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Abstract

This paper addresses the problem of synthesizing policies for Markov Decision Pro-
cesses (MDPs) with hard ω-regular constraints, which include and are more general
than safety, reachability, liveness, and fairness. The objective is to derive a pol-
icy that not only makes the MDP adhere to the given ω-regular constraint T with
certainty but also maximizes the expected reward. We first show that there are
no optimal policies for the general constrained MDP (CMDP) problem with ω-
regular constraints, which contrasts with simpler problem of CMDPs with safety
requirements. Next we show that, despite its complexity, the optimal policy can
be approximated within any desired level of accuracy in polynomial time. This
approximation ensures both the fulfillment of the ω-regular constraint with prob-
ability 1 and the attainment of a ϵ-optimal reward for any given ϵ > 0. The
proof identifies specific classes of policies capable of achieving these objectives and
may be of independent interest. Furthermore, we introduce an approach to tackle
the CMDP problem by transforming it into a classical MDP reward optimization
problem, thereby enabling the application of conventional reinforcement learning.
We show that proximal policy optimization is an effective approach to identifying
near-optimal policies that satisfy ω-regular constraints. This result is demonstrated
across multiple environments and constraint types.

1 Introduction

Rewards shape an agent’s behavior, but finding the right reward is generally a hard problem. For
an agent modeled as a Markov Decision Process (MDP), at each step the agent takes an action
and collects a reward, and as its goal is maximizing the accumulated reward, the choice of the
reward defines its optimal behavior. For real world agents facing different costs, objectives, levels
of information, and constraints, the right reward may not be obvious. For example, for a fleet of
autonomous wingmen, a natural reward signal will be the distance to the leading aircraft so that they
are encouraged to keep-up, but at the same time the wingmen should maintain safe separation with
each other and the leader, and there may be other factors like minimizing fuel usage. In practice, the
different components are combined into a single reward with coefficients, and the exact coefficients
are selected via computationally intensive hyper-parameter tuning.

Adding constraints to the agent’s behavior can alleviate some of the above challenges. Now the
agents behavior is defined by maximizing the accumulated reward, while meeting all the specified
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constraints. For the real world examples, it is often straightforward to enumerate the hard constraints
like maintaining separation and reaching targets. Introducing constraints lead to the Constrained
MDP (CMDP) framework which adds a penalty function c(s, a) for each state s and action a, a
constraint C(st) = F (c(st, at), . . . , c(sN , aN )), and a threshold C(st) ≤ α (see the book by (Altman,
2021) for a review). Typically, the function F computes the total, expected, or the discounted
penalty over a time horizon, and the constrained optimization problem aims to assure that this
never crosses the threshold. With these types of constraints, however, it is still difficult to compute
the right threshold that guarantees that really an unsafe state will never be visited, or that desired
target states will always be visited.

The motivation for using MDPs for safety-critical systems has therefore led to recent works on
CMDPs with hard constraints and reinforcement learning algorithms for solving them (Yu et al.,
2022). Previous works focus on hard safety constraints and incorporate ideas like recoverable
sets (Miller et al., 2024), control barrier functions (CBF) (Ames et al., 2019), and safety indices
(SI) to solve the constrained optimization problem.

This work studies the problem of CMDPs with hard ω-regular constraints. ω-regular constraints
include safety, reachability, liveness, and fairness properties, and all properties expressible in tem-
poral logics like LTL. Formally, the problem we consider is the following. Given an MDP M , an
ω-regular property T , a reward function r and discount factor γ, the goal is to synthesize a policy
that, among those that satisfy T with probability 1, is the one that maximizes the expected reward
as per (r, γ). We show that, in general, there are no optimal policies for this problem. It is worth
contrasting this observation against the following results: (a) optimal positional policies exist to
maximize discounted rewards (Puterman, 1994), (b) optimal finite memory, pure policies exist to
maximize the probability of satisfying an ω-regular property (Baier & Katoen, 2008), and (c) op-
timal positional policies exist that satisfy a hard invariance constraint and optimize a discounted
reward (Miller et al., 2024).

Our first result shows that the CMDP problem with hard ω-regular constraints can nonetheless be
approximated in polynomial time. That is, given any ϵ > 0, in polynomial time we can synthesize
a strategy that satisfies a given ω-regular property T with probability 1 and earns reward that is
within ϵ of the optimal. The proof of this result relies on showing that both the classes of pure,
finite memory policies and stationary policies, contain a policy that can satisfy the hard constraint
and earn reward that is close to optimal. The existence of special policies may be of independent
interest in finding other algorithmic solutions.

Next, we show that the problem of identifying a policy that has close to optimal reward while meeting
a hard ω-regular constraint, can be reduced to the classical problem of optimizing discounted rewards
(without hard constraints) on a slightly modified MDP. Thus, classical algorithms like reinforcement
learning that solve MDP optimization can be brought to bear to solve the new problem. Our
reduction once again exploits the observation that pure, finite memory policies can achieve close to
optimal rewards while meeting the hard, logic constraint.

We evaluate the effectiveness of a number of reinforcement learning approaches in finding close
to optimal policies that satisfy hard ω-regular constraints. We demonstrate the applicability of
this approach across a number of discrete control examples wherein the policy consists of a choice
between different aircraft controllers, and the continuous control example of optimal orbit transfer
of a satellite. The diversity of these examples shows the broad applicability of our reward-shaping
approach.

Related Work (Tessler et al., 2019) introduce Reward Constrained Policy Optimization (RCPO)
which incorporates constraints as a penalty signal into the reward function and show that this
algorithm converges almost surely to a constraint satisfying policy, under mild assumptions.

The CRL formulation does not capture the fact that hard constraints, like safety, are about worst-
case behavior and not so much about cumulative or discounted costs. This has been addressed in
Reachability constrained RL (RCRL) (Yu et al., 2022), which modifies CRL to impose the safety

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024.



RLJ | RLC 2024

constraints over the entire time horizon, without discounting. It finds a policy π, that maximizes
a cost that combines the usual reward with a penalty for violating safety, with the constraint that
for all recoverable states π never violates safety. Furthermore, (Yu et al., 2022) uses the a version
of Lagrange multiplier method to solve RCRL, which is a standard for CRL.

Traditionally, policies maximizing the probability of satisfying ω-regular properties have been iden-
tified using techniques like linear programming, value iteration, and policy iteration that require
knowledge of the entire state space (Baier & Katoen, 2008). More recently, there has been interest
in using RL to solve this problem (Sadigh et al., 2014; Hahn et al., 2019; Alur et al., 2021; 2023). By
carefully engineering a reward function, these algorithms use RL to synthesize policies that satisfy
ω-regular properties with a probability that is close to maximum. Unlike this paper, these results
do not consider an additional reward that must be maximized along with satisfying a property.

Theoretical results on synthesizing policies that maximize two reward functions with the same dis-
count factor are presented in (Chatterjee et al., 2006). The problem of maximizing the probability
of satisfying multiple ω-regular properties is considered in (Etessami et al., 2008). Both these papers
show that policies that approximate the Pareto curve for multi-objective problems can be synthesized
in polynomial time by reducing the problem to multi-objective linear programming. In comparison,
results in this paper handle the case where one objective that is discounted (i.e., reward) and the
other is not (i.e., probability of satisfying the property). This subtle change introduces challenges
that we overcome.

The results presented in (Voloshin et al., 2022) are closest in spirit to this paper. The problem they
try to solve is following: given a finite state MDP M , an LTL formula φ, and a cost function, find
among the policies that satisfy φ with highest probability, the one the optimizes the cost. The cost
function in (Voloshin et al., 2022) is a hybrid cost function that combines average cost and transient
cost. In contrast, we consider discounted rewards in this paper. Since we require our policy to
satisfy the hard constraint with probability 1, modulo the difference in the cost functions considered
in the two papers, (Voloshin et al., 2022) look at a more general problem. Taking π∗ to denote
the policy that optimizes cost among those that maximize the probability of satisfying φ, (Voloshin
et al., 2022) present a PAC learning algorithm that constructs (with high probability) a policy that
satisfies φ with probability that is close to the probability with which π∗ satisfies φ and has cost that
is close to the cost that π∗ has. Thus, their algorithm does not solve the problem we consider here
because, even if there are policies that satisfy the hard constraint with probability 1, the algorithm
in (Voloshin et al., 2022) will not necessarily find it. Further, the algorithm in (Voloshin et al., 2022)
relies on very strong assumptions about the MDP, unlike the RL-based algorithm presented here.

