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Abstract

Pre-trained and fine-tuned news summarizers
are expected to generalize to news articles un-
seen in the fine-tuning (training) phase. How-
ever, these articles often contain specifics,
such as events and people, a summarizer could
not learn about in training. This applies to sce-
narios such as when a news publisher trains a
summarizer on dated news and wants to sum-
marize incoming recent news. In this work,
we explore the first application of transductive
learning to summarization where we further
fine-tune models on test set’s input. Specif-
ically, we construct references for learning
from article salient sentences and condition
on the randomly masked articles. We show
that this approach is also beneficial in the fine-
tuning phase when extractive references are
jointly predicted with abstractive ones in the
training set. In general, extractive references
are inexpensive to produce as they are automat-
ically created without human effort. We show
that our approach yields state-of-the-art results
on CNN/DM and NYT datasets, for instance,
more than 1 ROUGE-L points improvement
on the former. Moreover, we show the bene-
fits of transduction from dated to more recent
CNN news. Finally, through human and au-
tomatic evaluation, we demonstrate improve-
ments in summary abstractiveness and coher-
ence.

1 Introduction

Language model pre-training has advanced the
state-of-the-art in many NLP tasks ranging from
sentiment analysis, question answering, natural lan-
guage inference, named entity recognition, and tex-
tual similarity; more recently, they have been used
in summarization (Liu and Lapata, 2019; Lewis
et al., 2020). State-of-the-art pre-trained models
include GPT (Radford et al., 2018), BERT (Devlin
etal., 2019), BART (Lewis et al., 2020), PEGASUS
(Zhang et al., 2020).

The penalty is more than 10 times the
previous record, according to a newspa-
per report. Utility commission to force
Pacific Gas & Electric Co. to make in-
frastructure improvements. Company
apologizes for explosion that killed 8§,
says it is using lessons learned to im-
prove safety.

Abstractive

The California Public Utilities Commis-
sion on Thursday said it is ordering Pa-
cific Gas & Electric Co. to pay a record
$1.6 billion penalty for unsafe opera-
tion of its gas transmission system, in-
cluding the

in September
2010. Most of the penalty amounts to
forced spending on improving pipeline
safety. On September 9, 2010, a sec-
tion of PG&E pipeline exploded in San
Bruno, killing eight people and injuring
more than 50 others.

Extractive

Pacific Gas & Electric Co. is ordered to
pay a record $1.6 billion penalty. Most
of the penalty amounts to forced spend-
ing on improving pipeline safety. A sec-
tion of PG&E pipeline

s . The
company says it is working to become
the safest energy company in the U.S.

Ours

Table 1: Example summaries that are human-written
(abstractive), and produced by extractive and our sys-
tems. Colored text indicates important details not
present in the human-written summary.

These models acquire prior syntactic and seman-
tic knowledge from large text corpora and are fur-
ther fine-tuned on task-specific smaller datasets,
such as news article-summary pairs. However,
specifics of test set news articles might not be well
represented in the training set. For example, a
news publisher might train a summarizer on dated
news and wants to summarize latest incoming news.
This suggests potential improvements if the sum-
marizer learns these specifics before summaries are
generated. In this work, we explore transductive
learning (Vapnik, 1998) by adapting a fine-tuned
summarizer to the test set by learning from its input



articles.

The main obstacle for transduction is the ab-
sence of a reliable training signal, as no references
are available in test time. Therefore, we propose
constructing extractive references by selecting sum-
marizing sentences from the input text by a sepa-
rately trained model. Summarizing sentences are
often fused and compressed to form abstractive
summaries (Lebanoff et al., 2019), and contain
additional important details providing better con-
text, as illustrated in Table 1. Further, we use a
denoising objective to predict summarizing sen-
tences conditioned on masked input articles. In this
way, the model balances the copying and genera-
tion dynamic (See et al., 2017; Gehrmann et al.,
2018; Brazinskas et al., 2020) as not all informa-
tion for accurate summary predictions is available
in the masked input. To further preserve summary
abstractivness, we predict a small portion of ab-
stractive summaries (~5% on CNN/DM) from the
annotated training set. This results in only a small
fraction of the training time needed to perform
transduction (< 4% on CNN/DM"). Moreover, we
leverage summarizing sentences from training set
inputs in the fine-tuning phase by predicting both
abstractive and extractive references. As we show,
this method outperforms standard fine-tuning on
abstractive references alone. Finally, we show im-
provements in the scenario when only dated news
articles with summaries are available for training
and the aim is to summarize recent news articles in
test time.

