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ABSTRACT

We study the generalization mechanisms of In-Context Learning (ICL) in
Transformer-based language models from the perspective of mechanistic inter-
pretability. While prior works have explored ICL either through single-task mech-
anistic analysis or multi-task empirical evaluation, a unified mechanistic under-
standing of ICL generalization has not yet been established. To address this gap,
we conduct a systematic study using two structured tasks: ICL Markov Chain and
ICL Regression. These tasks respectively instantiate Markovian and i.i.d. data dis-
tributions, enabling tractable analysis and principled definitions of task similarity.
We investigate how knowledge acquired from a source task facilitates learning in
a target task, and how this transfer depends on formal measures of similarity be-
tween the tasks. Our empirical results show that initializing from data-dependent
checkpoints trained on simpler source tasks significantly improves data efficiency
when training on more complex target tasks. Furthermore, we identify mathemat-
ically and mechanistically interpretable “common structures” in the Transformer
QK circuits at lower layers, along with higher-layer features, that support cross-
task generalization. These structures vary predictably with formal similarity met-
rics. Our work unifies mechanistic and generalization perspectives on ICL, offer-
ing new insights into curriculum learning phenomena and informing the design of
more scalable and data-efficient ICL training pipelines.

1 INTRODUCTION

In-Context Learning (ICL) represents one of the most striking emergent capabilities of large lan-
guage models, enabling them to rapidly adapt to new tasks using only a handful of input-output ex-
amples without updating their parameters (Brown et al., 2020). This phenomenon has transformed
how we deploy language models in practice, yet our understanding of the underlying mechanisms
remains fragmented. While empirical studies have catalogued ICL’s impressive breadth across tasks
ranging from arithmetic to commonsense reasoning (Wei et al., 2022), and mechanistic interpretabil-
ity work has identified specific circuits like induction heads (Olsson et al., 2022), these perspectives
have developed in parallel with limited cross-pollination. This disconnect leaves fundamental ques-
tions unanswered: How do models transfer ICL capabilities between related tasks? What computa-
tional structures enable efficient generalization? And how can we leverage these insights to design
better training curricula?

The challenge of understanding ICL generalization lies at the intersection of two research traditions.
On one hand, the mechanistic interpretability community has made significant progress in reverse-
engineering the specific circuits that enable ICL on individual tasks. For instance, Nichani et al.
(2024) and Chen et al. (2024b) demonstrated how transformers implement Markov chain inference
through specialized attention patterns, while Chen et al. (2024a) revealed the kernel regression mech-
anisms underlying in-context linear regression. On the other hand, the empirical machine learning
community has shown that models trained on diverse task mixtures exhibit superior ICL capabilities
(Kim et al., 2025), suggesting that some form of transfer learning occurs. However, these empirical
observations lack mechanistic grounding—we observe that transfer happens but not how or why.
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This gap matters for both theoretical and practical reasons. Theoretically, understanding how trans-
formers generalize ICL mechanisms would illuminate fundamental questions about the nature of
few-shot learning and the inductive biases of attention-based architectures. Practically, such under-
standing could revolutionize how we train language models. Current pretraining requires massive
computational resources partly because we lack principled ways to sequence tasks for efficient learn-
ing. If we understood which tasks share computational structures and how these structures transfer,
we could design curricula that achieve comparable capabilities with significantly less data and com-
pute.

Our Approach. We bridge the mechanistic and empirical perspectives through controlled experi-
ments on structured ICL tasks. We focus on two complementary task families that capture distinct
data regimes: (i) Markov chains, which model sequential dependencies where each element depends
on its predecessors, and (ii) linear regression, which models independent and identically distributed
(i.i.d.) relationships between inputs and outputs. These tasks serve as tractable models of real-world
ICL scenarios while remaining amenable to mechanistic analysis. Crucially, both tasks admit natural
complexity hierarchies—Markov chains vary in order and dependency structure, while regression
tasks vary in their degree of nonlinearity—allowing us to study transfer between simpler and more
complex variants.

Our experimental framework follows the standard pretraining-finetuning paradigm but with careful
mechanistic monitoring. We first pretrain transformers on simpler task variants (e.g., 2-gram Markov
chains or linear regression), then fine-tune on more complex variants (e.g., 3-gram Markov chains or
quadratic regression). Throughout training, we track the evolution of specific model components—
attention patterns, QK circuits, and feed-forward networks—to identify which structures remain
stable (suggesting reuse) versus which adapt (suggesting task-specific learning). This approach
reveals not just that transfer occurs, but precisely which computational mechanisms enable it.

