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ABSTRACT

Traditional Convolutional Neural Networks (CNNs) tend to use 3 × 3 small ker-
nels, but can only capture limited neighboring spatial information. Inspired by the
success of Vision Transformers (ViTs) in capturing long-range visual dependen-
cies, recent CNNs have reached a consensus on utilizing large kernel convolutions
(e.g., astonishingly, 111 kernel). Nevertheless, these approaches are unfriendly to
hardware, imposing a serious computation burden on training or inference. This
paper introduces a Simple and Fast Convolutional Neural Network (SFCNN) that
employs a sequence of stacked 3 × 3 convolutions but surpasses state-of-the-art
CNNs with larger kernels. In particular, we build a thin and deep model, which
encourages more 3 × 3 convolutions to capture more spatial information under
the limited computing complexity rather than opting for a heavier and shallower
architecture. To further enlarge the receptive field, we redesign the traditional in-
verted residual bottleneck with two 3 × 3 depthwise convolutions. In addition,
we propose a novel Global Sigmoid Linear Unit (GSiLU) activation function to
capture global coarse-grained spatial information. Our SFCNN performs better
than state-of-the-art CNNs and ViTs on various tasks, including ImageNet-1K
image classification, COCO instance segmentation, and ADE20K semantic seg-
mentation. It also has good scalability and outperforms existing state-of-the-art
lightweight models. All materials containing codes and logs have been included
in the supplementary materials.

1 INTRODUCTION

Neural network architecture holds paramount significance in machine learning and computer vision
research. In recent years, notable Vision Transformer (ViT) (Dosovitskiy et al., 2021; Touvron et al.,
2021) with global attention have considerably enhanced the performance of various computer vision
tasks and surpassed convolutional neural networks (CNNs) by a large margin.

Recently, the Swin Transformer (Liu et al., 2021) proposes local shift-window attention and obtains
better results than ViTs (Dosovitskiy et al., 2021) with the global window. This local attention is
viewed as a variant of the large kernel. Thus, some novel CNNs use large convolutional kernels to
compete with ViTs. Both DWNet (Han et al., 2022) and ConvNeXt (Liu et al., 2022) obtain better
results by replacing the local attention in Swin (Liu et al., 2021) with the 7× 7 depthwise convolu-
tion (DWConv). Following this large kernel design, Table 1 shows many CNN-based architectures,
and the largest kernel size is even 111. In addition, as shown in Figure 1, some large kernel meth-
ods (Ding et al., 2024; Xu et al., 2023; Li et al., 2024; Yu et al., 2024) are unfriendly to hardware,
thus increasing the difficulty and complexity in the training and inference stages.

Is the large kernel CNN needed? Previous small-kernel CNNs (He et al., 2016; Xie et al., 2017;
Sandler et al., 2018; Radosavovic et al., 2020) focus more on designing new bottlenecks and ignoring
the importance of the receptive field; therefore, they cannot model long-range dependencies and
obtain unsatisfactory results. This paper stacks 3 × 3 DWConvs in a simple CNN architecture
and outperforms state-of-the-art CNNs and ViTs (efficiency and effectiveness). In particular, we
make some simple but effective designs to let 3 × 3 convolutions progressively capture various
sizes of visual cues in one block, which breaks through the limitation of small kernels. First, we
design a thin and deep model to capture more spatial information instead of a heavy and shallow
one, which could have more 3 × 3 convolutions under the same computing complexity. We then
redesign the traditional inverted residual bottleneck (Sandler et al., 2018) with two 3× 3 DWConvs,
to further enlarge the receptive field. Finally, we replace the input of the popular Sigmoid Linear
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Figure 1: Comparing the accuracy with FLOPs (a), Throughput (b), TensorRT Latency (c), and
iPhone Latency (d) with ConvNeXt (Liu et al., 2022), InceptionNeXt (Yu et al., 2024), UniRe-
pLKNet (Ding et al., 2024), ParCNetV2 (Xu et al., 2023) and MogaNet (Li et al., 2024) on
ImageNet-1K. Throughput is tested on a Nvidia 4090 GPU with PyTorch. TensorRT latency is
tested on a 4090 GPU with TensorRT, and iPhone latency is tested on an iPhone SE3 with Core ML.
Figure (d) only marks one result of ParCNetV2, because two larger versions cost more than 100ms.

Unit (SiLU) activation function with global average pooled features to capture global coarse-grained
spatial information. Impressively, the overall SFCNN architecture is simple and fast and outperforms
existing complicated architectures.