All in all, we empirically demonstrate that our
model (TRSUM), that utilizes summarizing sen-
tences in the fine-tuning and transduction phases,
significantly improves the quality of summaries.
Besides achieving state-of-the-art results on stan-
dard datasets (CNN/DM (Hermann et al., 2015)
and NYT (Sandhaus, 2008)), it also yields more
coherent and abstractive summaries. Our main con-
tributions can be summarized as follows.

e we present the first application of transductive
learning to summarization;

e we show state-of-the-art results on standard
summarization datasets (CNN/DM and NYT);

e we show that transduction is beneficial for

summarizing more recent CNN news 2.

'On an AWS 8-GPU p3.8xlarge instance, full training took
9 hours while transduction only 15 minutes.
The codebase will be publicly available.

2 Joint Fine-Tuning

Our model (TRSUM) has a Transformer encoder-
decoder architecture (Vaswani et al., 2017), which
is initialized with pre-trained BART (Lewis et al.,
2020). Before we learn from the test set articles
using transductive learning (presented in Sec. 3),
we jointly fine-tune the model on extractive and
abstractive references in the training set. Extractive
references are useful for learning, as they often
contain omitted details in abstractive summaries
and provide additional context to the reader, see
Table 1.

Let {x;,y;} Y, be article-summary pairs in the
training set. First, we greedily select k£ sentences
from the input article x that maximize the ROUGE
score’ to the summary y by following Liu and Lap-
ata (2019). We concatenate these sentences to form
an extractive summary ¢ that is word-by-word pre-
dicted using teacher-forcing (Williams and Zipser,
1989). Further, to prevent trivial solutions, we ran-
domly mask words in = with a special mask token®.
Intuitively, this forces the decoder to balance be-
tween copying from the input and generating novel
content (See et al., 2017; Gehrmann et al., 2018;
Brazinskas et al., 2020). Finally, we formulate a
Jjoint fine-tuning objective in Eq. 1. We also illus-
trate the whole procedure in Fig. 1.
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Notice that the joint objective in Eq. 1 re-uses
the model’s architecture without a specialized task
embedding. The model can easily differentiate
between abstractive and extractive summary pre-
diction/generation as only in the latter the input
contains a special mask token. We validate this in
an ablation experiment presented in Sec. 6.2.

Lastly, our main goal is to learn an abstractive
summarizer py(y|x) without overfitting on extrac-
tive references. Thus, we control for the ratio of
abstractive and extractive instances N and M, re-
spectively, by drawing decisions from the Bernoulli
distribution Bern(«). If av is set to 0, it results in
abstractive pairs only.

3We used the average of ROUGE-1 and ROUGE-2 F
scores.

*We also experimented with masking only summarizing
sentences. However, this lead to inferior results.
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Figure 1: Illustration of the joint objective and the associated procedure. Here we randomly mask the input article
x resulting in &. Further, construct § by concatenating summarizing sentences in x. Lastly, we jointly predict

abstractive and extractive references y and g, respectively.