2 Discounted Reward Markov Decision Processes

Notation. The set of all probability distributions over a finite set S will be denoted by D(S).
For an element s ∈ S, the dirac distribution δs is the probability distribution where δs(s) = 1 and
δs(s′) = 0 for all s′ ̸= s. The support of a distribution µ is the set supp(µ) = {s ∈ S | µ(s) > 0}. A
(finite or infinite) sequence/string/word w over a set S is a sequence of the form w = s0s1 · · · sn−1 · · ·
where si ∈ S is the ith element of the sequence which we denote by w(i). The length of such a word
w, denoted |w|, is the length of the sequence; thus, |w| ∈ N or it maybe infinite. The set of finite of
words over S is denoted as S∗ and the set of infinite words as Sω. For non-empty sets A and B, we
sometimes consider sequences that alternate between A and B. Thus (AB)ω is the set of all infinite
sequences where the elements in the even positions are in A, and the elements in the odd positions
are in B. Similarly, (AB)∗A are finite sequences with even elements in A, odd elements in B, and
the last element in A, while (AB)∗ are finite sequences with even elements in A, odd elements in B
and last element in B (unless the sequence is empty).

Markov Decision Process (MDP). A Markov Decision Process (MDP) is a tuple M =
(Q,A,∆, q0) where Q is a finite set of states, A is a finite set of actions, q0 ∈ Q is the start/initial
state, and the (partial) function ∆ : Q × A ↪→ D(Q) is the transition function. The set of actions
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enabled in q ∈ Q is A(q) = {a ∈ A | ∆(q, a) is defined}. We assume (without loss of generality) that
A(q) ̸= ∅ for every state q ∈ Q. A run ofM is an alternating sequence of states and actions ρ ∈ (QA)ω

such that ρ(0) = q0 and for every i, ρ(2i+ 1) ∈ A(ρ(2i)) and ρ(2i+ 2) ∈ supp(∆(ρ(2i), ρ(2i+ 1))).
The set of all runs of M will be denoted as Runs(M). A finite run is η ∈ (QA)∗Q such that there is
a run ρ ∈ Runs(M) with η as a prefix; the set of all finite runs of M will be denoted as Runsf (M).

Markov Chain. A Markov Chain is an MDP M = (Q,A,∆, q0) such that |A| = 1. A Markov
chain defines a probability measure on Runs(M) as follows. For any finite run η, the cylinder set
Cη is {ρ ∈ Runs(M) | η is a prefix of ρ}. The set of measurable sets over Runs(M) is taken to be the
σ-field generated by the collection of all cylinder sets Cη for any η ∈ Runsf (M). The probability of
Cη is given by µM (Cη) =

∏
i: 2i+2≤|η| ∆(η(2i), a)(η(2i+ 2)) where a is the unique action of M . The

probability over the σ-field is the unique measure that extends the above function on cylinder sets;
we denote that by µM as well. Many natural subsets of runs are measurable, including those defined
by temporal logics like LTL. Given a subset S ⊆ Q, the following collections of runs are measurable.

Safety □S = {ρ ∈ Runs(M) | ∀i. ρ(2i) ∈ S}, i.e., runs where every state is in S

Reachability ♢S = {ρ ∈ Runs(M) | ∃i. ρ(2i) ∈ S}, i.e., runs where some state is in S.

Fairness □♢S = {ρ ∈ Runs(M) | ∀i.∃j > i. ρ(2j) ∈ S}, i.e., runs where infinitely many states are
in S.

As we will describe later, every ω-regular property can be recast as a fairness property for an
appropriate Markov Chain, and it is a generalization of both safety and reachability. Finally, given
a random variable X on Runs(M), we use EM [X] to denote the expectation of X with respect to
the distribution µM .

Policies. Let M = (Q,A,∆, q0) be an MDP. A policy resolves the non-deterministic choices in an
MDP. Formally, a policy (for M) is a function σ : Runsf (M) → D(A) such that for any finite run
η, supp(σ(η)) ⊆ A(η(|η|)). Thus, a policy maps a finite run to a distribution on next actions whose
support is restricted to those that are enabled at the last state of η. An MDP M together with a
policy σ, induces a Markov chain Mσ = (Runsf (M), {a},∆σ, q0) where a ̸∈ A is the unique action
of Mσ and

∆σ(η, a)(ηbq) = σ(η)(b)∆(η(|η|), b)(q).
Informally the states of Mσ are finite runs of M , and the probability of transitioning from a run η
to a run ηbq is given by the probability that σ chooses b at η times the probability of transitioning
to state q from the last state of η on action b. The Markov chain Mσ has countably many states. 1

A policy σ is said to be deterministic if |supp(σ(η))| = 1 for every finite run η, i.e., σ chooses a
single action with probability 1 from every finite run. If a policy is not deterministic, we will say it
is randomized. A policy σ is stationary if the choice of action only depends on the last state, i.e.,
for every η1, η2 ∈ Runsf (M), if η1(|η1|) = η2(|η2|) then σ(η1) = σ(η2). The last type of policies
we consider are finite memory policies, where the decision on the next action is made based on a
finite amount of information stored about the run. To define it formally, let us consider a Myhill-
Nerode type congruence, where we will say for η1, η2 ∈ Runsf (M), η1 ≡σ η2 if for every κ ∈ (AQ)∗,
σ(η1κ) = σ(η2κ). Now a policy σ is finite memory if the equivalence ≡σ has finitely many equivalence
classes. We conclude by observing that if the policy is stationary or finite memory, the Markov chain
Mσ is equivalent (w.r.t. to bisimulation) to a finite state Markov chain. It is useful to explicitly
define this “equivalent finite state” Markov chain when σ is a stationary policy on M ; we will abuse
notation and also call this Mσ. Formally, when σ is stationary, for a MDP M = (Q,A,∆, q0),
Mσ = (Q, {a},∆σ, q0) where a ̸∈ A is the unique action of the Markov chain and

∆σ(q, a)(p) =
∑
b∈A

σ(q)(b)∆(q, b)(p).

1While the Markov chains in this paper will almost always have finitely many states (and finitely many actions),
there will be rare occasions when we consider ones with countably many states (but finitely many actions).

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024.



RLJ | RLC 2024

Measures of Sets. Given a measureable set T ⊆ Runs(M) of an MDP M , one classical problem
is to find a policy σ that maximizes the probability of the set T . For the properties considered in
this paper, it is well known that deterministic, stationary policies are sufficient to maximize the
probability of these properties. Moreover, the deterministic and stationary policy that maximizes
the probability, works no matter what we take to be the initial state.
Proposition 2.1 (Lemma 10.102 and Exercise 10.23 of (Baier & Katoen, 2008)). Let M =
(Q,A,∆, q0) be an MDP and S ⊆ Q, a subset of states. Let T ⊆ Runs(M) be one of □S, ♢S
or □♢S. For q ∈ Q, let Mq = (Q,A,∆, q) be the MDP M with initial state q. There is a determin-
istic and stationary policy σ∗ such that for any q ∈ Q µMσ∗

q
(T ) = supσ µMσ

q
(T ).

Discounted Rewards. Rewards model features that we would like policies to satisfy. A reward
structure for an MDP M = (Q,A,∆, q0) is a pair (r, γ), where r : (Q × A) → R is the reward
function and γ ∈ (0, 1) (open interval between 0 and 1) is the discount factor. A reward structure
(r, γ) defines a random variable X(r,γ) on the runs of M that assigns a reward to every run as follows.

X(r,γ)(ρ) =
∑
i∈N

γir(ρ(2i), ρ(2i+ 1)).

The discount factor ensures that the above infinite sum converges. One is usually interested in finding
a policy for an MDP that maximizes the expected value of the random variable defined by the reward
structure. A classical observation about discounted rewards is that for a finite state MDP, there is
a deterministic and stationary policy that maximizes expected reward. Like in Proposition 2.1, the
same positional policy works for all initial states.
Proposition 2.2 (Theorem 6.2.7 of (Puterman, 1994)). Let M = (Q,A,∆, q0) be an MDP and (r, γ)
a reward structure. For q ∈ Q, let Mq = (Q,A,∆, q) be the MDP M with initial state q. There is a
deterministic and stationary policy σ∗ such that for any q ∈ Q EMσ∗

q
[X(r,γ)] = supσ EMσ

q
[X(r,γ)].

Next, it is known that the reward achieved by any policy σ can also be achieved by a stationary (not
necessarily deterministic) policy. Notice that this is a very different statement than Proposition 2.2.
Theorem 2.3 (Theorem 5.5.3 of (Puterman, 1994)). For any MDP M , policy σ, and discount
factor γ ∈ (0, 1), there is a stationary (not necessarily deterministic) policy σ∗ such that for any
reward function r,

EMσ∗ [X(r,γ)] = EMσ [X(r,γ)].

Optimizing Rewards with Hard Constraints. The problem we consider in this paper is to
optimize rewards while meeting hard constraints. Given an MDP M , a rewards structure (r, γ),
and a measureable set of runs T ⊆ Runs(M), the goal is to find a policy σ such that it satisfies
T with probability 1 while maximizing the expected reward. We define the problem as finding the
maximum reward (while satisfying T ) instead of computing an optimal policy, since, as we shall see,
the “optimal” policies may not exist.
Constrained MDP Optimization Problem. Given an MDP M , a reward structure (r, γ), and a mea-
surable set of runs T ⊆ Runs(M) compute supσ:µMσ (T )=1 EMσ [X(r,γ)].

