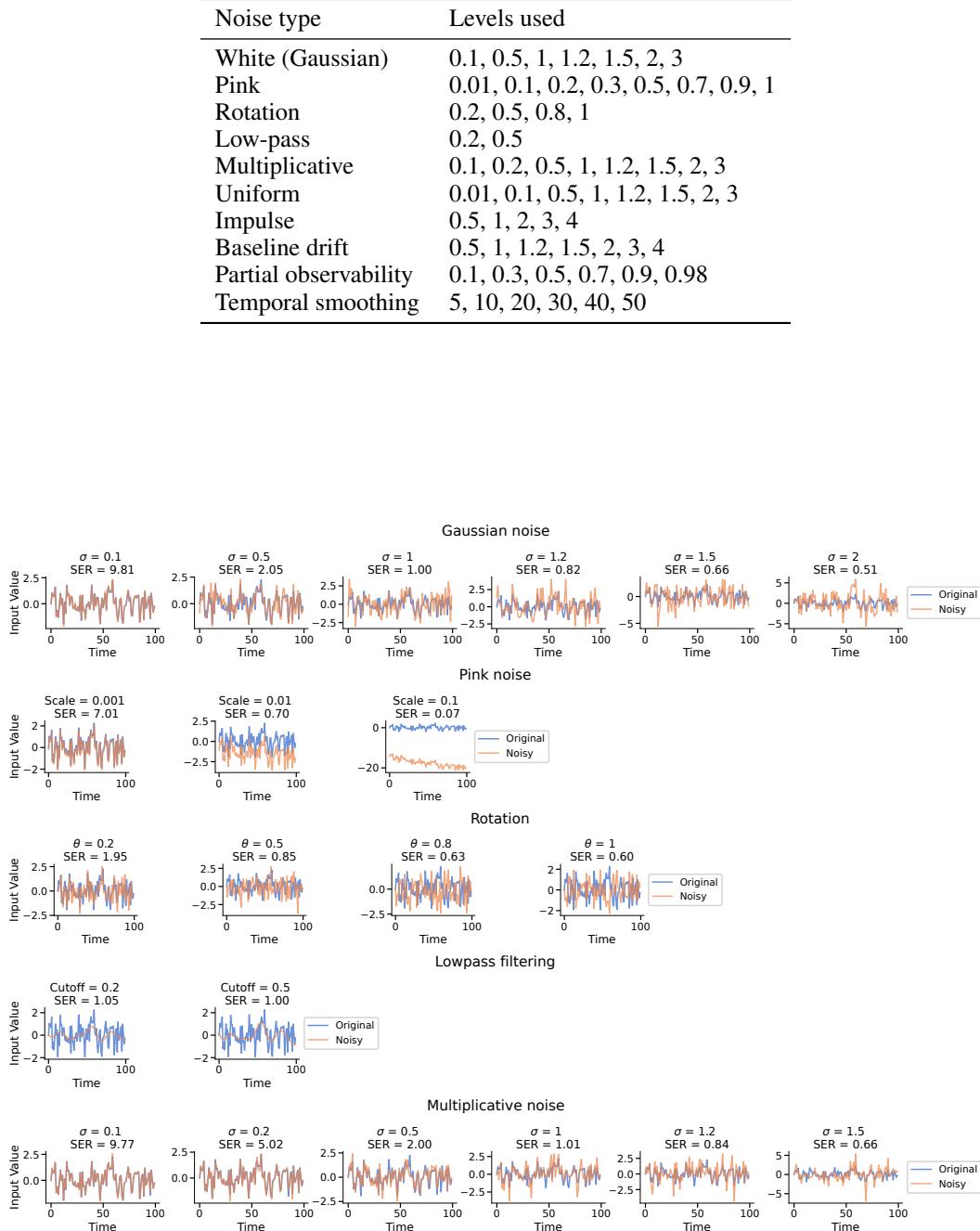


Figure 12: Effect of different noise types and levels on the input time series of the nonlinear dynamical system as in Fig. 2. The plots show activity along four example observation dimensions received by the networks during an example trial. Here, we show gaussian white noise, pink noise, rotation, low-pass filter, and multiplicate noise applied to the input.

