
Under review as a conference paper at ICLR 2023

ON THE POWER OF PRE-TRAINING FOR GENERALIZA-
TION IN RL: PROVABLE BENEFITS AND HARDNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalization in Reinforcement Learning (RL) aims to train an agent during
training that generalizes to the target environment. In this work, we first point
out that RL generalization is fundamentally different from the generalization in
supervised learning, and fine-tuning on the target environment is necessary for
good test performance. Therefore, we seek to answer the following question: how
much can we expect pre-training over training environments to be helpful for effi-
cient and effective fine-tuning? On one hand, we give a surprising result showing
that asymptotically, the improvement from pre-training is at most a constant fac-
tor. On the other hand, we show that pre-training can be indeed helpful in the
non-asymptotic regime by designing a policy collection-elimination (PCE) algo-
rithm and proving a distribution-dependent regret bound that is independent of the
state-action space. We hope our theoretical results can provide insight towards
understanding pre-training and generalization in RL.

1 INTRODUCTION

Reinforcement learning (RL) is concerned with sequential decision making problems in which the
agent interacts with the environment aiming to maximize its cumulative reward. This framework
has achieved tremendous successes in various fields such as game playing (Mnih et al., 2013; Sil-
ver et al., 2017; Vinyals et al., 2019), resource management (Mao et al., 2016), recommendation
systems (Shani et al., 2005; Zheng et al., 2018) and online advertising (Cai et al., 2017). However,
many empirical applications of RL algorithms are typically restricted to the single environment set-
ting. That is, the RL policy is learned and evaluated in the exactly same environment. This learning
paradigm can lead to the issue of overfitting in RL (Sutton, 1995; Farebrother et al., 2018), and may
have degenerate performance when the agent is deployed to an unseen (but similar) environment.

The ability to generalize to test environments is important to the success of reinforcement learning
algorithms, especially in the real applications such as autonomous driving (Shalev-Shwartz et al.,
2016; Sallab et al., 2017), robotics (Kober et al., 2013; Kormushev et al., 2013) and health care (Yu
et al., 2021). In these real-world tasks, the environment can be dynamic, open-ended and always
changing. We hope the agent can learn meaningful skills in the training stage and be robust to
the variation during the test stage. Furthermore, in applications such as robotics where we have
a simulator to efficiently and safely generate unlimited data, we can firstly train the agent in the
randomized simulator models and then generalize it to the real environment (Rusu et al., 2017; Peng
et al., 2018; Andrychowicz et al., 2020). An RL algorithm with good generalization ability can
greatly reduce the demand of real-world data and improve test-time performance.

Generalization in supervised learning has been widely studied for decades (Mitchell et al., 1986;
Bousquet & Elisseeff, 2002; Kawaguchi et al., 2017). For a typical supervised learning task such as
classification, given a hypothesis space H and a loss function ℓ, the agent aims to find an optimal
solution in the average manner. That is, we hope the solution is near-optimal compared with the
optimal hypothesis h∗ in expectation over the data distribution, which is formally defined as h∗ =
argminh∈H E

[
ℓ(h(X), Y)

]
. From this perspective, generalization in RL is fundamentally different.

Once the agent is deployed in the test environment M sampled from distribution D, it is expected to
achieve comparable performance with the optimal policy in M. In other words, we hope the learned
policy can perform near-optimal compared with the optimal value V ∗

M in instance for the sampled
test environment M.

1

Under review as a conference paper at ICLR 2023

Unfortunately, as discussed in many previous works (Malik et al., 2021; Ghosh et al., 2021), the
instance-optimal solution in the target environment can be statistically intractable without additional
assumptions. We formulate this intractability into a lower bound (Proposition 1) to show that it is im-
practical to directly obtain a near-optimal policy for the test environment M∗ with high probability.
This motivates us to ask: in what settings can the generalization problem in RL be tractable?

Targeting on RL generalization, the agent is often allowed to further interact with the test environ-
ment to improve its policy. For example, many previous results in robotics have demonstrated that
fine-tuning in the test environment can greatly improve the test performance for sim-to-real trans-
fer (Rusu et al., 2017; James et al., 2019; Rajeswaran et al., 2016). Therefore, one possible way to
formulate generalization is to allow further interaction with the target environment during the test
stage. Specifically, suppose the agent interacts with MDP M ∼ D in the test stage, and we mea-
sure the performance of the fine-tuning algorithm A using the expected regret in K episodes, i.e.
RegK(D,A) = EM∼D

[∑K
k=1

(
V

π∗(M)
M − V πk

M

)]
. In this setting, can the information obtained

from pre-training 1 help reduce the regret suffered during the test stage?

In addition, when the test-time fine-tuning is not allowed, what can we expect the pre-training to be
helpful? As discussed above, we can no longer demand instance-optimality in this setting, but can
only step back and pursue a near-optimal policy in expectation. Specifically, our goal is to perform
near-optimal in terms of the optimal policy with maximum value in expectation, i.e. π∗(D) =
argmaxπ∈Π EM∼DV

π
M. Here V π

M is the value function of the policy π in MDP M. We seek to
answer: is it possible to design a sample-efficient training algorithm that returns a ϵ-optimal policy
π in expectation, i.e. EM∼D

[
V

π∗(D)
M − V π

M

]
≤ ϵ?

Main contributions. In this paper, we theoretically study RL generalization in the above two set-
tings. Our contributions can be summarized as follows:

• When fine-tuning is allowed, we study the benefit of pre-training for the test-time performance.
Since all information we can gain from training is no more than the distribution D itself, we start with
a somewhat surprising theorem showing the limitation of this benefit: there exists hard cases where,
even if the agent has exactly learned the environment distribution D in the training stage, it cannot
improve the test-time regret up to a universal factor in the asymptotic setting (K → ∞). In other
words, knowing the distribution D cannot provide more information in consideration of the regret
asymptotically. Our theorem is proved by using Radon transform and Lebesgue integral analysis to
give a global level information limit, which we believe are novel techniques for RL communities.

• Inspired by this lower bound, we focus on the non-asymptotic setting, and study whether and how
much we can reduce the regret in this case. We propose an efficient pre-training and test-time fine-
tuning algorithm called PCE (Policy Collection-Elimination). By maintaining a minimum policy set
that generalizes well, it achieves a regret upper bound Õ

(√
C(D)K

)
in the test stage, where C(D)

is a complexity measure of the distribution D. This bound removes the polynomial dependence
on the cardinality of state-action space by leveraging the information obtained from pre-training.
We give a fine-grained analysis on the value of C(D) and show that our bound can be significantly
smaller than state-action space dependent bound in many settings.

• When the agent cannot interact with the test environment, we propose an efficient algorithm called
OMERM (Optimistic Model-based Empirical Risk Minimization) to find a near-optimal policy in
expectation. This algorithm is guaranteed to return a ϵ-optimal policy with O

(
log
(
NΠ

ϵ/(12H)

)
/ϵ2
)

sampled MDP tasks in the training stage where NΠ
ϵ/(12H) is the complexity of the policy class. This

rate matches the traditional generalization rate in many supervised learning results (Mohri et al.,
2018; Kawaguchi et al., 2017).

2 RELATED WORKS

Generalization and Multi-task RL. Many empirical works study how to improve generalization
for deep RL algorithms (Packer et al., 2018; Zhang et al., 2020; Ghosh et al., 2021). We refer readers

1We call the training stage “pre-training” when interactions with the test environment are allowed.

2

Under review as a conference paper at ICLR 2023

to a recent survey Kirk et al. (2021) for more discussion on empirical results. Our paper is more
closely related to the recent works towards understanding RL generalization from the theoretical
perspective.Wang et al. (2019) focused on a special class of reparameterizable RL problems, and
derive generalization bounds based on Rademacher complexity and the PAC-Bayes bound. Malik
et al. (2021); Duan et al. (2021) also provided lower bounds showing that instance-optimal solution
is statistically difficult for RL generalization when we cannot access the sampled test environment.
Further, they proposed efficient algorithms which is guaranteed to return a near-optimal policy for
deterministic MDPs under the strong proximity condition they introduced. Our paper is also re-
lated to recent works studying multi-task learning in RL (Tirinzoni et al., 2020; Hu et al., 2021;
Zhang & Wang, 2021; Lu et al., 2021), in which they studied how to transfer the knowledge learned
from previous tasks to new tasks. Their problem formulation is different from ours since they study
the multi-task setting where the MDP is selected from a given MDP set without probability mech-
anism(Brunskill & Li, 2013). In addition, they typically assume that all the tasks have similar
transition dynamics or share common representations.

Provably Efficient Exploration in RL. Recent years have witnessed many theoretical results study-
ing provably efficient exploration in RL (Osband et al., 2013; Azar et al., 2017; Osband & Van Roy,
2017; Jin et al., 2018; 2020b; Wang et al., 2020; Zhang et al., 2021) with the minimax regret for
tabular MDPs with non-stationary transition being Õ(

√
HSAK). These results indicate that poly-

nomial dependence on the whole state-action space is unavoidable without additional assumptions.
Their formulation corresponds to the single-task setting where the agent only interacts with a single
environment aiming to maximize its cumulative rewards without pre-training. The regret defined in
the fine-tuning setting coincides with the concept of Bayesian regret in the previous literature (Os-
band et al., 2013; Osband & Van Roy, 2017; O’Donoghue, 2021). The best-known Bayesian regret
for tabular RL is Õ(

√
HSAK) when applied to our setting (O’Donoghue, 2021).

3 PRELIMINARY AND FRAMEWORK

Notations Throughout the paper, we use [N] to denote the set {1, · · · , N} where N ∈ N+. For
an event E , let I[E] be the indicator function of event E , i.e. I[E] = 1 if and only if E is true. For any
domain Ω, we use C(Ω) to denote the continuous function on Ω. We use O(·) to denote the standard
big O notation, and Õ(·) to denote the big O notation with log(·) term omitted.

3.1 EPISODIC MDPS

An episodic MDP M is specified as a tuple (S,A,PM, RM, H), where S,A are the state and action
space with cardinality S and A respectively, and H is the steps in one episode. PM,h : S × A 7→
∆(S) is the transition such that PM,h(s

′|s, a) denotes the probability to transit to state s′ if action
a is taken in state s in step h. RM,h : S × A 7→ ∆(R) is the reward function such that RM,h(s, a)
is the distribution of reward with non-negative mean rM,h(s, a) when action a is taken in state s at
step h. In order to compare with traditional generalization, we make the following assumption:

Assumption 1. The total mean reward is bounded by 1, i.e. ∀M ∈ Ω,
∑H

h=1 rM,h(sh, ah) ≤
1 for all trajectory (s1, a1, · · · , sH , aH) with positive probability in M; The reward mechanism
RM(s, a) is 1-subgaussian, i.e. EX∼RM,h(s,a)[exp(λ[X − rM,h(s, a)])] ≤ exp λ2

2 for all λ ∈ R.

The total reward assumption follows the previous works on horizon-free RL (Ren et al., 2021; Zhang
et al., 2021; Li et al., 2022) and covers the traditional setting where rM,h(s, a) ∈ [0, 1] by scaling
H , and it is more natural in environments with sparse rewards (Vecerik et al., 2017; Riedmiller
et al., 2018). In addition, it allows us to compare with supervised learning bound where H = 1
and the loss is bounded by [0, 1]. The subgaussian assumption is more common in practice and
is widely used in bandits (Lattimore & Szepesvári, 2020). It also covers traditional RL setting
where RM,h(s, a) ∈ ∆([0, 1]), and allows us to study MDP environment with a wider range. For
the convenience of explanation, we assume the agent always starts from the same state s1. It is
straightforward to recover the initial state distribution µ from this setting by adding an initial state
s0 with transition µ (Du et al., 2019; Chen et al., 2021).

Policy and Value Function. A policy π is set of H functions where each maps a state to an
action distribution, i.e. π = {πh}Hh=1, πh : S 7→ ∆(A) and π can be stochastic. We de-

3

Under review as a conference paper at ICLR 2023

note the set of all policies described above as Π. We define NΠ
ϵ as the ϵ-covering number

of the policy space Π w.r.t. distance d(π1, π2) = maxs∈S,h∈[H] ∥π1
h(·|s) − π2

h(·|s)∥1. Given
π and h ∈ [H], we define the Q-function Qπ

M,h : S × A 7→ R+, where Qπ
M,h(s, a) =

rM,h(s, a) +
∑

s′∈S PM,h(s
′|s, a)V π

M,h+1(s
′), and the V-function V π

M,h : S 7→ R+, where
V π
M,h(s) = Ea∼πh(·|s)Q

π
M,h(s, a) for h ≤ H and V π

M,H+1(s) = 0. We abbreviate V π
M,1(s1) as

V π
M, which can be interpreted as the value when executing policy π in M. Following the notations

in previous works, we use PhV (s, a) as the shorthand of
∑

s′∈S Ph(s
′|s, a)V (s′) in our analysis.

3.2 RL GENERALIZATION FORMULATION

We mainly study the setting where all MDP instances we face in training and testing stages are
i.i.d. sampled from a distribution D supported on a (possibly infinite) countable set Ω. For an MDP
M ∈ Ω, we use P(M) to denote the probability of sampling M according to distribution D. For an
MDP set Ω̃ ⊆ Ω, we similarly define P(Ω̃) =

∑
M∈Ω̃ P(M). We assume that S,A, H is shared by

all MDPs, while the transition and reward are different. When interacting with a sampled instance
M, one does not know which instance it is, but can only identify its model through interactions.

In the training (pre-training) stage, the agent can sample i.i.d. MDP instances from the unknown
distribution D. The overall goal is to perform well in the test stage with the information learned in
the training stage. Define the optimal policy as

π∗(M) = argmax
π∈Π

V π
M, π∗(D) = argmax

π∈Π
EM∼DV

π
M.