3 Transduction

Consider a scenario where a news publishing
agency has a fine-tuned model on dated article-
summary pairs and wants to summarize upcoming
news articles for which summaries are not yet avail-
able. In this setting, an immediate response might
not be necessary and latency can be traded for sum-
mary quality. In this light, we propose to leverage
transductive learning (Vapnik, 1998) and further
fine-tune the model by learning from test set input
articles. First, we train an extractive summarizer
that predicts summarizing sentences, as explained
in Sec. 3.1. Second, we extract summarizing sen-
tences from test set input articles and construct
references ¢j. Lastly, we optimize the model by
predicting these references using pg(y|z) in Eq. 1.

3.1 Extractive Summarizer

To produce extractive references on the test set, we
train an extractive summarizer. The summarizer
consists of two Transformer encoders and predicts
which sentences are summarizing, as illustrated
in Fig. 2. Formally, let [s1, s2, ..., S;»] denote
sentences in an article where each sentence is sepa-
rated by a special symbol ([SEP]). Further, let [b1,
ba, ..., by, ] be their associated binary tags where 1
indicates a summarizing sentence.

To compute model predictions for sentences, we
proceed as follows. First, we feed the sequence of
concatenated sentences [s1, S9, ..., Sy, to the first
encoder and obtain sentence representations [eg, €3,

., € ]. Intuitively, these representations capture
semantics of each sentence useful for determining

0 1
Sentence Contextualizer
A T

Word Contextualizer
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sentence one [SEP] summarizing sentence [SEP]

Figure 2: Extractive summarizer contextualizes words
and subsequently sentences. The final outputs are bi-
nary tags where 1 indicates a summarizing sentence.

their salience and how well they summarize the
whole article. To better capture cross-sentence de-
pendencies, we feed the sentence representations to
the second encoder and obtain contextualized rep-
resentations [ci, co, ..., &, ]. Finally, we feed each
representation c; to a feed-forward neural network
fo(c;) to obtain scores.

3.2 Regularization

In transduction, when the model is solely optimized
for predicting extractive summaries, the previously
learned abstractive summarization and its perfor-
mance can degradate (Goodfellow et al., 2013;
Kemker et al., 2017); see Sec. 6.2 for a confirming
experiment. As a form of regularization, we pro-
pose to additionally predict abstractive summaries
from the training set using the full objective in
Eq. 1. In practice, we found that sampling a similar
amount of training pairs as in the test set (about



Year Count Avg. #words Avg. # sents
2016 12799 34.65 2.46
2017 11292 32.49 2.34

Table 2: CNN summary statistics for more recent years.

5% on CNN/DM) to be sufficient. Another point
of consideration is that the extractive summarizer,
presented in Sec. 3.1, can erroneously select non-
summarizing sentences, resulting in less reliable
references. Consequently, we found it beneficial
to also add extractive pairs from the training set
created using a heuristic presented in Sec. 2.

3.3 Tracking of Overfitting

Tracking of overfitting is essential for model de-
velopment. To monitor overfitting during trans-
duction, we propose the following simple proce-
dure. First, we sample a tiny subset of validation
pairs (around 1,000). To closely resemble trans-
duction, we produce extractive references using the
extractive model presented in Sec. 3.1. Further,
we combine the validation extractive pairs with the
training and test set pairs used for transduction (see
Sec. 3.2). Finally, we track ROUGE-L scores on
the validation human-written abstractive references.
This, in turn, allows us to determine when abstrac-
tive summarization performance starts to decrease
to perform early stopping.

4 Experimental Setup
4.1 Datasets

The evaluation was performed on two main sum-
marization datasets: CNN/DailyMail (Hermann
et al., 2015) and New York Times (NYT) (Sand-
haus, 2008). CNN/DM contains news articles and
associated highlights, i.e., a few bullet points giv-
ing a brief overview of the article. We used the
standard splits of 287k, 13k, and 11k for training,
validation, and testing, respectively. We did not
anonymize entities and followed See et al. (2017)
to pre-process the first sentences of CNN. For NYT,
we used a provided dataset used in (Liu and Lapata,
2019), which consists of 38264, 4002, 3421 train-
ing, validation, and test set instances, respectively.
The instances are news articles accompanied by
short human-written summaries, where summaries
shorter than 50 words were removed.