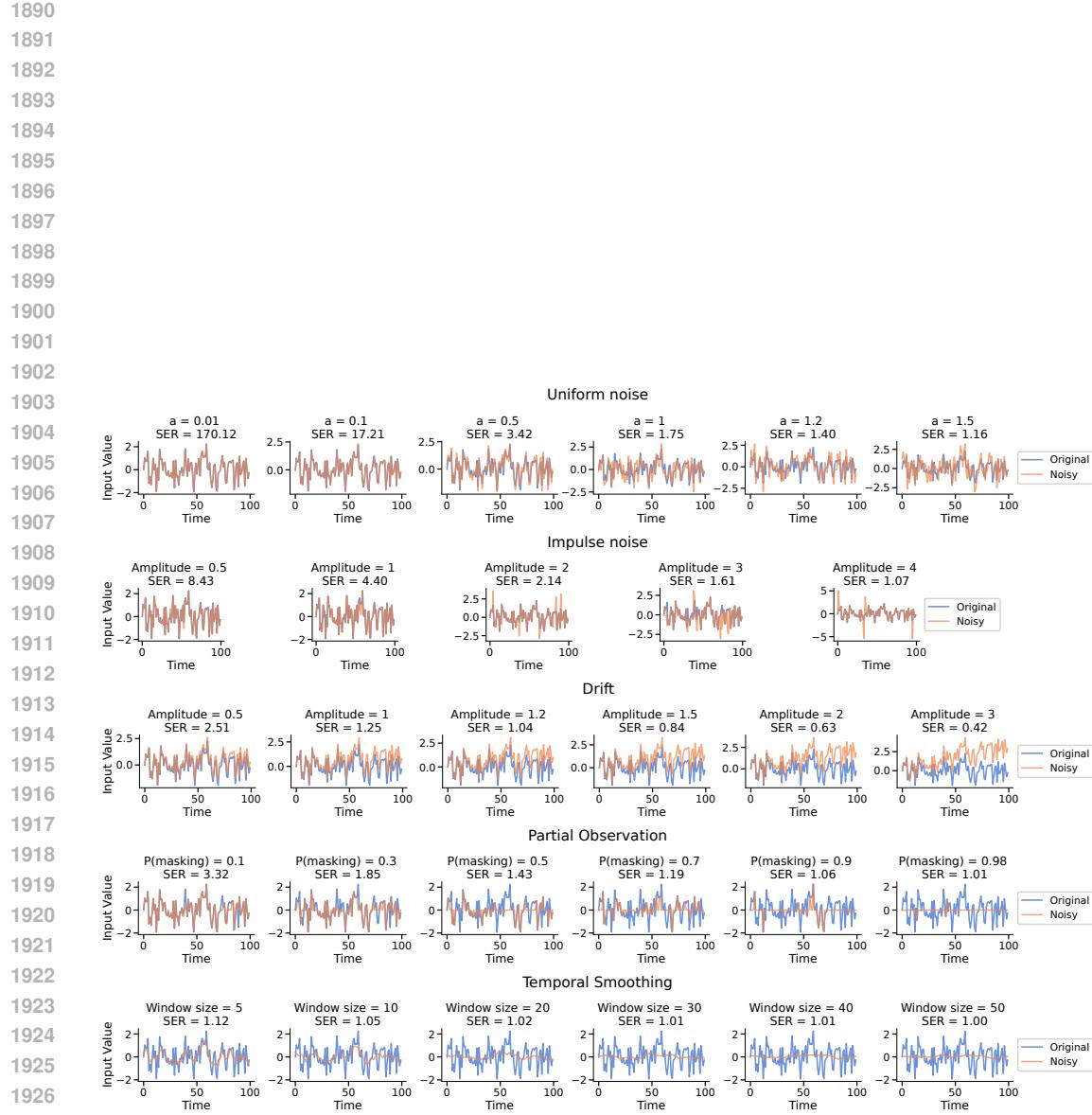


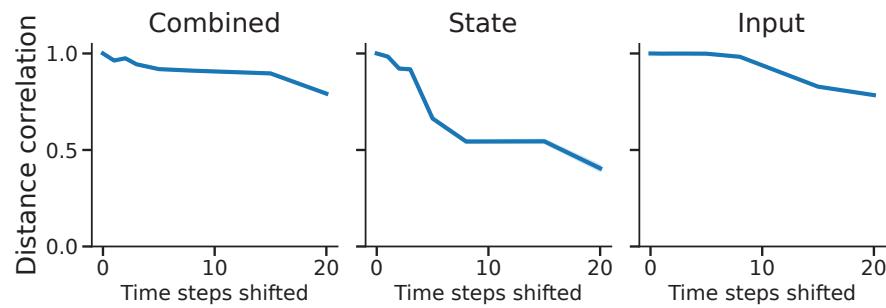
Figure 13: Effect of different noise types and levels on the input time series of the nonlinear dynamical system as in Fig. 2. The plots show activity along four example observation dimensions received by the networks during an example trial. Here, we show noise sampled from an uniform range, impulse noise, random drift, partial observability, and temporal smoothing applied to the input.