We say a policy π is ϵ-optimal in expectation, if EM∼D
[
V

π∗(D)
M − V π

M
]
≤ ϵ. We say a policy π is

ϵ-optimal in instance, if EM∼D
[
V

π∗(M)
M − V π

M
]
≤ ϵ.

Without Test-time Interaction. When the interaction with the test environment is unavailable,
optimality in instance can be statistically intractable, and we can only pursue optimality in expecta-
tion. We formulate this difficulty into the following proposition.
Proposition 1. There exists an MDP support Ω, such that for any distribution D with positive p.d.f.
p(r), ∃ϵ0 > 0, and for any deployed policy π̂,

EM∗∼D
[
V

π∗(M∗)
M∗ − V π̂

M∗

]
≥ ϵ0.

Proposition 1 is proved by constructing Ω as a set of MDPs with opposed optimal action, and the
complete proof can be found in Appendix A. When Ω is discrete, there exists hard instances where
the proposition holds for ϵ0 ≥ 1

2 . This implies that without test-time interactions or special knowl-
edge on the structure of Ω and D, it is impractical to be near optimal in instance. This intractability
arises from the demand on instance optimal policy, which is never asked in supervised learning.

With Test-time Interaction. To pursue the optimality in instance, we study the problem of RL
generalization with test-time interaction. When our algorithm is allowed to interact with the target
MDP M∗ ∼ D for K episodes in the test stage, we want to reduce the regret, which is defined as

RegK(D,A) ≜ EM∗∼D RegK(M∗,A), RegK(M∗,A) ≜
K∑

k=1

[V
π∗(M∗)
M∗ − V πk

M∗],

where πk is the policy that A deploys in episode k. Here M∗ is unknown and unchanged during all
K episodes. The choice of Bayesian regret is more natural in generalization, and can better evaluate
the performance of an algorithm in practice. From the standard Regret-to-PAC technique (Jin et al.,
2018; Dann et al., 2017), an algorithm with Õ(

√
K) regret can be transformed to an algorithm that

returns an ϵ-optimal policy with Õ(1/ϵ2) trajectories. Therefore, we believe regret can also be a
good criterion to measure the sample efficiency of fine-tuning algorithms in the test stage.

4 RESULTS FOR THE SETTING WITH TEST-TIME INTERACTION

In this section, we study the setting where the agent is allowed to interact with the sampled test
MDP M∗. When there is no pre-training stage, the typical regret bound in the test stage is

4

Under review as a conference paper at ICLR 2023

Õ(
√
SAHK)(Zhang et al., 2021). For generalization in RL, we mainly care about the performance

in the test stage, and hope the agent can reduce test regret by leveraging the information learned
in the pre-training stage. Obviously, when Ω is the set of all tabular MDPs and the distribution D
is uniform over Ω, pre-training can do nothing on improving the test regret, since it provides no
extra information for the test stage. Therefore, we seek a distribution-dependent improvement that
is better than traditional upper bound in most of benign settings.

4.1 LOWER BOUND

We start by understanding how much information the pre-training stage can provide at most. One
natural focus is on the MDP distribution D, which is a sufficient statistic of the possible environment
that the agent will encounter in the test stage. We strengthen the algorithm by directly telling it the
accurate distribution D, and analyze how much this extra information can help to improve the regret.
Specifically, we ask: Is there a multiplied factor C(D) that is small when D enjoys some benign
properties (e.g. D is sharp and concentrated), such that when knowing D, there exists an algorithm
that can reduce the regret by a factor of C(D) for large enough K?

Perhaps surprisingly, our answer towards this question is negative for all large enough K in the
asymptotic case. As is formulated in Theorem 1, the importance of D is constrained by a universal
factor c0 asymptotically. Here c0 = 1

16 holds universally and does not depend on D. This theorem
implies that no matter what distribution D is, for sufficiently large K, any algorithm can only reduce
the total regret by at most a constant factor with the extra knowledge of D.
Theorem 1. There exists an MDP instance set Ω, a universal constant c0 = 1

16 , and an algorithm
Â that only inputs the episode K, such that for any distribution D with positive p.d.f. p(r) ∈ C(Ω)

(which Â does NOT know), any algorithm A that inputs D and the episode K,

1. Ω is not degraded, i.e. limK→∞ RegK(D,A(D,K)) = +∞.

2. Knowing the distribution is useless up to a constant, i.e.

lim inf
K→∞

RegK(D,A(D,K))

RegK(D, Â(K))
≥ c0.

In Theorem 1, Point (1) avoids any trivial support Ω where ∃π∗ that is optimal for all M ∈ Ω, in
which case the distribution is of course useless since Â can be optimal by simply following π∗ even
it does not know D. Note that our bounds hold for any distribution D, which indicates that even a
very sharp distribution cannot provide useful information in the asymptotic case where K → ∞.
We point out that the value of c0 depends on the coefficient of previous upper and lower bound, and
we conjecture that it could be arbitrarily close to 1.

We defer the complete proof to Appendix B, and briefly sketch the intuition here. The key ob-
servation is that the information provided in the training stage (prior) is fixed, while the required
information gradually increase as K increases. When K = 1, the agent can clearly benefit from the
knowledge of D. Without this knowledge, all it can do is a random guess since it has never interacted
with M∗ before. However, when K is large, the algorithm can interact with M∗ many times and
learn M∗ more accurately, while the prior D will become relatively less informative. As a result,
the benefits of knowing D vanishes eventually.

Theorem 1 lower bounds the improvement of regret by a constant. As is commonly known, the
regret bound can be converted into a PAC-RL bound (Jin et al., 2018; Dann et al., 2017). This
implies that when δ, ϵ → 0, in terms of pursuing a ϵ-optimal policy to π∗(M∗), pre-training cannot
help reduce the sample complexity. Despite negative, we point out that this theorem only describe
the asymptotic setting where K → ∞, but it imposes no constraint when K is fixed.

4.2 NON-ASYMPTOTIC UPPER BOUND

In the last subsection, we provide a lower bound showing that the information obtained from the
training stage can be useless in the asymptotic setting where K → ∞. In practice, a near-optimal
regret in the non-asymptotic setting is also desirable in many applications. In this section, we fix the
value of K and seek to design an algorithm such that it can leverage the pre-training information

5

Under review as a conference paper at ICLR 2023

and reduce K-episode test regret. To avoid redundant explanation for single MDP learning, we
formulate the following oracles.
Definition 1. (Policy learning oracle) We define Ol(M, ϵ, log(1/δ)) as the policy learning oracle
which can return a policy π that is ϵ-optimal w.r.t. MDP M with probability at least 1 − δ, i.e.
V ∗
M(s1)−V π

M(s1) ≤ ϵ. The randomness of the policy π is due to the randomness of both the oracle
algorithm and the environment.
Definition 2. (Policy evaluation oracle) We define Oe(M, π, ϵ, log(1/δ)) as the policy evaluation
oracle which can return a value v that is ϵ-close to the value function V π

M(s1) with probability at
least 1− δ, i.e. |v − V π

M(s1)| ≤ ϵ. The randomness of the value v is due to the randomness of both
the oracle algorithm and the environment.

Both oracles can be efficiently implemented using the previous algorithms for single-task MDPs.
Specifically, we can implement the policy learning oracle using algorithms such as UCBVI (Azar
et al., 2017), LSVI-UCB (Jin et al., 2020b) and GOLF (Jin et al., 2021) with polynomial sam-
ple complexities, and the policy evaluation oracle can be achieved by the standard Monte Carlo
method (Sutton & Barto, 2018).

4.2.1 ALGORITHM

There are two major difficulties in designing the algorithm. First, what do we want to learn during
the pre-training process and how to learn it? One idea is to directly learn the whole distribution D,
which is all that we can obtain for the test stage. However, this requires Õ(|Ω|2/δ2) samples for a
required accuracy δ, and is unacceptable when |Ω| is large or even infinite. Second, how to design
the test-stage algorithm to leverage the learned information effectively? If we cannot effectively
use the information from the pre-training, the regret or samples required in the test stage can be
Õ(poly(S,A)) in the worst case.

Algorithm 1 PCE (Policy Collection-Elimination)
Pre-training Stage

1: Input: episode number K, policy learning oracle Ol and policy evaluation oracle Oe

2: Initialize: δ = ϵ = 1/
√
K, the number of the sampled MDPs N = log(1/δ)/δ2

3: for phase l = 1, · · · do
4: Sample an MDP set Ω̂ with N MDPs {M1,M2, · · · ,MN} from distribution D
5: for j = 1, · · · , N do
6: Calculate πj = Ol(Mj , ϵ/2, log(N/δ)) for the MDP Mj

7: for i, j = 1, · · · , N do
8: Calculate vi,j = Oe(Mi, πj , ϵ/2, log(N

2/δ)) to evaluate the policy πj on the MDP Mi

9: Call Subroutine 4 to find a set Π̂ that covers (1− 3δ)-fraction of the MDPs in Ω̂

10: if
√

|Π̂| log(2N/δ)

N−|Π̂| ≤ δ then

11: Output: the policy-value set Π̂ = {(πj , vj,j),∀j ∈ U}
12: Double the number of the sampled MDP, i.e. N = 2N

Test Stage
1: Input: the policy-value set Π̂ from the Pre-train Stage, Episode number K
2: Initialize: the MDP set Π̂1 = Π̂, the phase counter l = 1, k0 = 1, δ = ϵ = 1/

√
K

3: for episode k = 1, · · · ,K do
4: Calculate (πl, vl) = argmax(πl,vl)∈Π̂l

vl
5: Execute the optimal policy πl, and receive the total reward Gk

6: if
∣∣∣ 1
k−k0+1

∑k
τ=k0

Gk − vl

∣∣∣ ≥ 4ϵ+
√

2 log(4K/δ)
k−k0+1 then

7: Eliminate (πl, vl) from the instance set Π̂l, denote the remaining set as Π̂l+1

8: Set k0 = k + 1, and l = l + 1

To tackle the above difficulties, we formulate this problem as a policy candidate collection-
elimination process. Our intuition is to find a minimum policy set that can generalize to most

6

Under review as a conference paper at ICLR 2023

MDPs sampled from D. In the pre-training stage, we maintain a policy set that can perform well on
most MDP instances. This includes policies that are the near-optimal policy for an MDP M with
relatively large P(M), or that can work well on different MDPs. In the test stage, we sequentially
execute policies in this set. Once we realize that current policy is not near-optimal for M∗, we
eliminate it and switch to another. This helps reduce the regret from the cardinality of the whole
state-action space to the size of policy covering set. The pseudo code is in Algorithm 1.

Pre-training Stage. In the pre-training stage, we say a policy-value pair (π, v) that covers an MDP
M if π is O(ϵ)-optimal for the MDP M and v is an estimation of the optimal value V ∗

M(s1) with
at most O(ϵ) error. For a policy-value set Π̂, we say the policy set covers the distribution D with
probability at least 1 − O(δ) if PrM∼D

[
∃(π, v) ∈ Π̂, (π, v) covers M

]
≥ 1 − O(δ). The basic

goal in the pre-training phase is to find a policy-value set Π̂ with bounded cardinality that covers D
with high probability. The pre-training stage contains several phases. In each phase, we sample N
MDPs from the distribution D and obtain an MDP set {M1,M2, · · · ,MN}. We call the oracle Ol

to calculate the near-optimal policy πj for each MDP Mj , and we calculate the value estimation
vi,j for each policy πj on MDP Mi using oracle Oe. We use the following condition to indicate
whether the pair (πj , vj,j) covers the MDP Mi:

Cnd(vi,j , vi,i, vj,j) = I [|vi,j − vi,i| < ϵ] ∩ I [|vi,j − vj,j | < ϵ] .

The above condition indicates that πj is a near-optimal policy for Mi, and vj,j is an accurate esti-
mation of the value V

πj

Mi,1
(s1). With this condition, we construct a policy-value set Π̂ that covers

(1 − 3δ)-fraction of the MDPs in the sampled MDP set by calling Subroutine 4. We output the

policy-value set once the distribution estimation error
√

|Ω̂| log(2N/δ)

N−|Ω̂| is less than δ, and double the

number of the sampled MDPs N to increase the accuracy of the distribution estimation otherwise.
After the pre-training phase, we can guarantee that the returned policy set can cover D with proba-
bility at least 1−O(δ), i.e.

PrM∼D

[
∃(π, v) ∈ Π̂,

∣∣V π
M,1 (s1)− V ∗

M,1 (s1)
∣∣ < 2ϵ ∩

∣∣V π
M,1 (s1)− v

∣∣ < 2ϵ
]
≥ 1−O(δ).

Fine-tuning Stage. We start with the policy-value set Π̂ from the pre-training stage and eliminate
the policy-value pairs until we reach a (π, v) ∈ Π̂ that covers the test MDP M∗. Specifically,
we split all episodes into different phases. In phase l, we maintain a set Π̂l that covers the real
environment M∗ with high probability. We select (πl, vl) with the most optimistic value vl in Π̂l

and execute the policy πl for several episodes. During execution, we also evaluate the policy πl on
the MDP M∗ (i.e. V πl

M∗,1(s1)) and maintain the empirical estimation 1
k−k0+1

∑k
τ=k0

Gk. Once we
identify that πl is not near-optimal for M∗, we end this phase and eliminate (πl, vl) from Π̂l.

4.2.2 REGRET

The efficiency of Algorithm 1 is summarized in Theorem 2, and the proof is in Appendix C.
Theorem 2. The regret of Algorithm 1 is at most

RegK(D,Alg. 1) ≤ O
(√

C(D)K log2(K) + C(D)
)
,

where C(D) ≜ minP(Ω̃)≥1−δ |Ω̃| is a complexity measure of D and δ = 1/
√
K. In addition, with

probability at least 1−O (δ log(C(D)/δ)), samples required in the pre-training stage is O(C(D)δ2).