Key Contributions. Our investigation yields three main contributions:

* Mechanistic characterization of ICL transfer: We identify specific “common structures”
that enable generalization across tasks. In Markov chains, the induction circuit learned for 2-
gram inference remains largely intact when adapting to 3-gram, with only the causal structure
embeddings requiring updates. In regression tasks, the data-copying attention patterns provide
stable scaffolding for learning increasingly nonlinear relationships. These findings provide the
first mechanistic account of how ICL capabilities transfer between related tasks.

* Quantitative efficiency gains from curriculum learning: Our experiments demonstrate that
appropriate pretraining reduces data requirements by up to 10x compared to training from
scratch. For instance, models pretrained on linear regression can learn quadratic regression with
90% fewer examples, while direct training on quadratic regression often fails entirely within the
same budget. Moreover, we show that transfer efficiency correlates with formal task similarity
metrics, providing principled guidelines for curriculum design.

* Practical implications for LLM training: Our findings suggest that the common practice
of training on diverse tasks simultaneously may be suboptimal. Instead, our results advocate
for structured curricula that sequence tasks based on shared computational requirements. We
provide concrete recommendations for task ordering based on mechanistic similarity rather than
surface-level task categories.

Paper Organization. The remainder of this paper is organized as follows. Section 2 establishes
our experimental framework, introducing the transformer architecture and our two structured task
families. Section 3 presents our findings on Markov chain tasks, revealing how induction circuits
enable transfer across different chain orders. Section 4 examines regression tasks, demonstrating the
critical role of data-copying mechanisms in learning nonlinear functions. Section 5 concludes with
implications for both ICL theory and practical training strategies. Technical details and additional
experiments are provided in the appendices.
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1.1 RELATED WORKS

Mechanistic Interpretability of ICL. Recent work has made significant progress in understand-
ing the circuits underlying in-context learning. Olsson et al. (2022) identified induction heads as a
key mechanism for copying patterns from context, while Elhage et al. (2021) developed the math-
ematical framework for analyzing attention patterns. For specific tasks, Nichani et al. (2024) and
Chen et al. (2024b) characterized how transformers implement Markov chain inference, Chen et al.
(2024a) and He et al. (2025) analyzed in-context linear regression, and Cabannes et al. (2024) studied
algorithmic tasks. However, these works focus on individual tasks in isolation, leaving the question
of cross-task transfer unexplored.

Task Diversity and Transfer in ICL. Empirical studies have shown that training on diverse tasks
improves ICL performance (Kim et al., 2025; Zhang et al., 2022), with some work suggesting the
existence of “common structures” that facilitate transfer. However, these studies lack mechanistic
grounding and rely on black-box performance metrics. Our work bridges this gap by providing
mechanistic evidence for these common structures and characterizing their role in transfer.

Curriculum Learning. The broader curriculum learning literature (Bengio et al., 2009; Xu et al.,
2020; Edelman et al., 2024; Graves et al., 2017) has long advocated for training on progressively
harder tasks, with recent work applying these ideas to language models (Soviany et al., 2022; Jia
et al., 2022; Nair et al., 2024; Lin et al., 2024; Feng et al., 2025). Our contribution is to provide
mechanistic justification for curriculum design in the specific context of ICL, showing which task
orderings lead to successful transfer and why.

Notations. For a sequence x = (1,22, ,ZN)s xs:; denotes its subsequence
(@i, i1, -+ ,x;); for a positive integer N, [N] denotes a set {1,2,---,N}; for a sample
space S, Ag denotes the probability simplex on S.

2 SETUP

2.1 TRANSFORMER ARCHITECTURE

We consider a standard transformer architecture, as described in prior work (Nichani et al., 2024;
Chen et al., 2024b; Edelman et al., 2024). A transformer processes any input sequence X & RELXD,
where L is the sequence length and D is the embedding dimension. Each column X ; represents
the embedding for the i-th token. The model applies a series of blocks, each containing an attention
layer followed by a feed-forward network (FFN). These two layers, defined in (B.1) and (B.2), are
composed sequentially to form a transformer block, and the full model is a stack of these blocks.