A recent result (Miller et al., 2024) shows that when T = □S for some subset of states S, optimal
policies exist and they can be deterministic and stationary. Furthermore, there is an effective
algorithm to find this optimal policy through reward shaping.
Theorem 2.4 (Miller et al. (2024)). Let M be an MDP and S a subset of states such that there is
a policy σ′ such that µMσ′ (□S) = 1. Then for any reward structure (r, γ), there is reward function
r′ such that

sup
σ

EMσ [X(r′,γ)] = sup
σ:µMσ (□S)=1

EMσ [X(r,γ)].

Additionally there is a deterministic and stationary policy σ∗ such that µMσ∗ (□S) = 1 and

EMσ∗ [X(r′,γ)] = EMσ∗ [X(r,γ)] = sup
σ:µMσ (□S)=1

EMσ [X(r,γ)].
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Theorem 2.4 provides an algorithm to solve the Constrained MDP Optimization Problem for safety
properties — construct the new reward structure (r′, γ), and search for the optimal positional policy
by ignoring the hard safety constraint using any one of the many algorithms for this problem like
linear programming or reinforcement learning.

Unfortunately, Theorem 2.4 doesn’t extend to the other properties we consider in this paper, namely
reachability or fairness. Not only can we not guarantee the existence of an optimal positional policy,
there may in fact be no optimal policy. This can be seen through Example A.1 in the Appendix.

3 Polynomial Time Approximation Algorithm

Constrained MDP Optimization Problem may not have optimal solutions when the hard constraint is
reachability or fairness (Example A.1). The best one can do in such a scenario is to find policies that
are arbitrarily close to optimal, i.e., given ϵ > 0, find a policy that satisfies the hard constraint and
gets expected reward that is within ϵ of the optimal possible reward. The main result of this section
establishes that this problem is in polynomial time. This result applies not only to reachability
and fairness but (unsurprisingly) to all ω-regular hard constraints. Our proof of this result relies
on obtaining something analogous to Propositions 2.1 and 2.2, that “special” policies suffice to
approximate the optimal reward while meeting the hard constraint. Of course, as Example A.1
shows, these special policies cannot be both deterministic and stationary. Instead we show that
the next best thing possible holds: we show that both the classes of stationary (but not necessarily
deterministic) and deterministic, finite memory policies are sufficient.

Our first result shows that deterministic, finite memory policies can approximate the optimal reward
while meeting a hard constraint.
Theorem 3.1. Let M = (Q,A,∆, q0) be an MDP, S ⊆ Q a subset of states, and (r, γ) a reward
structure. Suppose there is a policy σ′ such that µMσ′ (□♢S) = 1. For any ϵ > 0, there is a
deterministic, finite memory policy σ∗ such that µMσ∗ (□♢S) = 1 and

EMσ∗ [X(r,γ)] ≥

(
sup

σ:µMσ (□♢S)=1
EMσ [X(r,γ)]

)
− ϵ.

Proof Sketch. Taking Mq = (Q,A,∆, q) to be the MDP M with initial state q, define Q1 = {q ∈
Q | supσ µMσ

q
(□♢S) = 1}. From Proposition 2.1, we can conclude that these are the states from

which □♢S can be satisfied with probability 1. Let M1 be the MDP restricted to states in Q1,
i.e., M1 = (Q1, A,∆1, q0) where ∆1(q, a) is defined and equal to ∆(q, a) if ∆(q, a) is defined and
supp(∆(q, a)) ⊆ Q1. Let σr be the deterministic and stationary policy that maximizes the reward
due to (r, γ) in M1 as guaranteed by Proposition 2.2, i.e., EMσr

1
[X(r,γ)] = supσ EMσ

1
[X(r,γ)]. Next,

let σg be the deterministic and stationary policy that satisfies □♢S with probability 1 in M1 as
guaranteed by Proposition 2.1. That is, taking M1,q = (Q1, A,∆1, q) to be the MDP M1 with initial
state q, µM

σg
1,q

(T ) = 1 for all q ∈ Q1. For k ∈ N, let σk be the policy that follows σr for the first
k-steps, and from the k + 1st step onwards follows σg. σk is deterministic (since both σr and σg

are) and is finite memory since it only needs to count to k to decide which of σr and σg to follow.
Observe that σk stays within Q1, and µMσk (□♢S) = 1 as σg ensures that □♢S is satisfied with
probability 1 from any state in Q1. Finally, one can show that by choosing a sufficiently large k,
σk approximates the optimal reward to within ϵ. Details for why this holds can be found in the full
proof that is in Appendix B.2.

Next, we can show that stationary policies are also rich enough to solve the Constrained MDP
Optimization Problem approximately.
Theorem 3.2. Let M = (Q,A,∆, q0) be an MDP, S ⊆ Q a subset of states, and (r, γ) a reward
structure. Suppose there is a policy σ′ such that µMσ′ (□♢S) = 1. For any ϵ > 0, there is a stationary
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policy σ∗ such that µMσ∗ (□♢S) = 1 and

EMσ∗ [X(r,γ)] ≥

(
sup

σ:µMσ (□♢S)=1
EMσ [X(r,γ)]

)
− ϵ.

Proof Sketch. Let σf be the pure, finite memory policy that approximates the optimal reward as
guaranteed by Theorem 3.1. The desired stationary policy that proves this theorem is the stationary
policy σ∗ corresponding to σf guaranteed by Theorem 2.3. The challenge in completing this proof
is to argue that σ∗ satisfies □♢S with probability 1. Details are in Appendix B.2.

Theorems 3.1 and 3.2 allow us to prove that we can solve the Constrained MDP Optimization
Problem approximately in polynomial time.
Theorem 3.3. Given an MDP M , a property T = □♢S where S is a subset of states, a reward
structure (r, γ), and ϵ > 0 there is a polynomial time algorithm that either outputs “no policy” if
there is no policy σ such that µMσ (T ) = 1 or outputs a policy σ∗ such that µMσ∗ (T ) = 1 and

EMσ∗ [X(r,γ)] ≥

(
sup

σ:µMσ (T )=1
EMσ [X(r,γ)]

)
− ϵ.

Proof is postponed to Appendix B.3.

ω-regular Properties. ω-regular properties are properties of infinite executions that can be rec-
ognized by finite state machines — infinite sequence analogues of the classical regular languages.
They are very general and include not only the properties we consider in this paper (namely, safety,
reachability, and fairness) but also those expressed using temporal logics like LTL. Our observations
on solving the Constrained MDP Optimization Problem for fairness constraints, allow us to conclude
that the same results hold when the hard constraint is an ω-regular constraint. The solution lies
in reducing the ω-regular case to the case of fairness. ω-regular properties are typically described
using finite automata with infinitary acceptance conditions like Büchi, Rabin, parity, etc. (Baier &
Katoen, 2008). To determine the probability of satisfying an ω-regular property T in an MDP M ,
the idea is to take the cross product of an automaton representation of T with M , and compute
the measure of paths that visit certain states infinitely often in the product MDP, i.e., checking
the type of fairness constraint we consider in this paper. For this approach to work, the automata
representing T must be limit deterministic Büchi (Courcoubetis & Yannakakis, 1995). An algorithm
to convert an automaton for a language into a limit deterministic Büchi automaton for the same
language can be found in (Courcoubetis & Yannakakis, 1995). Efficient translations of temporal
logics to limit deterministic automata can be found in (Kini & Viswanathan, 2017a;b).

4 Reward Shaping

The results in Section 3 show that the Constrained MDP Optimization Problem can be approximated
in polynomial time. The algorithm presented in Theorem 3.3 relies on having a full description of
the MDP. In this section, we will present an alternate approach for solving the Constrained MDP
Optimization Problem. We will show that given an instance of Constrained MDP Optimization
Problem, namely, an MDP M , reward structure (r, γ), a ω-regular property T , and ϵ > 0, we
can find another reward function r′ such that finding a policy that optimizes (r′, γ), identifies
a policy that approximately solves the Constrained MDP Optimization Problem instance. The
reduction of approximating Constrained MDP Optimization Problem to classical MDP optimization
not only provides another argument for why the problem is in polynomial, but additionally suggests
bringing to bear other approaches that do not suffer from the challenges of the algorithm outlined in
Theorem 3.3. For example, classical reinforcement learning can be used to solve Constrained MDP
Optimization Problem.
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Let us fix an MDP M = (Q,A,∆, q0), and a reward structure (r, γ). For a fairness property
□♢S, S ⊆ Q, our reduction will rely on assessing a penalty if the policy does not reach certain
target states within a certain number of steps. Thus, we need to work with MDP M where in
addition, we count the number of steps that have been taken. Second, in our modified MDP
after a certain number of steps, whenever we reach a state in S, we will transition to our target
set of states with some small probability, and with the remaining probability continue as before.
These intuitions are captured in the following definition of a new MDP derived from M . For
o < m ∈ N, ξ ∈ (0, 1), and S ⊆ Q, the m-unfolding of M for property □♢S with cut-off o is the
MDP M [m, o, ξ,□♢S] = (Q1, A,∆1, (q0, 0)) where Q1 = Q×{i ∈ N | i ≤ m+2} and ∆1 is defined to
capture the following intuition. M [m, o, ξ,□♢S] has m+2 copies of the states of M . The number of
steps are counted by advancing from a state in one level to a state in the next level. Step counting
stops once the MDP reaches level m + 1 or m + 2. Starting from level o, each time a state in S is
visited, with probability ξ it moves to level m + 2 regardless of what the current level is, and with
probability 1 − ξ, moves to the next level. Formally this is defined as follows. First, ∆1((q, i), a) is
defined iff ∆(q, a) is defined, and when defined it is