1944
1945

M.1 EFFECT OF TIME-SHIFTED INPUT ON INPUTDSA DISTANCE ESTIMATION

1946

1947



1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

Figure 14: Correlation between the InputDSA distance matrix estimated using the ground truth input, and using time-shifted version of the true input.

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

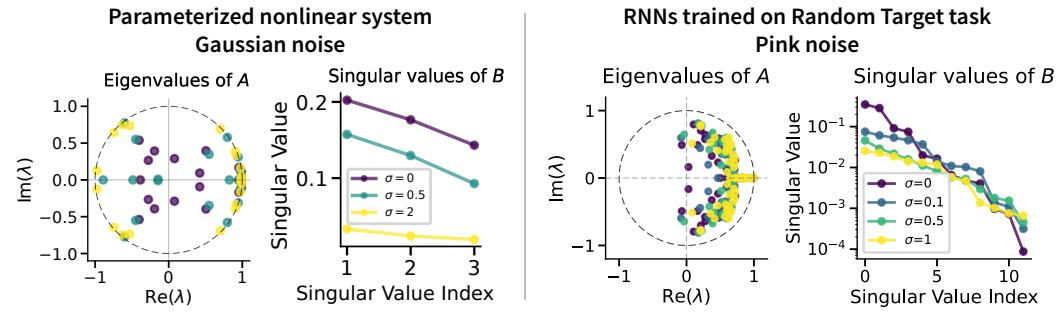
1995

1996

1997

1998 N ORDINARY LEAST SQUARES BIASES ESTIMATES OF A IN THE PRESENCE
 1999 OF INPUT NOISE
 2000

2001 Using two datasets: the nonlinear dynamical systems as in Fig. 2, and the RNNs trained on Random
 2002 Target Task as in Fig. 3, we show that increasing the noise variance systematically contracts the
 2003 singular spectrum of B toward zero. Because the true input effect is underfit, the SubspaceDMDc
 2004 regression inflates the real part of A ’s eigenvalues to absorb the variance in the inputs that correlates
 2005 with the state.



2018 Figure 15: The eigenspectrum of the A operator and singular spectrum of the B operator when the
 2019 input time-series is corrupted by Gaussian or pink noise of different variance.

2020 Here, we also present a short theoretical discussion of this effect.

2021 We consider the true system

$$2022 Y = AX + BU,$$

2023 where

- 2024 • $Y \in \mathbb{R}^{n \times T}$ are the next states,
- 2025 • $X \in \mathbb{R}^{n \times T}$ are the current states,
- 2026 • $U \in \mathbb{R}^{m \times T}$ are the inputs,
- 2027 • $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$.

2028 We observe noisy inputs

$$2029 \tilde{U} = U + E,$$

2030 where E is input noise. The regression becomes

$$2031 Y \approx \hat{A}X + \hat{B}\tilde{U}.$$

2032 We solve the regression problem with OLS by first stacking the regressors:

$$2033 Z = \begin{bmatrix} X \\ \tilde{U} \end{bmatrix},$$

2034 The OLS estimator is

$$2035 [\hat{A} \quad \hat{B}] = YZ^\top(ZZ^\top)^{-1}.$$

2036 Expanding Z ,

$$2037 ZZ^\top = \begin{bmatrix} X \\ \tilde{U} \end{bmatrix} \begin{bmatrix} X^\top & \tilde{U}^\top \end{bmatrix} = \begin{bmatrix} XX^\top & XU^\top + XE^\top \\ UX^\top + EX^\top & UU^\top + UE^\top + EU^\top + EE^\top \end{bmatrix}.$$

2038 Assuming E is zero-mean and independent,

$$2039 \mathbb{E}[ZZ^\top] = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xu} \\ \Sigma_{ux} & \Sigma_{uu} + \Sigma_{ee} \end{bmatrix},$$

$$2040 \mathbb{E}[YZ^\top] = \begin{bmatrix} \Sigma_{xx}A^\top + \Sigma_{xu}B^\top \\ \Sigma_{ux}A^\top + \Sigma_{uu}B^\top \end{bmatrix}.$$