Definition 2.1 (Transformer). An N-layer decoder-only transformer, denoted, TFy(-), is the com-
position of N blocks. Given an input embedding h\®) = X € RY*P and unembedding matrix
W, € RP*Po  the transformer output is given by

TFe(h(?) = "MW, e RE*Pe p¥) = FFN,_, o Attng,, (h7V) e REXP| Wi e [N],
2.1)
where the parameter 0 = {9&;1:)791(,;?)} consists of both the attention layers 9,§an =

QY KV v O0UNHE « RPXD and the FFN layers 6%y = {W", Wi} c RP*D,

Beyond the standard transformer architecture with both attention layer and FFN layer, we will also
consider attention-only transformers, i.e., Wl(e), WQ(Z) = 0forall £ € [N].

QK Circuit and OV Circuit. The attention mechanism’s computation in (B.1) involves two
stages: first, forming attention patterns via query-key interactions, and second, writing information
to the output via value-vector aggregation. Following Elhage et al. (2021), we refer to the composite

T
matrices governing these stages as the Query-Key (QK) circuit, defined as ng PRRES Ef)K }(f) ,

and the Output-Value (OV) circuit, defined as Wé@ B = V,I(Z)Oﬁf).
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2.2 STRUCTURED TASK DESCRIPTION: IN-CONTEXT MARKOV CHAIN AND LINEAR
REGRESSION

We adapt two well-studied in-context learning (ICL) tasks from the literature to analyze model
performance on distinct data structures. Specifically, we use an ICL Markov chain task to model
sequentially dependent (Markovian) data (Nichani et al., 2024; Chen et al., 2024b; Edelman et al.,
2024; Zhou et al., 2024) and an ICL linear regression task to model independent and identically
distributed (i.i.d.) data (Chen et al., 2024a; He et al., 2025; Akyiirek et al., 2023; Zhang et al., 2024).

2.2.1 IN-CONTEXT MARKOV CHAIN

Data Generation for n-Gram Markov Chains. Standard language modeling task predicts the
next token given all previous tokens: x; 1 ~ p(:|x1.;), while n-gram modeling simplifies this by
giving only (n — 1) previous tokens for prediction. Our In-Context Markov Chain task is derived
from n-gram modeling, which is defined as follows:

Task 2.2 (n-Gram Markov Chain). We assume the data sequence is generated from an n-gram
Markov chain model denoted by a 4-tuple: (S,n,pa,P,), where S = {1,2,---,S} is a finite
corpus and n is the n-gram coefficient. Given a token position i, pa(i) denotes the set of parents of
i, with |pa(i)| = n—1 or 0. We define the set of root nodes R = {i : pa(i) = 0}. For|pa(i)| = n—1,
we write multiset pa(i) as pa(i) = {pa,(i),pay(i), -- ,pa,_1(i)}, where 1 < pa,(i) < pay(i) <
- <vpa, (i) <i-—1, and call paj(i) the j-th parent of i with 1 < j < n — 1. We also let P,
denote the prior probability distribution over a set of Markovian transition dynamics specified by
parent structure defined by pa. We then generate the data sequence as follows: (i) sample m ~ P,
where ™ : S"! — Ag, and calculate the unique stationary distribution |1 of W, where ji; € As,

(ii) fori = 1,2,--- | L, sample s; Hd pr ifi € R, otherwise sample s; ~ 7 (-[pay,(,,_1) (%)), (iii) for

i=L+1,0+2,- L+ (n—1), sample s; " Unif(S) and sample s1,, ~ T(SL11:L4(n-1))
(iv) return the data © = sy.1,4 (n—1) and label y = Sy 4 p.

In our experiments, we set si.,—1 as root nodes and s,.;, as non-root nodes. Subsequence si.r,
serves as the context of the latent interpositional causal structure specified by pa and 7. Besides,
subsequence Sry1.1,4(n—1) are queries independent to the Markovian transition dynamics 7, and
label sy, is derived from the queries through transition 7. The model is expected to predict the
label sy, given the queries sy, 1.7 (n—1) and the context sy.r.

From Parent Structure to Causal Matrix. Given the p-th parent multiset pa, with p € [n — 1],
we define the corresponding p-th causal matrix MP € RLXE as follows: entry Mi’j ; = 1 when
j= pap(z'), otherwise M, f? ; = 0. If we want to look up the p-th parent of non-root node i, we can
consider the i-th row of MP, i.e. Mz ., and there is only one non-zero entry in this row, which is

P
exactly Mi,Pap(i).

