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Abstract

Pre-trained and fine-tuned news summarizers001
are expected to generalize to news articles un-002
seen in the fine-tuning (training) phase. How-003
ever, these articles often contain specifics,004
such as events and people, a summarizer could005
not learn about in training. This applies to sce-006
narios such as when a news publisher trains a007
summarizer on dated news and wants to sum-008
marize incoming recent news. In this work,009
we explore the first application of transductive010
learning to summarization where we further011
fine-tune models on test set’s input. Specif-012
ically, we construct references for learning013
from article salient sentences and condition014
on the randomly masked articles. We show015
that this approach is also beneficial in the fine-016
tuning phase when extractive references are017
jointly predicted with abstractive ones in the018
training set. In general, extractive references019
are inexpensive to produce as they are automat-020
ically created without human effort. We show021
that our approach yields state-of-the-art results022
on CNN/DM and NYT datasets, for instance,023
more than 1 ROUGE-L points improvement024
on the former. Moreover, we show the bene-025
fits of transduction from dated to more recent026
CNN news. Finally, through human and au-027
tomatic evaluation, we demonstrate improve-028
ments in summary abstractiveness and coher-029
ence.030

1 Introduction031

Language model pre-training has advanced the032

state-of-the-art in many NLP tasks ranging from033

sentiment analysis, question answering, natural lan-034

guage inference, named entity recognition, and tex-035

tual similarity; more recently, they have been used036

in summarization (Liu and Lapata, 2019; Lewis037

et al., 2020). State-of-the-art pre-trained models038

include GPT (Radford et al., 2018), BERT (Devlin039

et al., 2019), BART (Lewis et al., 2020), PEGASUS040

(Zhang et al., 2020).041

Abstractive

The penalty is more than 10 times the
previous record, according to a newspa-
per report. Utility commission to force
Pacific Gas & Electric Co. to make in-
frastructure improvements. Company
apologizes for explosion that killed 8,
says it is using lessons learned to im-
prove safety.

Extractive

The California Public Utilities Commis-
sion on Thursday said it is ordering Pa-
cific Gas & Electric Co. to pay a record
$1.6 billion penalty for unsafe opera-
tion of its gas transmission system, in-
cluding the pipeline rupture that killed
eight people in San Bruno in September
2010. Most of the penalty amounts to
forced spending on improving pipeline
safety. On September 9, 2010, a sec-
tion of PG&E pipeline exploded in San
Bruno, killing eight people and injuring
more than 50 others.

Ours

Pacific Gas & Electric Co. is ordered to
pay a record $1.6 billion penalty. Most
of the penalty amounts to forced spend-
ing on improving pipeline safety. A sec-
tion of PG&E pipeline exploded in San
Bruno in 2010, killing eight people. The
company says it is working to become
the safest energy company in the U.S.

Table 1: Example summaries that are human-written
(abstractive), and produced by extractive and our sys-
tems. Colored text indicates important details not
present in the human-written summary.

These models acquire prior syntactic and seman- 042

tic knowledge from large text corpora and are fur- 043

ther fine-tuned on task-specific smaller datasets, 044

such as news article-summary pairs. However, 045

specifics of test set news articles might not be well 046

represented in the training set. For example, a 047

news publisher might train a summarizer on dated 048

news and wants to summarize latest incoming news. 049

This suggests potential improvements if the sum- 050

marizer learns these specifics before summaries are 051

generated. In this work, we explore transductive 052

learning (Vapnik, 1998) by adapting a fine-tuned 053

summarizer to the test set by learning from its input 054
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articles.055

