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Abstract

Large language models (LLMs) such as GPT-
3.5 and CodeLlama are powerful models for
code generation and understanding. Fine-
tuning these models comes with a high com-
putational cost and requires a large labeled
dataset. Alternatively, in-context learning tech-
niques allow models to learn downstream tasks
with only a few examples. Recently, re-
searchers have shown how in-context learning
performs well in bug detection and repair. In
this paper, we propose code-pair classification
task in which both the buggy and non-buggy
versions are given to the model, and the model
identifies the buggy ones. We evaluate our task
in real-world dataset of bug detection and two
most powerful LLMs. Our experiments indi-
cate that an LLM can often pick the buggy
from the non-buggy version of the code, and
the code-pair classification task is much easier
compared to be given a snippet and deciding
if and where a bug exists. Code and data are
attached with the submission.

1 Introduction

Large language models (LLMs) like GPT-3.5
(Brown et al., 2020) and CodeLlama (Rozi¢re et al.,
2023) have shown impressive capabilities in a va-
riety of source code tasks, including code genera-
tion, bug repair, and defect prediction (Alrashedy
et al., 2023). These models have billions of param-
eters, which makes it difficult to fine-tune them for
downstream tasks due to limited resources and the
requirement for a large labeled dataset. Gathering
real-world data is costly and requires human effort.
However, in-context learning requires a few exam-
ples from labeled dataset where these model learn
the new task without update the parameters. Re-
cently, in-context learning has demonstrated strong
performance in software engineering tasks, achiev-
ing better results in some tasks than traditional
fine-tuning techniques.
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Figure 1: Code-pair classification is an in-context learn-
ing approach in which the model receives a pair of func-
tions and identifies the buggy one.

Large language models have demonstrated their
capacity to generate code. Additionally, they can
debug this generated code without human feedback
or the use of external tools. In the real world, devel-
opers leverage tools like Co-pilot and GPT to assist
in code generation. However, the produced code
can occasionally be inaccurate or contain bugs, re-
quiring human intervention for corrections. While
these models can generate code, it may still contain
bugs. They enhance developer productivity, han-
dling approximately 55% of the tasks. Nonetheless,
developers must still verify the accuracy and qual-
ity of the generated code. Even though the models
can debug, fix, and repair flawed code, they are not
yet perfect. Developers allocate about 25-50% of
their time to debugging and testing.

The application of LLMs in binary classification
tasks for bug detection has been extensively studied.
Fine-tuning large language models such as Code-
BERT (Feng et al., 2020), CodeT5 (Wang et al.,
2021), and PLBART (Ahmad et al., 2021b) on syn-
thetic or weakly labeled data has yielded impres-
sive results on synthetic testing datasets. However,
their performance significantly drops when applied
to real-world data (Chakraborty et al., 2022). This
is because real-world bugs are much more complex.
For instance, in Code Snippet 1, the developers
makes mistakes in calculating the denominator of
the new value. Determining whether this code snip-



pet contains a bug or not is a very challenge, even
for human intelligence.

Although numerous prior studies have demon-
strated progress in addressing this issue, the per-
formance remains unsatisfactory for real-world ap-
plications. In this paper, we introduce a new task:
code-pair classification. This involves providing
the model with two code snippets—one containing
a bug and the other the fixed version. The model’s
task is to identify the snippet that contains the bug.

2 Related Work

LLMs for bug detection: Applying LLM-based
defect detection is an active research area in the arti-
ficial intelligence and software engineering commu-
nities (Hellendoorn et al., 2020; Chen et al., 2022).
(Chen et al., 2023b) proposed self-debugging tech-
niques where the model generates code and then
debugs the generated code by itself without hu-
man feedback. The model’s ability to identify and
fix bugs without human intervention enhances the
concept of rubber duck debugging. PLBART is a
bidirectional and auto-regressive model that was
pre-trained on both natural language and source
code (Ahmad et al., 2021a). This model follows the
same architecture as BART, which is a sequence-
to-sequence Transformer (Vaswani et al., 2017).
The model was evaluated on vulnerability detec-
tion clone detection. (Fu et al., 2022) proposed
VulRepair to automatically detect and repair vul-
nerabilities using the T5 architecture (Raffel et al.,
2020).