2052 To gain intuition, we consider the scalar case where
 2053

$$\sigma_{xx} = \text{Var}(x), \quad \sigma_{uu} = \text{Var}(u), \quad \sigma_{xu} = \text{Cov}(x, u), \quad \sigma_{ee} = \text{Var}(E).$$

2056 The least-squares estimates are
 2057

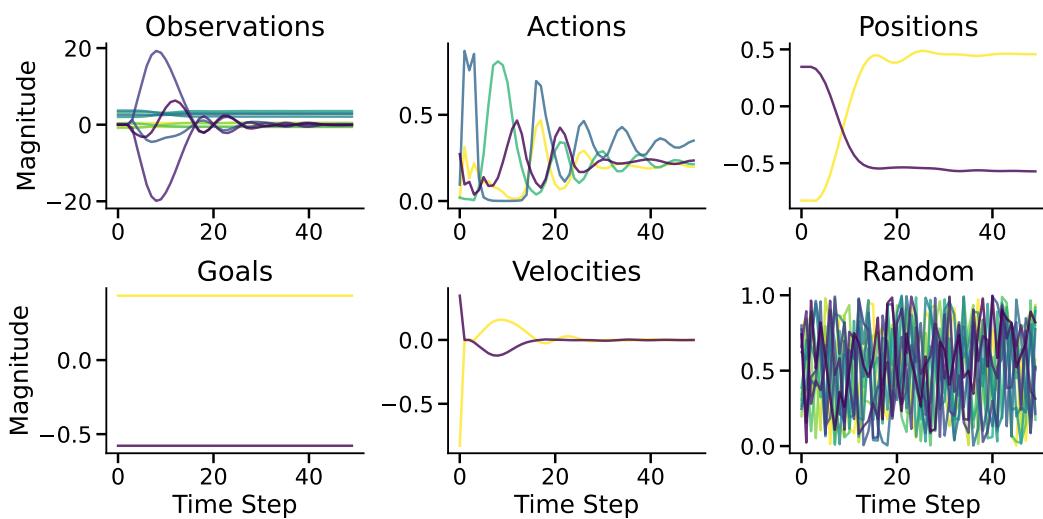
$$\hat{a} = a + b \cdot \frac{\sigma_{xu} \sigma_{ee}}{\sigma_{xx}(\sigma_{uu} + \sigma_{ee}) - \sigma_{xu}^2},$$

$$\hat{b} = b \cdot \frac{\sigma_{xx}\sigma_{uu} - \sigma_{xu}^2}{\sigma_{xx}(\sigma_{uu} + \sigma_{ee}) - \sigma_{xu}^2}.$$

2064 We can see that for \hat{b} , large σ_{ee} in the denominator attenuates \hat{b} toward zero. For \hat{a} , the direction of
 2065 the bias is dependent on the signs of b , σ_{xu} and relative weights of σ_{xx} and σ_{xu} . In particular, when
 2066 $b > 0$ and σ_{ee} is large, \hat{a} can be inflated. Intuitively, when the state and input are strongly positively
 2067 correlated and the input drives the state in the same direction, \hat{a} can be overestimated to absorb the
 2068 shared variance in the input.
 2069