Figure 1 shows that our SFCNN achieves the best accuracy in ImageNet-1K image classification un-
der four computational complexity measures, compared to other large-kernel CNNs. ConvNeXt (Liu
et al., 2022) is the pioneer in this field but only performs well on TensorRT latency. Inception-
NeXt (Yu et al., 2024) enjoys high throughput and iPhone latency, but FLOPs and TensorRT latency
are unsatisfactory. UniRepLKNet (Ding et al., 2024) uses the re-parameterization technique; thus,
it performs well on iPhone latency but shows poor results on FLOPs and throughput, and its per-
formance on TensorRT is also bad. ParCNetV2 (Xu et al., 2023) introduces huge kernel sizes (even
111), and MogaNet (Li et al., 2024) introduces a gate mechanism. Both of the above techniques
are unfriendly to hardware devices. Thus, they are terrible on real-world measures (throughput,
TensorRT latency, and iPhone latency).

SFCNN also has good scalability and transferability. It outperforms existing state-of-the-art
lightweight models in ImageNet-1K image classification. Under 1.0G-2.0G FLOPs, SFCNN ob-
tains +0.1% accuracy compared to SwiftFormer (Shaker et al., 2023) with 87% FLOPs. For smaller
scale, SFCNN is better than UniRepLKNet (Ding et al., 2024) (79.1% vs 78.6%) with fewer FLOPs
(0.7G vs 0.9G). In addition, it outperforms state-of-the-art CNNs and ViTs on dense prediction
tasks, including MS-COCO instance segmentation and ADE20K semantic segmentation. In partic-
ular, SFCNN outperforms previous state-of-the-art models by a large margin (around 0.8% Apb or
0.6% mIoU). The experimental results of our simple architecture demonstrate its great potential in
vision tasks.
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Type Reference Method Kernel Param FLOPs Top-1 (%)

SK

ICML21 NFNet

3

72M 12.4G 83.6
ICLR23 RepOpt-VGG 118M 32.8G 83.1
CVPR21 RegNetZ 95M 15.9G 84.0
CVPR24 DeepMAD 89M 15.4G 84.0
ICLR23 RevCol 138M 16.6G 84.1

LK

ICLR22 DWNet 7 74M 12.9G 83.2
CVPR22 ConvNeXt 7 89M 15.4G 83.8

NeurIPS22 HorNet 7 50M 8.7G 84.0
ICLR23 ConvNeXt-dcls 17 89M 16.5G 84.1
CVM22 VAN 21 60M 12.2G 84.2

TPAMI24 ConvFormer 7 57M 12.8G 84.5

MK

CVPR22 RepLKNet 5,31 79M 15.3G 83.5
ICLR24 ConvNext-1D++ 7,31 90M 15.8G 83.8

NeurIPS22 FocalNet 3,5,7 89M 15.4G 83.9
CVPR24 UniRepLKNet 3,5,7 56M 9.1G 83.9
ICLR23 SLaK 5,51 95M 17.1G 84.0
CVPR24 InceptionNeXt 3,11 87M 14.9G 84.0
CVPR24 PeLK 13,47,49,51,101 89M 18.3G 84.2
ICLR24 MogaNet 3,5,7 44M 9.9G 84.3
ICCV23 ParCNetV2 7,13,27,55,111 56M 12.6G 84.6

SK Our SFCNN 3 49M 8.7G 84.6

Table 1: Comparison of various CNN-based architectures on ImageNet-1K image classification. SK
is the abbreviation of Small Kernel. LK is the abbreviation of Large Kernel. MK is the abbreviation
of Multi Kernel. The top two types use the same kernel size convolution in all blocks. The sec-
ond type uses several kernel sizes to process objects with variable input scales, leading to complex
settings for these hyper-parameters. SK requires huge computation complexity to achieve high per-
formance. LK and MK introduce large kernel convolution to obtain better results with fewer FLOPs,
but the minimum kernel size is 7 and the largest is 111. Our SFCNN obtains the best result with the
least FLOPs and only 3× 3 kernel size.

Our contributions can be summarized below:

• We introduce a small kernel CNN architecture named Simple and Fast CNN, which em-
ploys a thin and deep architecture to capture more spatial information. A novel bottleneck
with two 3× 3 DWConvs is also proposed to enlarge the receptive field further.

• A Global Sigmoid Linear Unit activation function is proposed to capture global visual cues,
which leads to richer spatial feature extraction.

