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ABSTRACT

In control problems and basic scientific modeling, it is important to compare ob-
servations with dynamical simulations. For example, comparing two neural sys-
tems can shed light on the nature of emergent computations in the brain and deep
neural networks. Recently, Ostrow et al. (2023) introduced Dynamical Similar-
ity Analysis (DSA), a method to measure the similarity of two systems based on
their recurrent dynamics rather than geometry or topology. However, DSA does
not consider how inputs affect the dynamics, meaning that two similar systems,
if driven differently, may be classified as different. Because real-world dynam-
ical systems are rarely autonomous, it is important to account for the effects of
input drive. To this end, we introduce a novel metric for comparing both intrinsic
(recurrent) and input-driven dynamics, called InputDSA (iDSA). InputDSA ex-
tends the DSA framework by estimating and comparing both input and intrinsic
dynamic operators using a variant of Dynamic Mode Decomposition with control
(DMDc) based on subspace identification. We demonstrate that InputDSA can
successfully compare partially observed, input-driven systems from noisy data.
We show that when the true inputs are unknown, surrogate inputs can be substi-
tuted without a major deterioration in similarity estimates. We apply InputDSA on
Recurrent Neural Networks (RNNs) trained with Deep Reinforcement Learning,
identifying that high-performing networks are dynamically similar to one another,
while low-performing networks are more diverse. Lastly, we apply InputDSA to
neural data recorded from rats performing a cognitive task, demonstrating that it
identifies a transition from input-driven evidence accumulation to intrinsically-
driven decision-making. Our work demonstrates that InputDSA is a robust and
efficient method for comparing intrinsic dynamics and the effect of external input
on dynamical systems.

1 INTRODUCTION

Identifying that two seemingly disparate complex systems have the same underlying structure is
a widespread objective across many scientific fields, including deep learning (Huh et al., 2024),
computational and systems neuroscience (Yamins et al., 2014; Aldarondo et al., 2024; Prinz et al.,
2004), and physics (Hohenberg & Halperin, 1977; Feigenbaum, 1978). One common approach to
characterizing the similarity of two systems (e.g., brains, minds, computational models, or physical
objects) is to compare the geometry of their states. Well-known methods to do so are Representa-
tional Similarity Analysis, Centered Kernel Alignment, Procrustes Analysis, Canonical Correlation
Analysis, and Pearson Correlation (Kriegeskorte et al., 2008; Kornblith et al., 2019; Williams et al.,
2022; Gallego et al., 2018; Raghu et al., 2017; Schrimpf et al., 2018). Neural networks can also be
characterized by the topology of their activations, (Chaudhuri et al., 2019; Gardner et al., 2022; Lin
& Kriegeskorte, 2024), a more invariant measure than geometry, which depends on the particular
sampling of neurons from the network. However, common to all is that they do not capture similarity
in temporal dynamics (Galgali et al., 2023; Maheswaranathan et al., 2019; Ostrow et al., 2023).

Metrics such as Dynamical Similarity Analysis (DSA, Ostrow et al. 2023) offer an important com-
plementary lens to structure characterization, by proposing a similarity metric on the level of dy-
namics. DSA provides an efficient and theoretically grounded dynamical similarity metric that has
been successfully applied to recurrent network dynamics, training dynamics, and biological neural
data (Redman et al., 2024a; Huang et al., 2025; Codol et al., 2024a; Guilhot et al., 2024; Versteeg
et al., 2025; Lazzari & Saxena, 2025). Briefly, DSA nonlinearly embeds dynamics into a high-
dimensional space and estimates a linear state-transition operator from observed trajectories, which
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is then compared across systems. Recent work introduced other methods for dynamics comparison
(Redman et al., 2024b; Vermani et al., 2024; Cotler et al., 2023; Gosztolai et al., 2025; Chen et al.,
2024; Nejatbakhsh et al., 2024) based on other computational techniques such as neural networks
and shape metrics. Notably, none of these methods consider the effect of external input.

In neuroscientific settings such as central pattern generators or working memory circuits, dynam-
ics may be treated as approximately autonomous (Marder & Bucher, 2001; Grillner, 2006; Kiehn,
2016; Fuster & Alexander, 1971; Funahashi et al., 1989; Goldman-Rakic, 1995; Compte et al., 2000;
Wang, 1999). Prior methods work well for comparisons in these settings. However, when activity
is the result of both intrinsic dynamics and input drive, comparisons can be confounded by inputs.
Most systems of interest in neuroscience and machine learning are non-autonomous, receiving sen-
sory signals or communication from other subsystems (Eisen et al., 2025). They are driven by
complex external inputs and can receive observations that are contingent on the systems’ outputs
(Madhav & Cowan, 2020; Kao & Hennequin, 2019; Rajan et al., 2010).

Despite the ubiquity of input, current dynamical similarity methods ignore input-driven dynamics
and do not incorporate estimation of how inputs affect states. To bridge this gap, we introduce
InputDSA (iDSA), a method that disentangles intrinsic dynamics from input-drive, thereby enabling
joint or separate metric comparisons of input-driven and intrinsic dynamics. InputDSA extends the
DSA framework by explicitly estimating both the intrinsic (state-transition) operator and the input-
to-state mapping, which not only defines a new notion of similarity that incorporates the effect of
inputs, but also in turn improves estimation of the intrinsic operator.

Figure 1: InputDSA schematic (1), state
and input data are collected from two sys-
tems. (2) data are embedded in a high-
dimensional space (3) linear state-space
models are fit to the data (4) Controllability,
state, and input similarity are computed on
learned state-space models. Gray indicates
extensions from DSA.

Contributions We extend DSA to non-
autonomous systems that are driven by external
input, which we call InputDSA . To do so, we
develop a novel similarity metric and variant of the
dynamic mode decomposition (DMD), demonstrat-
ing that they can together provide complementary
insights on both intrinsic as well as input-driven
dynamical similarity. We demonstrate InputDSA
first on systems with known ground truth. We
next show that similarity scores can be robust to
surrogate or noisy inputs, provided that they have
sufficient similarity to the real inputs. Finally, we
apply InputDSA to two datasets: RNNs trained with
Reinforcement Learning, and neural population data
(spiking) from rats performing a sensory decision-
making task. We show that InputDSA distinguishes
high- from low-performing models and reveals how
dynamics reorganize across different task periods.

2 METHODS

2.1 DYNAMICAL SIMILARITY ANALYSIS
(DSA)

In dynamical systems, a key notion of similarity is called topological conjugacy: the existence of
a homeomorphism that maps trajectories of one system onto those of another. When two systems
are conjugate, they have the same qualitative structure, including the same number and type of fixed
points. Given two dynamical systems f : X → X and g : Y → Y with mapping ϕ : X → Y ,
(semi-) conjugacy is defined as:

g ◦ ϕ = ϕ ◦ f (1)
The existence of such a mapping entails a one-to-one alignment between topological features of each
system such as invariant manifolds. Note that this is not geometric because distances and angles are
not necessarily preserved under this mapping. In general, such a function can be arbitrarily complex,
which can make searching for the true conjugacy map challenging in all but the simplest settings.
DSA attempts to circumvent the optimization problem by approximating the Koopman Operator,
which linearizes nonlinear dynamical systems via high-dimensional embeddings (Koopman, 1931;
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Budišić et al., 2012). In the linear space, conjugacy maps are linear and therefore easier to identify.
The methodology of DSA is therefore as follows: First, approximate your systems as linear in some
high-dimensional space, yielding dynamics models xt+1 = Axt . Then similarity is defined on the
linear operators using the following metrics:

DSA(A1, A2) := min
C∈O(n)

||CA1C
T −A2||F (2)

DSA(Λ1,Λ2) := min
P∈Π(n)

||PΛ1P
T − Λ2||F (3)

Where Λi is the eigenvalue matrix of Ai, and O(n),Π(n) the groups of n× n dimensional orthog-
onal and permutation matrices. The latter metric was introduced by (Redman et al., 2024b) and is a
special case of the former (Ostrow et al., 2023). These metrics are reminiscent of Procrustes Analy-
sis, which seeks an orthogonal transformation to align two data matrices, hence Ostrow et al. (2023)
termed the first one Procrustes Analysis over Vector Fields. The latter metric is inspired from Koop-
man Operator Theory based on the relationships between Koopman Operators of conjugate systems
(Budišić et al., 2012). Other notions of similarity on the Koopman Operator are defined in (Mezić
& Banaszuk, 2004; Mezic, 2016).

2.2 INPUTDSA

Inspired by DSA’s approach for autonomous systems, consider two linear dynamical systems
ẋ = A1x+B1u(t) ẏ = A2y +B2u(t). (4)

A key feature of input-driven systems is their controllability: the ability for an input sequence to
drive the state to arbitrary points in finite time. In linear systems, this is encoded in the T-step
controllability matrix (with T typically taken as the dimension of the system):

K1(T ) =
(
B1 A1B1 A2

1B1 . . . AT−1
1 B1

)
(5)

and its corresponding Gramian, which encodes the geometry of controllability.

Wc(T ) = K1K
T
1 =

T∑
i=0

Ai
1B1(A

i
1B1)

T (6)

Intuitively, directions with small eigenvalues are easier to control, because they are more respon-
sive to the effect of input. Controllability, as measured by the eigenvalues of the Gramian, is only
preserved under orthogonal transformations between state spaces:

y = Cx =⇒ A1 = CA2C
T , B1 = CB2 K1 = CK2 (7)

This motivates our proposed dissimilarity metric, which extends DSA:

InputDSA (A1, A2, B1, B2, T ) = min
C∈O(n)

T∑
i=0

||CAi
1B1−Ai

2B2||2F = min
C∈O(n)

||CK1−K2||2F (8)

We also provide a theoretical extension of Eq. 3 in Appendix G.1, which we note is highly suscep-
tible to numerical instability. Although Eq. 2 requires iterative optimization, Eq. 8 is solved via
Procrustes alignment, which yields an exponential acceleration of prior work. We provide theoreti-
cal discussion in Appendix G. After solving for C∗, we can study the joint state and input scores:

InputDSA state(A1, A2, C
∗) = ||C∗A1C

∗T

−A2||2F (9)

InputDSA input(B1, B2, C
∗) = ||C∗B1 −B2||2F (10)

If the inputs directly applied to the system are known, as in computational models, Eq. 8 is sufficient.
However, when the true input is some modification of a surrogate input, it may be necessary to align
the input as well. This is relevant in settings such as the comparison of two brain regions, when the
surrogate input u is a behavioral or sensory variable that is transformed by upstream regions. We
therefore can extend Eq. 8 to consider joint alignment of the input, without significant differences
in the optimization problem. For further technical details, see Appendix F.