The original CNN/DM dataset contains news
from 2007 to 2015. To test whether transduction
is beneficial for more recent news, we obtained
newer snapshots of CNN, namely for 2016 and

2017. We downloaded CNN articles published
in 2016 and 2017 using NewsPlease,” extracted
raw contents, and retained those having a story
highlight as a summary in the beginning of the
article. The statistics are shown in Table 2. These
sets were used for transduction only.

Finally, we truncated input documents to 1000
subwords © by preserving complete sentences. To
monitor overfitting, we used 1k, 500, and 100 val-
idation instances for transduction on CNN/DM,
NYT, and CNN 2016/2017, respectively. In all
experiments, we used ROUGE-L for the stopping
criterion. For evaluation, we used the standard
ROUGE package (Lin, 2004) and report F1 scores.

4.2 Human Evaluation

For human evaluation experiments, we randomly
sampled 300 articles from CNN/DM test set. Fur-
ther, we generated and compared summaries from
BART + FT and TRSUM. We used Amazon Me-
chanical Turk (AMT) and ensured that only high-
quality workers could participate. We asked work-
ers to pass a custom qualification test, which only
14.6% of those who took it passed. For further de-
tails, see Appendix 11.1. Finally, we requested 3
annotators per HIT and used MACE (Hovy et al.,
2013) to estimate annotator competences and re-
cover the most likely answer per HIT accordingly.

4.3 Model Details

For pre-initialization, we used the large pre-trained
BART model (Lewis et al., 2020) available with
FairSEQ. We also used a subword tokenizer with
maximum of 50k subwords. The model had 12
layers both in the encoder and decoder and a hid-
den size of 1024. In total, it consisted of 400M
parameters. During fine-tuning and transduction,
the architecture remained unchanged.

During joint fine-tuning (TRSUM™), presented
in Sec. 2, we masked 25% of words in input arti-
cles, and set a = 0.1 to produce on average 10%
of extractive instances at each epoch. In transduc-
tion, we masked 10% of input words, and sampled
14k and 5k training instances at each epoch for
CNN/DM and NYT, respectively. Here, o was
set to 0.1. In all experiments, we used Adam
(Kingma and Ba, 2014) for weight updates, and
beam search for summary generation with 3-gram

Shttps://github.com/fhamborg/
news—please

%The maximum number of subwords includes sentence
separator special tokens.


https://github.com/fhamborg/news-please
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blocking (Paulus et al., 2017). All experiments
were performed on 8-GPU p3.8xlarge Amazon in-
stance. For CNN/DM, we performed joint fine-
tuning for 6 epochs and transduction for 3 epochs.
For NYT, 9 epochs of joint fine-tuning and 3 epochs
for transduction.

4.4 Extractive Summarizer

To obtain extractive references for transduction
(EXTREF), we used the BARTs fine-tuned encoder,
and an additional transformer encoder (Vaswani
et al., 2017) to contextualize sentence representa-
tions. For CNN/DM, we set the number of layers to
3, and attention heads to 16. For NYT, we set it to
2 layers with attention heads number to 8. To pro-
duce binary scores, we used a linear transformation
that is followed by the sigmoid function.

To select summarizing sentences from the train-
ing set input articles, we used a greedy heuristic
(ORACLE) that maximizes ROUGE scores between
the summarizing sentences and the gold summary
as in Nallapati et al. (2016a); Liu and Lapata (2019).
We selected up to 3 sentences per input article. In
inference, we ranked candidate sentences by scores
and selected top-3 sentences. Also, we applied N-
gram blocking during selection to avoid repetitive
content as in Liu and Lapata (2019). Given a cur-
rent extractive summary s and candidate sentence c,
we skip c if there exists a trigram overlap between
cand s.

5 Evaluation Results

5.1 Automatic Evaluation

Standard Datasets We report automatic evalu-
ation based on ROUGE F1 on the CNN/DM and
NYT test sets, the results are shown in Table 3.