In-context learning: The (Brown et al., 2020)
Introduced the concept of in-context learning,
where large language models learn new tasks with-
out updating the model’s parameters. This ap-
proach has been successfully applied in many ap-
plications, such as code generation (Gao et al.,
2023) code optimization (Madaan et al., 2023b)
and comment generation (Wang et al., 2024). Us-
ing the concept of self-consistency in defect repair
demonstrates a better improvement than the Chain
of Thought (COT) approach, where the author in
(Ahmed and Devanbu, 2023) included commit-log
messages in a few-shot setting. In (Zhou et al.,
2023), the authors introduced DocPrompting, a
novel approach that prompts the Language model
using relevant documentation, enhancing to im-
prove the accuracy of code generation. The LLM
of code shows improvement in code edits and refac-
toring. In (Madaan et al., 2023a), the authors in-

troduce the Performance-Improving Edits (PIE)
dataset tailored for code optimization. Demonstrat-
ing a few examples of slower and faster versions
of code using in-context learning, the results in-
dicate that the LLM successfully speeds up the
program. (Chen et al., 2023a) proposes a "Program
of Thoughts" (PoT) prompt where the model gen-
erates text and code to solve complex numerical
reasoning tasks.

3 Experimental Setup

In this section, we describe the dataset used to
evaluate our approach and the chosen pretrained
language models.

3.1 Real-world dataset

The PyPIBugs, proposed by (Allamanis et al.,
2022), is the largest real-world dataset for bug de-
tection. It contains both the buggy code and its
fixed version of functions from real-world applica-
tions. The authors did not release their dataset due
to licensing limitations, but they provided supple-
mentary materials that help us to reconstruct the
dataset. The dataset contain a total of 2,289 buggy
functions and each buggy one have its verison of
fixed function, so the total is 4578. It has a vari-
ety of buggy code types, which include variable
misuse, swapped arguments, and incorrect binary
operator detection. We randomly split the dataset
into training, validation, and testing sets with ratios
of 80%, 10%, and 10% respectively.

3.2 Models

Fine-tuning approach: We chose two well-
known pretrained models for code, which are Code-
BERT and CodeT5. We fine-tune the models
through several experiments, using various permu-
tations of hyper-parameters including: batch size
{16, 32, 64} and learning rate {3-e6, 1-e5, 2-e5, 3-
e5}. We fine-tune the models using the training set,
save checkpoints with the lowest validation loss,
and then test the models on the testing set.

* CodeBERT: A pretrained model based on a
Transformer encoder and follows the same
architecture as BERT. This model was pre-
trained on both source code and natural lan-
guage. due to the limited resource, we fine-
tune codebert-base ! with 125 millions of pa-
rameters.

"https://huggingface.co/microsoft/codebert-base



* CodeT5: This model, proposed by (Wang
et al., 2021), builds on the T5 (Text-to-Text
Transfer Transformer) architecture. CodeT5
was pretrained on the CodeSearchNet data and
includes a large dataset of C/C# programs that
were collected from real-world repositories on
GitHub.

In-context learning: We consider two language
models, GPT-3.5 and CodeLlam, in evaluating our
approach. In the in-context Learning approach,
selecting demonstration examples is significantly
important, so we followed (Liu et al., 2023) as he
demonstrated an excellent technique for choosing
the demonstration examples. We embed all exam-
ples from both the training and testing sets using the
OpenAl “text-embedding-ada-002” model, which
is an exceptionally powerful tool for embedding
text and code. Subsequently, we train FAISS using
the training set and use the testing set to query and
select the nearest examples from the training set
based on Euclidean distance.

* GPT-3.5: This is one of the most powerful
models from OpenAl. We conducted our ex-
periments using "GPT-3.5-turbo," which is
one of OpenAl’s models boasting a total of
154 billion parameters. It can handle an excep-
tionally long context of up to 16,385 tokens.

* CodeLlama: A large language model for
code based on Llama 2. There are two foun-
dational models: CodeL.lama-Python, which
specializes only in Python, and CodelLlama-
Instruct, which is an instruction-following
model. All the models are trained on se-
quences of 16k tokens with 7B, 13B, and 34B
parameters each. We use CodeLlama-Instruct
with 34B parameters to evaluate our approach.

4 Experimental Results

4.1 Main Results

Fine-tuning results: We adjust CodeBERT and
CodeTS5 using the training set by varying hyper-
parameters such as batch size, learning rate, and
number of epochs. Subsequently, The model that
had the lowest validation loss was evaluated on
the test set. Table 1 presents the results of the bi-
nary classification task for both CodeBERT and
CodeT5. The accuracy is comparable to random
guessing at approximately 50%, and both models

I # Buggy code

> def __rel change(self, new: float) —->

float:
if self._likelihoods:

4 old = self._likelihoods[-1]

5 return abs ((new - old) / old)

6 return inf

8 # Fixed code

9 def __rel_change(self, new: float) ->
float:

10 if self._likelihoods:

11 old = self. likelihoods[-1]

12 return abs((new — old) / new)
13 return inf

Code Snippet 1: Example of a variable misuse bug
found in real-world code.

exhibit significantly poor performance on the F1-
score. The models are fine-tuned on a small dataset,
which makes it difficult for the model to learn the
downstream task.