This metric motivates the following approach as in Ostrow et al. (2023): identify the best linear
approximation of an input-driven system, following which comparison can be done efficiently be-
tween the approximations. To do so, Ostrow et al. (2023) applied the Dynamic Mode Decomposition
(Schmid, 2022), which we introduce and extend to fit our setting next.
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2.3 ESTIMATING LINEAR OPERATORS

As in DSA, We fit linear operators via the Dynamic Mode Decomposition (DMD) family of meth-
ods. The DMD (Schmid, 2010; 2022) identifies the linear dynamics that best explain the data:

ϕ(xt+1) = Aϕ(xt). (11)

Here xt represents the measured state of the system at time t, ϕ is a nonlinear embedding of the
data that typically expands the dimensionality of the state space, and A is a matrix that is identified
using some variant of least-squares regression. The goal of the Dynamic Mode Decomposition is
to approximate the Koopman Operator (Koopman, 1931), a theoretical object that exists for all dy-
namical systems which encodes the linear dynamics of observables (functions that act on the true
system state) under the system dynamics. Prior work has explored many different choices of ϕ. For
example, ϕ can be a kernel function, a delay embedding, or even a neural network (Williams et al.,
2016; Brunton et al., 2017; Arbabi & Mezić, 2017; Lusch et al., 2018). Intuitively, the dimension-
ality expansion acts similarly to the kernel trick (Smola & Schölkopf, 1998), where embedding into
higher dimensions ‘unfolds’ the nonlinearity. The DMD can be applied in non-autonomous systems,
although this risks mixing driving and intrinsic dynamics (Proctor et al., 2016a).

Incorporating Control into DMD and Koopman While the original Koopman theory assumed
autonomous dynamics, prior work has sought to incorporate control into the theory (Korda & Mezić,
2018; Proctor et al., 2016b; Strässer et al., 2025; Asada & Solano-Castellanos, 2024; Haseli et al.,
2025). Likewise, the DMD can be generalized to driven systems: When given control inputs ut, we
can instead apply DMD with control (DMDc, Proctor et al. 2016a;b):

ϕ1(xt+1) = Aϕ1(xt) +Bϕ2(ut) (12)

Here, ϕ1 and ϕ2 can be distinct nonlinearities. While DMDc was originally only applied with no
nonlinearity (ϕ1, ϕ2 = Id), it too can be generalized to high-dimensional nonlinear embeddings. As
in DMDc, we assume that inputs are known or a useful surrogate can be constructed (Section 3.2).
Further algorithmic details are in Appendix B.

Issues of Partial Observation While estimating A and B via DMDc is an intuitive extension to
input-driven systems, it has a hidden failure mode in the analysis of partially-observed systems. This
is particularly important in the analysis of neural data, in which a small subset of neurons in a vast
population are recorded. Generically, an input-driven system that is partially observed receives input
to both the observed and unobserved components. The input at time t therefore affects the observed
state at time t (instantaneously) and in future time steps through the unobserved state (Fig. 2A).
This means that simply applying DMDc in this setting will bias the B matrix towards the intrinsic
dynamics of the system. We develop a formal description of this problem for linear systems in
Appendix D. We solve this problem by introducing Subspace DMDc, an extension of Subspace
DMD (Takeishi et al., 2017b) that incorporates input. In brief, Subspace DMDc utilizes subspace
identification algorithms from classical control theory (Verhaegen & Verdult, 2007), which seek to
identify linear dynamical systems of the form:

xt+1 = Axt +But yt = Cxt (13)

Here, only yt and ut are observed. The situation of partial observability is a special case of this
problem. In practice, we use the well-known N4SID or PO-MOESP algorithms to estimate A and B
(Van Overschee & De Moor, 1994; Verhaegen, 1994) in Eq. 13 on lifted states (thereby leveraging
the power of nonlinear DMD algorithms such as Williams et al. 2016). The algorithmic idea behind
subspace identification is similar to that of instrumental variable regression: the lifted state data
to-be-predicted (future data yt+1) is projected onto the basis of the past input and lifted state data
(yt, ut) before estimating a A and B via linear regression. This has the added benefit of projecting
out observation and process noise, thereby providing noise robustness (Verhaegen, 1994; Verhaegen
& Verdult, 2007). For technical details on the subspace identification algorithm, see Appendix E.

Tuning SubspaceDMDc for InputDSA SubspaceDMDc has three key hyperparameters: the
rank of the linear operator, the number of delays used in subspace identification, and the type of
nonlinear basis used for linearizing the dynamics. In practice, the most general method we use
to tune SubspaceDMDc is to pick the smallest rank model that best predicts future states of the
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system. Because SubspaceDMDc must infer the latent state from prior data, we utilize Kalman
Filtering (Kalman, 1963) for efficient next-step prediction. This is effectively done with the Akaike
Information Criterion (AIC) along with other metrics we discuss in Appendix I.

3 EXPERIMENTS

3.1 INPUTDSA DISCRIMINATES INTRINSIC DYNAMICS FROM INPUT-DRIVEN DYNAMICS

To demonstrate that InputDSA can capture similarities in both intrinsic and input-driven dynamics,
we simulated partially observed random RNNs with the following equations:

xt+1 = A(xt + gF tanh(xt)) +B(ut + tanh(ut)) (14)

yt = (Id 0n−d)xt + ϵt (15)

Where F and g are fixed across all simulations, and ϵt is observation noise. We randomly sampled
two matrices for A ∈ Rn×n, and two for B ∈ Rn×1, from which we constructed 4 systems: Systems
1 and 2 (3 and 4) share the same intrinsic dynamics matrix A1 (A2), while Systems 1 and 3 (2 and
4) share the same input matrix B1 (B2). We randomly sampled low-pass filtered white noise as the
input drive (four times for each system), each with random initial conditions, yielding 16 systems
in each distance matrix. In our experiments, we simulated 20-dimensional (x ∈ R20) systems and
observed 2 dimensions (y ∈ R2) for 5,000 time points. For simulation details, see Appendix J.
We computed 5 distance matrices for each dataset, across 100 random seeds: (1), the DSA score
using a delay-embedded DMD (Hankel DMD, or Hankel Alternative View of Koopman Arbabi &
Mezić 2017; Brunton et al. 2017), (2) the state distance using a delay-embedded DMDc, (3) the
state distance using the SubspaceDMDc, (4) the input distance using the DMDc, and (5) the input
distance using the SubspaceDMDc. Note that DSA does not have the ability to compare inputs, so
it is left out. For a discussion on hyperparameter tuning, see Appendix J). For the sake of space, we
report the jointly optimized input distance (Input DSA, Eq. 10) and the individually optimized state
distance (State DSA, Eq. 9) as these are the most interpretable, although the jointly optimized state
distance was highly similar.

In Fig. 2B we visualize the observed input and one dimension of the observed output for a sample
set of systems, noting that it is not obvious at all a priori, let alone from the geometry, of any
similarity relationships. We present sample state distance matrices from one random seed in Fig.
2C. While the DMD and the DMDc have notable structure pertaining to the true state similarity,
the SubspaceDMDc similarity scores are noticeably sharper. Quantifying these matrices with the
silhouette score (a measure of cluster separability and dispersal, 1.0 is best) utilizing ground-truth
state labels, the DMD scores 0.6, DMDc scores 0.68, and the Subspace DMDc scores 0.94. In
Fig. 2D, we present the respective input scores for each method. As predicted by our previous
discussion on the effects of partial observation on input matrix estimation, the input DSA score
computed with DMDc does not align with ground truth, reporting a silhouette score of 0.19. The
silhouette score of the SubspaceDMDc is 0.83, indicating robust separation. We also compute the
total similarity matrices (Eq. 8, Appendix Fig. 6), for which the SubspaceDMDc reports correctly
that each type of system is altogether unique. We swept over 100 seeds in Fig. 2E and found that
the SubspaceDMDc-based InputDSA consistently yielded the best separability.

To assess the effect of partial observation, we ran the above analysis for different-sized systems
(ranging from 2 to 1000 dimensions) with only 2 observed dimensions, for which we present the
average silhouette scores for InputDSA in Fig. 2F. The state similarity scores for each method
gracefully degrade with the total state size, and SubspaceDMDc has a noticeable improvement over
the other methods. The DMDc input score appears to never be robust. However, the SubspaceDMDc
input similarity is robust across all system sizes. We also assess the effect of hyperparameters,
input dimensionality, and process noise on SubspaceDMDc (Appendix Figs. 8, 9, 10 respectively).
Together, this suggests that SubspaceDMDc can be used to measure the dynamical similarity of
partially observed, input-driven, noisy dynamical systems.

3.2 ROBUSTNESS TO INPUT NOISE AND TRANSFORMATION

In real-world settings such as neural populations, the true inputs driving the system are rarely acces-
sible. Instead, what we observe are often noisy or partial measurements, limited by sensor resolution,
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Figure 2: InputDSA SubspaceDMDc is robust to partial observation (A) Inputs can affect ob-
served states (red nodes) in the future via the unobserved states (green nodes), biasing estimates of
input driven-dynamics. Purple arrows indicate indirect propagation of input. (B) Sample inputs and
observed states from 4 dynamical systems, which have alternate pairings of the same intrinsic and
input-driven dynamics denoted by arrows. (C) Sample state distance matrices based on the DMD,
DMDc and SubspaceDMDc on data generated as in (B). Four iterations of each system are gener-
ated, each with unique inputs and initial conditions. (D) Sample input distance matrices on the same
data as in (C). The DMD does not learn an input operator. (E) Aggregate silhouette scores of each
similarity matrix across 100 random seeds, each generated as in (C,D). Baseline input-label silhou-
ette score for DMD is computed on the state matrix with the ground-truth input labels. Bars denote
standard error. (F) Silhouette scores for each DMD and similarity type as the system is increased
from 2- to 1000-dimensional. Each size was repeated across 20 seeds. Shading denotes standard
error, asterisks indicate that SubspaceDMDc scores are significantly greater than both DMD and
DMDc (one-side Mann-Whitney U-Test).

sampling rates, or inherent partial observability. As a consequence, researchers often rely on behav-
ioral variables, task instructions, or environmental features as proxies when modeling neural circuits
(Vinograd et al., 2024; Sani et al., 2024; Burak & Fiete, 2009b; Schaeffer et al., 2020; Mante et al.,
2013b). This raises a key question for applying InputDSA : if the true inputs are unknown, can
surrogate inputs that are correlated with the ground truth still yield accurate distance estimates?

We begin by examining how well the true InputDSA distance matrix when the provided input is
noise-corrupted. We repeated the simulation and comparison in Fig. 2C, this time applying different
types of noise perturbations to the input used in SubspaceDMDc (example in 3A). For complete
details on the noise perturbations, see Appendix M. We applied 10 types of perturbations inspired
by different real-world situations, such as partial observation, temporal smoothing, or multiplicative
Gaussian noise, and repeated each perturbation across a range of parameters (e.g. standard deviation
in the noise settings or filter width in the smoothing setting).

