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Abstract

Large language models (LLMs) such as GPT-001
3.5 and CodeLlama are powerful models for002
code generation and understanding. Fine-003
tuning these models comes with a high com-004
putational cost and requires a large labeled005
dataset. Alternatively, in-context learning tech-006
niques allow models to learn downstream tasks007
with only a few examples. Recently, re-008
searchers have shown how in-context learning009
performs well in bug detection and repair. In010
this paper, we propose code-pair classification011
task in which both the buggy and non-buggy012
versions are given to the model, and the model013
identifies the buggy ones. We evaluate our task014
in real-world dataset of bug detection and two015
most powerful LLMs. Our experiments indi-016
cate that an LLM can often pick the buggy017
from the non-buggy version of the code, and018
the code-pair classification task is much easier019
compared to be given a snippet and deciding020
if and where a bug exists. Code and data are021
attached with the submission.022

1 Introduction023

Large language models (LLMs) like GPT-3.5024

(Brown et al., 2020) and CodeLlama (Rozière et al.,025

2023) have shown impressive capabilities in a va-026

riety of source code tasks, including code genera-027

tion, bug repair, and defect prediction (Alrashedy028

et al., 2023). These models have billions of param-029

eters, which makes it difficult to fine-tune them for030

downstream tasks due to limited resources and the031

requirement for a large labeled dataset. Gathering032

real-world data is costly and requires human effort.033

However, in-context learning requires a few exam-034

ples from labeled dataset where these model learn035

the new task without update the parameters. Re-036

cently, in-context learning has demonstrated strong037

performance in software engineering tasks, achiev-038

ing better results in some tasks than traditional039

fine-tuning techniques.040

Training
Dataset

In-Context
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Testing
Dataset

Pair
Functions Code 1:    </>       

Code 2:    </>       

Code 1:    </>       
Code 2:    </>       
Label: Code 1      

....... 
Code 1:    </>       
Code 2:    </>       
Label: Code 2      

Prediction

For each pair of code snippets,
identify the one that contain bug.

Instruction

Figure 1: Code-pair classification is an in-context learn-
ing approach in which the model receives a pair of func-
tions and identifies the buggy one.

Large language models have demonstrated their 041

capacity to generate code. Additionally, they can 042

debug this generated code without human feedback 043

or the use of external tools. In the real world, devel- 044

opers leverage tools like Co-pilot and GPT to assist 045

in code generation. However, the produced code 046

can occasionally be inaccurate or contain bugs, re- 047

quiring human intervention for corrections. While 048

these models can generate code, it may still contain 049

bugs. They enhance developer productivity, han- 050

dling approximately 55% of the tasks. Nonetheless, 051

developers must still verify the accuracy and qual- 052

ity of the generated code. Even though the models 053

can debug, fix, and repair flawed code, they are not 054

yet perfect. Developers allocate about 25–50% of 055

their time to debugging and testing. 056

The application of LLMs in binary classification 057

tasks for bug detection has been extensively studied. 058

Fine-tuning large language models such as Code- 059

BERT (Feng et al., 2020), CodeT5 (Wang et al., 060

2021), and PLBART (Ahmad et al., 2021b) on syn- 061

thetic or weakly labeled data has yielded impres- 062

sive results on synthetic testing datasets. However, 063

their performance significantly drops when applied 064

to real-world data (Chakraborty et al., 2022). This 065

is because real-world bugs are much more complex. 066

For instance, in Code Snippet 1, the developers 067

makes mistakes in calculating the denominator of 068

the new value. Determining whether this code snip- 069
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pet contains a bug or not is a very challenge, even070