• Extensive experiments demonstrate that SFCNN outperforms the state-of-the-art CNNs and
ViTs in various vision tasks, including image classification, lightweight image classifica-
tion, instance segmentation, and semantic segmentation.

2 RELATED WORK

Convolutional Neural Network Architectures. The introduction of AlexNet (Krizhevsky et al.,
2012) marked a significant milestone in the rapid development of Convolutional Neural Networks
(CNNs), with subsequent architectures (Szegedy et al., 2015; He et al., 2016; Szegedy et al., 2017)
continually pushing the boundaries of performance. One recent trend in CNNs is the utilization of
large convolutional kernels to achieve larger receptive fields and capture more long-range informa-
tion. ConvNeXt (Liu et al., 2022) has made a noteworthy discovery, revealing that scaling the kernel
size from 3×3 to 7×7 significantly contributes to performance. Similarly, DWNet (Han et al., 2022)
has reached a similar conclusion by replacing the local attention layer in Swin (Liu et al., 2021) with
a 7×7 DWConv. Following this large kernel design, some novel methods, such as VAN (Guo et al.,
2023), RepLKNet (Ding et al., 2022), ConvNeXt-1d++ Kirchmeyer & Deng (2023), SLaK (Liu
et al., 2023), PeLK (Chen et al., 2024), and ParCNetV2 (Xu et al., 2023), have also demonstrated
impressive outcomes in many vision tasks, employing even larger kernel sizes from 21 to even 111.
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Other architectures, like InceptionNeXt (Yu et al., 2024), FocalNet (Yang et al., 2022), and UniRe-
pLKNet (Ding et al., 2024), and MogaNet (Li et al., 2024) combine large kernel and small kernel
is one block to introduce multi-scale information, However, these methods introduce complicated
architecture to employ large kernels. In addition, using large kernels or multi-branch structures will
increase training difficulty and is unfriendly to hardware, resulting in longer training and inference
times. Our SFCNN is a simple and fast architecture with pure 3 × 3 DWConv, thus obtaining an
ideal speed and accuracy tradeoff.

Transformer-based Architectures. Transformers (Vaswani et al., 2017) have made significant
breakthroughs in computer vision tasks. ViT (Dosovitskiy et al., 2021) first introduces a pure Trans-
former architecture for visual representations. However, directly applying self-attention to vision
tasks leads to large computational costs, which is unacceptable for dense prediction tasks. Swin (Liu
et al., 2021) solves this problem by utilizing window-based multi-head self-attention (MHSA) for
effective feature extraction. PVT (Wang et al., 2021) proposes the pyramid hierarchical structure to
extract spatial features at lower resolution. SMT (Lin et al., 2023) introduces multi-scale DWConv in
one block, to avoid detail missing and retain more spatial information by information fusion across
different heads in MHSA. BiFormer (Zhu et al., 2023) uses dynamic sparse attention via bi-level
routing to allocate computations more flexibly. However, compared to CNNs, ViTs face hardware
compatibility limitations that restrict their wider application (Zhang et al., 2023). Our SFCNN has
a large receptive field with only small kernel convolutions, thus obtaining better accuracy, fewer
computations, and faster speed.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of our proposed SFCNN is shown in Figure 2. Assume the size of the input
image is H × W × 3, we first leverage 3 × 3 convolution layer with stride 2 to obtain H

2 × W
2

feature maps, and the dimension of the feature maps is C (In SFCNN-Tiny, C = 24). We build
a hierarchical representation with four stages. In the ith stage, we stack Ni SFCNN blocks (In
SFCNN-Tiny, N1 = 4, N2 = 8, N3 = 20, N4 = 4). We apply downsampling operations in the
block at the beginning of each stage to reduce the resolution of the feature maps to half of the
original one. Therefore, the output feature maps of the ith stage is H

2i+1 × W
2i+1 . We stack more

3 × 3 convolutions in one SFCNN block and design a thinner and deeper architecture compared
with ConvNeXt (Liu et al., 2022), to enlarge the receptive field. We also propose a Global Sigmoid
Linear Unit (GSiLU) activation function to capture global spatial information.