To measure the deviation of the signal consistently across perturbation types, we compute the signal-
to-error ratio (SER) for each perturbation: given a time series X ∈ Rt×d and its perturbed version
X̃ = f(X), SER is defined as SER(X, X̃) = Var(X)

Var(X̃−X)
. SER generalizes signal-to-noise ratio

for non-additive perturbations. Despite the prevalence of noisy inputs, we found that InputDSA
distances remain robust, decaying slowly below the SER < 1 threshold (Fig. 3B): High SERs
lead to high correlations with ground truth distances, and correlations tend remain above r > 0.75
even as SER approaches 1. This robustness arises due to the delay embedding and reduced-rank
regression in Subspace DMDc: delay embedding incorporates the history of inputs, while reduced-
rank regression removes noisy modes with spurious correlations.

To generalize this analysis to more complicated transformations, we repeated the analysis using
inputs transformed by random polynomials (Fig. 3C,D). Specifically, we sampled 500 random 4-th
order polynomials with coefficients drawn uniformly from [−0.1, 0.1], which we applied dimension-
wise to the inputs as a new perturbation. To generate inputs with higher SERs, we also generated 200
polynomials where the linear coefficient was fixed at 0.9, while all other coefficients were sampled

6
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from the same range. As in the previous analysis, we find a similar pattern across SER: the state
DSA correlations are the most robust, followed by the combined and the input DSA scores. This
suggests that up to reasonable SER , the InputDSA scores are robust to input perturbations.
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Figure 3: InputDSA provides robust distance estimates under input noise and surrogate in-
puts. (A) Example of multiplicative Gaussian noise added to input data. (B) Effect of different
noise perturbations on the InputDSA similarity matrices in Fig. 2 (see Appendix Section M for
further technical details on the noise). The y-axis indicates the correlation between the InputDSA
matrices given the true input and the perturbed input. The x-axis indicates the signal to error ratio
Var(X)/Var(X̃ − X). From left to right: joint controllability DSA (Eq. 8), jointly optimized state
DSA (Eq. 9; jointly optimized input DSA (Eq. 10). (C) Example of a polynomial function applied
to the same input as in (A). (D) Similar analysis as in (B), with various random polynomial functions
applied to the input. (E) Random target task schematic. (F) We compare RNNs dynamics across
multiple time points in training with InputDSA . We study changes in the distance matrix when
applying surrogate inputs. (G) Example first Principal Component for different surrogate inputs and
their correlation with the true input (Obs). (H) Correlation between InputDSA distances estimated
using the ground truth input and surrogate inputs. Error bars indicate standard error across 10 train-
ing runs. Jointly optimized state and input DSA are presented.

Next, we evaluated whether task-relevant surrogate inputs could be used in place of ground truth,
instead of perturbed versions of the true input. We analyzed trained RNNs from the Random Target
Reach task (Fig. 3E, Codol et al. 2024b), a widely used paradigm for studying neural control of
movement from which rich neural and behavioral dynamics emerge (Hatsopoulos et al., 2007; Flint
et al., 2012; Churchland et al., 2012). Across 20 epochs equally spaced in training, we recorded
the RNN’s hidden states, observations (the true input), actions (behavioral output), and other task
variables (Fig. 3F, only 5 epochs shown for visualization purpose). For a detailed description of the
task and training, see Appendix O. Passing the hidden states of the RNN and the ground truth inputs
through InputDSA , we obtained two distance matrices that characterize how the network’s intrinsic
and input-driven dynamics change over learning. We repeated this process for various task-related
surrogate inputs: RNN output (actions), position, velocity, task instruction, and various combina-
tions. We also included random inputs sampled from the uniform distribution on [0, 1] as a baseline.
Among surrogates, the actions maintain the highest trial-averaged correlation with the ground truth
input (Fig. 3G). We find that InputDSA intrinsic (state) distances estimated with surrogate inputs
have strong correlation with the ground truth distance, even with random inputs (Fig. 3H). For input-
driven comparisons, more highly-correlated surrogates tend to yield more accurate similarities, with
the RNN’s combined action and positions providing strong correlations with the ground truth dis-
tance (Fig. 3H). Overall, our analysis suggests that state similarities are robust to perturbations of
many different types, while the combined and input similarities are still robust, albeit less so.

4 APPLICATIONS

4.1 INPUTDSA TRACKS THE EVOLUTION OF INDIVIDUAL DIFFERENCE OVER LEARNING

In closed-loop Reinforcement Learning (RL) environments, stochastic action selection and small
differences in policies can shift the distribution of sensory inputs encountered across training. To
understand divergence between agents, it is crucial to study how inputs interact with dynamics and
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shape agent performance. The Plume Tracking task (Fig. 4A) provides an ideal testbed because the
agents must balance between memory-based intrinsic dynamics with stimulus-driven responses.

In this task, artificial flies (RNNs) trained by deep RL navigate to the source of a simu-
lated turbulent odor plume in a windy 2D arena. At each timestep, the agent senses only
local cues (intermittent odor concentration and wind direction) and takes actions to move its
position. Due to the stochastic nature of sensory observations and exploration, agents di-
verge across training, producing a wide variation of success rates (Fig. 3B). This raises a
key question: do performance differences reflect variations in intrinsic dynamics (the abil-
ity to form and maintain task-relevant representations) or input-driven responses to stimuli?
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Figure 4: InputDSA identifies how successful and unsuccess-
ful agents differ over training. (A) The Plume Tracking envi-
ronment schematic adapted from Singh et al. (2023). (B) Average
performance (success rate) of 15 independently trained agents.
The 5 most performant (”Top”) and 5 failed (”Bottom”) agents
are studied further. (C) Neural dynamics of trained agents are or-
ganized in a low-dimensional space and reflective of behaviorally
relevant variable (i.e. the odor concentration). (D) Average dis-
tance computed within the 5 Top Agents, within the 5 Bottom
agents, and across groups (Top–Bottom). (E) The singular value
spectrum of the input-mapping operator B from Top and Bottom
agents. (F) The evolution of similarity within and across groups
over learning. Shaded area indicates standard error.

We trained 15 independent
agents on the Plume Tracking
task. We selected the five
best-performing (“Top”) agents
with 65% to 20% success rate
at locating the odor source
across 200 evaluation episodes,
and five worst-performing
(“Bottom”) agents who never
succeeded on any episode
(Fig. 4B). Applying InputDSA
revealed that the input-driven
dynamics of the Top agents
were significantly more similar
to each other and clearly sepa-
rated from those of the Bottom
agents, whereas intrinsic dy-
namics were not significantly
different between groups (Fig.
4D). This suggests that suc-
cessful plume tracking heavily
depends rapid input-driven
responses to wind direction and
odor concentration. To probe
how the input-driven dynamics
differ between Top and Bottom
agents, we examined the singu-
lar values of the input–mapping
B in Fig. 4E. Singular values
of the operator quantify how
strongly input directions are
injected into RNN state space.
We found that the singular values of B for Top agents decay more slowly than for Bottom agents.
This implies that inputs excite more dimensions of the RNN in Top agents (Fig. 4E), allowing them
to directly control each dimension with the input, rather than indirectly through other dimensions.

We next ask how individual variability in neural dynamics evolves during training. To this end, we
computed pairwise dynamical similarity among Top and Bottom agents every 20 gradient updates
(Fig. 4F). While within–group input similarity decreases over training for both Top and Bottom, the
Top agents ultimately converge to a more consistent set of input-driven dynamics, whereas the Bot-
tom agents diverge toward heterogeneous, idiosyncratic dynamics. This is reminiscent of the ”Anna
Karenina principle”, in which effective solutions are similar to each other, while worse ones are
highly varied. We repeated this comparison using DMDc, finding that it identified similar structure
in the input-driven dynamics but not the intrinsic dynamics (Appendix Fig. 17).

4.2 INPUTDSA CAPTURES DIFFERENCES IN NEURAL POPULATION DYNAMICS ACROSS TIME

Lastly, we apply InputDSA to a recently published dataset in which neural population activities were
recorded from six frontal and striatal regions with Neuropixels probes during an auditory evidence
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accumulation task (Luo et al. 2025, Fig. 5A). During this task, rats were trained to listen to auditory
pulses from speakers on the either side of the animal, and to turn to the side with more auditory
pulses. This dataset contains 12 rats across 115 daily sessions with a median of 327 neurons recorded
and 455 trials completed per session. We chose 4 rats with more than 15 recorded sessions for
our analysis to ensure accurate estimation of neural dynamics. In the original study, the authors
define the neural time of commitment (nTc) as the internal moment during perceptual decision-
making when an animal has effectively committed to a choice (Fig. 5B). To examine how neural
population dynamics reorganize across this point, we applied InputDSA to neural activities during
the stimulus presentation period before and after the nTc. Spiking activity was binned in 50 ms
windows, smoothed with a causal Gaussian kernel (σ = 250 ms), and dimensionality reduced with
PCA to preserve 99% of variance. The activity was then embedded into three dimensions using
Isomap, and InputDSA was applied with hyperparameters detailed in Appendix Q. We construct the
inputs as two-dimensional time series encoding the number of auditory pulses from the left and right
within each bin. An analysis of the input revealed that this input structure was sufficient to robustly
identify a B operator (i.e it is persistently exciting, Appendix Fig. 21).
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Figure 5: InputDSA quantifies differences in neural population dynamics across task epoch.
(A) Auditory evidence accumulation task schematic (adapted from Luo et al. 2025). (B) Trial-
averaged neural trajectories visualized in the top two Principal Components. Stars indicate a ”neu-
ral time of commitment” (nTc): the time point when the curvature of trial-averaged trajectories is
maximum (marked by stars). (C) Similarity of neural dynamics before and after the nTc for rat
T223. Bars denote standard error across 21 sessions. (D) Distribution of top real eigenvalues of
state-transition matrix A and fit power law for pre- vs. post-commitment activity. Left, sample
distribution. Right, distribution of power law exponents across sessions. Dots denote individual
sessions, lines indicate paired periods within session, likewise in E and F. (E) Effects of intrinsic
and input-driven dynamics in pre vs. post periods, measured by L2-norm of the SubspaceDMDc op-
erator. (F) Distribution of Frobenius norms of Controllability Gramians for SubspaceDMDc models
for all sessions of one rat. p < 0.001, Mann Whitney U-Test.