∆1((q, i), a)(p, j) =



∆(q, a)(p) if j = i+ 1 ≤ o or i = j = m+ 2
∆(q, a)(p) if q ̸∈ S and either o < j = i+ 1 ≤ m+ 1 or i = j = m+ 1
ξ∆(q, a)(p) if q ∈ S, o ≤ i ≤ m+ 1 and j = m+ 2
(1 − ξ)∆(q, a)(p) if q ∈ S and either o < j = i+ 1 ≤ m+ 1 or i = j = m+ 1
0 otherwise

The MDPs M and M [m, o, ξ,□♢S] are equivalent in the formal sense of bisimulation. They also
have the same set of policies, though they have different state spaces; we will abuse notation and
use the same name for a policy for M and the equivalent one for M [m, o, ξ,□♢S]. We identify a
special class of policies for M [m, o, ξ,□♢S] that we will focus on. A policy σ is k-memory policy for
M [m, o, ξ,□♢S] (for k < o) if it is positional and for every i, j ≥ k + 1, σ(q, i) = σ(q, j). In other
words, the positional strategy σ does not distinguish between two copies of state q in M [m, o, ξ,□♢S]
when the counter value is ≥ k + 1.
Theorem 4.1. Let M = (Q,A,∆, q0) be an MDP, (r, γ) a reward structure for M , and S ⊆ Q a
subset of states. For ϵ > 0, let vϵ = supσ:µMσ (□♢S)=1 EMσ [X(r,γ)] − ϵ 2. For any ϵ > 0, there are
k < o < m ∈ N, ξ ∈ R, threshold τ ∈ R, and reward function r′ on M [m, o, ξ,□♢S] such that the
following property holds. Let σ∗ be a k-memory policy that is optimal with respect to (r′, γ) among
k-memory policies. That is, EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)] = supσ:k-memory EM [m,o,ξ,□♢S]σ [X(r′,γ)] 3.
Then EMσ∗ [X(r,γ)] ≥ vϵ. Further, there is a policy σ such that µMσ (□♢S) = 1 if and only if
EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)] ≥ τ .

Thus Theorem 4.1 says that finding an optimal k-memory policy for M [m, o, ξ,□♢S] (with ap-
propriate parameters) and reward structure (r′, γ), determines if there is a policy σ such that
µMσ (□♢S) = 1 and ϵ-approximately solves the Constrained MDP Optimization Problem. The
proof of Theorem 4.1 is in Appendix B.4.

5 Experimental Evaluation

In this section, we aim to answer the following research questions through experiments:

• Can our algorithm optimize rewards while meeting hard ω-regular constraints (specifica-
tions) via reinforcement learning?

• Which reinforcement learning methods are most effective at reaching optimal policies for
hard ω-regular specifications?

2As always, supa∈A f(a) is taken to be −∞ if A = ∅.
3It is easy to see that such a policy σ∗ exists since the supremum is really a maximum as the number of k-memory

policies is finite.
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• Does our algorithm perform better than other methods with respect to optimizing reward
and minimizing constraint violations?

Benchmarks. To answer these questions, we tested our approach in four benchmarking scenarios.
The first three scenarios extend the work of (Miller et al., 2024), adding ω-regular constraints to
runtime assurance tasks. The fourth benchmark is an optimal orbit transfer task for satellites.
Each benchmark is described by an agent model, an environment, a reward structure, and a target
ω-regular constraint.

Aircraft Scenarios. In the first three scenarios (Figure 1), the agent is an aircraft (or in the Fleet
scenario, a group of two aircrafts) moving in 3D-space with Dubins dynamics. The agent tracks a
leader aircraft through the use of two controllers, S and U. The action space for the agent is discrete,
consisting of the selection of which controller (or combination of controllers in the Fleet example) to
use at a given time step. For the Dubins scenario, the observation space has nine values 4 consisting
of the displacement and velocity difference between the agent and the leader, as well as a counter
of the time elapsed in the scenario. For the Dubins+O scenario, the observation space is expanded
to 27 variables to additionally encode the displacement to and spacial extent of the obstacles. In
the Fleet scenario, the observation space is an extension of the Dubins observation space to include
the displacement and velocity difference between all three aircraft. While it is atypical to include
the episode time in the observation space because this causes the model to lose invariance to time
translation, note that the ω-regular constraints being imposed are time dependent (e.g., reaching a
certain location within a certain time limit). Therefore, it is critical that the models not be time
invariant so that the constraints can be met. This can also be seen as a way of allowing the learning
of the k parameter from Theorem 3.1. The initial reward structure rU aims to encourage the use of
the experimental controller U and provides a reward of 1 during time steps that U is used, and zero
otherwise:

ri
U (q, ai) =

{
1 if ai = U
0 otherwise.

As these scenarios extend previous scenarios that ensured safety via reward shaping, we refer to
rU shaped for safety as rs, while rω refers to rU shaped for both safety and ω-regular constraint
satisfaction. Both rs and rω depend on the shaped reward value r′: r′ = −rmax

(1−γ)(γT ) , where γ is the
discount factor, rmax is the maximum possible reward for one time step, and T is the maximum
episode length. Then, if the safety constraint is violated or if the ω-regular constraint is not met at
time T , a reward of r′ is applied.

In the Dubins example, the safety constraint is that the agent must always be more than 100 units
from the leader, and the reachability constraint is that the agent reaches a target region relative to
the leader. In the Dubins+O example, the agent must reach a target region relative to the leader after
navigating past two obstacles while maintaining safe separation with the obstacles and the leader.
Finally, in the Fleet scenario, the two aircraft must both reach a target region infinitely often while
maintaining separation with each other and the leader (See Fig. 1 for diagrams of these scenarios).
This is challenging because if both aircrafts attempt to enter the target region, the safety constraint
will be violated, and so a successful policy must balance the concerns of fair reaching and safety.
In order to enforce such a hard constraint in a fixed-length episode, we implement the following
scheme. We track whether each aircraft has entered the target region. Once both aircraft have
entered the region (this need not happen simultaneously), the episode transitions to a success state
with probability p. With probability 1−p, the episode continues with each aircraft’s flags for entering
the reach region reset. In this way, the agents are incentivized to fairly enter the reach region as
often as possible to maximize the chance of transitioning to a success state during the episode. All
these examples are constructed to put the ω-regular constraint in tension with the reward structure;
simply maximizing rU leads the property to not be fulfilled (See baseline results in Table 1).

4While it may appear that this only requires seven values, all vectors are encoded as a magnitude and a unit vector,
and so use four values instead of the necessary three.
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Optimal Orbit Transfer. The final satellite example is based on autonomous spaceship opera-
tions (Jewison & Erwin, 2016; Johnson et al., 2012). In this scenario, the agent is a satellite with
two-dimensional Clohessy–Wiltshire dynamics

ẍ = 3n2x+ 2nẏ + ux

ÿ = −2nẋ+ uy,

where n is the orbital rate. This agent has a continuous action space that determines the amount
of thrust u to apply on a given time step. The ω-regular constraint is that the satellite must transit
to within a distance δ of a target orbit.

We measure this distance in the space of natural motion trajectory (NMT) parameters (Ichimura
& Ichikawa, 2008). For example, if the satellite is on an orbit characterized by the NMT parameters
as, ds, cs and the goal orbit has parameters ag, dg, and cg, then the satellite has achieved the
constraint if

∥∥[as − ag, ds − dg, cs − cg

]∥∥ < δ. For scenarios with an obstacle satellite, the agent
satellite is required to maintain a distance greater than five units from the obstacle at all times.
The base reward rt consists of a penalty equal to the amount of thrust used on a given time step:
rt(q, ai) = −ai. The final reward structure rω is created in the same fashion as in the aircraft
scenarios, combining the base reward rt with the penalties for not achieving the constraint, or for
violating safety, if applicable.

Figure 1: Left. A typical Dubins episode. The agent (orange) tracks a point behind the leader (black) and must
utilise S to avoid colliding with the leader and to slow down sufficiently to enter the target region (dark red). Middle.
A typical Dubins+O episode. The agent must switch between S and U to avoid collision with the obstacles (bright
red) and to enter the target region between the points that the two controllers track. Right. A typical Fleet episode.
Both agents must fairly share access to the target region (red) but not simultaneously. This characteristic behavior
can be observed in the recent half of their trajectories as the aircraft enter and exit the region in a coordinated fashion.
Light red circles show previous locations of the target to emphasize this behavior.