Secondly, there is the multi-stage fine-tuning.
First, the models are fine-tuned on a large syn-
thetic dataset for bug detection to learn the domain-
specific task. Then, they are further fine-tuned on
the PyPIBugs dataset. Overall, this approach shows
a 10% improvement in accuracy performance. It
also significantly improves the F1-score, raising it
from 36.41 to 60.26 for codeBERT and from 49.67
to 59.68 for CodeT5.

In-context (binary classification) results: To
select demonstration examples, we retrieve rele-
vant samples from the training set using FAISS.
For each function, we obtain the nearest functions
along with their pairs and labels for context. We
then input the test function into the model to predict
whether the function contains a bug. This task is
a binary classification, similar to the previous one,
but now we use GPT-3.5 and CodeLlama. GPT-3.5
achieves slightly better performance than a random
guess, with an accuracy of 54%, and the F1-score is
around 60%, comparable to multi-stage fine-tuning.
On the other hand, CodeLLlama demonstrates poor
performance in both accuracy and F1-score.

In-context (code-pair classification) results:
Since in-context learning is very sensitive to the
demonstration examples, we also retrieve relevant
pair examples and prompt the model with two
paired functions: the buggy version and the fixed
version. We then instruct the model to select the
buggy one. The results show a significant improve-
ment in accuracy compared to binary classification.
For GPT-3.5, the accuracy increased from 54.15%



Table 1: We evaluated the code-pair classification task for bug detection using a real-world dataset. Our results
were compared with those of two baseline methods: the fine-tuning approach and in-context binary classification.

Approach ‘ Tasks Models Accuracy F1 Score
Supervised learning Binary CodeBERT 51.96 36.41
(Directly fine-tune) classification | CodeT5 50.00 49.67
Supervised learning Binary CodeBERT 61.13 60.26
(Alrashedy et al., 2023) | classification | CodeT5 60.48 59.68
In-context learning Binary GPT-3.5 54.15 60.67
classification | CodeLlama 50.44 32.24
In-context learning Code-pair GPT-3.5 72.93 84.34
(Ours) classification | CodeLlama 69.87 82.26

to 72.93%. The accuracy of CodelLlama made an
impressive jump from random guessing at 50% to
69.87%. The F1 scores for both models are very
impressive, standing at 84.34% and 82.26% respec-
tively.

4.2 Error Analysis

We conducted an experiment on error analysis and
found that the model achieves an accuracy of up
to 80% on small functions with fewer than 250
tokens. The model learns and performs better with
smaller demonstration examples and inputs. We
randomly selected 50 misclassified examples and
observed that they contained bugs, specifically of
the wrong operator type. We noted that the models
struggle to distinguish between buggy functions
and their fixed versions when the functions exceed
2000 tokens in length.

In the binary classification task for in-context
learning, we ran the experiment three times. The ac-
curacy for GPT-3.5 consistently ranged from 53%
to 56%, suggesting that the prediction is akin to
random guessing. For CodeLlama, the accuracy
was 50%, accompanied by a significant drop in the
F1-score.

5 Conclusion and Future Work

We introduced the concept of code-pair classifica-
tion, a novel approach to bug detection in which
Large Language Models (LLMs) are given two ver-
sions of a function: one with a bug and the other
fixed version. The task for the LLM:s is to identify
the version containing the bug. This approach was
evaluated using two advanced LLMs, GPT-3.5 and
CodeLlama. The findings suggest that an LLM is
often capable of distinguishing the buggy version
from the bug-free one. Furthermore, the task of

code-pair classification is much easier compared to
being given a snippet and deciding if and where a
bug exists.

6 Limitations

Our approach assumes that the input to the model
consists of a pair of functions: the buggy function
and its corrected version. This makes it a much
easier task for the model to distinguish the buggy
function from the fixed one. For future work, it
would be powerful to train the model on pairs of
functions rather than on single functions to boost
performance. Examples of this include contrastive
learning (Li et al., 2023) and consider other loss
functions such as triplet and hinge losses. Secondly,
our results in bug detection are still not stellar. This
is because the performance of LLM on real-world
data tends to be low, as cited in (Allamanis et al.,
2022; Hellendoorn et al., 2020; Chen et al., 2022).
However, our approach demonstrates an improve-
ment in such situations.
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