Comparing neural dynamics before and after the nTc (“Pre” vs. “Post”), we found significant shifts
in both intrinsic and input-driven dynamics, consistent with the changes at nTc reported in (Luo
et al., 2025) (Fig. 5C). To probe how the intrinsic dynamics change, we analyzed the eigenspectrum
of the state-transition matrix A estimated by SubspaceDMDc before and after the nTc. Each spec-
trum was fit with a power law λi ∝

(
i
N

)β
, where λi are the i-th eigenvalue sorted in descending

order. We found that the post-commitment periods consistently showed smaller β, indicating slower
decay and thus longer-lasting intrinsic dynamics (Fig. 5D). This is directly related to the control-
lability of the dynamical system, which describes how easy it is for an input sequence to drive the
system to arbitrary points in state space (Luenberger, 1979). Smaller DMD eigenvalues implies
greater input controllability, which would be expected for a more input-driven system as Luo et al.
(2025) identified is the case in the pre-nTc regime. Likewise, the average magnitude of the intrinsic
dynamics strengthen while the input-driven dynamics weaken in the Post-nTc period, reflecting a
transition into more autonomous, less input-sensitive regime after the nTc (Fig. 5E).
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Lastly, we computed the Frobenius norms of the controllability Gramians for each SubspaceDMDc
model, which measures how easy it is to control the system into arbitrary directions. In Fig. 5F,
we report the distribution of norms for one rat pre- and post-nTc. The distribution significantly
decays (p < 0.001, Mann-Whitney U-test), indicating that the neural dynamics become less input-
controllable over time. We found similar results for all other animals in the dataset (Appendix Fig.
22). The median percent change in controllability energy was -47.63% (standard error 15.15%).To-
gether, these results suggest that population activity undergoes a regime shift at the nTc: transition-
ing from an input-driven, evidence-accumulation phase into an intrinsically dominated, decision-
commitment phase, as suggested by (Luo et al., 2025). Applying the DMDc for comparison did not
reveal similar results, almost certainly due to partial observation (Fig. 19).

5 DISCUSSION

We introduced a theoretically-motivated method (InputDSA ) to quantitatively compare the intrinsic
dynamics and effects of input between two dynamical systems, from data alone. We extended the
DSA framework (Ostrow et al., 2023) to account for input-driven systems, which required a novel
variant of the Dynamic Mode Decomposition with Control (Proctor et al., 2016a) called Subspace
DMDc. We also developed a novel optimization algorithm for our similarity metric that is multiple
orders of magnitude faster than prior work.

We demonstrated that InputDSA can effectively estimate similarity from partially-observed systems
(Fig. 2), which is necessary when dealing with most physical and biological systems. In many
settings, the true input is not known (for example the signal from one brain region to another), but
we demonstrated that even approximate or noisy inputs can provide reasonable input and intrinsic
similarity estimates (Fig. 3). Since many models in computational neuroscience tend to utilize proxy
inputs (Nair et al., 2023; Sohn et al., 2019; Burak & Fiete, 2009a; Mante et al., 2013a; Sussillo
et al., 2015), our work provides principled methodological support to this practice. Inputs could
also be estimated via another computational method (e.g. Perich et al. 2020; Luo et al. 2025) before
applying InputDSA . As Fig. 3 suggests, even utilizing weakly correlated proxy inputs can increase
the robustness of the intrinsic comparison with InputDSA .

InputDSA could be used for further validation of computational models with perturbation as in
O’Shea et al. (2022). Known optogenetic or electrical impulse perturbations could be applied to
both a model and biological neural circuit, following which both their internal dynamics and im-
pulse responses could be compared. This can provide more stringent tests than comparing intrinsic
dynamics alone. Other subspace identification methods could be used in place of SubspaceDMDc,
such as Eigensystem Realization (ERA, Juang & Pappa 1985). In a similar vein, InputDSA could
potentially be used to identify the information content in cross-brain-region communication – mul-
tiple models could be constructed with different surrogate inputs, and the most similar input should
have the lowest input distance to the data (Fig. 3).

Although we only applied InputDSA to biological neural data and recurrent neural networks, it
can be applied to any time series data. Indeed, the constraints on the method are based on the
capabilities of systems identification and Koopman Operator approximation. For example, if the
input is not persistently exciting, state modes will be under-approximated. If a viable basis is not
identified, the linear model may not be able to capture enough structure for effective comparison.
However, there exists a wide range of work in both fields designed to tackle these problems (Wu
et al., 2021; Colbrook et al., 2023; Takeishi et al., 2017a; Ichinaga et al., 2024). It is also worth
noting that near-perfect estimation is not necessary for informative comparison.

InputDSA has other limitations. The method assumes additive input, which may not be able to ap-
proximate the effects of multiplicative input (Logiaco et al., 2021; Shine et al., 2021). Disentangling
the contribution of state and input can also be challenging or intractable when they are synchro-
nized (Rajan et al., 2010) or the input is a linear function of the state (Verhaegen & Verdult 2007,
although methods exist for subspace identification in closed loop Van Der Veen et al. 2013). From
a computational complexity standpoint, the bottleneck is fitting the SubspaceDMDc, as comparison
is extremely fast. Regardless, we found that even for reasonably sized systems (e.g. 50 dimensions,
10,000 timepoints) and hyperparameters (100 delays), the method requires a O(1 minute) on M1 Pro
Mac, and is even faster on a GPU.
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REPRODUCIBILITY STATEMENT

The description of all algorithms utilized in our paper is sufficiently detailed in order to reproduce
InputDSA (pseudocode, mathematical details, hyperparameter tuning) and our results. We built
upon publically-available code from Ostrow et al. (2023) to create InputDSA . For our RNN studies,
we used open source code, and have detailed the hyperparameters we used in the simulations as well
as in our analyses. For our neural data analysis, we used public data and processed it generically,
thereby making reproduction easy, if desirable. We are thankful for prior open source work and we
will release our method open source upon acceptance. We hope InputDSA is not only used and but
also improved upon.
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Appendix
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• L. Establishing a Noise Floor for InputDSA Score
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A LLM USAGE STATEMENT

We used LLMs in preliminary phases of conducting this research, in particular for brainstorming
research ideas and literature review, as well as writing simple boilerplate code (e.g. plotting). All
code, math, and writing was checked by at least one author before including it in the paper.

B DYNAMIC MODE DECOMPOSITION WITH CONTROL (DMDC)

Dynamic Mode Decomposition with control (DMDc) (Proctor et al., 2016a) extends standard DMD
to dynamical systems with external inputs. It provides a data-driven approximation of both the
intrinsic dynamics A and input couplings B, enabling system identification and forecasting for non-
autonomous dynamical systems. Here, we briefly review the formulation of DMDc. For full details,
please refer to Proctor et al. (2016a). In practice, we can apply DMDc whenever the state is fully
observed. When this is not the case, refer to Sections D and E.

We consider the input-driven linear model

xk+1 = Axk +Buk, A ∈ Rn×n, B ∈ Rn×p, (16)

where xk ∈ Rn are state snapshots and uk ∈ Rp are input signals. For an input-driven dynamical
system, we collect pairs of the system states and input signals into

X = [x1 x2 · · · xm−1] , (17)

X ′ = [x2 x3 · · · xm] , (18)

U = [u1 u2 · · · um−1] , (19)

where X,X ′ ∈ Rn×(m−1) and U ∈ Rp×(m−1). We can rewrite equation 16 into

X ′ = GΩ = [A B]

[
X
U

]
(20)

where Ω ∈ R(n+p)×(m−1) and G ∈ Rn×(n+p).

The optimal operator is then obtained by solving

G = argmin
G̃
∥X ′ − G̃Ω∥F = X ′ Ω+, (21)

where (·)+ denotes the Moore–Penrose pseudoinverse.

Let the truncated SVD of Ω be

Ω ≈ Ũ Σ̃ Ṽ ∗, Ω+ ≈ Ṽ Σ̃−1Ũ∗. (22)

Partition Ũ into state and input blocks:

Ũ =

[
Ũx

Ũu

]
, Ũx ∈ Rn×r̃, Ũu ∈ Rp×r̃. (23)

The system matrices are then estimated as

A = X ′Ṽ Σ̃−1Ũ∗
x , B = X ′Ṽ Σ̃−1Ũ∗

u . (24)

We can further project A and B into the system’s state space using

X ≈ UrΣrV
∗
r , Ur ∈ Rn×r, (25)

Ã = U∗
rAUr, B̃ = U∗

rB. (26)

It is useful to perform SVD independently on X and U , assuming there is minimal correlation among
the variables. This is especially useful when using nonlinear embeddings such as delay embeddings
in the regression. This changes the algorithm of DMDc but not significantly. In particular, we can
now write:
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Ω =

(
Ux 0
0 Uu

)(
Σx 0
0 Σu

)(
V T
x

V T
u

)
(27)

This enables us to pick ranks separately for X and U components. In practice, we apply the
techniques used in HAVOK (Brunton et al., 2017) to estimate the DMD. We do regression in the
eigen-time-delay (pca-whitened) spaces of X and U (Hankelized), which allows us to select ranks
separately for the X and the U space.

B.1 ON NONLINEAR EMBEDDINGS IN DMDC

In the standard DMDc formulation (above), an SVD is taken across Ω, which concatenates the state
data X with the input data U . Although this has the benefit of whitening across all regressors, it
can bias the estimation of A and B depending on the relative scalings and dimensionalities of X
and U . This has a critical effect when applying high-dimensional nonlinear embeddings to only X
(U ) individually, as the SVD will be increasingly dominated by signal from X (U ) if the data is
sufficiently rich. Therefore, whenever we apply delay embeddings or other nonlinear embeddings
to X , we do so commensurately to U .

C RELATIONSHIP BETWEEN DMD (REGULAR) AND DMDC

Ac
x =

[(
XTX XTU
UTX UTU

)−1

1:m

(
XT

UT

)]
Xn+1

Ax = (XTX)−1XTXn+1

S =
(
UTU − UTX(XTX)−1XTU

)

Ac
x =


(XTX)−1 +

Au︷ ︸︸ ︷
(XTX)−1XTU S−1UTX(XTX)−1,−(XTX)−1XTUS−1

(
XT

UT

)Xn+1

Ac
x = (XTX)−1XTXn+1 +AuS

−1AT
uX

TXn+1 −AuS
−1UTXn+1

Ac
x = Ax +AuS

−1AT
uX

TXn+1 −AuS
−1UTXn+1

D PARTIAL OBSERVATION INDUCES BIASES IN INPUT OPERATOR B

Consider a partially observed linear system:

(
xo

xu

)
t

=

(
Aoo Aou

Auo Auu

)(
xo

xu

)
t−1

+

(
Bo

Bu

)
ut−1 (28)

We observe states xo. This system can also be formulated as a Vector-Autoregressive model with
exogenous inputs (VAR-X). To see this formulation, we recursively substitute the definition of xu

t
with its dynamical equation, hence arriving at a formulation of xo

t as a function of past observed
states and inputs:
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xo
t = Aox

o
t−1 +Aoux

u
t +Bout (29)

= Aox
o
t−1 +Aou[Auox

o
t−2 +Auux

u
t−2 +Buut−1] (30)

= . . . (31)

= Aox
o
t−1 +

∞∑
i=1

AouA
i−1
u (Auox

o
t−1 +Buut−i) +Bout (32)

We take an infinite sum here for completeness, but in practice i can be capped up to marginal error
based on the decay rates (eigenvalues) of Au. We can write this equation as a function of the delay-
embedded observed state and inputs:

xo
t+1 =

[
Ao AouAuo AouAuAuo . . . AouA

d−1
u Auo

]  xo
t

xo
t−1
. . .
xo
t−d

 (33)

+
[
Bo AouBu AouAuBu . . . AouA

d−1
u Bu

]  ut

ut−1

. . .
ut−d

 (34)

These equations show that when performing regression as in DMDc on partially-observed, delay-
embedded data, the estimates of B become biased by the intrinsic dynamics in the unobserved states.
Biases in B emerges when utilizing delay embeddings as dimensionality expansions, as we can see
from the above formulation. Although we display the formal connection with linear systems above,
it is simple to observe that the same problem occurs with nonlinear dynamics as well.