First of all, we observed that joint fine-tuning
(TRSUM ™), which utilizes both extractive and ab-
stractive summaries of the training set, outperforms
the standard fine-tuning that utilizes only the for-
mer. Second, we observed that transduction fur-
ther improves the performance of the jointly fine-
tuned model on both datasets. We also performed
an independent-samples t-test to compare our full
model to BART+FT. It indicates that all results
are statistically significant under p < 0.05 except
ROUGE-2 on NYT.

Recent News It is common to assume train-
ing and test sets to share a common distribution
(Quadrianto et al., 2009; Kann and Schiitze, 2018).

However, in practice, this assumption might need
to be violated (Ueffing et al., 2007). For instance,
we might want to transduct a summarizer on fresh
news while it was fine-tuned on more dated news.
To test our approach, we used a summarizer jointly
fine-tuned on the standard CNN/DM training set,
spanning news from 2007 to 2015 and transducted
on more recent CNN news (2016 and 2017). The
results are presented in Table 4.

First of all, we observed that joint fine-tuning
is superior to the standard one on both datasets.
Second, even though extractive noisy references
(EXTREF) have low ROUGE scores, we further
improve the results by performing transduction.
Moreover, when higher quality extractive refer-
ences were used, namely produced using the or-
acle heuristic (TRSUM \w ORACLE), additional
improvements were observed. This shows that our
approach is beneficial for settings where training
set and test set distributions are different.

5.2 Human Evaluation

To gain deeper insights into how extractive refer-
ences affect the coherence of summaries our model
generates, we performed a human evaluation study.
Additionally, we evaluated the factual consistency
of generated summaries, which is an open problem
in summarization (Kryscinski et al., 2020; Maynez
et al., 2020).

Coherence In evaluation, generated summaries
were presented in a random order, as well as the
input article and reference summary for context.
For each HIT, we asked the 3 annotators which
of the two generated summaries, if any, was more
coherent. We gave the following definition: “The
more coherent summary has better structure and
flow, is easier to follow. The facts are presented in
more logical order” The TRSUM model was pre-
ferred 110 times (22.0%), while BART + FT was
preferred 89 times (17.8%). In 101 cases (20.2%),
the annotators indicated that none of the two sum-
maries was preferable. We conclude that the TR-
SUM summaries were significantly more coherent
than the BART + FT summaries (p < 0.05 using a
one-sided z-test).

We observed that CNN/DM articles tend to be
more coherent than the associated bullet point sum-
maries. Further, we observed that summarizing
sentences we used for learning (EXTREF) tend to
be among lead 5 (61.1%) with a very small gap
between them (0.529 sentences on average). There-



CNN/DailyMail

New York Times

R1 R2 RL R1 R2 RL
ORACLE 55.21 32.86 5136 61.70 4223 58.34
LEAD-3 4042 17.62 36.67 3828 19.75 34.96
Extractive / Compressive
SUMMARUNNER (Nallapati et al., 2016a)  39.60 16.20 35.30 - - -
REFRESH (Narayan et al., 2018) 40.00 18.20 36.60 - - -
Sumo (Liu et al., 2019) 41.00 18.40 37.20 4230 22.70 38.60
COMPRESS (Durrett et al., 2016) - - - 42.20 24.90 -
JETS (Xu and Durrett, 2019) 41.70 18.50 37.90 - - -
BERTSUMEXT (Liu and Lapata, 2019) 4325 20.24 39.63 46.66 26.35 42.62
MATCHSUM (Zhong et al., 2020) 4441 20.86 40.55 - - -
Abstractive
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 43.71 26.40 -
BoOTTOMUP (Gehrmann et al., 2018) 41.22 18.68 38.34 - - -
DRM (Paulus et al., 2017) - - - 4294 26.02 -
BERTSUMEXTABS (Liu and Lapata, 2019) 42.13 19.60 39.18 49.02 31.02 45.55
PEGASUS (Zhang et al., 2020) 4417 21.47 41.11 - - -
BART + FT (reported) (Lewis et al., 2020) 44.16 21.28 40.90 - - -
BART + FT (ours)’ 44,01 21.13 40.81 5297 35.19 49.32
Ours
TRSUM™ 44,59 21.58 41.50 53.55 35.54 49.81
TRSUM 4496 21.89 41.86 53.72 35.72 50.06
EXTREF 4393 21.12 4020 4749 27.57 43.88