This problem has a known theoretical optimum (Ichimura & Ichikawa, 2008), and so our results can
be compared to this value to judge the degree to which our approach is able to achieve optimally.
Their result also demonstrates that the optimum can be reached with thrusts only along one axis,
and so for simplicity our agent is limited to thrusts along the y-axis. Because of the continuous action
space, it is necessary to apply a slightly more complex reward shaping to ensure the agent reaches
the desired orbit. Specifically, the shaped reward rω for failing to fulfill the ω-regular property is
scaled according to the distance to the desired orbit:

rω =
{

0 if d < δ

r′ d
δ otherwise,

where d is the distance to the orbit calculated as described earlier, and r′ is the reward shaping
value used in the aircraft examples. This modification helps to move the agent towards fulfillment of
the ω-regular constraint, because unlike in the discrete case, it is extremely unlikely that the agent
fulfills the constraint through random exploration.

Learning Algorithms. We evaluate the benchmarks with four reinforcement learning algorithms.
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• Baseline: Proximal policy optimization (PPO) (Schulman et al., 2017) without ω-regular
reward shaping, using rs. This provides a point of comparison in the absence of constraints
and demonstrates the degree to which the constraint-aware techniques (below) modify the
agents behavior.

• PPO-shaped: PPO applied to the shaped reward structure rω.

• SAC-shaped: Soft actor-critic (Haarnoja et al., 2018) applied to rω. This strategy helps us
investigate the effectiveness of an offline algorithm at this task.

• CPO: Constrained policy optimization (CPO) (Achiam et al., 2017), another approach to
ensuring hard constraints are not violated by policies.

Notably, CPO attempts to minimize constraint violations during training, while our approach only
attempts to reach a final policy that satisfies constraints with no restrictions on training behavior.
For CPO, the ω-regular properties are encoded in the algorithm’s cost function, and the rewards are
unshaped. For these examples, the cost function cω is given by

cω =
{

1 if constraint is violated
0 otherwise.

The algorithms were applied to the benchmark scenarios on an M1 MacBook Pro. The
PPO, PPO-shaped, and SAC-shaped examples were trained using Ray’s rllib. The
CPO benchmark was trained using a publicly available PyTorch implementation of
CPO (Sikchi, 2021) with slight modifications to allow for GPU acceleration and discrete
action spaces. The hyperparameters used for training can be found in the appendix.

Figure 2: Typical training runs for the air-
craft scenarios. Here, the reward rU is nor-
malized to the episode length, so a reward
of 1 indicates that U was used at every time
step, and a reward of 0 indicates that S was
used at every time step. The results are aver-
aged over 100 randomly-sampled initial con-
ditions with bars representing one standard
deviation of sampling error.

Results and observations from Aircraft benchmarks.
Fig. 2 displays typical training runs for the four algorithms
across the first three scenarios. The policies were trained
for approximately eight million environment interactions,
except for CPO, which was trained for about 2 million in-
teractions. This is due to the additional computation time
costs of the more complex algorithm. Despite this reduced
training time, the CPO policy reached a steady-state in two
of the three experiments, and its reward was no longer in-
creasing in the third.

On the simplest Dubins task, PPO-shaped, SAC-shaped,
and CPO all reached policies that met the hard ω-regular
constraints. On the Dubins+O task, PPO-shaped and SAC-
shaped attained policies that satisfied constraints, while
CPO did not. For the Fleet scenario, only PPO-shaped
achieved a policy that consistently satisfied the constraint.
Interestingly, the CPO policy converged to a strategy of
sending both aircraft into the target region, allowing it to

succeed a fraction of the time, and violate the safety constraint otherwise. The SAC-shaped pol-
icy was the opposite, never sending the aircraft towards the target, and thus never satisfying the
reachability constraint. The SAC-shaped policy converged very early in training, possibly indicating
insufficient exploration. Table 1 contains a summary of the best policies for each algorithm across
the three scenarios. The baseline policy was selected by choosing the policy with the highest reward,
while the other policies were selected by choosing the policy with the highest success rate. We define
the success rate (S%) to be the percentage of episodes that the ω-regular constraint was satisfied
without violating safety. The reward percent (R%) is defined as the ratio of the final reward to
the number of time steps in an episode, because the maximum possible reward on any time step
is one. If there were multiple policies with the same highest success rate, then the policy with the
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highest reward among them was selected. These results indicate that PPO-shaped is the most robust
method among those tested for obtaining policies for satisfying ω-regular constraints as it was the
only approach that was able to meet the desired requirements across all experiments. In addition,
it achieved rewards comparable to or better than other algorithms when those algorithms generated
constraint-satisfying policies.

Dubins Dubins+O Fleet
R% S% R% S% R% S%

Base 78.4±3.8 2.0 94.3±0.7 20.0 99.2±0.3 0
PPO 53.1±1.2 100 89.2±0.4 100 59.4±3.0 100
SAC 48.7±0.3 100 92.8±0.9 100 100±0 0
CPO 40.5±3.4 100 24.3±11 0 22.6±6.6 12

Table 1: A summary of the results from the best policies achieved by each algorithm on the aircraft benchmarks. For
the baseline, the policy with the highest reward (U%) was selected. For the other policies, the policy that succeeded
at the task most often (S%) was selected. If there were multiple policies with the same S% value, then the policy
with the highest U% value among those was selected.

Results and observations from Satellite benchmarks. We trained policies for opti-
mal orbital transfer in two scenarios: one in which the agent is the only object in the
environment, and one in which there is an obstacle satellite between the agent’s start-
ing location and the goal orbit. In these examples, the agent must transfer between the
NMT(10, 5, 0) to the NMT(50, 10, 0). In the scenario with an obstacle satellite, it has an or-
bit NMT(25, 0, 0). Fig. 3 displays typical training runs using PPO-shaped for both scenar-

Figure 3: Typical orbit transfer training runs for scenarios with and without an obstacle satellite. These training
runs have significant variance, with both the thrust reward and orbit error changing significantly on some updates.

ios. Despite the challenge of the problem, as evidenced by the number of policies that did not
satisfy the ω-regular constraint, in both scenarios a policy was reached that completed the de-
sired orbit transfer successfully with energy usages comparable to theoretically optimal values.

Figure 4: A typical or-
bit transfer episode with
an obstacle (blue). The
agent (red) slightly over-
shoots the desired orbit
(black) before correcting
back towards it, increasing
energy usage.

Fig. 4 displays the trajectory of the best policy attained for the version of
the scenario with an obstacle. Compared to the theoretically optimal trans-
fer, this policy used 37% more energy in the orbit transfer. In contrast, the
best policy trained without an interfering obstacle used 57% more energy
than the optimal transfer. This indicates that the presence obstacles does
not impact our method’s ability to find efficient transfer strategies, and
that this approach to calculating transfers is viable when the complexity
of safety constrains makes direct computation of an optimal trajectory in-
feasible. However, the fact that the simpler scenario did not converge to
policy with thrust usage equal to or better than the scenario with an obsta-
cle indicates that there is significant variance in the training process. These
training runs display a high degree of variability, with both the thrust and
distance error varying significantly between some policy checkpoints. This
is due to the finely-tuned nature of the orbit transfer problem; if the thrust
do not precisely balance, then the satellite can enter a drifting orbit, mov-
ing far from the goal and requiring large energy expenditures to return to
the goal orbit.

This variance could also be due to the large mismatch in scale between the two reward compo-
nents. While this mismatch is also present in the aircraft examples, the magnitude of difference is
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larger in this example because d
δ can be large even when only small thrusts are used, leading the

reward optimization to be dominated by fulfillment of the ω-regular property, with low sensitivity
to optimization of the thrust usage. This is may also be the reason that neither policy achieves the
theoretic optimum.
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Figure 5: No optimal policy to optimize rewards for hard reachability constraints.

A No optimal policy

Example A.1. MDP M = ({q0, qr, qg}, {U, S},∆, q0) is shown in Figure 5. From the initial state q0,
U goes to qr with probability 1, while S goes to qg with probability 1. Both actions U, S go to q0 with
probability 1 from qr. Finally, from qg all actions (U, S) stay in qg with probability 1. Let T = □♢{qg}
(which in this case is the same as ♢{qg}) and r(q, a) = 1 if q = qr and r(q, a) = 0 if q ̸= qr. Consider
the policy σk that chooses U for the first 2k − 1 steps, then chooses S from then on. Observe that
µMσk (T ) = 1 and so σk satisfies the hard constraint. Moreover, EMσk [X(r,γ)] = γ(1−γ2k)

1−γ2 .

Next, the policy σ∗ that chooses U at every step achieves a reward of γ
1−γ2 and this is the maximum

possible reward one can get since it gets a reward of 1 in every odd step. However the policy σ∗ does
not satisfy the hard constraint since µMσ∗ (T ) = 0.