E DE-BIASING B UNDER PARTIAL OBSERVATION WITH SUBSPACE
IDENTIFICATION

In this section, we introduce SubspaceDMDc, a natural extension of two DMD models in the liter-
ature: Subspace DMD (Takeishi et al., 2017b) and DMDc (Proctor et al., 2016a). SubspaceDMDc
has a notable difference from SubspaceDMD, as Takeishi et al. (2017b) utilize the subspace identi-
fication approach to handle observation noise, whereas we utilize subspace identification to handle
input affecting future timesteps (although we gain noise robustness through similar means). In the
control theory literature, there are a number of subspace identification algorithms, two of the most
famous are Multivariable Output-Error State sPace (MOESP) modeling and Numerical Algorithms
for Subspace State Space System Identification (N4SID) (Verhaegen & Verdult, 2007; Verhaegen,
1994; Van Overschee & De Moor, 1994). In order to be brief, we will discuss only N4SID, which is
the method we chose to implement. In general, the algorithms have similar behavior, except on ill-
conditioned data. Practically speaking, either method could be used in DSA; it is up to the user and
their respective performances on the dataset. The extension of these methods to SubspaceDMDc
is the introduction of a lifting feature space: polynomials, kernels, random feature maps, neural
networks, or nonlinear features can be used in order to find a best-predicting nonlinear basis upon
which the features evolve linearly.

E.1 SUBSPACE DMD

Subspace DMD (Takeishi et al., 2017b) is designed to handle the estimation of the Koopman op-
erator given data that is contaminated with observational and process noise. Assuming that the
dynamics and the noise are independent, one can project out the contribution of the noise in the
data and leave only the component that is explainable with past data (via delay embedding, step 2
of the algorithm below). We assume real data, although the method works for complex data as well.
Algorithm 2 in the paper reads:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1. Construct data matrices Yp =
[
Y T
0 Y T

1

]T
Yf =

[
Y T
2 Y T

3

]T
where Yt =

[g(xt) . . . g(xt−m+1)]

2. Compute the orthogonal projection of the future data onto the past data: O = YfPY T
p

where the projector PY T
p

= Y T
p (YpY

T
p )†Yp.

3. Compute the compact SVD (e.g., the SVD with no zero rows or columns): O = UqSqV
T
q

and define Uq1, Uq2 by taking the first and last n rows of Uq . This is done in order to
split the projection matrix into the observability matrix and the state matrix: O = ΓX , up
to right / left multiplication by an invertible matrix. The observability matrix looks like
Γ = (C CA . . . CAn). Because this matrix encodes the time-shifted structure of the
dynamics, we split into the top n and last n rows to get Uq1 and Uq2 upon which we do
reduced-rank regression in the next step.

4. Compute the compact SVD of Uq1 = USV T and define the operator Ã = UTUq2V S−1.

5. If desirable, dynamic modes are defined as w = λ−1Uq2V S−1w̃ for eigenvalues λ, eigen-
vectors w̃ of Ã.

E.2 N4SID

Numerical Algorithms for Subspace State Space System Identification (N4SID) (Van Overschee &
De Moor, 1994) utilizes a similar approach as the above to jointly estimate A,B,C,D operators
in a state space model from data Y and U . Here we briefly describe the algorithm that we apply
to estimate A and B that are used for comparison of partially observed systems, as first defined by
Overschee & Moor (1994). We used code from https://github.com/spmvg/nfoursid/tree/master for
our implementation of n4sid. For the Subspace DMDc, we lift to a nonlinear space before state
estimation.

For state estimation to succeed, standard conditions on the data state and input apply. In particular
(1) the state vector is sufficiently excited (it explores all relevant dimensions of the state space), or
the system is reachable, (2) the input sequence is persistently exciting, i.e., the Hankel matrix of
the inputs is full rank, and (3) there is no linear state feedback, i.e. the state and the input are not
collinear. Note that nonlinear feedback is permissible provided they are not collinear. Prediction in
the SubSpaceDMDc is done with Kalman filtering, because state estimation must first take place.

Briefly, we explain the key computations behind N4SID. There are two slightly different approaches.
The first algorithm is similar in spirit to Subspace DMD which we detail here:

E.2.1 PROJECTION-BASED N4SID

As above, we create a Hankel data matrix of the observations, but also the input too, splitting this into
past and future. First, we project out the data explained by Uf in the future observations Yf , but also
the past observations and inputs Zp = [Up Yp], thereby removing its influence. Then to remove
measurement and process noise biases, we project the future states onto the space explainable by
the states and inputs in the past, Zp. This yields our matrix O = ΓX , which we split using SVD as
before to get Γ, the extended observability matrix, and the states X up to similarity. Noting again
that our extended observability matrix has time-shifted structure, we can perform regression on the
shifted components of X given the instantaneous U , to arrive at A,B. The observability matrix Γ
also encodes C in its top rows, which we can directly read out. However, we found this algorithm
in practice to be less stable than the next one.

In pseudocode form, we have the following:
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Algorithm 1 Subspace DMD with Control (N4SID on lifted states)
Require: Output data Y ∈ Rpout×N , Input data U ∈ Rm×N , past window p, future window f ,

system order n, regularization λ

Ensure: Estimated system matrices Â, B̂, Ĉ

1: procedure BUILDHANKELMATRICES(Y,U, p, f )
2: T ← N − p− f + 1
3: Construct Hankel matrices Yp,Up,Yf ,Uf

4: Zp ←
[
Up

Yp

]
5: return (Yf ,Uf ,Zp, T )
6: end procedure
7: procedure OBLIQUEPROJECTION(Yf ,Uf ,Zp, λ, T )
8: Π⊥

UT
f
← IT −UT

f (UfU
T
f + λI)−1Uf

9: Yf,⊥ ← YfΠ
⊥
UT

f

10: Zp,⊥ ← ZpΠ
⊥
UT

f

11: O← Yf,⊥Z
†
p,⊥ ▷ Oblique projection via pseudoinverse

12: return O
13: end procedure
14: procedure ESTIMATESTATEFROMPROJECTION(O, n)
15: Uo,So,Vo ← SVD(O)
16: Truncate to rank n: Un,Sn,Vn

17: Γ̂f ← Un

√
Sn ▷ Estimated observability matrix

18: X̂←
√
SnV

T
n ▷ Estimated state sequence

19: return (Γ̂f , X̂)
20: end procedure
21: Yf ,Uf ,Zp, T ← BUILDHANKELMATRICES(Y,U, p, f)
22: O← OBLIQUEPROJECTION(Yf ,Uf ,Zp, λ, T )

23: Γ̂f , X̂← ESTIMATESTATEFROMPROJECTION(O, n)
24:
25: ▷ Align data for regression
26: X̂current ← X̂[:, 0 : T − 1]

27: X̂next ← X̂[:, 1 : T ]
28: Umid ← U[:, p : p+ T − 1]
29:
30: ▷ Solve for system matrices

31:
[
Â B̂

]
← X̂next

[
X̂current
Umid

]†
32: Ĉ← first pout rows of Γ̂f

33:
34: return Â, B̂, Ĉ

F MISALIGNED INPUT SPACES

For any orthogonal matrix C, the following equivalence holds:

y = Cx⇐⇒ ẏ = CA1C
T x+ CB1 u(t) (35)

Now consider the case where inputs are not equivalent in each system, but that they are also related
by a coordinate transform:

uy(t) = Cuux(t)

Then Eq. 38 resolves to:
ẏ = CA1C

T x+ CB1Cu uy(t) (36)
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This motivates the dissimilarity metric that seeks to jointly optimize C and Cu, with the second term
in Eq. 8 generalizing to

min
Cu∈O(n)

||CB1Cu −B2||

when α = 0, equation 8 is the so-called two-sided Procrustes problem, which when solved jointly
resolves to comparing the singular values of B1, B2: ||Σ1−Σ2||, which can be computed efficiently.
When α ̸= 0, the two minimizations need to be jointly optimized. The method of optimization from
Ostrow et al. (2023) can be effectively generalized to do so, with note that this is a larger optimization
problem and requires longer optimization time (but see next section).

If the inputs that are directly applied to the system are known, as in RNN or RL models (ẋ =
f(x, u)), this joint optimization procedure can be discarded. Likewise, when the inputs are aligned
in time, Procrustes or other spatial alignment methods can be directly applied to the inputs first.
Note that this input comparison does not directly compare the dynamics of the input, but rather how
the input is read into the system. If one is interested in comparing the dynamics of the input as well,
then DSA can be run on the input directly.

G SOLVING FOR OPTIMAL ORTHOGONAL C EFFICIENTLY

The InputDSA formulation allows for efficient solving of the optimal C ∈ O(n). Recall that

DSA(Ax, Ay) = min
C∈O(n)

∣∣|Ax − CAyC
T
∣∣ |2F (37)

Is a non-convex optimization problem, and hence has to be solved iteratively Ostrow et al. (2023).
However, the addition of the control constraint, ||Bx − CBy| |2F means that we can solve this prob-
lem using convex optimization for α = 0.5. Observe that under similarity,

Ã = CACT , B̃ = CB =⇒ ÃB̃ = CAB

This suggests that we can identify C via Procrustes alignment on the controllability matrix K =(
B AB A2B . . . AnB

)
, where A ∈ Rn×n:

min
C∈O(n)

||K1 − CK2| |2F (38)

The minimizer C∗ has a closed-form solution via orthogonal Procrustes. Likewise, jointly aligning
the input dimension via Cu (Appendix Sec. F) can be done in closed form as well via the two-sided
Procrustes solution. This results in an acceleration of multiple orders, with the computation of C
taking O(1 millisecond), as opposed to O(1 second).