Embedding, Readout and Training Objective. We take 3 steps to embed the data sequence: (1)
zero padding, aligning the length of data sequence parameterized by different n; (2) one-hot token
embedding, embedding the data sequence into one-hot vectors; (3) one-hot position embedding,
concatenating one-hot vectors to the token-embedded sequence. Moreover, we read out the model
prediction at the last query position, i.e. the embedded position of s, | (,,_1) defined in Task 2.2. For
training setting, we use attention-only transformer model and set the output dimension D, = S. We
adopt the cross-entropy (CE) loss and formulate the training objective as:

Lcr(0) =Ernp,, si.0n~P(|par) [ — log (smax oread o TFy o emb(sl:L+(n—1))sL+n)] ,
where P(+| pa, 7) denotes the joint distribution of Markov chain trajectory under parent structure pa

and transition rule 7. Here, emb and read denote the data embedding and readout operators.

2.2.2 IN-CONTEXT LINEAR REGRESSION

Data Generation for In-Context Linear Regression. The in-context linear regression task re-
quires the model to perform regression on a dataset {(x;,y;)}\.; that is provided within the context.
This in-context dataset is generated as follows:
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Task 2.3 (Linear Regression). We assume the data sequence is generated from a link function < :
R? — R in the following steps: (i) sample a parameter vector B ~ N(0, 1;), where 3 € RY; (ii)

for each i € [N + 1], we sample x; Hg N(0, 1) with x; € R?, and compute the corresponding
output y; = (BT ;) € R; (iii) return the data x = (v1.n+1,y1.n) and label y = yn 1 1.

Here, the data domain (x1.,y1.v) serves as the context of the latent nonlinear mapping <, and the
token x4 serves as the query. The model is expected to predict the label yn 4 given the context
(z1.n,y1.~) and the query Zn41.

Embedding, Readout and Training Objective. We embed data in 2 steps: (1) dimension align-
ment, aligning the dimension of the context label 35; € R and input z; € R? by padding zeros to the
end of each y;; (2) position rearrangement, rearranging the position of data = (z1.nx+1, Y1.n) tO
x = (%1,Y1,%2,Y2, -+ , TN, YN, TN+1), Where the query x 11 is moved to the last token position
and each context label y; immediately follows its corresponding input x;; (3) one-hot position em-
bedding, concatenating one-hot vectors to the positionally formatted sequence. Moreover, we read
out the model prediction at the last token position.

For training setting, We use standard transformer model and set the output dimension D, = 1. We
select the mean squared error (MSE) loss and formulate the training objective as:

Lyvse(0) =E i | [(read 0 TFg 0 emb(Z1.n 41, Y1:8) — Yn+1) | 5

B~N(0,1),(z4,y:)il, ~P(s,B
where P(:|¢, 3) denotes the joint distribution of any input-output pair (x;, y;) under link function ¢
and parameter vector 8. Here, emb and read denote the data embedding and readout operators.

2.3  PRE-TRAINING AND SUPERVISED FINE-TUNING

Standard training for large language models (LLMs) typically involves two sequential stages. First,
a model undergoes pretraining on a massive, general-domain dataset to acquire broad linguistic
competence and world knowledge. Second, the model is adapted through supervised finetuning
(SFT) on a smaller, specialized dataset to learn task-specific expertise (e.g., Devlin et al., 2019;
Brown et al., 2020). While these two stages often share the same architecture and training objective,
they operate on distinct data distributions. It is well-observed that the SFT stage is significantly more
data-efficient than pretraining. To fully understand the benefits of pretraining and the efficiency of
SFT, it remains important to answer the following question:

How do the model’s parameters change from their pretrained initialization during the SFT stage?

In our experiments, we pretrain and then finetune a transformer model on different variations of
the same structured task, i.e., n-gram Markov chain and linear regression. These variations, which
we term subtasks, are generated by using distinct hyperparameter settings. For the Markov chain,
a subtask is defined by its order and transition probabilities (n, pa); for linear regression, it is de-
fined by the link function ¢. In this framework, we conceptualize the general structured task as
”common knowledge” and a specific subtask as “expertise knowledge”. This allows us to seek a
clear mechanistic interpretation for the following central questions:

(i) Does the ”common knowledge” learned during pretraining accelerate adaptation to the
“expertise” required by the SFT subtask? (ii) How do the model’s internal components evolve
during this transition?