Different from the previous regret bound when the pre-training is unavailable (Azar et al., 2017;
Osband et al., 2013; Zhang et al., 2021), this distribution-dependent upper bound improves the
dependence on S,A to a complexity measure of D defined as C(D). C(·) serves as a multiplied
factor, and can be small when D enjoys benign properties as shown below.

First, when the cardinality of Ω is small, i.e. |Ω| ≪ SA, we have C(D) ≤ |Ω| and the pre-training
can greatly reduce the instance space via representation learning or multi-task learning (Agar-
wal et al., 2020; Brunskill & Li, 2013). Specifically, the regret in the test stage is reduced from

7

Under review as a conference paper at ICLR 2023

Õ(
√
SAHK) to Õ(

√
|Ω|K). To the best of our knowledge, this is the first result that achieves de-

pendence only on M for any general distribution in RL generalization. We provide a lower bound in
Appendix C.4 to show that our regret in the test stage is near-optimal except for logarithmic factors.

When |Ω| is large or even infinite, C(D) is still bounded and can be significantly smaller when D
enjoys benign properties. In fact, in the worst case, it is not hard to find that the dependence on C(D)
is unavoidable2, and there is no way to expect any improvement. However, in practice where |Ω| is
large, the probability will typically be concentrated on several subset region of Ω and decay quickly
outside, e.g. when D is subgaussian or mixtures of subgaussian. Specifically, if the probability of
the i-th MDP pi ≤ c1e

−λi for some positive constant c1, λ, then C(D) ≤ O(log 1
δ), which gives the

upper bound O
(√

K log3(K)

)
.

It is worthwhile to mention that our algorithm in the pre-training stage actually finds a policy cov-
ering set, rather than an MDP covering set, despite that the regret in Theorem 2 depends on the
cardinality of the MDP covering set. This dependence can possibly be improved to the cardinality
of the policy covering set by adding other assumptions to our policy learning oracle, which we leave
as an interesting problem for the future research.

5 RESULTS FOR THE SETTING WITHOUT TEST-TIME INTERACTION

In this section, we study the benefits of pre-training without test-time interaction. As illustrated by
Proposition 1, we only pursue the optimality in expectation, which is in line with supervised learn-
ing. Traditional Empirical Risk Minimization algorithm can be ϵ-optimal with O(log |H|

ϵ2) samples,
and we expect this to be true in RL generalization as well. However, a policy in RL needs to se-
quentially interact with the environment, which is not captured by pure ERM algorithm. In addition,
different MDPs in Ω can have distinct optimal actions, making it hard to determine which action is
better even in expectation. To overcome these issues, we design an algorithm called OMERM in
Algorithm 2. Our algorithm is designed for tabular MDPs with finite state-actions space. Neverthe-
less, it can be extended to the non-tabular setting by combining our ideas with previous algorithms
for efficient RL with function approximation (Jin et al., 2020a; Wang et al., 2020).

In Algorithm 2, we first sample N tasks from the distribution D as the input. The goal of this
algorithm is to find a near-optimal policy in expectation w.r.t. the task set {M1,M2, · · · ,MN}. In
each episode, the algorithm estimates each MDP instance using history trajectories, and calculates
the optimistic value function of each instance. Based on this, it selects the policy from Π that
maximizes the average optimistic value, i.e. 1

N

∑N
i=1 V̂

π
Mi,1

(s1). This selection objective is inspired
by ERM, with the difference that we require this estimation to be optimistic. It can be achieved by
a planning oracle when Π is all stochastic maps from (S, H) to ∆(A), or by gradient descent when
Π is a parameterized model. For each sampled Mi, our algorithm needs to interact with it for
poly(S,A,H, 1

ϵ) times, which is a typical requirement to learn a model well.

Theorem 3. With probability3 at least 2/3, Algorithm 2 can output a policy π̂ satisfying

EM∗∼D[V
π∗(D)
M∗ − V π̂

M∗] ≤ ϵ with O
(

logNΠ
ϵ/(12H)

ϵ2

)
MDP instance samples during training. The

number of episodes collected for each task is bounded by O
(

H2S2A log(SAH)
ϵ2

)
.

We defer the proof of Theorem 3 to Appendix D. This theorem implies that Algorithm 2 needs
approximately O(log

(
NΠ

ϵ
12H

)
/ϵ2) samples to return an ϵ-optimal policy in expectation. Recall that

logNΠ
ϵ

12H
is the log-covering number of Π. When Π is all stochastic maps from S, H to ∆(A),

it is bounded by Õ(HSA). When Π is a parameterized model where the parameter θ ∈ Rd has
finite norm and πθ satisfies some smoothness condition on θ, log(NΠ

ϵ
12H

) ≤ Õ(d). This result

2Consider the bandit case where there are M arms. The optimal arm is arm i in Mi, and D is a uniform
distribution over M MDPs. C(D) = M in this case, and the M dependence is unavoidable in this hard instance
since the agent has to independently explore and test whether each arm is the optimal arm.

3This probability can be further improved to 1 − δ by executing Algorithm 2 for log(1/δ) times and then
returning a policy with maximum average value. Please see Appendix D.2 for the detailed discussion.

8

Under review as a conference paper at ICLR 2023

Algorithm 2 OMERM (Optimistic Model-based Empirical Risk Minimization)
Input: target accuracy ϵ > 0
Input: the sampled N MDPs denoted as {M1,M2, · · · ,MN} from distribution D, with N =
C1 log (N (Π, ϵ/(12H), d)) /ϵ2 for a constant C1 > 0
K = C2S

2AH2 log(SAH/ϵ)/ϵ2 for constants C2 > 0
for episode k = 1, 2, · · · ,K do

5: for i = 1, 2, · · · , N do
Denote NMi,k,h(s, a, s

′) and NMi,k,h(s, a) as the counter that agent encounters
(s, a, s′) and (s, a) at step h in Mi till step k − 1, respectively

Estimate P̂Mi,k,h(s
′|s, a) = NMi,k,h(s,a,s

′)

max{1,NMi,k,h(s,a)} for step h ∈ [H]

Estimate R̂Mi,k,h(s, a) =
∑k−1

τ=1 rMi,τ,h
1(sMi,τ,h

=s,aMi,τ,h
=a)

max{1,NMi,k,h(s,a)} for step h ∈ [H]

Define the UCB bonus bMi,k,h(s, a) =
√

8S log(8SANHK)
max{1,NMi,k,h(s,a)}

10: Initialize V̂ π
Mi,k,H+1(s, a) = 0,∀s, a

for h = H,H − 1, · · · , 1 do
Q̂π

Mi,k,h
(s, a) = min

{
1, R̂Mi,k,h(s, a) + bMi,k(s, a) + P̂Mi,k,hV̂

π
Mi,k,h+1(s, a)

}
V̂ π
Mi,k,h

(s) =
∑

a πh(a|s)Q̂π
Mi,k,h

(s, a)

Calculate the optimistic policy πk = argmaxπ∈Π
1
N

∑N
i=1 V̂

π
Mi,1

(s1).
15: for i = 1, 2, · · · , N do

Execute the policy πk on MDP Mi for one episode, and observe the trajectory
(sMi,k,h, aMi,k,h, rMi,k,h)

H
h=1.

Output: a policy selected uniformly randomly from the policy set {πk}Kk=1.

matches traditional bounds in supervised learning, and it implies that when we pursue the optimal in
expectation, generalization in RL enjoys quantitatively similar upper bound to supervised learning.

6 CONCLUSION AND FUTURE WORK

This work theoretically studies how much pre-training can improve test performance under different
generalization settings. we first point out that RL generalization is fundamentally different from
the generalization in supervised learning, and fine-tuning on the target environment is necessary for
good generalization. When the agent can interact with the test environment to update the policy, we
first prove that the prior information obtained in the pre-training stage can be theoretically useless
in the asymptotic setting, and show that in non-asymptotic setting we can reduce the test-time regret
to Õ

(√
C(D)K

)
by designing an efficient learning algorithm. In addition, when the agent cannot

interact with the test environment, we provide an efficient algorithm called OMERM which returns
a near-optimal policy in expectation by interacting with O

(
log(NΠ

ϵ/(12H))/ϵ
2
)

MDP instances.

Our work seeks a comprehensive understanding on how much pre-training can be helpful to test
performance theoretically, and it also provides insights on real RL generalization application. For
example, when test time interactions are not allowed, one cannot guarantee to be near optimal in
instance. Therefore, for a task where large regret is not tolerable, instead of designing good algo-
rithm, it is more important to find an environment that is close to the target environment and improve
policies there, rather than to train a policy in a diverse set of MDPs and hope it can generalize to the
target. In addition, for tasks where we can improve policies on the fly, we can try to pre-train our
algorithm in advance to reduce the regret suffered. This corresponds to the many applications where
test time interactions are very expensive, such as autonomous driving and robotics.

There are still problems remaining open. Firstly, we mainly study the i.i.d. case where the training
MDPs and test MDPs are sampled from the same distribution. It is an interesting problem to study
the out-of-distribution generalization in RL under certain distribution shifting. Secondly, there is
still room for improving our instance dependent bound possibly by leveraging ideas from recent
Bayesian-optimal algorithms such as Thompson sampling (Osband et al., 2013). We hope these
problems can be addressed in the future research.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural com-
plexity and representation learning of low rank mdps. Advances in neural information processing
systems, 33:20095–20107, 2020.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pp. 263–272. PMLR, 2017.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. arXiv
preprint arXiv:1309.6821, 2013.

Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and Defeng Guo. Real-
time bidding by reinforcement learning in display advertising. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp. 661–670, 2017.

Xiaoyu Chen, Jiachen Hu, Lin F Yang, and Liwei Wang. Near-optimal reward-free exploration for
linear mixture mdps with plug-in solver. arXiv preprint arXiv:2110.03244, 2021.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning. Advances in Neural Information Processing Systems, 30,
2017.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient rl with rich observations via latent state decoding. In International Conference
on Machine Learning, pp. 1665–1674. PMLR, 2019.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement
learning. In International Conference on Machine Learning, pp. 2892–2902. PMLR, 2021.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
Neural Information Processing Systems, 34, 2021.

Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation learn-
ing for linear bandits and linear rl. In International Conference on Machine Learning, pp. 4349–
4358. PMLR, 2021.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, 2019.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement
learning of undercomplete pomdps. Advances in Neural Information Processing Systems, 33:
18530–18539, 2020a.

10

Under review as a conference paper at ICLR 2023

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020b.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in neural information processing systems,
34:13406–13418, 2021.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 2017.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics:
Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yuanzhi Li, Ruosong Wang, and Lin F Yang. Settling the horizon-dependence of sample complexity
in reinforcement learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 965–976. IEEE, 2022.

Rui Lu, Gao Huang, and Simon S Du. On the power of multitask representation learning in linear
mdp. arXiv preprint arXiv:2106.08053, 2021.

Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. When is generalizable reinforcement learning
tractable? Advances in Neural Information Processing Systems, 34, 2021.

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource management
with deep reinforcement learning. In Proceedings of the 15th ACM workshop on hot topics in
networks, pp. 50–56, 2016.

Tom M Mitchell, Richard M Keller, and Smadar T Kedar-Cabelli. Explanation-based generalization:
A unifying view. Machine learning, 1(1):47–80, 1986.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Brendan O’Donoghue. Variational bayesian reinforcement learning with regret bounds. Advances
in Neural Information Processing Systems, 34, 2021.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforce-
ment learning? In International conference on machine learning, pp. 2701–2710. PMLR, 2017.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

11

Under review as a conference paper at ICLR 2023

Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline
reinforcement learning. Advances in neural information processing systems, 34, 2021.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International conference on machine learning, pp. 4344–4353.
PMLR, 2018.

Andrei A Rusu, Matej Večerı́k, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot Learning,
pp. 262–270. PMLR, 2017.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 2017(19):70–76, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Guy Shani, David Heckerman, Ronen I Brafman, and Craig Boutilier. An mdp-based recommender
system. Journal of Machine Learning Research, 6(9), 2005.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. Advances in neural information processing systems, 8, 1995.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Andrea Tirinzoni, Riccardo Poiani, and Marcello Restelli. Sequential transfer in reinforcement
learning with a generative model. In International Conference on Machine Learning, pp. 9481–
9492. PMLR, 2020.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstra-
tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in
reparameterizable reinforcement learning. In International Conference on Machine Learning, pp.
6648–6658. PMLR, 2019.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123–6135, 2020.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. In-
equalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Chicheng Zhang and Zhi Wang. Provably efficient multi-task reinforcement learning with model
transfer. Advances in Neural Information Processing Systems, 34, 2021.

12

Under review as a conference paper at ICLR 2023

Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits?
a near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory, pp.
4528–4531. PMLR, 2021.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. Drn: A deep reinforcement learning framework for news recommendation. In Pro-
ceedings of the 2018 World Wide Web Conference, pp. 167–176, 2018.

A OMITTED PROOF FOR PROPOSITION 1

Assume Ω is the set of M MDP instances M1, · · · ,MM , where all instances consist only one
identical state s1 and their horizon H = 1. In Mi and state s1, the reward is 1 for action ai and 0

otherwise. The optimal policy in Mi is therefore taking action at and V
π∗(Mi)
Mi

= 1.

For any distribution D, assume the probability to sample Mi is pi > 0. For any deployed policy π̂,
assume the probability that π̂ takes action ai is qi, then

EM∗∼DV (M∗, π̂) =

M∑
i=1

piqi ≤ max
i∈[M]

pi.

Therefore, denote ϵ0 = 1−maxi∈[M] pi > 0, we have

EM∗∼D
[
V

π∗(M∗)
M∗ − V π̂

M∗

]
≥ ϵ0.

Notice that when D is a uniform distribution, ϵ0 = M−1
M , which can be arbitrarily close to 1.