for human intelligence.071

Although numerous prior studies have demon-072

strated progress in addressing this issue, the per-073

formance remains unsatisfactory for real-world ap-074

plications. In this paper, we introduce a new task:075

code-pair classification. This involves providing076

the model with two code snippets—one containing077

a bug and the other the fixed version. The model’s078

task is to identify the snippet that contains the bug.079

2 Related Work080

LLMs for bug detection: Applying LLM-based081

defect detection is an active research area in the arti-082

ficial intelligence and software engineering commu-083

nities (Hellendoorn et al., 2020; Chen et al., 2022).084

(Chen et al., 2023b) proposed self-debugging tech-085

niques where the model generates code and then086

debugs the generated code by itself without hu-087

man feedback. The model’s ability to identify and088

fix bugs without human intervention enhances the089

concept of rubber duck debugging. PLBART is a090

bidirectional and auto-regressive model that was091

pre-trained on both natural language and source092

code (Ahmad et al., 2021a). This model follows the093

same architecture as BART, which is a sequence-094

to-sequence Transformer (Vaswani et al., 2017).095

The model was evaluated on vulnerability detec-096

tion clone detection. (Fu et al., 2022) proposed097

VulRepair to automatically detect and repair vul-098

nerabilities using the T5 architecture (Raffel et al.,099

2020).100

In-context learning: The (Brown et al., 2020)101

Introduced the concept of in-context learning,102

where large language models learn new tasks with-103

out updating the model’s parameters. This ap-104

proach has been successfully applied in many ap-105

plications, such as code generation (Gao et al.,106

2023) code optimization (Madaan et al., 2023b)107

and comment generation (Wang et al., 2024). Us-108

ing the concept of self-consistency in defect repair109

demonstrates a better improvement than the Chain110

of Thought (COT) approach, where the author in111

(Ahmed and Devanbu, 2023) included commit-log112

messages in a few-shot setting. In (Zhou et al.,113

2023), the authors introduced DocPrompting, a114

novel approach that prompts the Language model115

using relevant documentation, enhancing to im-116

prove the accuracy of code generation. The LLM117

of code shows improvement in code edits and refac-118

toring. In (Madaan et al., 2023a), the authors in-119

troduce the Performance-Improving Edits (PIE) 120

dataset tailored for code optimization. Demonstrat- 121

ing a few examples of slower and faster versions 122

of code using in-context learning, the results in- 123

dicate that the LLM successfully speeds up the 124

program. (Chen et al., 2023a) proposes a "Program 125

of Thoughts" (PoT) prompt where the model gen- 126

erates text and code to solve complex numerical 127

reasoning tasks. 128

3 Experimental Setup 129

In this section, we describe the dataset used to 130

evaluate our approach and the chosen pretrained 131

language models. 132

3.1 Real-world dataset 133

The PyPIBugs, proposed by (Allamanis et al., 134

2022), is the largest real-world dataset for bug de- 135

tection. It contains both the buggy code and its 136

fixed version of functions from real-world applica- 137

tions. The authors did not release their dataset due 138

to licensing limitations, but they provided supple- 139

mentary materials that help us to reconstruct the 140

dataset. The dataset contain a total of 2,289 buggy 141

functions and each buggy one have its verison of 142

fixed function, so the total is 4578. It has a vari- 143

ety of buggy code types, which include variable 144

misuse, swapped arguments, and incorrect binary 145

operator detection. We randomly split the dataset 146

into training, validation, and testing sets with ratios 147

of 80%, 10%, and 10% respectively. 148

3.2 Models 149

Fine-tuning approach: We chose two well- 150

known pretrained models for code, which are Code- 151

BERT and CodeT5. We fine-tune the models 152

through several experiments, using various permu- 153

tations of hyper-parameters including: batch size 154

{16, 32, 64} and learning rate {3-e6, 1-e5, 2-e5, 3- 155

e5}. We fine-tune the models using the training set, 156

save checkpoints with the lowest validation loss, 157

and then test the models on the testing set. 158

• CodeBERT: A pretrained model based on a 159

Transformer encoder and follows the same 160

architecture as BERT. This model was pre- 161

trained on both source code and natural lan- 162

guage. due to the limited resource, we fine- 163

tune codebert-base 1 with 125 millions of pa- 164

rameters. 165

1https://huggingface.co/microsoft/codebert-base
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• CodeT5: This model, proposed by (Wang166

et al., 2021), builds on the T5 (Text-to-Text167

Transfer Transformer) architecture. CodeT5168

was pretrained on the CodeSearchNet data and169

includes a large dataset of C/C# programs that170

were collected from real-world repositories on171

GitHub.172

In-context learning: We consider two language173

models, GPT-3.5 and CodeLlam, in evaluating our174

approach. In the in-context Learning approach,175

selecting demonstration examples is significantly176

important, so we followed (Liu et al., 2023) as he177

demonstrated an excellent technique for choosing178

the demonstration examples. We embed all exam-179

ples from both the training and testing sets using the180

OpenAI “text-embedding-ada-002” model, which181

is an exceptionally powerful tool for embedding182

text and code. Subsequently, we train FAISS using183

the training set and use the testing set to query and184

select the nearest examples from the training set185

based on Euclidean distance.186

• GPT-3.5: This is one of the most powerful187

models from OpenAI. We conducted our ex-188

periments using "GPT-3.5-turbo," which is189

one of OpenAI’s models boasting a total of190

154 billion parameters. It can handle an excep-191

tionally long context of up to 16,385 tokens.192

• CodeLlama: A large language model for193

code based on Llama 2. There are two foun-194

dational models: CodeLlama-Python, which195

specializes only in Python, and CodeLlama-196

Instruct, which is an instruction-following197

model. All the models are trained on se-198

quences of 16k tokens with 7B, 13B, and 34B199

parameters each. We use CodeLlama-Instruct200

with 34B parameters to evaluate our approach.201

4 Experimental Results202

4.1 Main Results203

Fine-tuning results: We adjust CodeBERT and204

CodeT5 using the training set by varying hyper-205

parameters such as batch size, learning rate, and206

number of epochs. Subsequently, The model that207

had the lowest validation loss was evaluated on208

the test set. Table 1 presents the results of the bi-209

nary classification task for both CodeBERT and210

CodeT5. The accuracy is comparable to random211

guessing at approximately 50%, and both models212

1 # Buggy code
2 def __rel_change(self, new: float) ->

float:
3 if self._likelihoods:
4 old = self._likelihoods[-1]