O RANDOM TARGET REACH TASK

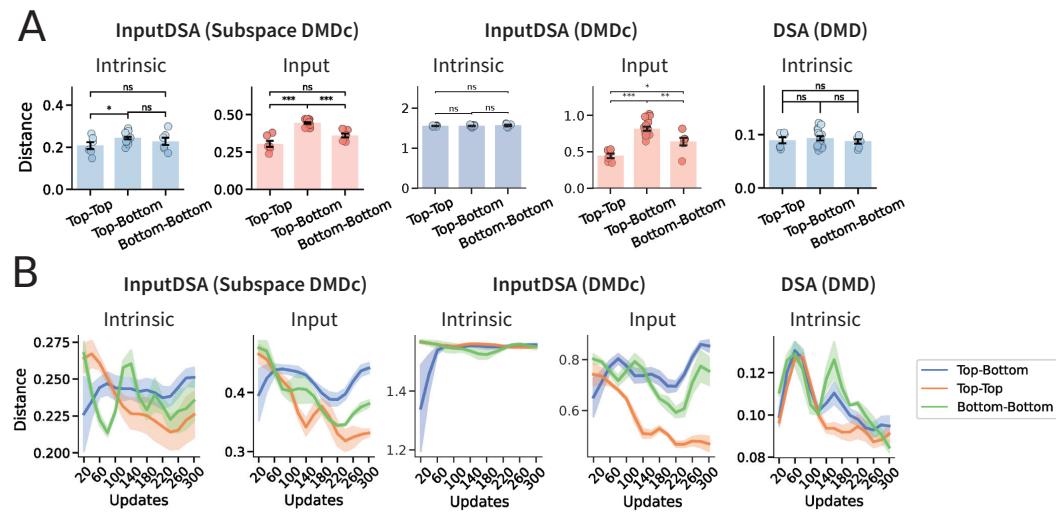
2072 We trained recurrent neural network (RNN) policies to perform a random target reaching
 2073 task in the MotorNet simulation environment (Codol et al., 2024b). We used code from
 2074 <https://github.com/motornet-org/MotorNet>. The effector was a ReluPointMass24 model, a 2D
 2075 point-mass skeleton attached to 4 muscles and controlled by muscle activations. The environment
 2076 provided a sequence of random goals and fingertip states. The objective of the policy was to min-
 2077 imize the distance between fingertip position and target over the course of each episode. At each
 2078 time step, the model receives a 12-dimensional observation consisting of the proprioceptive input,
 2079 visual input, and the last action taken by the model. The action space is 4-dimensional consisting
 2080 of the activation of each muscle. Each network consisted of a single recurrent layer (64 hidden
 2081 units) followed by a linear readout and sigmoid nonlinearity to produce bounded muscle activations.
 2082 Training was carried out using the Adam optimizer with a learning rate of 0.001. The loss function
 2083 was the mean L1 distance between fingertip trajectories and target trajectories across timesteps. We
 2084 visualize the groundtruth input alongside different types of surrogate inputs during an example trial
 2085 in Fig. 16.
 2086



2104 Figure 16: The true input (Observations) and different types of surrogate inputs during an example
 2105 trial of the Random Target task.
 2106

2106 P PLUME TRACKING TASK

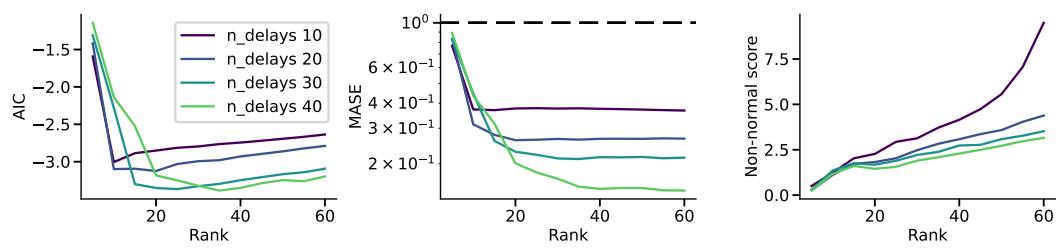
2108 We used the plume tracking task implemented in Singh et al. (2023) and the training code in
 2109 <https://github.com/BruntonUWBio/plumetracknets>. In short, the plume tracking environment is a
 2110 2D arena where an odor source emits puffs carried downwind by a steady flow. The wind can be
 2111 constant, switch once, or switch multiple times during a trial. Each puff diffuses and drifts, pro-
 2112 ducing intermittent odor encounters like in real plumes. The agent uses an actor–critic architecture
 2113 with a vanilla RNN backbone, followed by separate two-layer MLPs for the actor and critic. At each
 2114 timestep it receives three inputs: egocentric wind direction along the x-axis, wind direction along the
 2115 y-axis, and local odor concentration. Based on its internal state, the actor outputs a two-dimensional
 2116 action specifying turn rate and forward speed.



2134 Figure 17: Full comparison of applying Subspace DMDc, DMDc, and DMD to the plume tracking
 2135 dataset. **(A)** Average distance computed within the 5 Top Agents, within the 5 Bottom agents, and
 2136 across groups (Top–Bottom). **(B)** The evolution of similarity within and across groups over learning.
 2137 Shaded area indicates standard error.