Table 3: ROUGE F1 scores on the standard CNN/DM and New York Times test sets.

CNN 2016 CNN 2017
R1 R2 RL R1 R2 RL
ORACLE 53.05 36.87 49.89 5258 3697 49.57
LEAD-3 31.87 16.62 29.06 28.82 1432 26.21
BERTSUMEXTABS 33.17 1443 30.56 3044 1251 27.98
BART + FT 3493 15.83 32.14 32.62 1427 2998
TRSUM™ 3540 1592 3262 3292 1421 30.24
TRSUM 35.58 16.32 32.78 33.07 14.63 30.45
TRSUM \w ORACLE 36.10 16.72 3327 33.37 15.01 30.71
EXTREF 32.14 1537 29.17 29.19 13.30 2643

Table 4: ROUGE F1 scores on more recent CNN test sets. In TRSUM \w ORACLE we used ORACLE extractive

references transduction.

fore, we hypothesize that the model learns from
consecutive sentences more natural text structures
that emanate in summaries.

Factual Consistency For evaluating factual con-
sistency, each HIT presented one input article and
one generated summary from BART + FT or TR-
SuM. To simplify the task, we focused the workers’
attention on a single highlighted sentence per sum-
mary, which we picked at random, and asked if that

sentence, as shown in the context of the full sum-
mary, is factually consistent with the article. We
gave detailed guidelines and examples for factual
errors, see Appendix 11.1. Effectively, this setup
measured how likely a randomly chosen summary
sentence is factually consistent with the summa-
rized article. We found that 263 of the 300 BART
+ FT summary sentences (87.7%) were judged fac-
tual, compared to 254 for the 300 TRSUM sum-
maries (84.7%). This is a small difference that we



R1 R2 RL

BART + FT 44.01 21.13 40.81
BART + FT+ TR 44.83 21.79 41.69
TRSUM™ 4459 21.58 41.50
TRSUM 44.96 21.89 41.86

Table 5: Comparison between transduction of the
BART model that was fine-tuned using our and the de-
fault method on the CNN/DM test set.

found not statistically significant (p < 0.05 using a
one-sided z-test).

6 Analysis
6.1 Transduction of Fine-tuned BART

We further explored whether it is possible to
perform transduction of the BART model that
was already fine-tuned only on abstractive sum-
maries (BART + FT). The results on the standard
CNN/DM dataset are presented in Table 5. They
indicate that transduction is beneficial and notice-
ably improves the results. We hypothesize that the
model also benefits from the training set extractive
instances that are predicted. However, it does not
reach the results achieved by our full approach.

6.2 Ablation

To gain insights into the inner workings of trans-
duction, we performed an ablation study by remov-
ing components from models fine-tuned jointly
and only on abstractive references. We plot the
ROUGE-L scores on the validation subset that was
used for transduction in Fig. 3.

First of all, we observed that masking is impor-
tant in both cases, and without it the models degra-
date. We believe that the mask token is used as
a mode indicator for the decoder. And without
it, the decoder is unable to differentiate the two
modes (extractive vs abstractive summary predic-
tion). Second, we observed that the removal of
the training set instances, as explained in Sec. 3.2,
makes TRSUM™ converge to the same ROUGE
score as the extractive references used for trans-
duction. On the other hand, it makes BART + FT
degradate. Finally, without ablations, we observed
two different learning dynamics. BART + FT ini-
tially decreases in the ROUGE score for 2 epochs,
and then slowly starts to improve by surpassing
the baseline extractive references at epoch 4. We

"We used shorter input with only complete sentences that
we believe resulted in a slightly worse performance.