B OMITTED PROOF FOR THEOREM 1

To prove the theorem, we let Ω be a subset of MDP with H = S = 1, under which it becomes
a bandit problem, and it suffices to prove the theorem in this setting. Below we first introduce the
bandits notations, and give the complete proof.

B.1 NOTATIONS

To be consistent with traditional K-arm bandits problem, in this section we use a slightly different
notations from the main paper. An bandit instance can be represented as a vector r ∈ Ω ⊂ [0, 1]K ,
where rk is the mean reward when arm k is pulled. Inherited from previous MDP settings, we also
assume that this reward is sampled from an 1-subgaussian distribution with mean rk. In each episode
t ∈ [T], based on initial input and the history, an algorithm A chooses an arm at to pull, and obtain
a reward yat

∼ Dat
. Similarly, assume r is sampled from a distribution D supported on Ω, and we

want to minimize the Bayesian regret

RegT (D,A) ≜ Er∈D RegT (r,A), where RegT (r,A) ≜ EA

T∑
t=1

[r∗ − rat
].

Here r∗ = maxk rk is the optimal arm. If we define ST
k (r,A) =

∑T
t=1 I[at = k] as the r.v. of how

many times A has pulled arm k in T episodes and ∆k = r∗ − rk as the sub-optimal gap, we can
decompose regret

RegT (r,A) =

K∑
k=1

∆kE[ST
k (r,A)]. (1)

This identity is frequently used in the subsequent proof.

13

Under review as a conference paper at ICLR 2023

B.2 PROOF

We first specify the choice of support, constant and algorithm. Without loss of generality, we set
Ω = [0, 1]K , which is quite common and general in bandit tasks. Let c0 = 1

16 , and Â be the Asymp-
totically Optimal UCB Algorithm defined in Algorithm 3. On the other hand, let Ã be uniformly
optimal, i.e. Ã(D, T) = argminA RegT (D,A). To prove the theorem, we only need to show that

lim inf
T→∞

RegT (D, Ã(D, T))
RegT (D, Â(T))

≥ c0, (2)

which is the major result (point (2)). Later, we show that limT→∞ RegT (D, Ã(D, T)) = +∞ in
Lemma 9, which proves point (1) in the theorem. When T is fixed, we abbreviate Ã(D, T), Â(T)

as Ã, Â.

Â enjoys a well known instance dependent regret upper bound, which is copied below:
Lemma 4 (Theorem 8.1 in Lattimore & Szepesvári (2020)). For all r ∈ Ω,∀k ∈ [K],

E[ST
k (r, Â)] ≤ min{T, inf

ε∈(0,∆k)

(
1 +

5

ε2
+

2
(
log(T log2 T + 1) +

√
π log(T log2 T + 1) + 1

)
(∆k − ε)2

)
}.

By Holder Inequality, we immediately have

∆kE[ST
k (r, Â)] ≤ min{∆kT,∆k +

u(T) log T

∆k
},

where the coefficient function

u(T) = sup
t≥T

1

log t

[
51/3 + (2 log(t log2 t+ 1) +

√
π log(t log2 t+ 1) + 1)1/3

]3
being non-increasing and limT→∞ u(T) = 2. For simplicity, we define e(T) ≜

√
u(T) log T

T−1 and

s(∆, T) ≜ min{∆T,∆+ u(T)
∆ log T}. We can upper bound RegT (r, Â) ≤

∑K
k=1 s(∆k, T).

Decomposition of Inq. 2 For k ∈ [K], define Ωk
T = {r ∈ Ω : ∆k ≥ T−p0}, where p0 ∈ (0, 1

2) is
a universal constant to be specified later. Further define Λϵ

k = {r ∈ Ω, rk +∆k(1 + ϵ) < 1}. Using
Eq. 1, it suffices to prove the lemma if ∀k ∈ [K],

lim inf
T→∞

∫
Ω
p(r)∆kE[ST

k (r, Ã)]dr∫
Ω
p(r)∆kE[ST

k (r, Â)]dr
≥ c0. (3)

Fix k ∈ [K] and ϵ > 0 that is sufficiently small, we decompose Inq. 3 as below:∫
Ω
p(r)∆kE[ST

k (r, Ã)]dr∫
Ω
p(r)∆kE[ST

k (r, Â)]dr
≥

∫
Ωk

T

⋂
Λϵ

k
p(r)∆kE[ST

k (r, Ã)]dr∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr

·

∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr∫

Ωk
T
p(r)s(∆k, T)dr

×

∫
Ωk

T
p(r)s(∆k, T)dr∫

Ω
p(r)s(∆k, T)dr

·
∫
Ω
p(r)s(∆k, T)dr∫

Ω
p(r)∆kE[ST

k (r, Â)]dr

Sequentially denote the four terms in the right hand side as M1 ∼ M4. M4 can be lower bounded
by 1 based on the Lemma 4. The rest three terms is bounded by the subsequent three lemmas.
Lemma 5. ∀k ∈ [K],

lim inf
T→∞

∫
Ωk

T
p(r)s(∆k, T)dr∫

Ω
p(r)s(∆k, T)dr

≥ 2p0. (4)

Lemma 5 lower bounds M3, saying that the influence of instance in Ω \Ωk
T is negligible. The proof

of this lemma needs theory on Lebesgue Integral and Radon Transform, which will be introduced in
the Section B.3.

14

Under review as a conference paper at ICLR 2023

Lemma 6. For any k ∈ [K], ϵ ∈ (0, 1),

lim
T→∞

∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr∫

Ωk
T
p(r)s(∆k, T)dr

= 1.

Lemma 6 implies that M2 → 1, allowing us to focus on the integral on a calibrated smaller set
Ωk

T

⋂
Λϵ
k, in which we can use information theory to control E[ST

k (r, Ã)]. The following lemma
is the major lemma in our proof, which use the optimality of Ã to analyze the global structure of
RegT (r, Ã) for r ∈ Ωk

T

⋂
Λϵ
k, and lower bound term M1:

Lemma 7. For any ϵ ∈ (0, 1), we have

lim inf
T→∞

∫
Ωk

T

⋂
Λϵ

k
p(r)∆kE[ST

k (r, Ã)]dr∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr

≥
1
2 − 2p0

(1 + ϵ)2
.

Combined together,

lim inf
T→∞

∫
Ω
p(r)∆kE[ST

k (r, Ã)]dr∫
Ω
p(r)∆kE[ST

k (r, Â)]dr
≥

2p0(
1
2 − 2p0)ck

(1 + ϵ)2
, (5)

The proof of Inq. 2 is finished by selecting p0 = 1
8 and letting ϵ → 0.

Algorithm 3 Â: Asymptotically UCB
1: Input Ω = [0, 1]K , total episode T
2: for step t = 1, · · · ,K do
3: Choose arm at, and obtain reward yt
4: Set R̂t = yt, Ŝt = 1

5: for step t = K + 1, · · · , T do
6: f(t) = 1 + t log2(t)

7: Choose at = argmaxk

(
R̂k

Ŝk
+
√

2 log f(t)

Ŝk

)
8: Set R̂k = Rk + yt, Sk = Sk + 1

B.3 PROOF OF LEMMAS

Before proving all lemmas above, we need to introduce theory on Lebesgue Integral and Radon
Transform. In RK space where K ≥ 2, when a function is Riemann integrable, it is also Lebesgue
integrable, and two integrals are equal. Since we assume p(r) ∈ C(Ω), the integral always exists.
Below we always consider the Lebesgue integral. For a compact measurable set S, define Lp(S) as
the space of all measurable function in S with standard p-norm. Since the p.d.f of D is continuous
in compact set Ω and is positive, ∃L,U ∈ R+,∀r ∈ Ω, p(r) ∈ [L,U].

Denote Tk = {r ∈ Ω : rk = max(r)}. Clearly,
∫
Ω
f(r)dr =

∑
k∈[K]

∫
Tk

f(r)dr since
m(Ti

⋂
Tj) = 0,∀Ti ̸= Tj . Here m(·) is the Lebesgue measure in RK . If we define Pt,γ =

{r ∈ Ω, γ · r = t} and γi
k = (ei − ek), i ̸= k, then Pt,γi

k

⋂
Ti = {r ∈ Ti : ∆k = t}. According to

Radon Transform theory, since Ti is compact and p(r) ∈ C(Ti),

ρik(t) ≜
∫
P

t,γi
k

⋂
Ti

p(r)dr,

is also continuous w.r.t variable t ∈ [0, 1] for all k ̸= i ∈ [K]. Here the integration is per-
form in the corresponding RK−1 space, i.e. the plane Pt,γi

k
, and when mK−1(Pt,γi

k

⋂
Ti) > 0,

ρi
k(t)

mK−1(Pt,γi
k

⋂
Ti)

∈ [L,U].

15

Under review as a conference paper at ICLR 2023

We further define qk(t) =
∑

i ̸=k ρ
i
k(t), which also belongs to C([0, 1]). The continuity of qk(t)

helps derive the following equation. For any f ∈ L1(Ω) that relies only on ∆k, i.e. f(r) = f̃(∆k),
we have ∫

Ω

p(r)f(r)dr =
∑
i∈[K]

∫
Ti

p(r)f(r)dr

=
∑
i∈[K]

∫
Ti

p(r)f̃(ri − rk)dr

=

√
2

2

∑
i∈[K]

∫
[0,1]

f̃(t)ρik(t)d∆ =

√
2

2

∫
[0,1]

f̃(t)qk(t)d∆. (6)

Here the last line is because of Fubini Theorem, which states that the integral of a function can be
computed by iterating lower-dimensional integrals in any order. The factor

√
2
2 arises because in

traditional Radon Transform we require ∥γ∥2 = 1, but here ∥γi
k∥2 = ∥ei − ek∥2 =

√
2.

B.3.1 PROOF OF LEMMA 5

Recall that s(∆, T) = min{∆T,∆+ u(T)
∆ log T}, and ∆T < ∆+ u(T)

∆ log T ↔ ∆ < e(T), where

e(T) is defined as
√

u(T) log T
T−1 . When e(T) ≤ T−p0 , Eq. 6 implies that ∀r ∈ Ωk

T ,

lim inf
T→∞

∫
Ωk

T
p(r)s(∆k, T)dr∫

Ω
p(r)s(∆k, T)dr

= lim inf
T→∞

∫
Ω
p(r)s(∆k, T)I[∆k ≥ T−p0]dr∫

Ω
p(r)s(∆k, T)dr

= lim inf
T→∞

∫
[0,1]

qk(∆)s(∆, T)I[∆ ≥ T−p0]d∆∫
[0,1]

qk(∆)s(∆, T)d∆
.

To prove the lemma, it suffices to show that

lim sup
T→∞

∫
[0,1]

qk(t)s(∆, T)I[∆ ≤ T−p0]d∆∫
[0,1]

qk(∆)s(∆, T)I[∆ ≥ T−p0]d∆
≤ 0.5− p0

p0
. (7)

Define ET = {x ∈ [0, 1] : x ≤ e(T)}, FT = {x ∈ [0, 1] : x ≤ T−p0}, then

lim
T→∞

∫
En

qk(∆)s(∆, T)d∆∫
Fn\En

qk(∆)s(∆, T)d∆
= lim

T→∞

∫
En

qk(∆)∆Td∆∫
Fn\En

qk(∆)(∆ + u(T) log T
∆)d∆

(8)

≤ lim
T→∞

1

e2(T)

∫
En

qk(∆)∆d∆∫
Fn\En

qk(∆) 1
∆d∆

(9)

We have shown that ρi
k(t)

mK−1(Pt,γi
k
) ∈ [L,U]. With some calculation, m(t) ≜ mK−1(Pt,γi

k

⋂
Ti) =

1−tK−1

K−1 . Therefore, qk(t) ∈ [m(t)(K−1)L,m(t)(K−1)U], and qk(0) = limt→0+ qk(t) ≥ L > 0.
By this continuity, for small enough ε1 > 0,∃δ1 > 0,∀t ∈ [0, δ1], qk(t) ∈ [(1 − ε1)qk(0), (1 +
ε1)qk(0)]. As a result,

lim
T→∞

1

e2(T)

∫
En

qk(∆)∆d∆∫
Fn\En

qk(∆) 1
∆d∆

≤ lim
T→∞

1− ε1
e2(T)(1 + ε1)

∫
En

∆d∆∫
Fn\En

1
∆d∆

= lim
T→∞

1− ε1
e2(T)(1 + ε1)

1
2e

2(T)
1
2 log

T−1
u(T) log T − p0 log T

= lim
T→∞

1− ε1
2(1 + ε1)

1

(12 − p0) log T − 1
2 log

u(T)T log T
T−1

= 0. (10)

16

Under review as a conference paper at ICLR 2023

This implies that the limitation of 8 exists and equals to 0. Similarly, define GT = {x ∈ [0, 1] : x ≤
1

log T }, then GT , FT ⊂ [0, δ1] for sufficiently large T . This implies that

lim sup
T→∞

∫
[0,1]

qk(∆)s(∆, T)I[∆ ≤ T−p0]d∆∫
[0,1]

qk(∆)s(∆, T)I[∆ ≥ T−p0]d∆
= lim sup

T→∞

∫
Fn

qk(∆)s(∆, T)d∆∫
[0,1]\Fn

qk(∆)s(∆, T)d∆

= lim sup
T→∞

∫
Fn\En

qk(∆)(∆ + u(T) log T
∆)d∆∫

[0,1]\Fn
qk(∆)(∆ + u(T) log T

∆)d∆

≤ lim sup
T→∞

∫
Fn\En

qk(∆) 1
∆d∆∫

Gn\Fn
qk(∆) 1

∆d∆

≤ 1 + ε1
1− ε1

lim sup
T→∞

∫
Fn\En

1
∆d∆∫

Gn\Fn

1
∆d∆

=
1 + ε1
1− ε1

lim sup
T→∞

log e(T)− p0 log T

p0 log T − log(log T)

=
1 + ε1
1− ε1

1
2 − p0

p0
.