3.2 COMPUTING THE RECEPTIVE FIELD

The ultimate objective of introducing large kernel convolution is to increase the receptive field. For
a convolution with L layers, feature map fl ∈ Rcl×hl×wl , l = 1, 2, ..., L denotes the output of the
l-th layer, with channel cl, height hl, and width wl. We denote the input image by f0, and the final
output feature map corresponds to fL. Each layer l’s spatial configuration is parameterized by kernel
size kl and stride sl. Define rl as the receptive field size of l-th layer, we give a simplified equation
from Araujo et al. (2019) to compute the receptive field:

rl = rl−1 + (kl − 1) ·
l−1∑
i=1

sl. (1)

According to this equation, increasing the kernel size and stride is feasible to enlarge the receptive
field. However, we have also noticed it is a recurrence equation, increasing the number of recursion
iterations could also increase the receptive field, which means adding more DWConvs.

3.3 SIMPLE AND FAST CONVOLUTIONAL NEURAL NETWORK BLOCK

In this section, we design the SFCNN block, which uses more 3 × 3 DWConvs. As shown in
Figure 2, we design two types of SFCNN blocks. One is a common block, and another is equipped
with an additional downsampling operation. We design the SFCNN block as follows step by step:

4
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Figure 2: The architecture of SFCNN-Tiny. It mainly consists of our well-designed SFCNN block.
In addition, we design a variant for downsampling instead of introducing a convolution with stride
2 as patch merging in ConvNeXt (Liu et al., 2022).

1. We apply a 3× 3 DWConv for input features to capture spatial information.

2. The output feature of step 1 passes through a pointwise convolution (PWConv) and a Sig-
moid Linear Unit (SiLU) to exchange channel information and obtain nonlinearity.

3. The output feature of step 2 is sent to another 3× 3 DWConv to capture more visual cues.

4. The output feature of step 3 passes through a Global Sigmoid Linear Unit (GSiLU) to
capture global coarse-grained information.

5. The output feature of step 4 is sent to a PWConv to exchange channel information again.

6. As for the common block, the input of step 1 and the output features of step 5 are added
together to enhance network expressiveness and alleviate the gradient vanishing.

7. As for the downsampling block, the input of step 1 will go through a 3× 3 DWConv with
stride 2, a PWConv, and then be added with the features of step 5.

The SFCNN block achieves a large receptive field by stacked 3× 3 DWConvs and avoids the issues
brought by large kernel sizes, such as the extra time in training and deployment. The receptive field
of two 3× 3 DWConvs is the same as one 5× 5 convolution (Zhang et al., 2023), so our design can
reduce the difficulty of training and deployment brought about by the use of many large convolution
kernels, and remain large receptive field information.

3.4 THIN AND DEEP ARCHITECTURE

Inceptionv3 (Szegedy et al., 2016) points out that a multilayer network could replace a large kernel
convolution with less computation complexity, and its experimental results prove this. Equation 1

5
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model FLOPs Input Resolution Stage 1 Stage 2
Number Receptive Field Number Receptive Field

W640 2.47G

224×224

1 21× 21 3 117× 117
W576 2.44G 2 37× 37 4 165× 165
W512 2.49G 2 37× 37 5 197× 197
W384 2.44G 4 69× 69 8 325× 325

Table 2: SFCNN-Tiny is the baseline model, the same as W384, which means the dimensions are
set to 48, 96, 192, and 384 respectively. We reduce the block number of all stages proportionally to
design three heavy and shallow models with similar FLOPs.

also shows that more spatial convolution is one of the key factors in the receptive field. Motivated
by these, we design a thin and deep model with more 3× 3 DWConv instead of a heavy and shallow
model with a large kernel convolution. As shown in Table 2, we design four tiny models with
different depths and widths. In the ImageNet dataset (Deng et al., 2009), the input resolution is
often set to 224× 224. The receptive field of the deepest model W384 is even almost triple the size
of the shallowest W640. In particular, the receptive fields of W384 in stage two are larger than the
input resolution, which means that it has a global receptive field, while other shallow models only
have a local one.

3.5 GLOBAL SIGMOID LINEAR UNIT

Sigmoid Linear Unit (SiLU) is a widely used activation function, which was originally coined in
GELU (Hendrycks & Gimpel, 2016), and later works (Ramachandran et al., 2018; Elfwing et al.,
2018) demonstrate its effectiveness. After GPT using GELU, many subsequent models follow it
by default, including recent ViTs (Liu et al., 2021) and MLPs (Lai et al., 2023). GELU can be
approximated as

GELU(x) = x× Φ(x) ≈ 0.5× x× (1 + tanh(
√
2/π)× (x+ 0.044715× x3)), (2)

where Φ means the cumulative distribution function for the Gaussian distribution. Another approx-
imate formula for GELU is:

GELU(x) ≈ x× σ(1.702× x), (3)

where σ is a sigmoid function. Similarly, Swish (Ramachandran et al., 2018) proposes to take
advantage of automatic search techniques to discover a new activation function named Swish, which
can be formulated as

Swish(x) = x× σ(β × x). (4)

It is easy to see that Swish has a similar formulation of GELU. The difference is that the learnable
parameter in Swish is set to a fixed value of 1.702. Meanwhile, in reinforcement learning, to achieve
the same goal of output from one hidden unit in the expected energy restricted Boltzmann machine
(EE-RBM), SiLU (Elfwing et al., 2018) proposes an activation function for the approximation of
neural network functions:

SiLU(x) = x× σ(x). (5)

SiLU is a simplified version of Swish and GELU, and it does not require a learnable parameter
or a fixed value inside the sigmoid function. However, SiLU computes the results in all positions
individually. It is unable to capture spatial information. We hope it achieves a global receptive field
to let our SFCNN closer to those large-kernel CNNs. Thus, we propose a Global Sigmoid Linear
Unit (GSiLU) activation function to capture global spatial visual cues. The formula is as follows:

GSiLU(x) = x× σ(GAP (x)), (6)

where GAP is a global average pooling operation. It embeds global information from every channel
into a single value to produce the importance of these channels.

However, GSiLU is very similar to the famous Squeeze-and-Excitation (Hu et al., 2018) module,
but considering the huge extra parameter as shown in Table 8, we use GSiLU because it is a non-
parametric module.
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Family Reference Method Param FLOPs Top-1 (%)

ViT

ICCV21
Swin-T Liu et al. (2021) 29M 4.5G 81.3
Swin-S Liu et al. (2021) 50M 8.7G 83.0
Swin-B Liu et al. (2021) 88M 15.4G 83.5

CVPR23
BiFormer-T Zhu et al. (2023) 13M 2.2G 81.4
BiFormer-S Zhu et al. (2023) 26M 4.5G 83.7
BiFormer-B Zhu et al. (2023) 58M 9.8G 84.3

ICCV23
SMT-T Lin et al. (2023) 12M 2.4G 82.2
SMT-S Lin et al. (2023) 21M 4.7G 83.7
SMT-B Lin et al. (2023) 32M 7.7G 84.3

CNN

ICLR22 DWNet Han et al. (2022) 24M 3.8G 81.3
DWNet Han et al. (2022) 74M 12.9G 83.2

CVPR22
ConvNeXt-T Liu et al. (2022) 29M 4.5G 82.1
ConvNeXt-S Liu et al. (2022) 50M 8.7G 83.1
ConvNeXt-B Liu et al. (2022) 89M 15.4G 83.8

ICLR23
SLaK-T Liu et al. (2023) 30M 5.0G 82.5
SLaK-S Liu et al. (2023) 55M 9.8G 83.8
SLaK-B Liu et al. (2023) 95M 17.1G 84.0

ICCV23
ParCNetV2-T Xu et al. (2023) 25M 4.3G 83.5
ParCNetV2-S Xu et al. (2023) 39M 7.8G 84.3
ParCNetV2-B Xu et al. (2023) 56M 12.5G 84.6

CVPR24
PeLK-T Chen et al. (2024) 29M 5.6G 82.6
PeLK-S Chen et al. (2024) 50M 10.7G 83.9
PeLK-B Chen et al. (2024) 89M 18.3G 84.2

ICLR24
MogaNet-S Li et al. (2024) 25M 5.0G 83.4
MogaNet-B Li et al. (2024) 44M 9.9G 84.3
MogaNet-L (Li et al., 2024) 83M 15.9G 84.7

CVPR24
UniRepLKNet-N Ding et al. (2024) 18M 2.8G 81.6
UniRepLKNet-T Ding et al. (2024) 31M 4.9G 83.2
UniRepLKNet-S Ding et al. (2024) 56M 9.1G 83.9

CVPR24
InceptionNeXt-T Yu et al. (2024) 28M 4.2G 82.3
InceptionNeXt-S Yu et al. (2024) 49M 8.4G 83.5
InceptionNeXt-B Yu et al. (2024) 87M 14.9G 84.0

Our

SFCNN-T 16M 2.4G 82.6
SFCNN-S 27M 4.5G 83.7
SFCNN-B 49M 8.7G 84.6

SFCNN-B256×256 49M 11.4G 84.8
SFCNN-B288×288 49M 14.5G 84.9

Table 3: Comparison with other SOTA models on ImageNet-1K classification.