N1 N2 N3

Gold 0.178 0.528 0.718
BART + FT 0.019 0.101 0.186
BART +FT+ TR 0.026 0.132 0.234
TRSUM™ 0.028 0.135 0.238
TRSUM 0.029 0.145 0.254

Table 6: The proportion of novel n-grams on the stan-
dard CNN/DM test set.

hypothesize that it is caused by unfamiliarity with
predicting extractive summaries. On the other hand,
TRSUM experiences only a minor decrease in the
beginning, possibly due to the lower quality of ex-
tractive references of the test set tagged by a model
in Sec. 3.1, and then it steadily improves.

6.3 Novel N-grams

We also analyzed generated summaries in terms
of the proportion of novel n-grams that appear in
the produced summaries but not in the source texts.
The results are shown in Table 6. We observed
that joint fine-tuning and transduction increase the
proportion of novel n-grams, thus making sum-
maries more abstractive. By comparing extractive
and abstractive summaries, we noticed the selected
sentences in extractive summaries often paraphrase
sentences in the abstractive ones. We hypothesize
that the exposure to the references with paraphrases
allows the model to generate more variant sum-
maries.

7 Related Work

Single-document extractive and abstractive summa-
rization is a well-established field with a large body
of prior research (Dasgupta et al., 2013; Rush et al.,
2015; Nallapati et al., 2016b; Tan et al., 2017; See
et al., 2017; Fabbri et al., 2020; Laban et al., 2020).

The utilization of extractive summaries to im-
prove abstractive summarization has also received
some recent attention. Commonly, in a two-step
procedure where summarizing fragments are first
selected, and then paraphrased into abstractive sum-
maries (Chen and Bansal, 2018; Bae et al., 2019).
Alternatively, to alter attention weights (Hsu et al.,
2018; Gehrmann et al., 2018) to bias the model to
rely more on summarizing input content. Finally,
to perform pre-training on extractive references
prior to abstractive summarization (Liu and Lapata,
2019). In our case, we predict extractive references
word-by-word by constructing a denoising objec-
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Figure 3: Ablation during the transduction phase. ROUGE-L scores on the 1k subset of the standard CNN/DM
validation set; extractive indicates the extractive references used for transduction.

tive that also masks input words. We use the same
model without modifications, and predict extractive
and abstractive references jointly.

Transductive learning has been applied to a num-
ber of language-related tasks, such as machine
translation (Ueffing et al., 2007), paradigm com-
pletion (Kann and Schiitze, 2018), syntactic and
semantic analysis (Ouchi et al., 2019), and more
recently to style transfer (Xiao et al., 2021). How-
ever, to the best of our knowledge, transductive
learning has never been applied to summarization.

More recently, PEGASUS (Zhang et al., 2020)
leveraged text fragments for pre-training. The text
fragments are selected using heuristics, such as top-
K sentences. Instead, we utilize a separate extrac-
tive model or gold summaries to select sentences
that form extractive references.

8 Conclusions

In this work, we present the first application of
transductive learning to summarization. We pro-
pose learning from summarizing sentences ex-
tracted from the test set’s input articles to better
capture their specifics. We additionally propose
a mechanism to regularize and validate the trans-
ductive model. The proposed method achieves
state-of-the-art results in automatic evaluation on
the CNN/DM and NYT datasets, and it generates
more abstractive and coherent summaries. Finally,
we demonstrate that transduction is useful when
trained on dated news and transducted on more
recent news.