Here the second equation comes from Inq. 10. The proof of Inq. 7 is finished by letting ε1 → 0.

B.3.2 PROOF OF LEMMA 6

Recall that Λϵ
k is defined as {r ∈ Ω, rk +∆k(1 + ϵ) < 1}. For all t ∈ [0, 1), i ̸= k,

Pt,γi
k

⋂
Ti
⋂

Λϵ
k = {r ∈ Pt,γi

k
: ri = max

j
rj , r ∈ Λϵ

k}

= {r ∈ Ω : ri = max
j

rj , ri − rk = t, r ∈ Λϵ
k}

= {r ∈ Ω : ri = max
j

rj , ri − rk = t, ri + ϵt < 1}

= {r ∈ Pt,γi
k

⋂
Ti : ri < 1− ϵt}.

This implies that

mK−1(Pt,γi
k

⋂
Ti\Λϵ

k) = mK−1({r ∈ Pt,γi
k

⋂
Ti : ri ∈ [1−ϵt, 1]}) =

{
1−(1−ϵt)K−1

K−1 t ≤ 1
1+ϵ

1−tK−1

K−1 o.w.
.

Notice that Λϵ
k is open, Ti \ Λϵ

k is compact, and (S1

⋂
S2) \ S3 = S1

⋂
(S2 \ S3). We have

ρ̃ik(t) ≜
∫
P

t,γi
k

⋂
(Ti\Λϵ

k)

p(r)dr ∈ C(Ti \ Λϵ
k).

For all i ̸= k (Define O = [T−p0 , 1]),

lim
T→∞

∫
Ωk

T

⋂
Ti\Λϵ

k
p(r)s(∆k, T)dr∫

Ωk
T

⋂
Ti
p(r)s(∆k, T)dr

= lim
T→∞

∫
O
s(∆, T)ρ̃ik(∆)d∆∫

O
s(∆, T)ρik(∆)d∆

= lim
T→∞

∫
O

1
∆ ρ̃ik(∆)d∆∫

O
1
∆ρik(∆)d∆

≤ lim
T→∞

U

L
·

∫
[T−p0 , 1

1+ϵ]
1−(1−ϵ∆)K−1

∆ d∆ +
∫
[1
1+ϵ ,1]

1−∆K−1

∆ d∆∫
O

1−∆K−1

∆ d∆

≤ lim
T→∞

U

L
·

∫
[T−p0 , 1

1+ϵ]
(K − 1)ϵd∆ +

∫
[1
1+ϵ ,1]

1
∆d∆

p0 log T − 1
K−1 (1− T−p0)

≤ lim
T→∞

U

L
· (K − 1)ϵ+ log(1 + ϵ)

p0 log T − 1
K−1 (1− T−p0)

= 0.

Here the first equation is based on Eq.6, and the second last Inq. comes from Bernoulli inequality.

17

Under review as a conference paper at ICLR 2023

B.3.3 PROOF OF LEMMA 7

To prove the lemma, We first reiterate an important lemma that lower bounds E[ST
k (r,A)].

Lemma 8 (Lemma 16.3 in Lattimore & Szepesvári (2020)). Let r, r′ ∈ Ω be 2 instances that differs
only in one arm k ∈ [K], where ∆k > 0 in r and k uniquely optimal in r′. Then for any algorithm
A,∀T ,

E[ST
k (r,A)] ≥ 2

(rk − r′k)
2

[
log
(min{r′k − rk −∆k,∆k}

4

)
+ log T − log(RegT (r,A) + RegT (r

′,A))
]
.

For fixed ϵ and r we set r′k = rk + (1 + ∆k)ϵ, so for r ∈ Λϵ
k, r

′ ∈ Ω. On the other hand, when
T−p0 > e(T),∀r ∈ Ωk

T , s(∆k, T) = ∆k + u(T) log T
∆k

. According to Lemma 8, for all r ∈ Λϵ
k,

∆kE[ST
k (r, Ã)] ≥ 2

∆k(1 + ϵ)2

[
log
(ϵ∆k

4

)
+ log T − log(RegT (r, Ã) + RegT (r

′, Ã))
]
.

Define IkT ≜
∫
Ωk

T

⋂
Λϵ

k

p(r)
∆k

log Tdr < ∞, and we have qkT (r) = p(r)/∆k

Ik
n

is thus a p.d.f. in

Ωk
T

⋂
Λϵ
k. We already know that for any 1-subgaussian bandit instance, the regret of UCB algo-

rithm is bounded by 8
√
KT log T + 3

∑K
k=1 ∆k ≤ 9

√
KT log T . The optimality of Ã(D, T) =

argminA RegT (D,A) implies that RegT (D, Ã) ≤ 9
√
KT log T . Due to the concavity of log(·),∫

q(r) log(RegT (r, Ã) + RegT (r
′, Ã))dr

≤ log

∫
q(r)(RegT (r, Ã) + RegT (r

′, Ã))dr

= log

∫
Ωk

T

⋂
Λϵ

k

p(r)

∆k
(RegT (r, Ã) + RegT (r

′, Ã))dr − log

∫
Ωk

T

⋂
Λϵ

k

p(r)

∆k
dr

≤ p0 log T + log

∫
Ωk

T

⋂
Λϵ

k

p(r)(RegT (r, Ã) + RegT (r
′, Ã))dr − log

∫
Ωk

T

⋂
Λϵ

k

p(r)dr

≤ p0 log T + log
(
RegT (D, Ã) +

∫
q(r)

q(r′)
q(r′)RegT (r

′, Ã)
)
− log

∫
Ωk

T

⋂
Λϵ

k

p(r)dr

≤ log(
9(L+ U)

√
K

L
· T 1

2+p0 log T)− log

∫
Ωk

T

⋂
Λϵ

k

p(r)dr.

Therefore, we have

lim inf
T→∞

∫
Ωk

T

⋂
Λϵ

k
p(r)∆kE[ST

k (r, Ã)]dr∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr

(11)

≥ 2

(1 + ϵ)2
lim inf
T→∞

∫
Ωk

T

⋂
Λϵ

k

p(r)
∆k

[
log
(

ϵ∆k

4

)
+ log T − log(RegT (r, Ã) + RegT (r

′, Ã))
]
dr∫

Ωk
T

⋂
Λϵ

k

p(r)
∆k

(
∆2

k + u(T) log T
)
dr

(12)

=
1

(1 + ϵ)2

[
1 + lim inf

T→∞

1

IkT

∫
Ωk

T

⋂
Λϵ

k

p(r)

∆k

(
log∆k − log(RegT (r, Ã) + RegT (r

′, Ã))
)
dr
]

(13)

≥ 1

(1 + ϵ)2

[
1− p0 − lim sup

T→∞

∫
Ωk

T

⋂
Λϵ

k

qkT (r) log(RegT (r, Ã) + RegT (r
′, Ã))dr

]
(14)

≥ 1

(1 + ϵ)2

[
1− p0 − lim sup

T→∞

1

log T

(
log(

9(L+ U)
√
K

L
· T 1

2+p0 log T)− log

∫
Ωk

T

⋂
Λϵ

k

p(r)dr
)]

(15)

=
1

(1 + ϵ)2
(
1

2
− 2p0). (16)

Here the last third line is because r ≥ T−p0 ,∀r ∈ Ωk
T .

18

Under review as a conference paper at ICLR 2023

B.3.4 PROOF OF PART 1 IN THEOREM 1

Lemma 9. limT→∞ RegT (D, Ã(D, T)) = +∞.

Proof. In Lemma 7 we already show that

lim inf
T→∞

∫
Ωk

T

⋂
Λϵ

k
p(r)∆kE[ST

k (r, Ã)]dr∫
Ωk

T

⋂
Λϵ

k
p(r)s(∆k, T)dr

≥ 1

(1 + ϵ)2
(
1

2
− 2p0) > 0.

To prove this lemma, if suffices to show that

lim
T→∞

∫
Ωk

T

⋂
Λϵ

k

p(r)s(∆k, T)dr = +∞.

Notice that Ωk
T

⋂
Λϵ
k is non-decreasing in terms of T .

lim
T→∞

∫
Ωk

T

⋂
Λϵ

k

p(r)s(∆k, T)dr ≥ lim
T→∞

∫
Ωk

T

⋂
Λϵ

k

L
u(T) log T

∆k
dr

≥ lim
T→∞

∫
Ωk

T

⋂
Λϵ

k

Lu(T) log Tdr

≥ lim
T→∞

m(ωk
T0

⋂
Λϵ
k)Lu(T) log T = +∞.

C OMITTED DETAILS FOR THEOREM 2

C.1 SUBROUTINE FOR FINDING THE COVER SET

This subroutine is used to find a policy-value set Π̂ such that Π̂ covers (1−3δ)-fraction of the MDPs
in the sampled MDP set, i.e.∑N

i=1 I[∃(π, v) ∈ Π̂, s.t.(π, v) covers Mi]

N
≥ 1− 3δ.

The algorithm is a greedy algorithm consisting of at most N steps. As the beginning of the algorithm,
we calculate a matrix A, where Ai,j indicates whether (πj , vj) covers the MDP Mi. In each step
t, we find a policy-value pair (πjt , vjt) with the maximum cover number in the uncovered MDP
set Tt−1. We update the index set Ut and Tt according to the selected index jt. We output the
policy-value set Π̂ once the cover size

∑t
τ=1 nτ ≥ (1− 3δ)N .

Algorithm 4 Subroutine: Policy Cover Set
1: Input: vi,j for i ∈ [N] and j ∈ [N]
2: Initialize: the policy index set U0 = ∅, the MDP index set T0 = [N]
3: Calculate the covering matrix A ∈ RN×N where Ai,j = Cnd(vi,j , vi,i, vj,j)
4: for t = 1, · · · , N do
5: Calculate the policy index with maximum cover: jt = argmax[N]\Ut−1

∑
i∈Tt−1

Ai,j

6: Set Ut = Ut−1 ∪ jt, Tt = Tt−1\{i : Ai,j = 1}, the cover size nt =
∑

i∈Tt−1
Ai,jt

7: if The cover size
∑t

τ=1 nτ ≥ (1− 3δ)N then
8: Denote Ut as U , then break the loop
9: Output: the policy-value set Π̂ = {(πj , vj,j) ,∀j ∈ U}

19

Under review as a conference paper at ICLR 2023

C.2 PROOF FOR THE PRE-TRAINING STAGE

During the proof, we use Ω∗ to denote the MDP set satisfying the (1 − δ)-cover condition with
minimum cardinality, i.e. Ω∗ = argminP(Ω̃)≥1−δ |Ω̃|. As defined in Algorithm 4, we use U to

denote the index set of Ω̂, which has the same cardinality as Ω̂. We have the following lemma for
the pre-training stage.

Lemma 10 (Pre-training algorithm). With probability at least 1−O
(
δ log C(D)

δ

)
, the pre-training

stage algorithm returns within log
(
Õ(C(D))

)
phases with total MDP sample complexity bounded

by Õ
(

C(D)
δ2

)
. The return set Π̂ satisfies

Pr
M∼D

[
∃(π, v) ∈ Π̂,

∣∣V π
M,1(s1)− V ∗

M,1(s1)
∣∣ < 2ϵ ∩

∣∣V π
M,1(s1)− v

∣∣ < 2ϵ
]
≥ 1− 6δ, (17)

and the size is bounded by |Π̂| ≤ 2C(D) log 1
δ .

Proof. For each phase, we first define the high-probability event in Lemma 11. We prove the lemma
in Appendix C.2.1.

Lemma 11 (High Probability Events). For all phases, with probability at least 1−4δ, the following
events hold:

1.
∣∣∣ 1N ∑N

i=1 I [Mi ∈ Ω∗]− P(Ω∗)
∣∣∣ ≤ δ.

2. ∀i ∈ [N], πi is ϵ
2 -optimal for Mi. ∀i, j ∈ [N],

∣∣∣vi,j − V
πj

Mi,1
(s1)

∣∣∣ ≤ ϵ
2 .

3. For all index set U ′ ⊂ [N], we have

Pr
M∼D

[
∃j ∈ U ′,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
]

(18)

≥ 1

N − |U ′|
∑

i∈[N]\U ′

max
j∈U ′

Ai,j − 2δ −

√
|U ′| log 2N

δ

N − |U ′|
. (19)

According to Lemma 11, the three events defined in Lemma 11 hold with probability 1 − 4δ. As
stated in Lemma 12, condition on the first and second events, we have |U| ≤ 2C(D) log 1

δ for each
phase. We prove Lemma 12 in Appendix C.2.2. Note that these lemmas also hold for the last phase
in which we return the policy-value set Π̂.

Lemma 12. For all phases, if the first and second events in Lemma 11 hold, then the size of candi-
date set U satisfies

|U| ≤ (C(D) + 1) log(1/δ). (20)

Since the stopping condition is
√

|Ω̂| log(2N/δ)

N−|Ω̂| =
√

|U| log(2N/δ)
N−|U| ≤ δ and we already know

|U| ≤ 2C(D) log 1
δ , the stopping condition is satisfied for N ≥ 4C(D) log2 (C(D)/δ)

δ2 . Based on the

doubling trick, we know that the number of total phases is bounded by log
(
Õ(C(D))

)
and the

sample complexity is bounded by 2N = Õ(C(D)/δ2).

20

Under review as a conference paper at ICLR 2023

Therefore, by union bound across all phases, with probability at least 1−O(log C(D)
δ δ), Lemma 11

holds for all phases. Using the third event on the return set U , we know that

PrM∼D

[
∃j ∈ U ,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
]

(21)

≥ 1

N − |U|
∑

i∈[N]\U

max
j∈U

Ai,j − 2δ −

√
|U| log 2N

δ

N − |U|
(22)

≥ (1− 3δ)N − |U|
N − |U|

− 2δ − δ ≥ 1− 3δN

N − |U|
− 3δ ≥ 1− 6δ. (23)

Therefore, the property on Π̂ holds.