However, this formulation can result in C∗ that are biased towards the more controllable directions,
i.e. B can have an inordinate effect or can dominate. In practice, we found that using this approach
with a ground truth C resulted in the state similarity score becoming biased near dimension 30 (that
is, A ∈ R30×30). While this is still quite large, and the biases are small (average deviation O(0.01)
per element), we can do better. We can add further constraints to C, by noticing that AT also holds
in the previous implication under similarity:

Ã = CACT , B̃ = CB =⇒ ÃT B̃ = CATB

Thus, we can concatenate these powers as well to K, giving:

K =
(
B AB ATB . . . AnB ATn

B
)

Where the metric is once again Eq. 38. This improves the optimization stability on A until at
least dimension 150 for O(0.001) error per element error, which is more than enough in practice
for InputDSA . We have the following lemma which states that this metric captures equivalency
between two linear systems.
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Lemma G.1. Given two linear systems xt+1 = Axxt +Bxut and yt+1 = Ayyt +Byut, Eq. 38 is
equal to zero if and only if y = Cx for some CTC = I .

Proof. Let us first consider the forward direction. Assuming y = C∗x, then we have the equivalence
relationships Ax = C∗T

AyC
∗ and Bx = C∗T

By . Applying this relationship to Kx, we have

Kx =
(
C∗T

By C∗T

AyBy C∗T

AT
y By . . . C∗T

An
yBy

)
= C∗T

Ky

For which minC∈O(n) ||Kx − CKy| |2F = 0 evidently at C∗.

Now consider the reverse direction. We can expand Eq. 38 as:

||Kx − CKy| |2F = ||Bx − CBy| |2F + ||AxBx − CAyBy| |2F +
∣∣|AT

xBx − CAT
y By

∣∣ |2F + . . .

For minC∈O(n) ||Kx − CKy| |2F = 0, each subterm must be zero for minimizer C̃. This immedi-
ately gives Bx = C̃By . Inspecting the next term, we substitute this relationship, giving

0 = ||AxBx − C̃AyBy||2F = ||AxC̃By − C̃AyBy||2F (39)

= ||(AxC̃ − C̃Ay)By||2F (40)

=⇒ AxC̃ = C̃Ay (41)
(42)

With the last step following from By ̸= 0 . This in turn gives Ax = C̃AyC̃
T . We can similarly

apply this reasoning to the next expression, which gives the same result. Reversing the previous
logic, we have xt+1 = C̃AyC̃

Txt + C̃Byut =⇒ y = C̃Tx.

For a given A,B, the standard right Procrustes problem is written as:

C∗ = argminC∈O(n) ||CA−B| |2F (43)

= argmaxC∈O(n) < CA,B >F= Tr[(CA)TB] (44)

Writing the form of this problem with K1,K2, we can separate out individual elements in the Frobe-
nius inner product, giving

< CK1,K2 >F =

n∑
i=0

< CAi
xBx, A

i
yBy >F + < CAT i

x Bx, A
T i

y By >F (45)

=

n∑
i=0

< C,Ai
yBy(A

i
xBx)

T >F + < C,AT i

y By(A
T i

x Bx)
T >F (46)

=< C,

n∑
i=0

Ai
yBy(A

i
xBx)

T +AT i

y By(A
T i

x Bx)
T >F (47)

With the last steps due to linearity of the inner product and the second step using the trace permuta-
tion identity. This gives the maximum over C ∈ O(n) to be

C∗ = UV T where
n∑

i=0

Ai
yBy(A

i
xBx)

T +AT i

y By(A
T i

x Bx)
T = USV T

In practice, taking large matrices A to many powers results in numerical instability issues, especially
when λmax(A) > 1. Algorithmically, we check the condition number of An before choosing to
include the term in the controllability matrix. If it is too small or too large, we stop.
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G.1 GENERALIZING THE WASSERSTEIN DISTANCE FOR INPUTDSA

Recall the Wasserstein distance over DMD eigenvalues,

DSA(Λ1,Λ2) := min
P∈Π(n)

||PΛ1P
T − Λ2||F (48)

This metric respects the notion of equivalency under general similarity transforms, A → CAC−1

for invertible C’s, given that only eigenvalues are preserved under these transformations. We would
like to identify a similar metric for input driven systems. To motivate our metric, consider applying
a diagonalizing transform to the dynamics of our input-driven system:

xt+1 = Axt +But (49)

= V ΛV −1xt +But (50)

V −1xt+1 = ΛV −1xt + V −1But (51)

We observe that the corresponding feature of the input to each eigenvalue λ is the row vectors on
V −1B, which we henceforth term the eigenmode-input interaction matrix. We can easily show that
these features are invariant to any invertible transform. Given a transform A→ CAC−1, B → CB,

V ΛV −1 → CV ΛV −1C−1 := Ṽ ΛṼ −1 (52)

Hence V → CV

V −1B → (CV )−1CB = V −1C−1CB = V −1B (53)

Thus, a natural extension to Eq. 48 is the joint Wasserstein distance over [Λi, (V
−1B)i]. Denoting

Λ1 the set of eigenvalues for system one, and denoting π a permutation map,

InputDSA(Λ1,Λ2, V −1
1 B1, V

−1
2 B2, α) = min

π

∑
i

[α(Λ1
i − Λ2

π(i))
2 + (1− α)|(V −1

1 B1)i − (V −1
1 B1)π(i)|22]

(54)

This metric is intuitive: V −1B describes how input direction interacts with the independent eigen-
modes, which is related to the controllability of that mode. However, this metric has numerical sta-
bility issues. First, eigenvalues can only be identified up to an arbitrary phase-hence, we are forced
to study instead the norms of each eigenmode-input interaction, |(V −1

1 B1)i|2. This loses informa-
tion but works reasonably for small systems. Identifying the eigenvectors of an arbitrary matrix is
challenging for poorly-conditioned matrices. Hence, we suggest evaluating the conditioning of the
DMD matrix before applying this metric.

H INPUTDSA PSEUDOCODE

Algorithm 2 InputDSA
Require: X1, X2 ∈ Rn×t×d, U1, U2 ∈ Rn×t×ℓ, number of delays q, nonlinear lifting functions ϕ1, ϕ2

1: rank for state-space r,
Ensure: Similarity transform distance d between the two dynamical systems

2: A1, B1 ← SUBSPACEDMDC(ϕ1(X1
), ϕ2(U1), r)

3: A2, B2 ← SUBSPACEDMDC(ϕ1(X2), ϕ2(U2), r)
4: d = min C∈O(n)

Cu∈O(n)

α ∥CA1C
⊤ −A2∥F + (1− α) ∥CB1Cu −B2∥F

5: return d
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Algorithm 3 Dynamic Mode Decomposition with Control (DMDc)
Require: Delay-embedded states HX , inputs HU , truncation ranks rall, rstate, ridge regularization λ
Ensure: Dynamics operator A and B

1: procedure BUILDSNAPSHOTS(HX , HU )
2: X− ← HX [:, 1:−1], X+ ← HX [:, 2:]
3: U− ← HU [:, 1:−1]

4: Ω←
[
X−
U−

]
5: return (X+, X−, U−,Ω)
6: end procedure
7: procedure SVDS(X+,Ω)
8: (Up,Σp, Vp)← SVD(Ω)

9: Partition Up =

[
Up1

Up2

]
into state/input blocks

10: (Ur,Σr, Vr)← SVD(X+)
11: return (Up1, Up2,Σp, Vp, Ur)
12: end procedure
13: procedure REDUCERANK(Up1, Up2,Σp, Vp, Ur)
14: Truncate to rall: Up1←Up1[:, 1 : rall], Up2←Up2[:, 1 : rall], Vp← Vp[:, 1 : rall], Σp←Σp[1 :

rall]
15: Truncate to rstate: Ur←Ur[:, 1:rstate]
16: return (Up1, Up2,Σp, Vp, Ur)
17: end procedure
18: procedure COMPUTEOPERATORS(X+, Vp,Σp, Up1, Up2, Ur, λ)

19: Σ†
p(λ)← diag

(
σi

σ2
i+λ

)
20: A← X+ Vp Σ

†
p(λ)U

⊤
p1

21: B ← X+ Vp Σ
†
p(λ)U

⊤
p2

22: Project to the state space Ã← U⊤
r AUr, B̃ ← U⊤

r B return (Ã, B̃)
23: end procedure
24: X+, X−, U−,Ω← BUILDSNAPSHOTS(HX , HU )
25: Up1, Up2,Σp, Vp, Ur ← SVDS(X+,Ω)
26: Up1, Up2,Σp, Vp, Ur ← REDUCERANK(·)
27: A,B ← COMPUTEOPERATORS(X+, Vp,Σp, Up1, Up2, Ur, λ)
28: return A,B
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I HYPERPARAMETER TUNING FOR INPUTDSA

Delay In InputDSA , the delay parameter controls the size of the delay embedding used to estimate
the dynamics operator. If too few delays are chosen, the embedding may distort the data and amplify
noise. Conversely, too many delays fold the data into unnecessarily high dimensions, making it more
difficult to model the dynamics with DMD (Ostrow et al., 2024).

Rank SubspaceDMDc involves one rank parameter r, corresponding to the dimensionality of the
latent state space. In practice, selecting an r slightly higher than the true state dimension often yields
a better estimation of the A matrix.

Hyperparameter tuning pipeline We suggest jointly optimize the delay and the rank r according
to the following criteria:

• Prediction accuracy: The delay embedding should enable accurate modeling of the dy-
namics. To evaluate this, we split the dataset into training and test sets, fit InputDSA (via
SubspaceDMDc) on the training set, and assess performance on the test set using the mean
absolute standardized error (MASE), a standard metric for time-series forecasting. MASE
compares the forecast error of the model against that of a naı̈ve persistence baseline pre-
dictor and is defined as

MASE =
1
T

∑T
t=1|yt − ŷt|

1
T−1

∑T
t=2|yt − yt−1|

.

A value MASE < 1 indicates that DMDc predicts next-step activity (using the estimated
operators A and B) more accurately than simply copying the current time step.

• Model complexity: The estimated operators A and B should not be overly complex or
dominated by spurious features (e.g., many small eigenvalues clustered near zero). To
assess this, we compute the Akaike Information Criterion (AIC) for next-step prediction on
the test set. AIC balances predictive accuracy against model complexity and, in our setting,
is given by

AIC = ln

 1

N

N∑
j=1

(xj − yj)
2

+
2(r2 + 1)

N
.

Overall, we aim to select a rank that is small enough to avoid inflating the AIC, while still yielding
good predictive accuracy (i.e., low MASE). In many low-dimensional dynamical systems, both AIC
and MASE exhibit a characteristic elbow-shaped curve (for example, see Figure P.1 and Figure Q).
We recommend selecting the rank at this elbow point, and then choosing a delay that yields a low
MASE at that rank.