3.6 ARCHITECTURE VARIANTS

We set different numbers of blocks in Stage 1 ∼ 4 as {S1, S2, S3, S4}, and expand the channel
dimensions as shown in Figure 2 to obtain variants of the SFCNN architecture. By balancing per-
formance and inference time, we design five versions of our models as follows:

• SFCNN-P (Pico): C=32, block numbers={3,4,12,3}, expand ratio=4

• SFCNN-N (Nano): C=40, block numbers={3,6,17,3}, expand ratio=4

• SFCNN-T (Tiny): C=48, block numbers={4,8,20,4}, expand ratio=4

• SFCNN-S (Small): C=64, block numbers={6,12,28,6}, expand ratio=3

• SFCNN-B (Base): C=80, block numbers={8,15,35,8}, expand ratio=3

The parameters (model size), FLOPs (computation complexity), and top-1 accuracy on ImageNet-
1K of the variants of SFCNN architecture are shown in Table 3.
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Family Reference Method Param FLOPs Top-1 (%)
ViT ICCV23 FastViT-T8 3.6M 0.7G 75.6
ViT NeurIPS23 FAT-B0 4.5M 0.7G 77.6
ViT ICCV23 SwiftFormer-S 6.1M 1.0G 78.5

CNN ICLR2024 MogaNet-XT 3.0M 1.0G 77.2
CNN CVPR2024 UniRepLKNet-F 6.2M 0.9G 78.6
CNN Our SFCNN-P 7.7M 0.7G 79.1
ViT ICCV2023 FastViT-SA12 10.9M 1.9G 80.6
ViT NeurIPS23 FAT-B1 7.8M 1.2G 80.1
ViT ICCV23 SwiftFormer-L3 12.1M 1.6G 80.9

CNN ICLR2024 MogaNet-T 5.2M 1.4G 80.0
CNN CVPR2024 UniRepLKNet-P 10.7M 1.6G 80.2
CNN Our SFCNN-N 11.1M 1.4G 81.0

Table 4: Comparison with other lightweight models on ImageNet-1K. SFCNN-P and SFCNN-N are
compared with other lightweight models with less than and more than 1G FLOPS, respectively.

4 EXPERIMENTS

In this section, starting with the evaluation of SFCNN in the ImageNet-1K dataset Deng et al. (2009)
for image classification, we subsequently expand our assessment of MS-COCO Lin et al. (2014)
instance segmentation, as well as ADE20K Zhou et al. (2017) semantic segmentation.

4.1 IMAGENET-1K CLASSIFICATION

Experimental Setup. To evaluate the effectiveness of our SFCNN, we utilize the ImageNet-
1K Deng et al. (2009) dataset, which consists of 1.2 million training images and 50,000 validation
images across 1,000 categories. Our primary metric for experimentation is the top-1 accuracy. Dur-
ing the training phase, we use the AdamW optimizer with a batch size of 1024 and initialize the
learning rate at 0.001. To facilitate learning, we incorporate cosine decay and introduce a weight
decay of 0.05. The training process spans 300 epochs, with a warm-up strategy implemented for
the initial 20 epochs. For data augmentation and regularization, we adopt the same strategies as
ConvNeXt Liu et al. (2022).

Comparison with SOTA Models. Table 3 compares SFCNNs with state-of-the-art CNNs and ViTs.
Our methods demonstrate superior performance compared to SMT Lin et al. (2023), MogaNet Li
et al. (2024), and UniRepLKNet Ding et al. (2024). In particular, our SFCNN-N achieves a higher
top-1 accuracy of 82.6% (compared to 82.2%) compared to SMT-T with the same FLOPs (4.5G).
Additionally, our small version of SFCNN achieves better results than Swin Transformer Liu et al.
(2021) while requiring only approximately 30% computation. Compared with MogaNe-B, our base
version achieves better accuracy (84.6% vs 84.3%) with fewer FLOPs (8.7G vs. 9.9G).

Comparison with lightweight Models. Table 4 compares SFCNNs with state-of-the-art lightweight
CNNs and ViTs. Our pico version is better than the sota CNN UniRepLKNet (+0.5%) with fewer
FLOPs (-0.2G). The nano version also obtains better results (+0.1% top-1) with 88% FLOPs com-
pared to SOTA ViT SwiftFormer-L3.