C.2.1 PROOF OF LEMMA 11

Proof. To prove this lemma, we sequentially bound the failure probability for each event.

Empirical probability of Ω∗. Notice that since Mi ∼ D, the expectation of r.v. I [Mi ∈ Ω∗] is
exactly P(Ω∗). According to the Chernoff Bound, we have

Pr

[∣∣∣∣∣ 1N
N∑
i=1

I [Mi ∈ Ω∗]− P(Ω∗)

∣∣∣∣∣ ≤ δ

]
< exp{−2Nδ2} < δ.

Therefore, the failure rate of the first event is bounded by δ.

Oracle error. For each i ∈ [N], the failure rate of Ol is at most δ
N ; For all i, j ∈ [N], the failure

rate of Oe is at most δ
N2 . Therefore, with probability at least 1 − 2δ, we know that πi is indeed

ϵ
2 -optimal for Mi, and

∣∣∣vij − V
πj

Mi,1
(s1)

∣∣∣ < ϵ
2 for all i, j ∈ [N]. This implies that the failure rate

of the second event is bounded by 2δ.

Covering probability of U ′. We first fix any index set U ′ ⊂ [N] and define Uc = [N] \ U ′. For a
policy-value pair (π, v) and an MDP M, we define the following random variable

χ(π, v,M) ≜ Cnd
(
Oe

[
M, π,

ϵ

2
, log(N2/δ))

]
, v,

Oe

[
M,Ol

(
M,

ϵ

2
, log(N/δ)

)
,
ϵ

2
, log(N2/δ)

])
.

Notice that Ai,j is exactly an instance of r.v. χ(πj , vj ,Mi). For a fixed index set U ′ ⊂ [N], each
MDP Mi with index i ∈ [N] \ U ′ can be regarded as an i.i.d. sample from the distribution D.
According to Chernoff Bound, with probability at least 1− δ

(2N)|U′| we have

1

|Uc|
∑
i∈Uc

max
j∈U ′

Ai,j ≤ EM∼D

[
max
j∈U ′

{χ(πj , vj ,M)}
]
+

√
|U ′| log 2N

δ

|Uc|
. (24)

21

Under review as a conference paper at ICLR 2023

On the other hand, we can use χ to control the probability that πj is near optimal for Mi. Specifi-
cally,

EM∼D

[
max
j∈U ′

{χ(πj , vj ,M)}
]

(25)

= Pr
M∼D

[
max
j∈U ′

{χ(πj , vj ,M)} = 1

]
(26)

=
∑
M∈Ω

P(M) · Pr
[
max
j∈U ′

{χ(πj , vj ,M)} = 1
∣∣M]

(27)

=
∑
M∈Ω

P(M) · Pr
[
∃j ∈ U ′, π′ = Ol

(
M,

ϵ

2
, log(N/δ)

)
, (28)

v = Oe

[
M, π,

ϵ

2
, log(N2/δ))

]
, v′ = Oe

[
M, π′,

ϵ

2
, log(N2/δ)

]
, (29)

Cnd(v, v′, vj) = 1
∣∣M]

. (30)

Similar to the analysis in the second event of Lemma 11, with probability at least 1 − 2δ, for all
j ∈ U ′, the return π′ is ϵ

2 -optimal for M, and the estimated value v and v′ in the RHS is ϵ
2 -close to

their mean. Assume this event hold, we have

I [∃j ∈ U ′,Cnd(v, v′, vj) = 1]

≤ I
[
∃j ∈ U ′,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
]
.

Therefore, we can substitute the RHS in Eqn. 25 as (where 2δ is the oracle failure probability)

EM∼D

[
max
j∈U ′

{χ(πj , vj ,M)}
]

(31)

≤
∑
M∈Ω

P(M) ·
(
(1− 2δ) (32)

× Pr
[
∃j ∈ U ′,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
∣∣M]

+ 2δ
)

(33)

≤ 2δ + Pr
M∼D

[
∃j ∈ U ′,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
]
. (34)

Combining Eqn. 24 and Eqn. 31, by the union bound, with probability at least

1−
N∑
l=1

δ

(2N)l
∣∣{U ′ ⊂ [N], |U ′| = l}

∣∣ ≥ 1−
N∑
l=1

δ

(2N)l
N l ≥ 1− δ,

for all U ′ ⊂ [N], we have

Pr
M∼D

[
∃j ∈ U ′,

∣∣∣V πj

M,1(s1)− V ∗
M,1(s1)

∣∣∣ < 2ϵ ∩
∣∣∣V πj

M,1(s1)− vj,j

∣∣∣ < 2ϵ
]

(35)

≥ 1

N − |U ′|
∑

i∈[N]\U ′

max
j∈U ′

Ai,j − 2δ −

√
|U ′| log 2N

δ

N − |U ′|
. (36)

C.2.2 PROOF OF LEMMA 12

Proof. For a certain fixed phase, we define NM,t =
∑

i∈Tt
I [Mi = M] as the population of M in

Tt, and Ĉ ≜
∑N

i=1 I [Mi ∈ Ω∗] . We have Ĉ =
∑

M∈Ω∗ NM,0. Thanks to the conditional events

in Lemma 11, we have
∣∣∣ ĈN − P(Ω∗)

∣∣∣ ≤ δ and Ĉ
N ≥ 1− 2δ.

Notice that U is generated by greedily selecting the best policy under current MDP remaining set
Tt−1, i.e. the policy that covers most MDP in Tt−1. On the other hand, since the second event in

22

Under review as a conference paper at ICLR 2023

Lemma 11 holds, for Mi = Mj , we have Cnd(vi,j , vi,i, vj,j) and Cnd(vj,i, vi,i, vj,j) are true and
thus Ai,j = Aj,i = 1. Therefore, for each step t and each M ∈ Ω∗, if we have Mi = M for some
i ∈ Tt−1 , then in this round, we have ∑

i′∈Tt−1

Ai′,i ≥ NMi,t−1.

Since we choose policy πjt instead of πi in step t according to the greedy strategy, we have

nt =
∑

i′∈Tt−1

Ai′,jt ≥
∑

i′∈Tt−1

Ai′,i ≥ NM,t−1 (37)

for all M ∈ Ω∗. The right term is 0 if M no longer exists in the remaining set, and the inequality
still holds. Summing over all M ∈ Ω∗, we obtain

nt ≥
1

C(D)
∑

M∈Ω∗

NM,t−1

=
1

C(D)

(∑
M∈Ω∗

NM,0 −
∑

M∈Ω∗

(NM,0 −NM,t−1)

)

≥ 1

C(D)

(∑
M∈Ω∗

NM,0 −
∑
M∈Ω

(NM,0 −NM,t−1)

)

=
1

C(D)

(∑
M∈Ω∗

NM,0 −
t∑

τ=1

nτ

)
=

1

C(D)

(
Ĉ −

t∑
τ=1

nτ

)
,

where the last inequality is because NM,t is monotonically decreasing in t and the second last
equation is because

∑t
τ=1 nt represents the population of MDPs that are covered in the first t rounds.

This implies that (notice that n0 = 0)

Ĉ −
t∑

τ=1

nτ ≤ C(D)
C(D) + 1

(
Ĉ −

t−1∑
τ=1

nτ

)
≤ · · · ≤

(
C(D)

C(D) + 1

)t

Ĉ,

which gives
t∑

τ=1

nτ ≥

(
1−

(
C(D)

C(D) + 1

)t
)
Ĉ.

When t ≥ (C(D) + 1) log 1
δ , we have

|Ut| =
t∑

τ=1

nτ ≥
(
1− exp

{
− t

C(D) + 1

})
Ĉ ≥ (1− δ)N × Ĉ

N
≥ (1− δ)(1− 2δ) = 1− 3δ.

Therefore, upon breaking, the size of U satisfies |U| = |Ut| ≤ (C(D) + 1) log 1
δ .

C.3 PROOF OF THEOREM 2

In Lemma 10, we prove that with probability at least 1−O
(
δ log C(D)

δ

)
, the policy set Π̂ returned

in the pre-training stage covers the MDPs M ∼ D with probability at least 1− 6δ, i.e.

Pr
M∼D

[
∃(π, v) ∈ Π̂,

∣∣V π
M,1(s1)− V ∗

M,1(s1)
∣∣ < 2ϵ ∩

∣∣V π
M,1(s1)− v

∣∣ < 2ϵ
]
≥ 1− 6δ.

Note that this event happens with high probability. If this event does not happen (w.p.
O
(
δ log C(D)

δ

)
), the regret can still be upper bounded by K, which leads to an additional term

of K · O
(
δ log C(D)

δ

)
= O

(√
K log(KC(D))

)
in the final bound. This term is negligible com-

pared with the dominant term in the regret. In the following analysis, we only discuss the case where
the statement in Lemma 10 holds. We also assume that for the test MDP M∗,

∃(π̂∗, v̂∗) ∈ Π̂,
∣∣∣V π̂∗

M∗,1(s1)− V ∗
M∗,1(s1)

∣∣∣ < 2ϵ ∩
∣∣V π

M∗,1(s1)− v̂
∣∣ < 2ϵ, (38)

23

Under review as a conference paper at ICLR 2023

which will happen with probability 1− 6δ under the event defined in Lemma 10.

We use L to denote the maximum epoch counter, which satisfies L ≤ |Π̂|.
Lemma 13. (Optimism) With probability at least 1− δ/2, we have vl ≥ V ∗

M∗,1(s1)− 2ϵ,∀l ∈ [L].

Proof. To prove the lemma, we need to show that the optimal policy-value pair (π̂∗, v̂∗) for M∗

will never be eliminated from the set Π̂l with high probability. Condition on the sampled M∗, for a
fixed episode k ∈ [K], by Azuma’s inequality, we have:

Pr

∣∣∣∣∣ 1

k − k0 + 1

k∑
τ=k0

Gk − V π̂∗

M∗,1(s1)

∣∣∣∣∣ ≥
√

2 log(4K/δ)

k − k0 + 1

 ≤ δ/(2K). (39)

By union bound over all k ∈ [K], we know that

Pr

∃k ∈ [K],

∣∣∣∣∣ 1

k − k0 + 1

k∑
τ=k0

Gk − V π̂∗

M∗,1(s1)

∣∣∣∣∣ ≥
√

2 log(4K/δ)

k − k0 + 1

 ≤ δ/2 (40)

By Inq. 38, we know that
∣∣V π̂∗

M∗,1(s1)− v̂∗
∣∣ < 4ϵ. Therefore,

Pr

∃k ∈ [K],

∣∣∣∣∣ 1

k − k0 + 1

k∑
τ=k0

Gk − v̂∗

∣∣∣∣∣ ≥
√

2 log(4K/δ)

k − k0 + 1
+ 4ϵ

 ≤ δ/2 (41)

By the elimination condition defined in line 6 of Algorithm 1 in the fine-tuning stage, (π̂∗, v̂∗)

will never be eliminated from the set Π̂l with probability at least 1 − δ/2. By the definition that
vl = max(π,v)∈Π̂l

v, we have vl ≥ v̂∗ ≥ V ∗
M∗,1(s1)− 2ϵ.

Now we are ready to prove Theorem 2.

Proof. We use τl to denote the starting episode of epoch l. Without loss of generality, we set
τL+1 = K + 1.

By lemma 13, we know that vl ≥ V ∗
M∗,1(s1) with high probability. Under this event, we can

decompose the value gap in the following way:

k∑
k=1

(
V ∗
M∗,1(s1)− V πk

M∗,1(s1)
)
≤

L∑
l=1

τl+1−1∑
τ=τl

(
vl − V πl

M∗,1(s1)
)
+ 2ϵK

≤
L∑

l=1

τl+1−1∑
τ=τl

(vl −Gτ) +

L∑
l=1

τl+1−1∑
τ=τl

(
Gτ − V πl

M∗,1(s1)
)
+ 2ϵK

For the first term, by the elimination condition defined in line 6 of Algorithm 1 in the fine-tuning
stage, we have

τl+1−1∑
τ=τl

(vl −Gτ) ≤
√
2(τl+1 − τl) log(4K/δ) + 4(τl+1 − τl)ϵ+ 1.

For the second term, by Azuma’s inequality and union bound over all episodes, with probability at
least 1− δ/2,

τl+1−1∑
τ=τl

(
Gτ − V πl

M∗,1(s1)
)
≤
√
2(τl+1 − τl) log(4K/δ)

24

Under review as a conference paper at ICLR 2023

Therefore, by Cauchy-Schwarz inequality,

k∑
k=1

(
V ∗
M∗,1(s1)− V πk

M∗,1(s1)
)
≤ O

(√
K|Π̂| log(4K/δ) + |Π̂|

)
≤ O

(√
KC(D) log(4K/δ) log(1/δ) + C(D)

)
.

The last inequality is due to |Π̂| ≤ 2C(D) log(1/δ) by Lemma 10.

Finally, we take expectation over all possible M∗, and we get

Reg(K) ≤ O
(√

C(D)K log(4K/δ) log(1/δ) + C(D)
)
. (42)

C.4 LOWER BOUND FOR THEOREM 2

In this subsection, we provide a lower bound to show that the regret upper bound in Theorem 2 is
tight except for logarithmic factors. The lower bound is stated as follows.

Theorem 14. Suppose |Ω| ≥ 2 and K ≥ 5. For any pre-training and fine-tuning algorithm Alg,
there exists a distribution D over the MDP class Ω, such that the regret in the fine-tuning stage is at
least

RegK(D,Alg) ≥ Ω
(
min

(√
C(D)K,K

))
.