Given the observations about σk and σ∗, we can say that for any k

γ(1 − γ2k)
1 − γ2 ≤ sup

σ:µMσ (T )=1
EM [X(r,γ)] ≤ γ

1 − γ2 .

Thus, supσ:µM (T )=1 EM [X(r,γ)] = γ
1−γ2 . However, there is no policy σ such that µMσ (T ) = 1 and

EM [X(r,γ)] = γ
1−γ2 . This is because no reward is received after reaching qg. Thus, there is no optimal

policy amongst those that satisfy T with probability 1. However, we can get arbitrarily close to the
optimal reward using policy σk by increasing k.

Notice that σk is a finite memory, pure policy. How well do deterministic, stationary policies do in
this example? Any deterministic, stationary policy is forced to choose between U and S from q0.
The only way to ensure visiting qg is to choose S. Any such policy gets a reward of 0. Thus, for any
deterministic, stationary policy σp with µMσp (T ) = 1, we have EMσp [X(r,γ)] = 0

B Proofs of results from Sections 3 and 4

Before presenting the proofs, we start with some preliminaries that are needed in our proofs.

B.1 Preliminaries

We begin with a proof sketch for Theorem 2.3.

Proof Sketch of Theorem 2.3. Let σ be an arbitrary policy of M . Consider the following reward
functions rq and r(q,a) for each state q and action a defined as follows.

rq(p, b) =
{

1 if p = q

0 otherwise

r(q,a)(p, b) =
{

1 if p = q and b = a

0 otherwise
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Define the following stationary policy σ∗ where

σ∗(q)(a) =
EMσ [X(r(q,a),γ)]
EMσ [X(rq,γ)]

. 5

One can prove that for any reward function r, EMσ∗ [X(r,γ)] = EMσ [X(r,γ)].

Next, we recall some classical observations about the structure of MDPs.

End Components. Let us fix an MDP M = (Q,A,∆, q0). A sub-MDP of M is a pair (E,α) such
that E ⊆ Q and α : E → 2A such that (a) for all q ∈ E, ∅ ≠ α(q) ⊆ A(q), i.e., α(q) is a non-empty
subset of the actions enabled at q, (b) for every q ∈ E and a ∈ α(q), supp(∆(q, a)) ⊆ E. The
underlying graph of a sub-MDP (E,α), G(E,α), has vertex set E ∪ {(q, a) ∈ E × A | a ∈ α(q)} and
edges (q, (q, a)) (q ∈ E and a ∈ α(q)) and ((q, a), p) where p ∈ supp(∆(q, a)). A sub-MDP (E,α)
of M is an end component if the underlying graph G(E,α) is strongly connected. Finally, an end
component (E,α) is maximal if (E,α) is “maximal” with respect to subset inclusion, i.e., for any
other end component (E′, α′), if E ⊆ E′ and α(q) ⊆ α′(q) for every q ∈ E, then E = E′ and α = α′.
Maximal end components are disjoint i.e., if (E1, α1) and (E2, α2) are maximal end components
then E1 ∩ E2 = ∅.

For finite MDPs with respect to any policy, runs almost surely reach one of the end components.
Proposition B.1 (Theorem 10.120 of (Baier & Katoen, 2008)). Let M be an MDP and σ be a
policy for M . Let T = ♢(∪(E,α): end componentE). Then µMσ (T ) = 1.

The probability of satisfying a fairness property is related to the probability of reaching certain end
components. Before proving this, we need a technical definition. For a stationary policy σ, an end
component (E,α) is consistent with σ if for every q ∈ E, α(q) = supp(σ(q)). For consistent end
components, we can drop α as it is completely determined by E and σ.
Proposition B.2 (Theorems 10.25 and 10.122 of (Baier & Katoen, 2008)). Let M be an MDP, S
a set of states, and σ a policy for M . Let

V□♢S =
⋃

(E,α):M end comp.
and S∩E ̸=∅

E,

be the states that belong to end components in M that contain some state in S. Then, µMσ (□♢S) ≤
µMσ (♢V□♢S).

If σ is a stationary policy, then µMσ (T ) = µMσ (♢C□♢S) where

C□♢S =
⋃

(E,α):σ cons. end comp.
and S∩E ̸=∅

E.

B.2 Sufficiency of Special Policies

In this Section, we present the proofs showing that deterministic, finite memory policies and sta-
tionary policies can approximate the optimal reward while meeting a hard constraint.

Proof of Theorem 3.1. We can assume without loss of generality that r(q, a) ≥ 0 for all q ∈ Q and
a ∈ A; if r(q, a) < 0 for some q ∈ Q and A, then we can consider the reward function r1, where
r1(q, a) = r(q, a) − minq′∈Q,a′∈A r(q′, a′) and a policy that optimizes r1 also optimizes r.

Let us fix T = □♢S. Let Q1 be the subset of Q consisting of states from which the property T can be
satisfied with probability 1. Taking Mq = (Q,A,∆, q) to be the MDP M with initial state q, define

5If EMσ [X(rq,γ)] = 0 then q can be removed as q is not reachable. Thus, we can, without loss of generality, assume
that EMσ [X(rq,γ)] ̸= 0.
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Q1 = {q ∈ Q | supσ µMσ
q

(T ) = 1}. Given the assumption that there is a policy σ′ of M that satisfies
T with probability 1, we can conclude that q0 ∈ Q1 ̸= ∅. Let M1 be the MDP restricted to states
in Q1, i.e., M1 = (Q1, A,∆1, q0) where ∆1(q, a) is defined and equal to ∆(q, a) if ∆(q, a) is defined
and supp(∆(q, a)) ⊆ Q1. Let σr be the deterministic, stationary policy that maximizes the reward
due to (r, γ) in M1 as guaranteed by Proposition 2.2, i.e., EMσr

1
[X(r,γ)] = supσ EMσ

1
[X(r,γ)]. Next,

let σg be the deterministic, stationary policy that satisfies T with probability 1 in M1 as guaranteed
by Proposition 2.1. That is, taking M1,q = (Q1, A,∆1, q) to be the MDP M1 with initial state q,
µM

σg
1,q

(T ) = 1 for all q ∈ Q1.

Our first observation is that the reward earned by policy σr upper bounds the reward earned by any
policy σ′ of M that satisfies the constraint T . Let σ′ be an arbitrary policy such that µMσ′ (T ) = 1.
Now one can show executions with respect to σ′ almost surely stay within Q1. In other words,
µMσ′ (♢(Q \ Q1)) = 0. This observation follows from Propositions B.1 and B.2 as µMσ′ (T ) ≤
µMσ′ (♢VT ) ≤ 1 − µMσ′ (♢(Q \ Q1)). Thus, σ′ is a policy in M1. Since σr maximizes the reward in
M1, we have EMσ′ [X(r,γ)] ≤ EMσr [X(r,γ)]. Therefore,

sup
σ:µMσ (T )=1

EMσ [X(r,γ)] ≤ EMσr [X(r,γ)].

For k ∈ N, let σk be the policy that follows σr for the first k-steps, and from the k + 1st step
onwards follows σg. σk is deterministic (since both σr and σg are) and is finite memory since it only
needs to count to k to decide which of σr and σg to follow. Observe that σk stays within Q1, and
µMσk (T ) = 1 as σg ensures that T is satisfied with probability 1 from any state in Q1. We will now
show that the reward earned by policy σk approaches the reward earned by σr as k increases. Let
us fix an ordering of the states in Q. Let P be the stochastic matrix corresponding to σr, i.e., the
(i, j)th entry of P is ∆(qi, σr(qi))(qj), where qi and qj are the ith and jth states, respectively. Let
δq0 be the column vector representing the Dirac distribution on q0 and r be the column vector where
the ith entry is r(qi, σr(qi)) (i.e., the reward earned from qi when the action is picked according to
σr). Finally let rmax = maxq∈Q, a∈A r(q, a). Then, since r(q, a) ≥ 0 for all q ∈ Q and a ∈ A,

EMσk [X(r,γ)] ≥ EMσr [X(r,γ)] −

 ∑
i≥k+1

γiδT
q0
P ir


≥ EMσr [X(r,γ)] −

 ∑
i≥k+1

γirmax


≥ EMσr [X(r,γ)] − rmaxγ

k+1

1 − γ
.

Taking k such that ϵ < rmaxγk+1

1−γ , we have

EMσk [X(r,γ)] ≥ EMσr [X(r,γ)] − ϵ ≥

(
sup

σ:µMσ (T )=1
EMσ [X(r,γ)]

)
− ϵ.

Thus σk is the deterministic, finite memory policy that establishes the theorem.

Next, we have the proof of Theorem 3.2.