4.2 INSTANCE SEGMENTATION ON COCO

Experimental Setup. We conduct instance segmentation employing Mask-RCNN as the frame-
work. MS-COCO Lin et al. (2014) dataset is selected, with 118k training data and 5k validation
data. We compare SFCNN with other backbones. All Hyperparameters align with Swin Trans-
former: AdamW optimizer, learning rate of 0.0003, weight decay of 0.05, and batch size of 4
images/GPU (8 GPUs). We use a multi-scale training strategy. Backbones are initialized with
ImageNet-1K pre-trained weights. Models are trained for 36 epochs with a 3× schedule.

Results. The performance of our SFCNN on the COCO dataset is presented in Table 5, along with
other architectures. Our proposed SFCNN achieves superior results to the Swin Transformer and
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Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params FLOPs
Mask R-CNN (3×)

ResNet50 He et al. (2016) 41.0 61.7 44.9 37.1 58.4 40.1 44M 260G
PVT-S Wang et al. (2021) 43.0 65.3 46.9 39.9 62.5 42.8 44M 245G

AS-MLP-T Lian et al. (2022) 46.0 67.5 50.7 41.5 64.6 44.5 48M 260G
Hire-MLP-S Guo et al. (2022) 46.2 68.2 50.9 42.0 65.6 45.3 - 256G

Swin-T Liu et al. (2021) 46.0 68.2 50.2 41.6 65.1 44.9 48M 267G
ConvNeXt-T Liu et al. (2022) 46.2 67.9 50.8 41.7 65.0 44.9 48M 267G

SFCNN-S (ours) 47.8 69.2 52.6 43.0 66.6 46.2 42M 252G
ResNet101 He et al. (2016) 42.8 63.2 47.1 38.5 60.1 41.3 63M 336G

PVT-Medium Wang et al. (2021) 44.2 66.0 48.2 40.5 63.1 43.5 64M 302G
AS-MLP-S Lian et al. (2022) 47.8 68.9 52.5 42.9 66.4 46.3 69M 346G
Hire-MLP-B Guo et al. (2022) 48.1 69.6 52.7 43.1 66.8 46.7 - 335G

Swin-S Liu et al. (2021) 48.5 70.2 53.5 43.3 67.3 46.6 69M 359G
SFCNN-B (ours) 49.3 70.7 54.4 44.3 68.0 48.0 64M 334G

Table 5: The instance segmentation results of different backbones on the COCO dataset.

Method Backbone val MS mIoU Params FLOPs

UperNet Xiao et al. (2018)

Swin-T Liu et al. (2021) 45.8 60M 945G
AS-MLP-T Lian et al. (2022) 46.5 60M 937G
ConvNeXt-T Liu et al. (2022) 46.7 60M 939G
Hire-MLP-S Guo et al. (2022) 47.1 63M 930G

InceptionNeXt-T Yu et al. (2024) 47.9 56M 933G
SFCNN-S (ours) 48.8 54M 938G

UperNet Xiao et al. (2018)

Swin-S Liu et al. (2021) 49.5 81M 1038G
AS-MLP-S Lian et al. (2022) 49.2 81M 1024G
ConvNeXt-S Liu et al. (2022) 49.6 82M 1027G
Hire-MLP-B Guo et al. (2022) 49.6 88M 1011G

InceptionNeXt-S Yu et al. (2024) 50.0 78M 1020G
SFCNN-B (ours) 50.6 75M 1025G

Table 6: The semantic segmentation results of different backbones on the ADE20K validation set.

PreConv MidConv PreGSiLU MidGSiLU Top-1 (%) Param FLOPs
✓ 81.6 16M 2.39G

✓ 81.8 15M 2.34G
✓ ✓ 82.0 16M 2.43G
✓ ✓ ✓ 82.2 16M 2.44G
✓ ✓ ✓ 82.6 16M 2.44G
✓ ✓ ✓ ✓ 82.6 16M 2.45G

Table 7: Ablation analysis on the convolution and activation.
Pre and Mid mean the first and second units of two DWConvs
in the block.

Activation Top-1 (%) Param FLOPs
ReLU 82.0 16M 2.44G

PReLU 82.1 16M 2.44G
SiLU 82.3 16M 2.44G
GELU 82.3 16M 2.44G
GSiLU 82.6 16M 2.44G

SE 82.7 25M 2.46G

Table 8: Ablation analysis on the ac-
tivation. GSiLU could be regarded as
a variant of SE without parameters.

requires fewer FLOPs. Specifically, Mask R-CNN + Swin-S achieves an APb of 48.5 with 359
GFLOPs, whereas Mask R-CNN + SFCNN-B achieves an APb of 49.3 with 334 GFLOPs.