2140 P.1 HYPERPARAMETER SWEEPING

2142 To assess the optimal hyperparameters to use for InputDSA, we conducted a sweep of ranks and
 2143 delays, as described by Sec. I. By picking the minimum / elbow of the prediction error curves (AIC,
 2144 MASE), we choose a delay of 40 and rank of 50 for all InputDSA computations on this dataset.
 2145 We also computed a non-normality score (the commutator score, $\|AA^T - A^TA\|_F^2$, which mea-



2155 Figure 18: Hyperparameter sweep over number of delays and model rank on the plume tracking
 2156 dataset.

2158 measures (as described) the degree to which a matrix is non-normal (with normality being defined as
 2159 $A^T A = AA^T$). This measures the relevancy of non-normality in the prediction of the SubspaceD-
 MDC model, which motivates the use of aligning the dynamics over orthogonal matrices, rather

than invertible matrices – although any invertible matrix is a coordinate transform, the dynamical system’s transient before can change when the transform is non-orthogonal. Hence, capturing the full dynamical similarity of two systems can entail comparing up to orthogonal transform in these settings. Here, we find that a rank of 50 with a delay of 40 has a non-normality score close to 2.5, indicating that transient dynamics can be significantly effected.

Q NEURAL DATASET

The dataset published with Luo et al. (2025) can be found here: <https://datadryad.org/dataset/doi:10.5061/dryad.sj3tx96dm>.

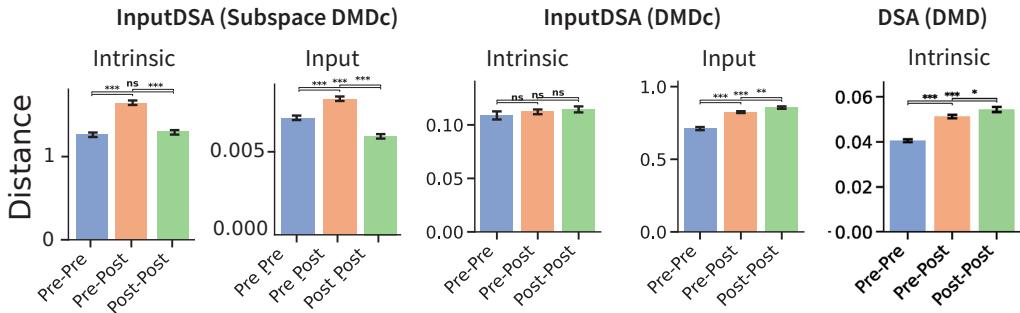


Figure 19: Full comparison of applying Subspace DMDc, DMDc, and DMD to the Luo et al. (2025) dataset. Similarity of neural dynamics before and after the nTc for rat T223. Bars denote standard error across 21 sessions.

Q.1 HYPERPARAMETER SWEEPING

We chose a delay of 5 for the delay embedding and a rank of 6 for the reduced-rank regression on this dataset.

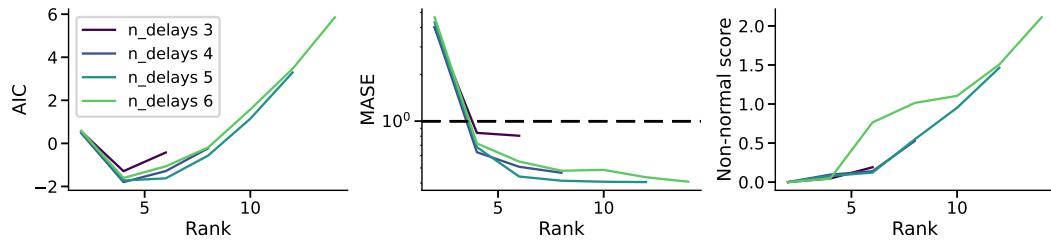


Figure 20: Hyperparameter sweep over number of delays and model rank on the processed Luo et al. (2025) dataset.

Q.2 SURROGATE INPUTS USED IN NEURAL DATASET ARE PERSISTENTLY EXCITING

To assess whether these inputs were rich enough to robustly model the input operator, we computed the standard measure of persistent excitation used in control theory to answer this question. An input is persistently exciting if the matrix

$$M(t) = \int_0^t \tilde{u}(t) \tilde{u}(t)^T dt$$

is positive definite, i.e., the covariance matrix of the embedded input is full rank. In this analysis, we used models with 5 delays and rank 6 (neural states were 3 dimensional and inputs were 2 dimensional), so this covariance matrix needs to be at least rank 6. We computed this using the

delay-embedded input as \tilde{u} for each session of two rats, 39 in total with 100 trials on average per session (Fig. 21). In each session, the 6th singular value of this covariance matrix is much greater than 0 for each session, with the 10% quantile having value of 0.22 and the 1% quantile being 0.01. This suggests that even the input is simple, it is persistently exciting enough to robustly identify a useful B operator, given that there are a large number of trials.