J PARTIALLY OBSERVED SYSTEM COMPARISON FURTHER DETAIL

We discretely simulated the following equations (repeated from 14):

xt+1 = A(xt + gF tanh(xt)) +B(ut + tanh(ut)) (55)

yt = (Id 0n−d)xt + ϵt (56)

We generated two matrices A1, A2, sampling each element i.i.d. from a standard normal distribution.
To enforce stability of these matrices, we globally rescaled the matrices by a term ρ/λmax, where
λmax is the max eigenvalue of the sampled matrix and 0 < ρ < 1. We arbitrarily picked ρ1 = 0.92
and ρ2 = 0.82 to ensure a significant difference in the intrinsic dynamics, but not so large as to make
the data obviously different. We set g = 0.1 for each system, and fixed F to be the matrix defined as
Fij = δijδi≤d where d is the number of observed states in the observation matrix C = (Id 0n−d).
We sampled B1, B2 from normal distributions as well, with B1ij ∼ N(0, g1), B2ij ∼ N(0, g2),
setting g1 = 0.5, g2 = 2.0. We sampled ϵi ∼ N(0, 0.01) for each observed index for each time-
point.
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Across Figs. 2b,c,d,e, we simulated 20-dimensional systems with only 2 dimensions observed,
for 5000 timepoints. For every type of DMD, we applied delay embeddings of size 150, and fit
state space / dynamics matrices with rank 20. We chose these parameters by inspecting the spectral
distribution of the estimated observability matrix (line 16 of Algorithm 1) across multiple delays. We
added delays under the largest modes before the spectral drop-off point stopped changing (similar to
the idea of a false neighbors analysis, Kennel et al. 1992), then picked the elbow of that curve. We
selected the maximum of those values for each of the four systems. We observe these curves in Fig.
7. However, we note that InputDSA is robust to a number of different ranks (Fig. 8), both larger and
smaller than the true system size.

We computed silhouette score using Scikit-Learn on the precomputed InputDSA distance. Based
on some given label (here, state or input ground-truth similarity), the dataset is divided into subsets
C1, C2, . . . Cn with each data point x1, x2, ...xN belonging to one subset. Define the labels (cluster
index) of each point as c1, c2, ...cN . Next, the mean intra-cluster and the minimum mean inter-cluster
distance is computed for each data point:

a(i) =
1

|Cc(i)|

N∑
Cc(j)=Cc(i),i̸=j

d(xi, xj)

b(i) = min
j ̸=c(i)

1

|Cj |

N∑
c(k)=j

d(xi, xk)

Where |Cc(i)| denotes the cardinality of the set, and d(·, ·) denotes the distance function to be used.
In our setting, we use the InputDSA input or state distances for d. Lastly, the silhouette score is
computing as:

S =
1

N

N∑
i=1

b(i)− a(i)

max(a(i), b(i))

The silhouette score approaches 1 when all points in each class are strongly separated and there is
minimal distance between the points within each class, while it is 0 if the inter- and intra-cluster
distances are equivalent. It is notable that a silhouette score of 0.7 can correspond to perfect lin-
ear classification of all classes, as deviations from 1.0 can be caused by within-class variance that
remains non-overlapping with other classes.

J.1 ROBUSTNESS TO HYPERPARAMETERS

Here, using partially observed nonlinear systems with known ground-truth similarity structure, we
test InputDSA’s robustness to changes in hyperparameters. For 20-dimensional systems with only
2 observed dimensions, we vary both the delay and the rank used in fitting InputDSA. As shown
in Fig. 8, rank and delay affect state similarity more than input similarity, while the Silhouette
score for input similarity remains nearly invariant across hyperparameters. When the chosen rank
is too small relative to the true system dimensionality (N = 20), the learned dynamics operator A
cannot adequately capture the state dynamics, yielding low Silhouette scores on the fitted distance
matrix. Once the rank is large enough to capture the high-variance directions of the system, even if
still lower than the true dimensionality, the Silhouette score approaches 1, indicating nearly perfect
clustering accuracy. In other words, the rank used for InputDSA does not need to match the ground-
truth dimensionality; it only needs to be high enough to capture the dominant dynamical modes.
Beyond this threshold, the estimated similarity structure becomes robust to small increases in rank.
However, in real-world noisy systems, choosing a rank that is too high may incorporate spurious,
noise-driven dimensions into the dynamic operator. We therefore recommend selecting rank via a
hyperparameter sweep as described in Appendix I.

For the delay, following (Ostrow et al., 2024), choosing too few delays can distort the embedding and
amplify noise, whereas too many delays fold the data into unnecessarily high dimensions, making it
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Figure 6: Joint InputDSA Comparison using DMDc and SubspaceDMDc The sum of jointly-
optimized state and input distances is presented here, with α = 0.5. Comparisons were generated
on the same dataset as in Fig. 2c and d. DMDc Silhouette score on state, input: 0.235, 0.088.
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system in Fig. 2b across multiple delays. Dotted line indicates rank 20.
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Figure 8: Effect of rank and delay in each DMD algorithm on clustering scores, utilizing 20 di-
mensional systems with 2 dimensions observed, and 1000 datapoints per dataset. When varying the
rank, we fix the number of delays to be 150 and when varying the delay, we fix the rank to be the
true rank of the system, i.e. N = 20.

harder for DMD to model the dynamics effectively. Here, we demonstrate that InputDSA’s estimated
similarity structure is robust to delay choice within a reasonable range—as long as the delay is
sufficiently large for the delay-embedded state to span a rich enough basis to fit a linear dynamic
operator.

J.2 EFFECT OF INPUT DIMENSIONALITY ON SYSTEM IDENTIFICATION

In Fig. 2, we analyzed partially observable systems driven by low-pass filtered one-dimensional
white noise. Here, we vary the dimensionality of the input and evaluate how the Silhouette score
(computed against ground-truth labels) changes as partial observability increases, using InputDSA
distance estimates based on Subspace DMDc. As shown in Fig. 9, increasing the dimensionality
of the input provides only a modest improvement in recovering the latent state similarity structure,
while simultaneously reducing the identifiability of the input-driven dynamics.

K PROCESS NOISE EFFECT ON INPUTDSA

In real-world systems such as neural circuits, process noise is pervasive: intrinsic stochasticity in the
biophysics, fluctuations in synaptic and network activity, and unobserved perturbations all contribute
to variability in the dynamics. We tested InputDSA’s robust to process noise added to the state in
Section 3.1. We again consider the partially observed nonlinear dynamical system parameterized by
this set of equations:

xt+1 = A(xt + gF tanh(xt)) +B(ut + tanh(ut)) + ηt (57)

yt = (Id 0n−d)xt + νt (58)
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Figure 9: Effect of input dimensionality on InputDSA performance under partial observabil-
ity. Silhouette scores for InputDSA based on Subspace DMDc as the system is increased from
2-dimensional to 1000-dimensional, while only 2 dimensions observed. Each size was repeated
across 20 random seeds. Shading denotes standard error.

Here, νt ∼ N (0, σ2) is the process noise added to the latent state at time t. We generate the data ex-
actly as in Section 3.1.The state-space similarity structure estimated by InputDSA remains highly ro-
bust to process noise, exhibiting an almost unchanged Silhouette score as σ increases (Fig. \ref{app:
fig: process noise}B). On the other hand, the Silhouette score of the input-driven similarity struc-
ture decreases smoothly with increasing σ, reflecting a graceful degradation in the identifiability of
input-driven dynamics under higher process noise.
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Figure 10: InputDSA remains robust to moderate levels of process noise. (A) Example latent
state activity xt over time sampled from two different dynamical systems, overlaid with the state
trajectory under process noise sampled from N (0, σ) where σ = 5.0. (B) Silhouette score against
the groundtruth label when the systems are clustered based on the InputDSA state or input similarity
sturcture. (C) Example distance matrices underlying varying levels of σ.

L ESTABLISHING A NOISE FLOOR FOR INPUTDSA SCORE

It is often desirable to establish a statistically insignificant noise floor for the InputDSA score, below
which two systems can be considered effectively identical. To estimate this noise floor, we can split
the state and input time series of a single system into two halves (or multiple segments, if suffi-
cient data are available) and compute the InputDSA score between these segments. The resulting
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within-system scores provide an empirical noise floor against which cross-system comparisons can
be evaluated.

Here, using the partially observed nonlinear system examples in Fig. 2, we computed and com-
pared three quantities for the state distance and input distance (1) Split-half : the split-half noise
floor, established by computing the distance between segments of state and input trajectory of the
same system driven by identical input, (2) Same: the distance between systems sharing identical
groundtruth state / input dynamic operator, but driven by inputs with different random initial con-
ditions, (3) Different: the distance between systems with different state / input dynamic operator.
In other words, both Split-half and Same are within-system distances, while Different measures
cross-system distances estimated by differnt methods.

As shown in Fig. 11, the Split-half and Same distances are typically similar, and both are markedly
smaller than the Different distances. This provides a basic sanity check that the comparison methods
tested here can reliably distinguish between different dynamical systems. One exception is the input
distance estimated by DMDc, where the Split-half and Different scores are comparable, indicating
that DMDc fails to recover input-driven dynamics correctly in partially observed nonlinear systems.
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Figure 11: Noise floor analysis for state and input distances in partially observed nonlinear
systems. We compare three quantities: (1) Split-half, the within-system noise floor estimated by
comparing segments of the same trajectory; (2) Same, the distance between systems sharing identical
state/input dynamics but driven by different input initializations; and (3) Different, the distance
between systems with different underlying dynamics. For both state and input distances, Split-
half and Same are similarly small and substantially below Different, demonstrating that the tested
methods reliably distinguish different dynamical systems. DMDc is an exception for input distance,
where Split-half and Different are comparable, indicating poor recovery of input-driven dynamics
under partial observability.
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M INPUT NOISE GENERATION

To assess the robustness of InputDSA to noisy or corrupted inputs, we systematically added different
types of noise or transformations to the input time series of the nonlinear dynamical systems we
created. Below we describe how each type of noise was generated. We visualize examples of the
noise-corrupted input in Fig. 12 and Fig. 13 .

Gaussian (white) noise. White Gaussian noise was added independently to each input channel:

ũ(t) = u(t) +N (0, σ2),

where σ is set by the noise level.

Pink noise. Pink (1/f ) noise was generated in the frequency domain with power spectrum propor-
tional to 1/fα (with α = 1 by default), then inverse Fourier transformed and scaled to the desired
amplitude.

Rotation. For two-dimensional input signals, we applied a random planar rotation:

ũ(t) = R(θ)u(t), R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
,

with rotation angle θ proportional to the noise level.

Low-pass filtering. Inputs were smoothed using a digital Butterworth low-pass filter with cutoff
frequency set by the noise level. Larger values corresponded to stronger filtering.

Multiplicative noise. Each input channel was scaled by a random Gaussian factor:

ũ(t) = u(t) · η, η ∼ N (1, σ2),

where σ is set by the noise level.

Uniform noise. Additive noise sampled uniformly from [−a, a] was added to each channel, where
a is the noise level.

Impulse noise. At each time point, with probability p, an impulse of magnitude ±α (set by the
noise level) was added to the input.