4.3 SEMANTIC SEGMENTATION ON ADE20K

Experimental Setup. We use the UperNet Xiao et al. (2018) framework to evaluate our methods
on ADE20K Zhou et al. (2017). In training, we initialize the backbone with ImageNet weights and
use Xavier initialization for other layers. AdamW optimizer with initial learning rate 1.0 × 10−4

is used. Training involves 160k iterations, batch size 16 on 8×A100 GPUs, weight decay 0.01,
and polynomial decay schedule with power 0.9. Data augmentation includes random horizontal
flipping, rescaling (0.5-2.0), and photometric distortion. The stochastic depth ratio is set to 0.3. The
evaluation metric is multi-scale mean Intersection over Union (MS mIoU).

Result. Table 6 presents a performance comparison between our SFCNN and state-of-the-art ar-
chitectures on the ADE20K dataset. Despite having similar FLOPs, SFCNN-T achieves superior
results to Swin-T, with an MS mIoU of 48.4 versus 45.8.
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block numbers channel dims Params FLOPs Top-1
1,3,7,1 80,160,320,640 14M 2.47G 81.3
2,4,7,2 72,144,288,576 15M 2.44G 81.8

2,5,11,2 64,128,256,512 15M 2.49G 82.2
4,8,20,4 48,96,192,384 16M 2.44G 82.6
6,12,28,6 40,80,160,320 16M 2.44G 82.4

Table 9: Ablation analysis on the model depth with similar complexity. Block numbers mean the
numbers in four stages, while channel dims mean the channel dimensions in the same four stages.

(a) ConvNeXt (b) InceptionNeXt (c) UniRepLKNet (d) MogaNet (e) SFCNN(Our)

Figure 3: Effective receptive field (ERF) of various CNNs. Our SFCNN could capture long-range
dependency and the local context features simultaneously.

4.4 ABLATION STUDY

The Impact of DWConv. As shown in Table 7 lines one to three, the result is markedly declined
when we remove one DWConv in the SFCNN block. The receptive field will become almost halved
by using only one DWConv in a block.

The Impact of GSiLU. As shown in Table 7 lines four to six, adding GSiLU could bring at least
+0.2% top-1 accuracy, but adding two GSiLU obtains the same performance as the one. One GSiLU
could capture enough global spatial information for a single block.

The Impact of Activation. In table 8, we replace the GSiLU with other widely used activation
and the SE module. GSiLU could obtain better results with the same FLOPs and parameters. This
proves the importance of capturing long-range visual cues because SiLU only uses original feature
maps as input, while GSiLU could capture global spatial information. SE is better than GSiLU, but
it introduces extra huge parameters, thus we choose GSiLU because it is a non-parametric module.

The Impact of Model Depth. Table 9 shows five models with different depths. A thinner and
deeper architecture could obtain better results than heavier and shallower models. The main reasons
may be a larger receptive field and better non-linear fitting capability. However, the deepest model
has a much thinner channel width, which will lose information and even get a -0.2% performance.

Visualization of the Receptive Field. Figure 3 visualizes the receptive field of many CNNs. Our
SFCNN could capture long-range dependency and the local context features simultaneously, while
other CNNs only capture local information or introduce global noises. ParCNetV2 only provides
the code but does not provide the pre-train weight, thus we cannot visualize it.

5 CONCLUSION

We propose the Simple and Fast Convolutional Neural Network (SFCNN) that mainly employs a
sequence of stacked 3 × 3 convolutions to capture visual cues of various sizes. Though the archi-
tecture is simple, SFCNN surpasses the state-of-the-art CNNs with larger kernels. SFCNN is a thin
and deep model, encouraging more layers of DWConv to capture more spatial information under the
same computing complexity. Furthermore, we redesign the traditional inverted residual bottleneck
with two DWConv to enlarge the receptive field. We propose a novel Global Sigmoid Linear Unit
(GSiLU) activation function to capture global coarse-grained spatial information. SFCNN achieves
the best accuracy in ImageNet-1K image classification based on four evaluations of computational
complexity. Besides, experimental results on lightweight image classification, instance segmenta-
tion, and semantic segmentation further verify the superiority of SFCNN.
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A APPENDIX

You may include other additional sections here.
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