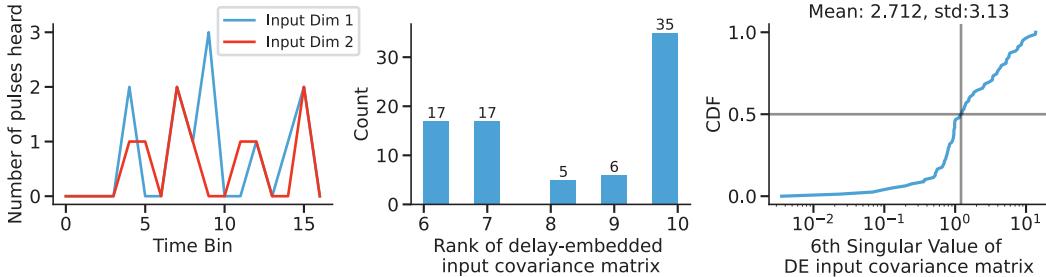


Figure 21: Persistent Excitation analysis of the Luo et al. (2025) surrogate input. The input data represents the total number of pulses coming from each speaker within each time bin of the trial. Left: sample input for one trial. Middle: distribution of the ranks of the embedded input covariance matrix for 80 individual sessions across 4 rats. SubspaceDMDc models are chosen to be rank 6, so all sessions are persistently exciting. Right: Cumulative distribution of the 6th singular value of the embedded input covariance matrix, indicating that these values are significantly greater than 0 for all sessions.

Q.3 CONTROLLABILITY ENERGY FOR ALL RATS

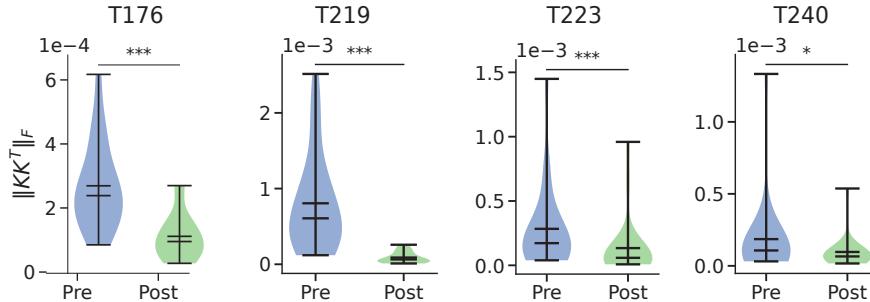


Figure 22: Distribution of Frobenius norms of Controllability Gramians for SubspaceDMDc models for all sessions of all rats. * represents $p < 0.05$ and *** represents $p < 0.001$ using Mann Whitney U-Test.

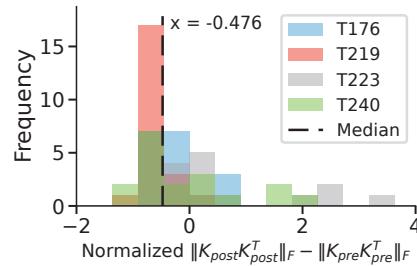


Figure 23: Normalized change in controllability energy across the nTc ($||K_{post}K_{post}^T||_F - ||K_{pre}K_{pre}^T||_F$) aggregated across four rats.

2268
2269

Q.4 SUBSPACE ANGLE

2270
2271

Given two dynamics matrices A_x, A_y , an orthonormal basis for each $(\tilde{A}_x, \tilde{A}_y)$ is first computed (for example, via SVD or QR decomposition). Then, the subspace angles are computed as:

2272
2273

$$\tilde{A}_x^T \tilde{A}_y = U \Sigma V^T \quad (59)$$

2274

$$\theta_i = \arccos(\sigma_i) \quad (60)$$

2275
2276

Where σ_i is the i -th singular value defined by Σ . θ_i is defined as the i -th principal angle. We report the maximum principal angle between two dynamics operators, using the `scipy.linalg.subspace_angles` function.

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

Figure 24: Subspace angles of the input and state operators within and between time periods for rat T223. $A_{pre} - A_{pre}$ (likewise B_{pre}) denotes the noise floor via split-halves comparison.

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