3 STUDY 1: IN-CONTEXT MARKOV CHAIN

In this section, we conduct pretraining and finetuning experiments on the n-Gram Markov Chain
task (Task 2.2) using a 2-layer, 2-head attention-only transformer. We design three subtasks by
varying two factors: the order n and the parent structure pa of each token, which is denoted by a
2-tuple (n,pa). The three subtasks are listed below: (i) (2,diag): 2-gram with only one parent
pa(i) = @ — 1; (ii) (3,diag): 3-gram with two parents pa, (i) = i — 1,pa,(i) = 7 — 2; (iii)
(2, free): 2-gram with only one randomly generated parent pa,, details of which are deferred to
Appendix D.1. For all experiments, we use a vocabulary of S = {1, 2,3} and set the prior for the
transition probabilities to a Dirichlet distribution P, = Dir(0.1 - 1).
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3.1 PRETRAINING STAGE: TRANSFORMER LEARNS INDUCTION HEAD

Previous work (Nichani et al., 2024; Chen et al., 2024b; Olsson et al., 2022) has shown that a two-
layer, (n—1)-head attention-only transformer can solve the n-Gram Markov Chain by implementing
an induction head mechanism. In this paper, we first restate this mechanism and then present detailed
experiments designed to empirically validate its functionality.

Mechanism 1 (Induction Head). This mechanism operates across two layers to solve the task:
- Layer 1: Causal Structure Embedding. The first layer is responsible for embedding the
chain’s causal structure. Each attention head p € [n — 1], is dedicated to a specific parent

position, and its QK circuit Wé}%p learns to encode the p-th causal matrix MP.

- Layer 2: Induction Circuit. The second layer functions as an induction circuit to estimate the
empirical transition. It scans the parents of the whole context for all that equal to the query, and
aggregates the corresponding child nodes to build an empirical probability distribution for the
next token. Recall that R = {7 : pa(i) = 0}, then such process can be formulated as:

Zj¢72 1<pa1:(n—1)(j) = SL41:L+(n-1), J = s)
>jer L(Pay (1) (F) = Sp41:04(n-1))

, Vs e S.
(3.1)

TFo(slSp41:04(n—-1)) &

Mechanism Verification. To verify causal structure embedding at layer 1, we visualize Wé}()

under setup (2, free) in Figure 1 (i) and observe Wéj()l encodes the causal matrix M*. To verify

induction circuit at layer 2, we visualize the distribution of cosine similarity between the output
1K)1 is replaced by the

ground-truth causal matrix M so as to eliminate the influence from layer 1 model weights. The
distribution is visualized in Figure 1 (ii), with the probability density clusters around 1.0.

of empirical estimator Eq. (3.1) and a (2, free) probing model, whose Wé

(1) (1)
M WQK, 1 WQK, 2 Distribution of Cosine Similarity

N ow s 0 o
s 5 & 3

S

Normalized Frequency

o o

05 06 07 08 09 L0
Cosine Similarity

Figure 1: Visualization of Induction Head mechanism under setup (2, free). (i) Left Heatmaps:
W((QIK) embeds the causal structure. The 3 heatmaps from left to right represent the causal matrix

M? and 2 heads of layer 1 QK circuits, i.e. WélK) , and WC(21K) . Wé}gl encodes the causal matrix

M1, while WélK)Q remains dummy since 2-gram setting has only one parent. (ii) Right Histogram:
Layer 2 learns the induction circuit. The histogram displays the distribution of cosine similarity
between the empirical estimator Eq. (3.1) and the (2, free) probing model. The probability density
clusters around 1.0, demonstrating the similarity between layer 2 and the empirical estimator.

3.2 SFT STAGE: THE LEARNED CAUSAL STRUCTURE AND INDUCTION CIRCUIT FOSTER
GENERALIZATION

We conduct two SFT experiments from 2-gram to 3-gram: (2,diag) — (3,diag) and (2, free) —
(3,diag), whose results are compared to the pretraining controlled group (3,diag). To examine
generalization efficacy, we apply 3 metrics: test loss, test accuracy, and test KL-divergence (between
output of the model and empirical estimator Eq. (3.1)). Figure 2 (i) displays successful generaliza-
tion results of the 2 SFT checkpoints. In terms of generalization mechanism, we summarize the
following Takeaways:



Under review as a conference paper at ICLR 2026

Takeaway 1: Unchanged Induction Circuit Fosters Learning of New Causal Structure. 2-
gram pretraining checkpoint learns main structure of induction circuit, which remains unchanged
throughout 3-gram SFT and thereby fosters learning of new causal structure.