This lower bound states that no matter how many samples are collected in the pre-training stage,
the regret in the fine-tuning stage is at least Ω

(√
C(D)K

)
, which indicates that our upper bound is

near-optimal except for logarithmic factors.

The proof is from an information theoretical perspective, which shares the similar idea with the lower
bound proof for bandits (e.g. Theorem 15.2 in Lattimore & Szepesvári (2020) and Theorem 5.1 in
Auer et al. (2002)). We first construct the hard instance and then prove the theorem. Since the
bandit problem can be regarded as an MDP with horizon 1, our hard instance is constructed using
a distribution over bandit instances. For a fixed algorithm Alg, we define Ω to be a set of M
multi-armed bandit instances. For bandit instance νi ∈ Ω, there are M arms. The reward of arm
j is a Guassian distribution with unit variance and mean reward 1

2 + ∆I{i = j}. The parameter
∆ ∈ [0, 1/2] will be defined later. We use ν0 to denote the bandit instance where the reward of each
arm is a Guassian distribution with unit variance and mean reward 1

2 . We set D to be a uniform
distribution over the MDP set Ω.

We use rk = ⟨r1, · · · , rk⟩ to denote the sequence of rewards received up through step k ∈ [K].
Note that any randomized algorithm Alg is equivalent to an a-prior random choice from the set of all
deterministic algorithms. We can formally regard the algorithm Alg as a fixed function which maps
the reward history rk−1 to the action ak in each step k. This technique is not crucial for the proof
but simplifies the notations, which has also been applied in Auer et al. (2002).

With a slight abuse of notation, we use RegK(νi, Alg) to denote the regret of algorithm Alg in
bandit instance νi. Therefore, we have RegK(D, Alg) = 1

M

∑M
i=1 RegK(νi, Alg). We use Pνi

and Eνi
to denote the probability and the expectation under the condition that the bandit instance

in the test stage is νi, respectively. We use DKL(P1,P2) to denote the KL-divergence between the
probability measure P1 and P2. We use Ti(K) to denote the number of times arm i is pulled in the
K steps.

We first provide the following lemma to upper bound the difference between expectations when
measured using Eνi

and Eν0
.

Lemma 15. Let f : RK → [0,K] be any function defined on the reward sequence r. Then for any
action i,

Eνi
[f(r)] ≤ Eν0

[f(r)] +
K∆

4

√
Eν0

[Ti(K)].

25

Under review as a conference paper at ICLR 2023

Proof. We upper bound the difference Eνi
[f(r)] − Eν0

[f(r)] by calculating the expectation w.r.t.
different probability measure.

Eνi
[f(r)]− Eν0

[f(r)] =

∫
r

f(r)dPνi
(r)−

∫
r

f(r)dPν0
(r)

≤K

2

∣∣∣∣∫
r

(dPνi
(r)− dPν0

(r))

∣∣∣∣ .
Here

∣∣∫
r
(dPνi

(r)− dPν0
(r))

∣∣ is the TV-distance between the two probability measure Pνi
(r) and

Pν0
(r). Note that νi and ν0 only differs in the expected reward of arm i. By Pinsker’s inequality and

Lemma 15.1 in Lattimore & Szepesvári (2020), we have∣∣∣∣∫
r

(dPνi(r)− dPν0(r))

∣∣∣∣ ≤
√

1

2
DKL(Pνi ,Pν0)

=

√√√√1

2

K∑
k=1

Pν0
(ak = i)DKL(N (0, 1)∥N (∆, 1))

=

√
Eν0

[Ti(K)]
∆2

4
.

The lemma can be proved by combining the above two inequalities.

Now we can prove Theorem 14.

Proof. By definition, we have

RegK(D, Alg) =
1

M

M∑
i=1

RegK(νi, Alg) (43)

=∆
1

M

M∑
i=1

(K − Eνi
[Ti(K)]) (44)

=∆K − ∆

M

M∑
i=1

Eνi
[Ti(K)] (45)

We apply Lemma 15 to Ti(K), which is a function of the reward sequence r since the actions of the
algorithm Alg are determined by the past rewards. We have

Eνi [Ti(K)] ≤Eν0 [Ti(K)] +
K∆

4

√
Eν0 [Ti(K)].

We sum the above inequality over all νi ∈ Ω, then we have

M∑
i=1

Eνi [Ti(K)] ≤
M∑
i=1

Eν0 [Ti(K)] +

M∑
i=1

K∆

4

√
Eν0 [Ti(K)]

≤K +
K∆

4

√
MK,

where the second inequality is due to the Cauchy-Schwarz inequality and the fact that∑
νi∈Ω Eν0 [Ti(K)] = K. Plgging this inequality back to Inq. 43, we have

RegK(D, Alg) ≥∆

(
K − K

M
− K∆

4

√
K

M

)
Since K ≥ 5, we know that C(D) has the same order as M . If K ≤ M , we know that√
C(D)K = Ω(K). We choose ∆ = 1/2 and know that RegK(D, Alg) ≥ Ω(K). Therefore,

26

Under review as a conference paper at ICLR 2023

we have RegK(D,Alg) ≥ Ω
(
min

(√
C(D)K,K

))
. If K ≥ M , we choose ∆ = M

K . Since
M ≥ 2, we can also prove that

RegK(D,Alg) ≥ Ω
(
min

(√
C(D)K,K

))
.

D OMITTED PROOF FOR THEOREM 3

We define π∗ = argmaxπ∈Π EM∼DV
π
M,1(s1) and π̂∗ = argmaxπ∈Π

1
N

∑N
i=1 V

π
Mi,1

(s1). For the
returned policy π̂, we can decompose the value gap into the following terms:

EM∼D

[
V π∗

M,1(s1)− V π̂
M,1(s1)

]
≤EM∼DV

π∗

M,1(s1)−
1

N

N∑
i=1

V π∗

Mi,1(s1) (46)

+
1

N

N∑
i=1

V π̂
Mi,1(s1)− EM∼DV

π̂
M,1(s1) (47)

+
1

N

N∑
i=1

V π̂∗

Mi,1(s1)−
1

N

N∑
i=1

V π̂
Mi,1(s1) (48)

+
1

N

N∑
i=1

V π∗

Mi,1(s1)−
1

N

N∑
i=1

V π̂∗

Mi,1(s1). (49)

Note that the first and the second terms are generalization gap for a given policy, which can be upper
bounded by Chernoff bound and union bound. The third term is the value gap during the training
phase. The last term is less than 0 by the optimality of π̂∗.

Upper bounds on the first and the second terms We can bound these terms following the gen-
eralization technique. Define the distance between polices d(π1, π2) ≜ maxs∈S,h∈[H] ∥π1

h(·|s) −
π2
h(·|s)∥1. We construct the ϵ0-covering set Π̃ w.r.t. d such that

∀π ∈ Π,∃π̃ ∈ Π̃, s.t. d(π, π̃) ≤ ϵ0. (50)

By Inq. 50, we have

∀π ∈ Π,∃π̃ ∈ Π̃, s.t.V π
M,1(s1)− V π̃

M,1(s1) ≤ Hϵ0. (51)

By definition of the covering number,
∣∣∣Π̃∣∣∣ = N (Π, ϵ0, d). By Chernoff bound and union bound over

the policy set Π̃, we have with prob. 1− δ1, for any π̃ ∈ Π̃,∣∣∣∣∣ 1N
N∑
i=1

V π̃
Mi,1(s1)− EM∼DV

π̃
M,1(s1)

∣∣∣∣∣ ≤
√

2 log(2N (Π, ϵ0, d)/δ1)

N
. (52)

By Inq. 51 and Inq. 52, for ∀π ∈ Π,∣∣∣∣∣ 1N
N∑
i=1

V π
Mi,1(s1)− EM∼DV

π
M,1(s1)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1N

N∑
i=1

V π̃
Mi,1(s1)− EM∼DV

π̃
M,1(s1)

∣∣∣∣∣ (53)

+

∣∣∣∣∣ 1N
N∑
i=1

V π
Mi,1(s1)−

1

N

N∑
i=1

V π̃
Mi,1(s1)

∣∣∣∣∣ (54)

+
∣∣EM∼DV

π
M,1(s1)− EM∼DV

π̃
M,1(s1)

∣∣ (55)

≤
√

2 log(2N (Π, ϵ0, d)/δ1)

N
+ 2Hϵ0. (56)

27

Under review as a conference paper at ICLR 2023

We can set ϵ0 = ϵ
12H and δ1 = 1/6. Since N = C1 log (N (Π, ϵ/(12H), d)) /ϵ2 and π∗, π̂ ∈ Π, we

know that with probability at least 5/6,∣∣∣∣∣ 1N
N∑
i=1

V π∗

Mi,1(s1)− EM∼νV
π∗

M,1(s1)

∣∣∣∣∣ ≤ ϵ

3
, (57)∣∣∣∣∣ 1N

N∑
i=1

V π̂
Mi,1(s1)− EM∼νV

π̂
M,1(s1)

∣∣∣∣∣ ≤ ϵ

3
. (58)

Upper bound on the third term We have the following lemma, which is proved in the following
subsections.
Lemma 16. With probability at least 5/6, Algorithm 2 can return a policy π̂ satisfying

1

N

N∑
i=1

V π̂∗

Mi,1(s1)−
1

N

N∑
i=1

V π̂
Mi,1(s1) ≤

ϵ

3
,

where π̂∗ is the empirical maximizer, i.e. π̂∗ = argmaxπ∈Π
1
N

∑N
i=1 V

π
Mi,1

(s1).

Pluging the results in Lemma 16, Inq. 57 and Inq. 58 back into Eq. 46, we know that with probability
at least 2/3,

EM∼D

[
V π∗

M,1(s1)− V π̂
M,1(s1)

]
≤ ϵ.

D.1 PROOF OF LEMMA 16

We first state the following high-probability events.
Lemma 17. With probability at least 1− 1

2HK , the following inequality holds for any i ∈ [N], k ∈
[K], h ∈ [H], s ∈ S, a ∈ A,∥∥∥P̂Mi,k,h(·|s, a)− PMi,h(·|s, a)

∥∥∥
1
≤

√
2S log(8SANHK)

max{1, NMi,k,h(s, a)}
(59)

∣∣∣R̂Mi,k,h(s, a)− rMi,h(s, a)
∣∣∣ ≤√ 2 log(8SANHK)

max{1, NMi,k,h(s, a)}
(60)

Proof. According to Weissman et al. (2003), the L1-deviation of the true distribution and the em-
pirical distribution over m distinct events from n samples is bounded by

P {∥p̂(·)− p(·)∥1 ≥ ε} ≤ (2m − 2) exp

(
−nε2

2

)
.

In our case where m = S, for any fixed i, k, h, s, a, we have∥∥∥P̂Mi,k,h(·|s, a)− PMi,h(·|s, a)
∥∥∥
1
≤

√
2S log(1/δ)

max{1, NMi,k,h(s, a)}
(61)

with probability at least 1− δ.

Taking union bound over all possible i, k, h, s, a, we know that Inq. 61 holds for any i, k, h, s, a with
probability at least 1−NKHSAδ. We reach Inq. 59 by setting δ = 1

4NK2H2SA .

For the reward estimation, we know that the reward is 1-subgaussian by definition. By Hoeffding’s
inequality, we have∣∣∣R̂Mi,k,h(s, a)− rMi(s, a, h)

∣∣∣ ≤√ 2 log(2/δ)

max{1, NMi,k,h(s, a)}

with probability at least 1 − δ for any fixed i, k, h, s, a. Inq. 60 can be similarly proved by union
bound over all possible i, k, h, s, a and setting δ = 1

4NK2H2SA .

28

Under review as a conference paper at ICLR 2023

Lemma 18. The following inequality holds with probability at least 1− 1
2KH ,

K∑
k=1

N∑
i=1

H∑
h=1

(
V̂ πk

Mi,k,h
(sMi,k,h)− V πk

Mi,h
(sMi,k,h)

)
−
(
Q̂πk

Mi,k,h
(sMi,k,h, aMi,k,h)−Qπk

Mi,h
(sMi,k,h, aMi,k,h)

)
≤
√
2NHK log(8KH),

K∑
k=1

N∑
i=1

H∑
h=1

(
PMi

(
V̂ πk

Mi,k,h+1 − V πk

Mi,h

)
(sMi,k,h, aMi,k,h)−

(
V̂ πk

Mi,k,h+1(sk+1,h+1)− V πk

Mi,h
(sk+1,h+1)

))
≤
√
2NHK log(8KH)

Proof. For the above two inequalities, the RHS can be regarded as the summation of Martingale
differences. Therefore, the above inequalities hold by applying Azuma’s inequality.

We use Λ1 to denote the events defined in the above lemmas. Now we prove the optimism of our
algorithm under event Λ1.

Lemma 19. Under event Λ1, we have V̂ π
Mi,k,1

(s1) ≥ V π
Mi,1

(s1) for any i ∈ [N], k ∈ [K], π ∈ Π.