5 return abs((new - old) / old )
6 return inf
7

8 # Fixed code
9 def __rel_change(self, new: float) ->

float:
10 if self._likelihoods:
11 old = self._likelihoods[-1]
12 return abs((new - old) / new )
13 return inf

Code Snippet 1: Example of a variable misuse bug
found in real-world code.

exhibit significantly poor performance on the F1- 213

score. The models are fine-tuned on a small dataset, 214

which makes it difficult for the model to learn the 215

downstream task. 216

Secondly, there is the multi-stage fine-tuning. 217

First, the models are fine-tuned on a large syn- 218

thetic dataset for bug detection to learn the domain- 219

specific task. Then, they are further fine-tuned on 220

the PyPIBugs dataset. Overall, this approach shows 221

a 10% improvement in accuracy performance. It 222

also significantly improves the F1-score, raising it 223

from 36.41 to 60.26 for codeBERT and from 49.67 224

to 59.68 for CodeT5. 225

In-context (binary classification) results: To 226

select demonstration examples, we retrieve rele- 227

vant samples from the training set using FAISS. 228

For each function, we obtain the nearest functions 229

along with their pairs and labels for context. We 230

then input the test function into the model to predict 231

whether the function contains a bug. This task is 232

a binary classification, similar to the previous one, 233

but now we use GPT-3.5 and CodeLlama. GPT-3.5 234

achieves slightly better performance than a random 235

guess, with an accuracy of 54%, and the F1-score is 236

around 60%, comparable to multi-stage fine-tuning. 237

On the other hand, CodeLlama demonstrates poor 238

performance in both accuracy and F1-score. 239

In-context (code-pair classification) results: 240

Since in-context learning is very sensitive to the 241

demonstration examples, we also retrieve relevant 242

pair examples and prompt the model with two 243

paired functions: the buggy version and the fixed 244

version. We then instruct the model to select the 245

buggy one. The results show a significant improve- 246

ment in accuracy compared to binary classification. 247

For GPT-3.5, the accuracy increased from 54.15% 248
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Table 1: We evaluated the code-pair classification task for bug detection using a real-world dataset. Our results
were compared with those of two baseline methods: the fine-tuning approach and in-context binary classification.

Approach Tasks Models Accuracy F1 Score

Supervised learning Binary CodeBERT 51.96 36.41
(Directly fine-tune) classification CodeT5 50.00 49.67

Supervised learning Binary CodeBERT 61.13 60.26
(Alrashedy et al., 2023) classification CodeT5 60.48 59.68

In-context learning Binary GPT-3.5 54.15 60.67
classification CodeLlama 50.44 32.24

In-context learning Code-pair GPT-3.5 72.93 84.34
(Ours) classification CodeLlama 69.87 82.26

to 72.93%. The accuracy of CodeLlama made an249

impressive jump from random guessing at 50% to250

69.87%. The F1 scores for both models are very251

impressive, standing at 84.34% and 82.26% respec-252

tively.253

4.2 Error Analysis254

We conducted an experiment on error analysis and255

found that the model achieves an accuracy of up256

to 80% on small functions with fewer than 250257

tokens. The model learns and performs better with258

smaller demonstration examples and inputs. We259

randomly selected 50 misclassified examples and260

observed that they contained bugs, specifically of261

the wrong operator type. We noted that the models262

struggle to distinguish between buggy functions263

and their fixed versions when the functions exceed264

2000 tokens in length.265

In the binary classification task for in-context266

learning, we ran the experiment three times. The ac-267

curacy for GPT-3.5 consistently ranged from 53%268

to 56%, suggesting that the prediction is akin to269

random guessing. For CodeLlama, the accuracy270

was 50%, accompanied by a significant drop in the271

F1-score.272

5 Conclusion and Future Work273

We introduced the concept of code-pair classifica-274

tion, a novel approach to bug detection in which275

Large Language Models (LLMs) are given two ver-276

sions of a function: one with a bug and the other277

fixed version. The task for the LLMs is to identify278

the version containing the bug. This approach was279

evaluated using two advanced LLMs, GPT-3.5 and280

CodeLlama. The findings suggest that an LLM is281

often capable of distinguishing the buggy version282

from the bug-free one. Furthermore, the task of283

code-pair classification is much easier compared to 284

being given a snippet and deciding if and where a 285

bug exists. 286

6 Limitations 287

Our approach assumes that the input to the model 288

consists of a pair of functions: the buggy function 289

and its corrected version. This makes it a much 290

easier task for the model to distinguish the buggy 291

function from the fixed one. For future work, it 292

would be powerful to train the model on pairs of 293

functions rather than on single functions to boost 294

performance. Examples of this include contrastive 295

learning (Li et al., 2023) and consider other loss 296

functions such as triplet and hinge losses. Secondly, 297

our results in bug detection are still not stellar. This 298

is because the performance of LLM on real-world 299

data tends to be low, as cited in (Allamanis et al., 300

2022; Hellendoorn et al., 2020; Chen et al., 2022). 301

However, our approach demonstrates an improve- 302

ment in such situations. 303
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