Proof of Theorem 3.2. Let σf be the deterministic, finite memory policy that approximates the
optimal reward as guaranteed by Theorem 3.1. From the proof of Theorem 3.1, σf = σk for some k
(depending on ϵ) where σk uses a deterministic, stationary policy for the first k steps, and switches
to another deterministic, stationary policy from then on. We will exploit this structure in completing
the proof of this theorem. Let us fix T = □♢S.
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For the proof, it will be useful to consider an MDP that is closely related toM . The k-unfolding ofM ,
denoted Mk, is M equipped with a counter that counts the first k+ 1 transitions and stops counting
once the counter reaches k+1. Formally, Mk = (Qk, A,∆k, (q0, 0)), where Qk = Q×{i ∈ N|i ≤ k+1}
and ∆k of Mk is defined as follows. ∆k((q, i), a) is defined iff ∆(q, a) is defined, and when defined it
is

∆k((q, i), a)(p, j) =


∆(q, a)(p) if j = i+ 1 ≤ k + 1

or i = j = k + 1
0 otherwise

Given the definition of ∆k, one can conclude that if (E,α) is an end component in Mk then E ⊆
Q× {k + 1}.

Policies over M and Mk are the same. Let π : Qk → Q be the projection function defined as
π(q, i) = q. Define Sk = π−1(S) = {(q, i) ∈ Qk | q ∈ S}. For any policy σ, observe that the
probability of satisfying □♢S in M is the same as the probability of satisfying □♢Sk in Mk. As a
consequence, we will abuse notation and use T to refer to □♢S over M and □♢Sk over Mk. Now
the finite memory, deterministic policy σf = σk is a deterministic, stationary policy on Mk with the
property that µM

σk
k

(T ) = µMσk (T ) = 1 and

EMσk [X(r,γ)] ≥

(
sup

σ:µMσ (T )=1
EMσ [X(r,γ)]

)
− ϵ.

Let σ∗ be the stationary policy corresponding to σk as guaranteed by Theorem 2.3. For σ∗, we know
that

EMσ∗ [X(r,γ)] = EMσk [X(r,γ)] ≥

(
sup

σ:µMσ (T )=1
EMσ [X(r,γ)]

)
− ϵ.

and for any B ⊆ Q, µMσ∗ (♢B) > 0 iff µMσk (♢B) > 0. Thus the reward under policy σ∗ is close to
optimal. In order to complete the proof we need to show that µMσ∗ (T ) = 1.

Suppose (for contradiction), µMσ∗ (T ) < 1. Since µMσ∗ (T ) < 1, from Propositions B.1 and B.2, we
can conclude that there is an end component (E,α) consistent with σ∗, such that E ∩ S = ∅ and
µMσ∗ (♢E) > 0. Therefore, µMσk (♢E) = µM

σk
k

(♢π−1(E)) > 0. From the proof of Theorem 2.3
which sketches the construction of σ∗, the fact that σk is a combination of deterministic, stationary
policies, and the fact that (E,α) is consistent with σ∗, we can conclude that a ∈ α(q) for any q ∈ E
iff for some i, σk(q, i)(a) = 1, i.e., a is chosen from q at some step in σk. This together with the
fact that (E,α) is an end component of M means that once a run in Mσk reaches E, it never leaves
E. Thus, any end component (E′, α′) consistent with σk in Mk and contained in π−1(E), is disjoint
from S. Let

CE =
⋃

(E′,α′): end comp. cons. with σ∗
in Mk and E′⊆π−1(E)

E′.

Based on the observations above, we can conclude that µM
σk
k

(♢CE) > 0. Together with Proposi-
tion B.2, this means that µMσk (T ) = µM

σk
k

(T ) ≤ 1 − µM
σk
k

(♢CE) < 1. This gives us the desired
contradiction. Hence, µMσ∗ (T ) = 1, which establishes the theorem.

B.3 Approximating Constrained MDP Optimization Problem in Polynomial Time

We present the polynomial time algorithm to approximately solve Constrained MDP Optimization
Problem.

Proof of Theorem 3.3. We will show that both the deterministic, finite memory strategy guaranteed
by Theorem 3.1 and the stationary policy promised by Theorem 3.2, can be constructed in polynomial
time, if they exist.
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The algorithm will first construct the MDP M1 over states Q1 consisting of all states of M from which
there is a policy such that T can be satisfied with probability. M1 can be constructed in polynomial
time using for example the algorithm outlined in the proof of Theorem 10.127 in (Baier & Katoen,
2008). If Q1 does not contain the initial state, then the algorithm answers “no policy” as required.
If the initial state belongs to Q1, then the policies σr and σg as in the proof of Theorem 3.1 can be
computed in polynomial time using standard algorithms like linear programming. The desired finite
memory policy runs σr for some number of steps and then σg; the number of steps k is approximately
log ϵ+log γ − 1− log rmax (see proof of Theorem 3.1) where rmax is the maximum reward one can get
in any step. This completes the description of polynomial time algorithm to output a finite memory,
deterministic policy.

A stationary policy to the solve the problem can be computed by first computing a deterministic,
finite memory policy, and then outputting the stationary policy corresponding to it as given by
Theorem 2.3. This again can be done in polynomial time.

B.4 Reward Shaping

In this section, we prove our reward shaping result. Before doing so, we introduce some notation.
There is a natural projection mapping π : Q1 → Q from the states of M [m, o, ξ,□♢S] to the states
of M which is defined as π(q, i) = q. Its inverse is defined usual: for a subset B ⊆ Q, we define
π−1(B) = {(q, i) ∈ Qk | q ∈ B}.

Proof of Theorem 4.1. As argued in the proof of Theorem 3.1, we will assume without loss of gen-
erality that r(q, a) ≥ 0 for all q ∈ Q and a ∈ A. Let us fix ϵ. Let n = |Q| be the number of states in
M . Recall that from the proof of Theorem 3.1, there is a finite memory, deterministic policy built
from two deterministic, stationary policies, where the first policy is used for the first k-steps and
the second policy is used from the k + 1st step onwards, which ϵ/2-approximates the Constrained
MDP Optimization Problem. Let k be this value given by the proof of Theorem 3.1 for ϵ/2. Let us
take o = k + n and m = k + ℓn for some ℓ > 1 to be set later. We will also fix the exact value of
ξ later in the proof. Let ρ be the least non-zero probability of path of length n in M ; thus, if one
from state q1 to q2 in M within n steps, then the probability of this path is at least ρ. Similarly, let
η be the least non-zero probability path of length k in M . Next, let rmax = max(q,a)∈Q×A r(q, a) be
the maximum reward in any step under r.

Let us now define the new reward function r′ as follows.

r′((q, i), a) =
{
r(q, a) if i ̸= m

−p if i = m

Here p ∈ R>0 should be thought of as a “penalty” and will be set later in this proof. Intuitively, r′

assigns the same reward as r except for the m+ 1st transition which is assigned p if level m+ 2 is
not reached by then. On the other hand, if level m+ 2 is reached before the m+ 1st transition, you
get the same reward as r.

We have now specified all the pieces and we will establish some properties that will build towards
proving the theorem. From now on we will restrict our attention to k-memory policies. We will call
a k-memory policy σ fair if µM [m,o,ξ,□♢S]σ (□♢π−1(S)) = µMσ (□♢S) = 1; otherwise, we will call it
unfair. Let us define Lm+2 = {(q,m+ 2) | q ∈ Q} to be the states in level m+ 2 in M [m, o, ξ,□♢S].

Unfair policies have a low probability of reaching Lm+2 within m steps. Let σ be an
unfair k-memory policy. Since µM [m,o,ξ,□♢S]σ (□♢π−1(S)) < 1, from Propositions B.1 and B.2, we
can conclude that there is an end component (E,α) of M [m, o, ξ,□♢S] consistent with σ, such
that E ∩ π−1(S) = ∅ and µM [m,o,ξ,□♢S]σ (♢E) > 0. Since E is an end component, once a run
reaches E, it never leaves E. Further, based on the definition of M [m, o, ξ,□♢S], there are no
transitions from E to Lm+2. Finally, since σ is a k-memory strategy, if µM [m,o,ξ,□♢S]σ (♢E) > 0, E
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is reached with non-zero probability within k+n steps. Based on our assumptions, this means that
µM [m,o,ξ,□♢S]σ (♢E) > ηρ > 0. Consequently, µM [m,o,ξ,□♢S]σ (♢Lm+2) < 1 − ηρ.

Fair policies have a high probability of reaching Lm+2 within m steps. Let σ be a fair k-
memory policy. Since σ is k-memory, the policy chooses the same action from every copy of any state
q ∈ Q after k steps. Further, since µM [m,o,ξ,□♢S]σ (□♢π−1(S)) = 1, from Propositions B.1 and B.2,
we can conclude that from every state (q, i) for i > k reached, there is a non-zero probability
of reaching a state in π−1(S) within n-steps. Thus, after k-steps, in every trajectory we have a
probability of at least ρξ of reaching a state in Lm+2 within n steps. Therefore, after m = k + ℓn-
steps, the probability of not reaching Lm+2 is at most (1 − ρξ)ℓ. Hence, the probability of reach
Lm+2 within m + 1 steps in the Markov chain M [m, o, ξ,□♢S]σ is ≥ 1 − (1 − ρξ)ℓ, which can be
made as high as we want by increasing ℓ.