Experiment Design. We make comparisons between (2,free) — (3,diag) and (3,diag)
around 2 claims: (i) Layer 2 induction circuit remains unchanged. We first probe a (2, free)

model by replacing its WC(;K) with (3, diag) causal matrices, and then SFT it to (3,diag) and com-
pare the generalization evaluation results to other checkpoints. Given the generalized layer 1 causal
structure, if the main structure of layer 2 induction circuit is already learned in pretraining, the

generalization should be super fast as there is little to adjust; (ii) WC()IK) captures new causal struc-

ture. We visualize W&g of the checkpoints to examine whether they captures new (3, diag) causal
matrices.

Experiment Results. For claim (i), we observe from Figure 2 (i) that the (2, free) probing model
generalizes within 50 (< 2.5% total) training steps, which is 10x faster than (2, free) — (3,diag)
checkpoint. For claim (ii), we observe from Figure 2 (ii) that all SFT checkpoints captures the
(3,diag) causal structure pattern, with WélK)l and WélK)z encode pa, (i) = ¢—1and pay(i) =i—2

parent structure, respectively.

Takeaway 2: Shared Causal Structure Further Accelerates and Deepens Generalization. A
shared parent structure pa, between 2- and 3-gram setting provides distributional mutual informa-
tion, which deepens learning of another parent structure pa, and further accelerates generalization
compared to SFT between irrelevant causal structure.

Experiment Design. We make comparisons between (2,diag) — (3,diag) and (2, free) —
(3,diag) around 2 claims: (i) Generalization of (2,diag) — (3,diag) is faster and deeper than
(2,free) — (3,diag). We compare the generalization evaluation results between checkpoints
to examine whether (2, free) — (3,diag) checkpoint generalizes faster and deeper; (ii) Shared

causal structure pa, deepens learning of pa,. We visualize WélK) of the checkpoints to examine
the precision of the causal structure they capture.

Experiment Results. For claim (i), we observe from Figure 2 (i) that (2, diag) — (3,diag) gen-
eralizes 2x faster and achieves lower convergence test KL-divergence than (2, free) — (3,diag).
For claim (ii), we observe from Figure 2 (ii) that only (2,diag) — (3,diag) captures the complete
(3,diag) causal matrices, while (2, free) — (3,diag) learns some errors and flaws.

4 STUDY 2: IN-CONTEXT LINEAR REGRESSION

We study Linear Regression (Task 2.3) using a 2-layer single head standard transformer. Here, we
consider the following 3 subtask setups: (i) Lin: linear link function, ¢(z) = BTz (ii) Quad:
quadratic link function, ¢(z) = (3 z)?; (iii) Cube: cubic link function, ¢(z) = (3" z)3. Without
ambiguity, we slightly abuse notation by defining WC()ZK) pos S the position embedding domain of

L
Wiy.

4.1 PRETRAINING STAGE: TRANSFORMER COPIES DATA VECTOR TO LABEL POSITIONS

Previous works (Chen et al. (2024a); He et al. (2025)) have demonstrated that a single layer multi-
head attention-only transformer applies kernel regression mechanism to solve Linear Regression
(Task 2.3) with data and label coupled in the same token position. We supplement this result by con-
sidering more general data-label decoupling setting and find that transformer implements copying
head mechanism at layer 1 attention block to couple the corresponding data and label:
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Figure 2: Visualization of ICL. Markov Chain SFT results. (i) Left Plots: Generalization evalua-
tions. The 3 plots from top to down represent test loss, test accuracy, and test KL-divergence, where
formal definitions are deferred to Appendix C. Among all plots, all SFT checkpoints reduce the
training plateau at 250-1000 training steps and achieve comparable convergence value compared to
(3,diag); (ii) Right Heatmaps: W((le) of SFT checkpoints. The 6 heatmaps display WélK) of pre-
training controlled group (3, diag) (the left column), SFT checkpoints (2, free) — (3,diag) (the
middle column), and (2,diag) — (3,diag) (the right column).The top and bottom rows represent
WélK)l and Wé}%z, which capture the (3, diag) parent structure pa, (i) = ¢ — 1 and pa, (i) =i — 2,
respectively.

Mechanism 2 (Copying Head).

- Layer 1 Attention: Copying Data to Label Positions. The QK circuit Wé}() copies x; at
position (2¢ — 1) t0 y; positions 2i by assigning Wé}()’pos(%, 2i—1) = +oo.

- Layer 2 Attention: Data Aggregation. Layer 2 attention aggregates information from context
positions to the query position, preparing for the final prediction.