9 Future Work

First, learning from single data points in the online
fashion can be a promising direction. This, in turn,
could call for the decoder’s modularization that is
less prone to overfitting. This could be achieved
using more efficient fine-tuning methods, such as
adapters (Houlsby et al., 2019) and continuous pre-
fixes (Li and Liang, 2021). Second, we believe
that content fidelity can be improved by learning
from the test set’s input using specialized methods.
Third, where training and test sets are in different
domains, adaptation in the transduction phase can
be fruitful, similar to Ueffing et al. (2007).
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11 Appendices

11.1 Details on the Mechanical Turk Setup

Custom Qualification Test. For all our evalua-
tions on Mechanical Turk, we first created a custom
qualification test that could be taken by any worker
from a country whose main language is English,
who has completed 100 or more HITs so far with an
acceptance rate of 95% or higher. The qualification
test consisted of three questions from our factual
consistency setup; two of which had to be answered
correctly, along with an explanation text (5 words
or more) to explain when “not factually consis-
tent” was chosen. 53% of workers who started the
test provided answers to all three questions, and
27.6% of these answered at least two correctly and
provided a reasonable explanation text, i.e., only
14.6% of the test takers were granted the qualifica-
tion. The qualification enabled workers to work on
our factual consistency HITs as well as our HITs
judging summary coherence.

Payment and Instructions. The coherence task
took workers a median time of 125 seconds per
HIT, for which we paid $0.40 with a bonus pf $0.20,
amounting to an hourly rate of $17. The factual
consistency task took workers a median time of
30 seconds per summary; the payment was $0.12
plus a bonus of $0.05, amounting to an hourly rate
of $20. This task was relatively quick to do as a
single summary sentence had to be judged; we also
highlighted article sentences that are semantically
similar to the highlighted summary sentence, in
order to make the relevant information from the
article more quickly accessible for fact checking.®
The factual consistency task contained instructions
shown in Fig. 4. The instructions for the coherence
task are quoted in the main text above.

Excluding Spammers. For both tasks, we ran
code attempting to automatically detect potential
spammers and label them for exclusion, in order to
ensure high quality annotations. Anyone labeled
for exclusion was disqualified for further HITs,
their HIT answers were excluded from the results
and HITs were extended to seek replacement an-
swers. For the coherence task, any worker who
spent less than 10 seconds per HIT was labeled
for exclusion. For the factual consistency task, the
minimum time per HIT required was 5 seconds; in

8We used the cosine distance of the universal sentence
embeddings (Cer et al., 2018) to measure semantic similarity.
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Please evaluate whether the blue sentence from the summary is
consistent with the information in the article.

Select no if the blue sentence is not consistent, i.e., its facts are not
supported by the article.

Select no in cases like these:

e The blue sentence contradicts information in the article. The
blue sentence might say "A fire broke out in Seattle", but the
article says it broke out in Portland. Or the blue sentence might
say "the Republicans won the election", but the article indicates
that the Democrats won instead.

e The blue sentence adds a fact that is not mentioned anywhere
in the article. For example, the blue sentence might say that "A
fire broke out at 2am", but the article doesn't mention the time
when the fire broke out.

Figure 4: Instructions for evaluating if a summary
sentence (highlighted in blue) was factually consistent
with the source article.

addition; workers who wrote very short explanation
texts for their “not factually consistent” answers
(median length 3 words or less) were excluded.
We also added 10 HITs with known factuality, and
workers who answered 3 or more of them but with
an accuracy less than 2/3 were excluded as well.
Any worker who was not excluded according to the
above criteria received the bonus.

Inter-Annotator Agreement and MACE For
the binary factual consistency evaluation, 521 of
the 600 HITs (86.8%) had a full agreement of all 3
workers; all other HITs had two agreements. For
the coherence evaluation, in which 3 different an-
swers were possible (first or second summary more
coherent; or none), 258 of the 300 HITs (86.0%)
had an agreement of 2 or more workers per HIT. As
noted in the main text above, we ran MACE (Hovy
et al., 2013) to further improve upon these raw an-
swers by unsupervised estimation of worker trust-
worthiness and subsequent recovery of the most
likely final answer per HIT.