Before proving our next set of observations, it is worth noting that r′ is the same as r, except for the
penalty it assesses from states in level m. Thus the reward earned by a policy σ in M with respect
to (r, γ) in a trajectory is the same as that earned by σ in M [m, o, ξ,□♢S] with respect to (r′, γ)
except on those trajectories that end up in a state in level m after m-steps.

Unfair policies earn low reward with respect to (r′, γ). Let σ be an unfair k-memory policy.
We know that µM [m,o,ξ,□♢S]σ (♢Lm+2) < 1 − ηρ and so the probability of not being in a state in
Lm+2 after m-steps is at least ηρ. As observed, these are the trajectories that get a penalty on the
m+1st step under r′. Given that the maximum reward possible with respect to (r, γ) is rmax/(1−γ),
we get that

EM [m,o,ξ,□♢S]σ [X(r′,γ)] <
rmax
1 − γ

− γmp(ηρ).

This can be made as small as we want by setting p to be large number.

Reward earned by fair policies is similar in (r, γ) and (r′, γ). Let σ be a fair policy. As
observed earlier, the probability of not reaching Lm+2 within m-steps is at most (1−ρξ)ℓ, and again
these are the only trajectories that earn a different reward under r′. Thus, we can say that

EM [m,o,ξ,□♢S]σ [X(r′,γ)] ≥ EMσ [X(r,γ)] − γmp(1 − ρξ)ℓ

which can be made as small as we want by increasing ℓ, no matter what we set p and ξ to be. Since
we assumed that r(q, a) ≥ 0 for all (q, a) ∈ Q × A, we know that EMσ [X(r,γ)] ≥ 0. Thus, taking
threshold τ = −γmp(1 −ρξ)ℓ, we can see that EM [m,o,ξ,□♢S]σ [X(r′,γ)] ≥ τ , which establishes the last
part of the theorem.

Based on all these observations, to satisfy the theorem, we can set the values of ξ, p, ℓ so that the
following inequalities hold.

τ = −γmp(1 − ρξ)ℓ >
rmax
1 − γ

− γmp(ηρ)

−τ = γmp(1 − ρξ)ℓ < ϵ/2

Let us now complete the proof of the theorem using our observations and the values of the parameters.
Let σ∗ be the optimal k-memory policy for M [m, o, ξ,□♢S] with respect to (r′, γ). Observe that if
there is no policy σ such that µMσ (□♢S) = 1, then vϵ = −∞ and the claim about EMσ∗ [X(r,γ)] ≥ vϵ

holds trivially.

Let us consider the case when there is a policy σ such that µMσ (□♢S) = 1. We know that by
Theorem 3.1 and our choice of k, there is a k-memory policy σf such that µMσf (□♢S) = 1 and
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EMσf [X(r,γ)] ≥ vϵ + ϵ/2. Based on our choice of τ and our previous observations, we have

EMσ∗ [X(r,γ)] ≥ EM [m,o,ξ,□♢S]σ∗ [X(r′,γ)]
≥ EM [m,o,ξ,□♢S]σf [X(r′,γ)]
≥ EMσf [X(r,γ)] + τ

≥ (vϵ + ϵ/2) + τ

≥ (vϵ + ϵ/2) − (ϵ/2) = vϵ.

This completes the proof of the theorem.

C Details on experiments

C.1 Dubin’s RTA scenarios

Model All of the aircarfts follow the dynamical model given by
ẋ
ẏ
ż

θ̇

ψ̇
v̇

 =


v cos(θ) cos(ψ)
v sin(θ) cos(ψ)

v sin(ψ)
ω
Ψ
a


where for the state: (x, y, z) is the position, θ is the heading angle, ψ is the pitch angle, and v is
the velocity; and for the input: ω is the change in heading rate, Ψ is the change in pitch rate, and
a is the acceleration. The lead aircraft follows a set circular path where a = 0, Ψ = 0, and ω is
constant. The follower aircraft attempt to follow at some position relative to the leader using a
tracking controller given by ωΨ

a

 =

 ωref
K1(ψref − ψ)
K2(vref − v)

 (1)

where K1,K2 > 0 and ωref, ψref, and vref are the reference change in heading rate, reference pitch
angle, and reference velocity respectively. The untrusted controller U follows the tracking controller
in (1) exactly, and the safety controller S follows the tracking controller but sets a = 0. The positions
U tracks is closer to the leader, and the position that S tracks is further from the leader.

Dubins In the Dubins example, the lead aircraft follows a circular path with an angular velocity
between 0.6 and 0.7 rad/s, and a velocity between 450 and 550. The reach region is 400 units behind
the lead and 100 units to its left. The follower starts 250 units behind the leader, and has the same
velocity as the leader.

Dubins+O In the Dubins+Oexample, the lead aircraft follows a circular path with an angular
velocity of 0.2 rad/s and a velocity of 500. The follower starts 500 units to the left of the leader,
and has an initial velocity of 400, to match the angular velocity of the leader. The obstacles are
cubes with side length 100. The first cube is offset 250 units radially inward from the leader’s path
so that it’s center coincides with the tracking point of the follower’s untrusted controller. It appears
at an angle along the path between 2 and 4.71 radians. The second obstacle has a radial offset of
500 to correspond with the follower’s safety controller tracking point, and appears at an angle along
the path of 0.78 radians.

Fleet In the Fleet example, the leader follows a circular path with angular velocity between 0.3
and 0.4 rad/s with a velocity between 450 and 650. The followers begin on the tracking point of
their safety controllers, so the first follower starts 250 units behind and 200 units to the left of the
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leader, while the second follower starts 250 units behind and 200 units to the right of the leader.
They share a untrusted controller tracking point 250 units behind the leader. The reach region they
must enter infinitely often is centered on this point with a radius of 100.

C.2 Optimal orbit transfer

Model The satellite follows the 2-dimensional Clohessy Whiltshire dynamics given by
ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



x
y
ẋ
ẏ

+


0 0
0 0
1 0
0 1

[ux

uy

]

where n is the orbital rate. A zero-input trajectory of the satellite is called a natural motion
trajectory (NMT). The explicit solution to a NMT is given by

x(t) = 4x0 + 2 ẏ0
n

− (3x0 + 2 ẏ0
n

) cos(n(t− t0)) + ẋ0
n

sin(n(t− t0))

y(t) = y0 − 2 ẋ0
n

+ 2 ẋ0
n

cos(n(t− t0)) + (6x0 + 4 ẏ0
n

) sin(n(t− t0)) + (3nx0 + 2ẏ0)(t− t0)

ẋ(t) = ẋ0 cos(n(t− t0)) + (3nx0 + 2ẏ0) sin(n(t− t0))
ẏ(t) = (6nx0 + 4ẏ0) cos(n(t− t0)) − 2ẋ0 sin(n(t− t0)) − (6nx0 + 3ẏ0)

where x0, y0, ẋ0, and ẏ0 are the initial conditions. The explicit solutions can be rewritten in terms
of the NMT parameters a, d, c, and α where

a = [(3x0 + 2 ẏ0
n

)2 + ( ẋ0
n

)2] 1
2

d = y0 − 2 ẏ0
n

c = 2x0 + ẏ0
n

cos(α) = −1
a

(3x0 + 2 ẏ0
n

) and sin(α) = − ẋ0
na

such that

x(t) = 2c+ a cos(n(t− t0) + α)
y(t) = d− 3nc(t− t0) − 2a sin(n(t− t0) + α)

ẋ(t) = −an sin(n(t− t0) + α)
ẏ(t) = −3nc− 2an cos(n(t− t0) + α).

The NMT is periodic with period T = 2π
n with ellipse with eccentricity

√
3

2 centered at (0, d) when
c = 0. The parameter a represents the size of the ellipse and α indicates the initial position on the
ellipse.

Orbit transfer scenario In the orbit transfer scenarios, spacecraft begin in the NMT (10, 5, 0)
and must transfer to the orbit (50, 10, 0). In scenarios with an obstacle, the obstacle’s NMT is (25,
0, 0). A collision occurs if the spacecraft is within 5 units of the obstacle.

D Reinforcement Learning Hyperparameters
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Hyperparameters
Shared
γ 0.995
λ 0.995
Layers (RTA) 2
Layers (Satellite) 4
Hidden units (RTA) 512
Hidden units (Satellite) 1024
Learning rate 5.00E-05
Optimizer Adam
β1 0.9
β2 0.999
Max Episode Length (RTA) 400
Max Episode Length (Satellite) 80
Activation function Tanh
PPO
Batch size 200000
Batch mode complete episodes
Max SGD iterations 20
ϵ 0.3
Value function clipping 10
SAC
Entropy learning rate 1.00E-05
Critic learning rate 0.005
Actor learning rate 0.005
Target update frequency 1024
Steps before learning 1500
τ 1
Batch mode truncate episodes
CPO
Cost limit 1
Batch size 40000
Max SGD iterations 80

Approved for public release: distribution is unlimited. AFRL-2024-3403, 06/26/2024.