Baseline drift. A slow oscillatory drift was added to each channel:

d(t) = A sin(2πft) + A
2 sin(4πft),

where A is the drift amplitude (noise level) and f is a low drift rate.

Partial observability. A random fraction of input time series was masked with zeros, with mask-
ing probability given by the noise level.
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Table 1: Noise levels used in experiments for each noise type.
Noise type Levels used

White (Gaussian) 0.1, 0.5, 1, 1.2, 1.5, 2, 3
Pink 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1
Rotation 0.2, 0.5, 0.8, 1
Low-pass 0.2, 0.5
Multiplicative 0.1, 0.2, 0.5, 1, 1.2, 1.5, 2, 3
Uniform 0.01, 0.1, 0.5, 1, 1.2, 1.5, 2, 3
Impulse 0.5, 1, 2, 3, 4
Baseline drift 0.5, 1, 1.2, 1.5, 2, 3, 4
Partial observability 0.1, 0.3, 0.5, 0.7, 0.9, 0.98
Temporal smoothing 5, 10, 20, 30, 40, 50
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Figure 12: Effect of different noise types and levels on the input time series of the nonlinear dy-
namical system as in Fig. 2. The plots show activity along four example observation dimensions
received by the networks during an example trial. Here, we show gaussian white noise, pink noise,
rotation, low-pass filter, and multiplicate noise applied to the input.
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Figure 13: Effect of different noise types and levels on the input time series of the nonlinear dynami-
cal system as in Fig. 2. The plots show activity along four example observation dimensions received
by the networks during an example trial. Here, we show noise sampled from an uniform range,
impulse noise, random drift, partial observability, and temporal smoothing applied to the input.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

M.1 EFFECT OF TIME-SHIFTED INPUT ON INPUTDSA DISTANCE ESTIMATION
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Figure 14: Correlation between the InputDSA distance matrix estimated using the ground truth
input, and using time-shifted version of the true input.
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N ORDINARY LEAST SQUARES BIASES ESTIMATES OF A IN THE PRESENCE
OF INPUT NOISE

Using two datasets: the nonlinear dynamical systems as in Fig. 2, and the RNNs trained on Random
Target Task as in Fig. 3, we show that increasing the noise variance systematically contracts the
singular spectrum of B toward zero. Because the true input effect is underfit, the SubspaceDMDc
regression inflates the real part of A’s eigenvalues to absorb the variance in the inputs that correlates
with the state.
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Figure 15: The eigenspectrum of the A operator and singular spectrum of the B operator when the
input time-series is corrupted by Gaussian or pink noise of different variance.

Here, we also present a short theoretical discussion of this effect.

We consider the true system
Y = AX +BU,

where

• Y ∈ Rn×T are the next states,
• X ∈ Rn×T are the current states,
• U ∈ Rm×T are the inputs,
• A ∈ Rn×n and B ∈ Rn×m.

We observe noisy inputs
Ũ = U + E,

where E is input noise. The regression becomes

Y ≈ ÂX + B̂Ũ .

We solve the regression problem with OLS by first stacking the regressors:

Z =

[
X

Ũ

]
,

The OLS estimator is [
Â B̂

]
= Y Z⊤(ZZ⊤)−1.

Expanding Z,

ZZ⊤ =

[
X

Ũ

] [
X⊤ Ũ⊤

]
=

[
XX⊤ XU⊤ +XE⊤

UX⊤ + EX⊤ UU⊤ + UE⊤ + EU⊤ + EE⊤

]
.

Assuming E is zero-mean and independent,

E[ZZ⊤] =

[
Σxx Σxu

Σux Σuu +Σee

]
,

E[Y Z⊤] =

[
ΣxxA

⊤ +ΣxuB
⊤

ΣuxA
⊤ +ΣuuB

⊤

]
.
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To gain intuition, we consider the scalar case where

σxx = Var(x), σuu = Var(u), σxu = Cov(x, u), σee = Var(E).

The least-squares estimates are

â = a+ b · σxu σee

σxx(σuu + σee)− σ2
xu

,

b̂ = b · σxxσuu − σ2
xu

σxx(σuu + σee)− σ2
xu

.

We can see that for b̂, large σee in the denominator attenuates b̂ toward zero. For â, the direction of
the bias is dependent on the signs of b, σxu and relative weights of σxx and σxu. In particular, when
b > 0 and σee is large, â can be inflated. Intuitively, when the state and input are strongly positively
correlated and the input drives the state in the same direction, â can be overestimated to absorb the
shared variance in the input.

O RANDOM TARGET REACH TASK

We trained recurrent neural network (RNN) policies to perform a random target reaching
task in the MotorNet simulation environment (Codol et al., 2024b). We used code from
https://github.com/motornet-org/MotorNet. The effector was a ReluPointMass24 model, a 2D
point-mass skeleton attached to 4 muscles and controlled by muscle activations. The environment
provided a sequence of random goals and fingertip states. The objective of the policy was to min-
imize the distance between fingertip position and target over the course of each episode. At each
time step, the model receives a 12-dimensional observation consisting of the proprioceptive input,
visual input, and the last action taken by the model. The action space is 4-dimensional consisting
of the activation of each muscle. Each network consisted of a single recurrent layer (64 hidden
units) followed by a linear readout and sigmoid nonlinearity to produce bounded muscle activations.
Training was carried out using the Adam optimizer with a learning rate of 0.001. The loss function
was the mean L1 distance between fingertip trajectories and target trajectories across timesteps. We
visualize the groundtruth input alongside different types of surrogate inputs during an example trial
in Fig. 16.
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Figure 16: The true input (Observations) and different types of surrogate inputs during an example
trial of the Random Target task.
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P PLUME TRACKING TASK

We used the plume tracking task implemented in Singh et al. (2023) and the training code in
https://github.com/BruntonUWBio/plumetracknets. In short, the plume tracking environment is a
2D arena where an odor source emits puffs carried downwind by a steady flow. The wind can be
constant, switch once, or switch multiple times during a trial. Each puff diffuses and drifts, pro-
ducing intermittent odor encounters like in real plumes. The agent uses an actor–critic architecture
with a vanilla RNN backbone, followed by separate two-layer MLPs for the actor and critic. At each
timestep it receives three inputs: egocentric wind direction along the x-axis, wind direction along the
y-axis, and local odor concentration. Based on its internal state, the actor outputs a two-dimensional
action specifying turn rate and forward speed.
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Figure 17: Full comparison of applying Subspace DMDc, DMDc, and DMD to the plume tracking
dataset. (A) Average distance computed within the 5 Top Agents, within the 5 Bottom agents, and
across groups (Top–Bottom). (B) The evolution of similarity within and across groups over learning.
Shaded area indicates standard error.

P.1 HYPERPARAMETER SWEEPING

To assess the optimal hyperparameters to use for InputDSA, we conducted a sweep of ranks and
delays, as described by Sec. I. By picking the minimum / elbow of the prediction error curves (AIC,
MASE), we choose a delay of 40 and rank of 50 for all InputDSA computations on this dataset.
We also computed a non-normality score (the commutator score, ||AAT − ATA||2F , which mea-
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Figure 18: Hyperparameter sweep over number of delays and model rank on the plume tracking
dataset.

sures (as described) the degree to which a matrix is non-normal (with normality being defined as
ATA = AAT ). This measures the relevancy of non-normality in the prediction of the SubspaceD-
MDc model, which motivates the use of aligning the dynamics over orthogonal matrices, rather
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than invertible matrices – although any invertible matrix is a coordinate transform, the dynamical
system’s transient before can change when the transform is non-orthogonal. Hence, capturing the
full dynamical similarity of two systems can entail comparing up to orthogonal transform in these
settings. Here, we find that a rank of 50 with a delay of 40 has a non-normality score close to 2.5,
indicating that transient dynamics can be significantly effected.

Q NEURAL DATASET

The dataset published with Luo et al. (2025) can be found here:
https://datadryad.org/dataset/doi:10.5061/dryad.sj3tx96dm.
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Figure 19: Full comparison of applying Subspace DMDc, DMDc, and DMD to the Luo et al. (2025)
dataset. Similarity of neural dynamics before and after the nTc for rat T223. Bars denote standard
error across 21 sessions.

Q.1 HYPERPARAMETER SWEEPING

We chose a delay of 5 for the delay embedding and a rank of 6 for the reduced-rank regression on
this dataset.
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Figure 20: Hyperparameter sweep over number of delays and model rank on the processed Luo et
al. (2025) dataset.

Q.2 SURROGATE INPUTS USED IN NEURAL DATASET ARE PERSISTENTLY EXCITING

To assess whether these inputs were rich enough to robustly model the input operator, we computed
the standard measure of persistent excitation used in control theory to answer this question. An input
is persistently exciting if the matrix

M(t) =

∫ t

0

ũ(t)ũ(t)T dt

is positive definite, i.e., the covariance matrix of the embedded input is full rank. In this analysis,
we used models with 5 delays and rank 6 (neural states were 3 dimensional and inputs were 2
dimensional), so this covariance matrix needs to be at least rank 6. We computed this using the
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delay-embedded input as ũ for each session of two rats, 39 in total with 100 trials on average per
session (Fig. 21). In each session, the 6th singular value of this covariance matrix is much greater
than 0 for each session, with the 10% quantile having value of 0.22 and the 1% quantile being 0.01.
This suggests that even the input is simple, it is persistently exciting enough to robustly identify a
useful B operator, given that there are a large number of trials.

Figure 21: Persistent Excitation analysis of the Luo et al. (2025) surrogate input. The input data
represents the total number of pulses coming from each speaker within each time bin of the trial.
Left: sample input for one trial. Middle: distribution of the ranks of the embedded input covariance
matrix for 80 individual sessions across 4 rats. SubspaceDMDc models are chosen to be rank 6, so
all sessions are persistently exciting. Right: Cumulative distribution of the 6th singular value of the
embedded input covariance matrix, indicating that these values are significantly greater than 0 for
all sessions.

Q.3 CONTROLLABILITY ENERGY FOR ALL RATS
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Figure 22: Distribution of Frobenius norms of Controllability Gramians for SubspaceDMDc models
for all sessions of all rats. * represents p < 0.05 and *** represents p < 0.001 using Mann Whitney
U-Test.
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Q.4 SUBSPACE ANGLE

Given two dynamics matrices Ax, Ay , an orthonormal basis for each (Ãx, Ãy) is first computed (for
example, via SVD or QR decomposition). Then, the subspace angles are computed as:

ÃT
x Ãy = UΣV T (59)

θi = arccos(σi) (60)

Where σi is the i-th singular value defined by Σ. θi is defined as the i -th principal an-
gle. We report the maximum principal angle between two dynamics operators, using the
scipy.linalg.subspace angles function.

Figure 24: Subspace angles of the input and state operators within and between time periods for rat
T223. Apre −Apre (likewise Bpre) denotes the noise floor via split-halves comparison.
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