- FFN: Nonlinearity Adaptation. FFN at layer 1 and layer 2 fit the task-specific nonlinear link
function and filter out noises from residual link with their powerful nonlinearity expressiveness.

Mechanism Verification. We focus on copying head mechanism at attention layer 1 and consider
setup Lin for verification. To be more specific, we visualize W(g}(),pos of Lin in Figure 3 (i) and
observe the attention weight of entry WélK)_pos (21, 2i — 1) approaches 40. It is also notable that Quad

and Cube pretraining checkpoints fail to learn the copying head, while for their SFT conterparts
Lin — Quad and Lin — Cube, it is a different story.

Lin Quad Cube Lin- Quad Lin - Cube

Figure 3: Visualization of W((;K) pos for ICL Regression checkpoints. (i) Left 3 Heatmaps: Pretrain-
ing Checkpoints. Lin learns copying head through pretraining with attention weights of entries

WélK)’pos(Qi, 2i — 1) approach 40. Quad and Cube checkpoints fail to learn copying head; (ii) Right
2 Heatmaps: SFT Checkpoints. Through SFT from Lin to high-order polynomials, Lin — Quad
and Lin — Cube maintain the copying head from Lin checkpoint, fostering generalization to harder

subtasks.
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4.2 SFT STAGE: THE LEARNED COPYING HEAD SERVES AS DETERMINISTIC CURRICULUM
FOR HIGH-ORDER POLYNOMIAL REGRESSION GENERALIZATION

We conduct two SFT experiments: Lin — Quad and Lin — Cube, whose results are compared
to the controlled group Quad and Cube, respectively. We apply MSE loss as the metric of general-
ization efficacy, which is visualized in Figure 4. The results demonstrate that all SFT checkpoints
generalize to higher polynomial subtasks strongly better than pretraining. In terms of generalization
mechanism, we summarize the following Takeaway:

Takeaway 3: Data Copying Head serves as Deterministic Curriculum for Harder High-
Order Polynomial Regression Generalization. Data Copying Head circuit remains unchanged
throughout SFT, which foster nonlinear adaptation of layer 2 FFN to the assigned high-order
polynomial subtask strongly better than pure pretraining.

Experiment Design. We make comparisons between 2 SFT checkpoints {Lin — Quad,Lin —
Cube} and 2 pretraining checkpoints {Quad, Cube} around 3 claims: (i) Direct Pretraining High-
Order Polynomials Fails to Learn Copying Head. We visualize Wé}%pos for Quad and Cube to
confirm they fails to learn the copying head; (ii)) SFT checkpoints Maintains the Copying Head.
We visualize Wéapos for Lin — Quad and Lin — Cube to confirm the copying head is unchanged;
(iii) FFEN Adapts to Subtask Nonlinearity via SFT. Throughout SFT, we plot the Frobenius norm
(F-norm) of layer 2 FFN for each setup and conduct 2 comparisons: a) between Lin — Quad and
Quad, and b) between Lin — Cube and Cube. We monitor the change of F-norm to evaluate the
nonlinearity that FFN adapts to. A far deviation from the random initialized value indicates stronger
nonlinearity.

Experiment Results. For claim (i), we observe from Figure 3 (i) that the pretraining checkpoints
Quad and Cube fail to capture data-label positional dependency to formulate a data copying head.
For claim (ii), we observe from Figure 3 (ii) that the SFT checkpoints Lin — Quad and Lin —
Cube maintain the copying head from Lin pretraining checkpoint. For claim (iii), we observe in
Figure 4 (ii) that the F-norm of Quad and Cube are close to the random initialized value (< 17%),
while that of Lin — Quad and Lin — Cube significantly deviate from it (> 50%), demonstrating
strong nonlinearity adaptations.

Quad Test Loss Cube Test Loss Layer 2 FFN F-norm

NWWWWM 0]
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LinQuad
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Figure 4: Generalization evaluations of ICL Regression SFT, where formal definitions are deferred
to Appendix C. (i) Left and Middle: Test Loss of Quad and Cube. Pretraining checkpoints Quad
and Cube remain their loss plateau, while SFT checkpoints Lin — Quad and Lin — Cube drop
within 50 (< 5% total) training steps; (iii) Right: F-norm of Layer 2 FFN. F-norm of pretraining
checkpoints Quad and Cube remain close (< 17%) to random initialization value, while that of SFT
checkpoints Lin — Quad and Lin — Cube deviates far (> 50%) from it, revealing successful
nonlinearity adaptations.