Proof. We prove the lemma by induction. Suppose Q̂π
M,k,h+1(s, a) ≥ Qπ

M,h+1(s, a). For h ∈ [H],
if Q̂π

M,k,h(s, a) = 1, then we trivially have Q̂π
M,k,h(s, a) ≥ Qπ

M,h(s, a). If Q̂π
M,k,h(s, a) < 1, then

Q̂π
M,k,h(s, a)−Qπ

M,h(s, a)

≥R̂Mi,k,h(s, a) + bMi,k,h(s, a) + P̂Mi,k,hV̂
π
Mi,k,h+1(s, a)− rMi,h(s, a)− PMi,hV

π
Mi,h+1(s, a)

≥bMi,k,h(s, a)−
∣∣∣R̂Mi,k,h(s, a)− rMi,h(s, a)

∣∣∣− ∥∥∥P̂Mi,k,h(·|s, a)− PMi,h(·|s, a)
∥∥∥
1

+ PMi,h

(
V̂ π
Mi,k,h+1 − V π

Mi,h+1

)
(s, a)

≥bMi,k,h(s, a)−

√
2 log(8SANHK)

max{1, NMi,k,h(s, a)}
−

√
2S log(8SANHK)

max{1, NMi,k,h(s, a)}

+ PMi,h

(
V̂ π
Mi,k,h+1 − V π

Mi,h+1

)
(s, a)

≥PMi,h

(
V̂ π
Mi,k,h+1 − V π

Mi,h+1

)
(s, a)

≥0,

where the second inequality is due to Lemma 17 and the third inequality is derived from the defi-
nition of bMi,k,h(s, a). The last inequality is from the induction condition that Q̂π

M,k,h+1(s, a) ≥
Qπ

M,h+1(s, a). Therefore, for step h, we also have Q̂π
M,k,h(s, a) ≥ Qπ

M,h(s, a).

From the induction, we know that Q̂π
M,k,1(s, a) ≥ Qπ

M,1(s, a). By definition, we have
V̂ π
Mi,k,1

(s1) ≥ V π
Mi,1

(s1).

Now we prove Lemma 16.

Proof. (Proof of Lemma 16) By Lemma 19 and the optimality of π̂k,

K∑
k=1

N∑
i=1

(
V π̂∗

Mi,1(s1)− V πk

Mi,1
(s1)

)
≤

K∑
k=1

N∑
i=1

(
V̂ πk

Mi,k,1
(s1)− V πk

Mi,1
(s1)

)
. (62)

29

Under review as a conference paper at ICLR 2023

We decompose the value difference using Bellman equation. For each episode k ∈ [K]:

V̂ πk

Mi,k,h
(sMi,k,h)− V πk

Mi,h
(sMi,k,h)

=
(
V̂ πk

Mi,k,h
(sMi,k,h)− V πk

Mi,h
(sMi,k,h)

)
−
(
Q̂πk

Mi,k,h
(sMi,k,h, aMi,k,h)−Qπk

Mi,h
(sMi,k,h, aMi,k,h)

)
+ Q̂πk

Mi,k,h
(sMi,k,h, aMi,k,h)−Qπk

Mi,h
(sMi,k,h, aMi,k,h)

≤
(
V̂ πk

Mi,k,h
(sMi,k,h)− Q̂πk

Mi,k,h
(sMi,k,h, aMi,k,h)

)
−
(
V πk

Mi,h
(sMi,k,h)−Qπk

Mi,h
(sMi,k,h, aMi,k,h)

)
+ R̂Mi,k,h(sMi,k,h, aMi,k,h)− rMi,h(sMi,k,h, aMi,k,h) +

(
P̂Mi,k,h − PMi,h

)
V̂ πk

Mi,k,h+1(sMi,k,h, aMi,k,h)

+ PMi,h

(
V̂ πk

Mi,k,h+1 − V πk

Mi,h

)
(sMi,k,h, aMi,k,h)−

(
V̂ πk

Mi,k,h+1(sMi,k+1,h+1)− V πk

Mi,h
(sMi,k+1,h+1)

)
+ bMi,k,h(sMi,k,h, aMi,k,h)

+ V̂ πk

Mi,k,h+1(sMi,k+1,h+1)− V πk

Mi,h
(sMi,k+1,h+1).

Therefore,

K∑
k=1

N∑
i=1

(
V π̂∗

Mi,1(s1)− V πk

Mi,1
(s1)

)
≤

K∑
k=1

N∑
i=1

H∑
h=1

(
V̂ πk

Mi,k,h
(sMi,k,h)− V πk

Mi,h
(sMi,k,h)

)
−
(
Q̂πk

Mi,k,h
(sMi,k,h, aMi,k,h)−Qπk

Mi,h
(sMi,k,h, aMi,k,h)

)
+

K∑
k=1

N∑
i=1

H∑
h=1

(
R̂Mi,k,h(sMi,k,h, aMi,k,h)− rMi,h(sMi,k,h, aMi,k,h)

)
+

K∑
k=1

N∑
i=1

H∑
h=1

(
P̂Mi,k,h − PMi,h

)
V̂ πk

Mi,k,h+1(sMi,k,h, aMi,k,h)

+

K∑
k=1

N∑
i=1

H∑
h=1

bMi,k,h(sMi,k,h, aMi,k,h)

+

K∑
k=1

N∑
i=1

H∑
h=1

(
PMi,h

(
V̂ πk

Mi,k,h+1 − V πk

Mi,h

)
(sMi,k,h, aMi,k,h)−

(
V̂ πk

Mi,k,h+1(sk+1,h+1)− V πk

Mi,h
(sk+1,h+1)

))
≤

K∑
k=1

N∑
i=1

H∑
h=1

(
R̂Mi,k,h(sMi,k,h, aMi,k,h)− rMi,h(sMi,k,h, aMi,k,h) +

(
P̂Mi,k,h − PMi,h

)
V̂ πk

Mi,k,h+1(sMi,k,h, aMi,k,h)
)

+

K∑
k=1

N∑
i=1

H∑
h=1

bMi,k,h(sMi,k,h, aMi,k,h) +O(
√
NHK log(KH)).

The last inequality is due to Lemma 19 under event Λ1. By Lemma 17, we have

K∑
k=1

N∑
i=1

H∑
h=1

(
R̂Mi,k,h(sMi,k,h, aMi,k,h)− rMi,h(sMi,k,h, aMi,k,h) +

(
P̂Mi,k,h − PMi,h

)
V̂ πk

Mi,k,h+1(sMi,k,h, aMi,k,h)
)

≤
K∑

k=1

N∑
i=1

H∑
h=1

(
R̂Mi,k,h(sMi,k,h, aMi,k,h)− rMi,h(sMi,k,h, aMi,k,h)

)
+

K∑
k=1

N∑
i=1

H∑
h=1

∥∥∥P̂Mi,k,h(·|sMi,k,h, aMi,k,h)− PMi,h(·|sMi,k,h, aMi,k,h)
∥∥∥
1

≤bMi,k,h(sMi,k,h, aMi,k,h)

30

Under review as a conference paper at ICLR 2023

We can upper bound
∑K

k=1

∑N
i=1

(
V π̂∗

Mi,1
(s1)− V πk

Mi,1
(s1)

)
by the summation of

bMi,k,h(sMi,k,h, aMi,k,h). By definition, we have

K∑
k=1

N∑
i=1

(
V π̂∗

Mi,1(s1)− V πk

Mi,1
(s1)

)
≤

K∑
k=1

N∑
i=1

H∑
h=1

√
2S log(8SANHK)

max{1, NMi,k,h(sMi,k,h, aMi,k,h)}
+O(

√
NHK log(KH)).

By Cauchy-Schwarz inequality, we have

K∑
k=1

N∑
i=1

(
V π̂∗

Mi,1(s1)− V πk

Mi,1
(s1)

)
≤ O

(
N
√
H2S2AK log(SAHNK) +NHS2A

)
.

Since π̂ is uniformly selected from the policy set {πk}Kk=1. By Markov’s inequality, the following
inequality holds with probability at least 5/6,

N∑
i=1

(
V π̂∗

Mi,1(s1)− V π̂
Mi,1(s1)

)
≤ 1

6K

K∑
k=1

N∑
i=1

(
V π̂∗

Mi,1(s1)− V πk

Mi,1
(s1)

)
.

With our choice of K = C2S
2AH2 log(SAH/ϵ)/ϵ2, we have

1

N

N∑
i=1

(
V π̂∗

Mi,1(s1)− V π̂
Mi,1(s1)

)
≤ ϵ/3.

D.2 HIGH PROBABILITY BOUND

To obtain a high probability bound with probability at least 1− δ. Our idea is to first execute Algo-
rithm 2 independently for O(log(1/δ)) times and obtains a policy set with cardinality O(log(1/δ)).
We evaluate the policies in the policy set on the sampled M MDPs, and then return the policy with
the maximum empirical value. The algorithm is described in Algorithm 5

Algorithm 5 OMERM with High Probability
Input: target accuracy ϵ > 0, high probability parameter δ
N = C1 log (N (Π, ϵ/(12H), d) /δ) /ϵ2 for a constant C1 > 0
N1 = log(2/δ)/ log(1/6), N2 = C2 log(NN1/δ)/ϵ

2 for a constant C2 > 0
Sample N tasks from the distribution D, denoted as {M1,M2, · · · ,MN}

5: for ξ = 1, 2, · · · , N1 do
Execute Algorithm 2 with target accuracy ϵ/2 and task set {M1,M2, · · · ,MN}, and ob-

tain a policy πξ

for task index i = 1, 2, · · · , N do
Execute πξ on task Mi for N2 times, denoted the average total rewards as Vξ,i

Calculate the average value Vξ = 1
N

∑N
i=1 Vξ,i

10: Output: the policy πξ∗ with ξ∗ = argmaxξ∈[N1] Vξ

We have the following theorem for Algorithm 5.

Theorem 20. With probability at least 1 − δ, Algorithm 5 can output a policy π̂ satisfying

EM∗∼D[V
π∗(D)
M∗ − V π̂

M∗] ≤ ϵ with O
(

log(NΠ
ϵ/(12H)/δ)
ϵ2

)
MDP instance samples during training.

The number of episodes collected for each task is bounded by O
(

H2S2A log(SAH) log(1/δ)
ϵ2

)
.

The proof follows the proof idea of Theorem 3, with only the difference in the bound on the empirical
risk. We first prove the following lemma.

31

Under review as a conference paper at ICLR 2023

Lemma 21. With probability at least 1− δ2, Algorithm 5 can return a policy πξ∗ satisfying

1

N

N∑
i=1

V π̂∗

Mi,1(s1)−
1

N

N∑
i=1

V
πξ∗

Mi,1
(s1) ≤

ϵ

3
,

where π̂∗ is the empirical maximizer, i.e. π̂∗ = argmaxπ∈Π
1
N

∑N
i=1 V

π
Mi,1

(s1).

Proof. By Lemma 16, for each ξ ∈ [N1], the following inequality holds with probability at least
5/6,

1

N

N∑
i=1

V π̂∗

Mi,1 (s1)−
1

N

N∑
i=1

V
πξ

Mi,1
(s1) ≤

ϵ

9
. (63)

In Algorithm 5, we evaluate the policies in the MDPs by executing the policies for N2 times. By
Hoeffding’s inequality and the union bound over all ξ ∈ [N1] and i ∈ [N], with probability at least
1− δ2/2, we have ∣∣∣∣∣Vξ −

1

N

N∑
i=1

V
πξ

Mi,1
(s1)

∣∣∣∣∣ ≤ ϵ

9
,∀ξ ∈ [N1], i ∈ [N]

We denote the above event as Λ2. For each ξ ∈ [N1], we define ηi as the event that
1
N

∑N
i=1 V

π̂∗

Mi,1
(s1) − Vξ ≤ 2ϵ

9 . By Inq. 63, we have Pr{ηi} ≥ 5/6 under event Λ2. Note
that the event {ηi}N1

i=1 are independent with each other. Therefore, with probability at least
1 − (1/6)N1 = 1 − δ2/2, there exists ξ0, such that the event ηξ0 happens. That is, there exists
a policy πξ0 such that

1

N

N∑
i=1

V π̂∗

Mi,1 (s1)− Vξ0 ≤ 2ϵ

9
.

By definition, ξ∗ = argmaxξ∈[N1] Vξ. Therefore, we have 1
N

∑N
i=1 V

π̂∗

Mi,1
(s1)− Vξ∗ ≤ 2ϵ

9 . Under
the event of Λ2, we have the following inequality holds with probability at least 1− δ2/2,

1

N

N∑
i=1

V π̂∗

Mi,1(s1)−
1

N

N∑
i=1

V
πξ∗

Mi,1
(s1) ≤

ϵ

3
.

Proof. (Proof of Theorem 20) The proof follows the proof idea of Theorem 3. We bound the empir-
ical risk by Lemma 21. With our choice of δ2 = δ/3, we have with probability at least 1− δ/2,

1

N

N∑
i=1

V π̂∗

Mi,1(s1)−
1

N

N∑
i=1

V
πξ∗

Mi,1
(s1) ≤

ϵ

3
. (64)

Following the proof of Theorem 3, we can similarly show that the following inequalities hold with
probability 1− δ/2, ∣∣∣∣∣ 1N

N∑
i=1

V π∗

Mi,1(s1)− EM∼νV
π∗

M,1(s1)

∣∣∣∣∣ ≤ ϵ

3
, (65)∣∣∣∣∣ 1N

N∑
i=1

V π̂
Mi,1(s1)− EM∼νV

π̂
M,1(s1)

∣∣∣∣∣ ≤ ϵ

3
. (66)

Combining the results in Inq. 65, Inq.66 and Inq. 64, we know that with probability at least 1− δ,

EM∼D

[
V π∗

M,1(s1)− V π̂
M,1(s1)

]
≤ ϵ.

32

	Introduction
	Related Works
	Preliminary and Framework
	Episodic MDPs
	RL Generalization Formulation

	Results for the Setting with Test-time Interaction
	Lower Bound
	Non-asymptotic Upper Bound
	Algorithm
	Regret

	Results for the Setting without Test-time Interaction
	Conclusion and Future Work
	Omitted proof for Proposition 1
	Omitted proof for Theorem 1
	Notations
	Proof
	Proof of Lemmas
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of part 1 in Theorem 1

	Omitted Details for Theorem 2
	Subroutine for finding the cover set
	Proof for the Pre-training Stage
	Proof of Lemma 11
	Proof of Lemma 12

	Proof of Theorem 2
	Lower Bound for Theorem 2

	Omitted proof for Theorem 3
	Proof of Lemma 16
	High probability bound