5 CONCLUSION

We conducted a mechanistic study of how in-context learning (ICL) transfers across tasks. Exper-
iments on Markov chains and regression show that stable structures such as induction circuits and
data-copying heads support generalization, while task-specific components adapt to new expertise.
These mechanisms explain the efficiency gains from curriculum-style training and point to task se-
quencing based on mechanistic similarity as a principled strategy for more efficient language model
training.
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A  HYPERPARAMETER SETTING

Training uses an AdamW optimizer with initial learning rate n = 5 x 10~*, cosine annealing, and
batch size npaten = 64. A training step contains 128 batches. For ICL Markov Chain task, we
train for 1024 steps under 2-gram setting, and train for 2048 steps under 3-gram setting. For ICL
Regression task, we train for 1024 steps for all settings.

B ATTENTION LAYERS AND FFN LAYERS.

First, we define the causal attention layer, which allows tokens to gather information from previous
tokens in the sequence.

Definition B.1 (Attention layer). A causal attention layer with H heads is denoted as Attng(-)

parameterized by 0, where 0 = {Qpn, Kn, Vi, Op}i_, C RP*P. On any input sequence X €
RLXD’

H
Attng(X) = X + Z smax omsk((XQh)(XKh)T) - XV,,0y, € REX4, (B.1)
h=1

here smax(-) denotes the column-wise softmax operation and msk : R(H1Dx (L4 RA+1)x(L+1)
denotes the element-wise causal mask and its (i, j)-th entry ismsk(-);; = Id-1(¢ < j)—oo-1(i > j).
Next, the attention output is processed by a position-wise FFN to add computational depth.
Definition B.2 (FFN layer). An FFN layer is denoted as FFNy(-) parameterized by 6, where 0 =
{Wh,Wa} C RP*DP_ Let o denote the ReLU function. On any input sequence X € RLxD

FFNg(X) := X + o(XW;)Ws. (B.2)

C EVALUATION METRICS

ICL Markov Chain. We use test loss Lo (6), test accuracy acc(6), and test KL-divergence KL(6)
to evaluate the generalization efficacy of the model, which are defined as follows:

Lcg(0) =E p,, S1.24n~P(-| pa,T) [ — log (smax oread o TFy o emb(sl:Lﬁ_(n_l))an)] ,
KL(0) = Exnp.,, s1.00n~P(|pa,) [KL(smax oread o TFg o emb(51.1,4(n—1)) ||7Ar(slzL+(n_1)))] ,

acc(@) = ]ETrNP,r, $1:L+n~P(-| pa,m),s~smaxoreadoTFgoemb(s1, 1, (n—1)) []l (S = 5L+n):|a
(C.1)
where P(-| pa, 7) denotes the test dataset joint distribution of Markov chain trajectory under parent
structure pa and transition rule 7, 7 is the empirical estimator defined in Eq. (3.1), KL(:|-) is the
Kullback-Leibler divergence, and 1 (-) is the indicator function. Here, emb and read denote the data
embedding and readout operators.

ICL Regression. We use test loss to evaluate the generalization efficacy of model, and use F-norm
to evaluate nonlinearity adaption of FFN layers. We define test loss Lysg (6) below:

Lyvse(f) =E N iid

= N ey (e s) (read o TFg o emb(Z1.N+1,Y1:N) — yN_H)Q] , (C2)

where P(-|s, 3) denotes the test dataset joint distribution of any input-output pair (z;, y;) under link
function ¢ and parameter vector 3. Here, emb and read denote the data embedding and readout
operators.

For FFN parameters at layer ¢: eéﬁL = {Wl(e), WQ(E)}, we define its F-norm F () )gpy below:

Fog) =Y (W26.0) + (Wi26.5) ©3)

9

12



Under review as a conference paper at ICLR 2026

D SUPPLEMENTARY SETUP

D.1 DETAILS OF PARENT STRUCTURE free

We consider only one subtask setup considering parent structure free: (2,free), whose parent
structure pa, is randomly sampled, but fixed after sampling and remains unchanged during training.
The parent structure pa, of (2, free) for the consecutive 40 non-root nodes is defined as follows:
Pal(2 : 41) = (17 27 3a 17 47 47 77 8,

2,4,10,3,4,6,14,9,

4,1,19,14,21,4,17,15, (D.1)

25,10,8,18,5,1,21,21,

9,17,11, 34, 30,20, 18,9)

where token position 1 is a root node. The corresponding causal matrix M is visualized in Fig-
ure 1 (i).
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