The main obstacle for transduction is the ab-056

sence of a reliable training signal, as no references057

are available in test time. Therefore, we propose058

constructing extractive references by selecting sum-059

marizing sentences from the input text by a sepa-060

rately trained model. Summarizing sentences are061

often fused and compressed to form abstractive062

summaries (Lebanoff et al., 2019), and contain063

additional important details providing better con-064

text, as illustrated in Table 1. Further, we use a065

denoising objective to predict summarizing sen-066

tences conditioned on masked input articles. In this067

way, the model balances the copying and genera-068

tion dynamic (See et al., 2017; Gehrmann et al.,069

2018; Bražinskas et al., 2020) as not all informa-070

tion for accurate summary predictions is available071

in the masked input. To further preserve summary072

abstractivness, we predict a small portion of ab-073

stractive summaries (∼5% on CNN/DM) from the074

annotated training set. This results in only a small075

fraction of the training time needed to perform076

transduction (< 4% on CNN/DM1). Moreover, we077

leverage summarizing sentences from training set078

inputs in the fine-tuning phase by predicting both079

abstractive and extractive references. As we show,080

this method outperforms standard fine-tuning on081

abstractive references alone. Finally, we show im-082

provements in the scenario when only dated news083

articles with summaries are available for training084

and the aim is to summarize recent news articles in085

test time.086

All in all, we empirically demonstrate that our087

model (TRSUM), that utilizes summarizing sen-088

tences in the fine-tuning and transduction phases,089

significantly improves the quality of summaries.090

Besides achieving state-of-the-art results on stan-091

dard datasets (CNN/DM (Hermann et al., 2015)092

and NYT (Sandhaus, 2008)), it also yields more093

coherent and abstractive summaries. Our main con-094

tributions can be summarized as follows.095

• we present the first application of transductive096

learning to summarization;097

• we show state-of-the-art results on standard098

summarization datasets (CNN/DM and NYT);099

• we show that transduction is beneficial for100

summarizing more recent CNN news 2.101

1On an AWS 8-GPU p3.8xlarge instance, full training took
9 hours while transduction only 15 minutes.

2The codebase will be publicly available.

2 Joint Fine-Tuning 102

Our model (TRSUM) has a Transformer encoder- 103

decoder architecture (Vaswani et al., 2017), which 104

is initialized with pre-trained BART (Lewis et al., 105

2020). Before we learn from the test set articles 106

using transductive learning (presented in Sec. 3), 107

we jointly fine-tune the model on extractive and 108

abstractive references in the training set. Extractive 109

references are useful for learning, as they often 110

contain omitted details in abstractive summaries 111

and provide additional context to the reader, see 112

Table 1. 113

Let {xi, yi}Ni=1 be article-summary pairs in the 114

training set. First, we greedily select k sentences 115

from the input article x that maximize the ROUGE 116

score3 to the summary y by following Liu and Lap- 117

ata (2019). We concatenate these sentences to form 118

an extractive summary ŷ that is word-by-word pre- 119

dicted using teacher-forcing (Williams and Zipser, 120

1989). Further, to prevent trivial solutions, we ran- 121

domly mask words in x with a special mask token4. 122

Intuitively, this forces the decoder to balance be- 123

tween copying from the input and generating novel 124

content (See et al., 2017; Gehrmann et al., 2018; 125

Bražinskas et al., 2020). Finally, we formulate a 126

joint fine-tuning objective in Eq. 1. We also illus- 127

trate the whole procedure in Fig. 1. 128

1

N

N∑
i=1

log pθ(yi|xi) +
1

M

M∑
j=1

log pθ(ŷj |x̂j) (1) 129

Notice that the joint objective in Eq. 1 re-uses 130

the model’s architecture without a specialized task 131

embedding. The model can easily differentiate 132

between abstractive and extractive summary pre- 133

diction/generation as only in the latter the input 134

contains a special mask token. We validate this in 135

an ablation experiment presented in Sec. 6.2. 136

Lastly, our main goal is to learn an abstractive 137

summarizer pθ(y|x) without overfitting on extrac- 138

tive references. Thus, we control for the ratio of 139

abstractive and extractive instances N and M , re- 140

spectively, by drawing decisions from the Bernoulli 141

distribution Bern(α). If α is set to 0, it results in 142

abstractive pairs only. 143

3We used the average of ROUGE-1 and ROUGE-2 F
scores.

4We also experimented with masking only summarizing
sentences. However, this lead to inferior results.
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p✓(ŷ|x̂)

m
as

ki
ng

encoding

encoding prediction

prediction

reference construction

Figure 1: Illustration of the joint objective and the associated procedure. Here we randomly mask the input article
x resulting in x̂. Further, construct ŷ by concatenating summarizing sentences in x. Lastly, we jointly predict
abstractive and extractive references y and ŷ, respectively.

3 Transduction144

Consider a scenario where a news publishing145

agency has a fine-tuned model on dated article-146

summary pairs and wants to summarize upcoming147

news articles for which summaries are not yet avail-148

able. In this setting, an immediate response might149

not be necessary and latency can be traded for sum-150

mary quality. In this light, we propose to leverage151

transductive learning (Vapnik, 1998) and further152

fine-tune the model by learning from test set input153

articles. First, we train an extractive summarizer154

that predicts summarizing sentences, as explained155

in Sec. 3.1. Second, we extract summarizing sen-156

tences from test set input articles and construct157

references ŷ. Lastly, we optimize the model by158

predicting these references using pθ(ŷ|x̂) in Eq. 1.159

3.1 Extractive Summarizer160

To produce extractive references on the test set, we161

train an extractive summarizer. The summarizer162

consists of two Transformer encoders and predicts163

which sentences are summarizing, as illustrated164

in Fig. 2. Formally, let [s1, s2, ..., sm] denote165

sentences in an article where each sentence is sepa-166

rated by a special symbol ([SEP]). Further, let [b1,167

b2, ..., bm] be their associated binary tags where 1168

indicates a summarizing sentence.169

To compute model predictions for sentences, we170

proceed as follows. First, we feed the sequence of171

concatenated sentences [s1, s2, ..., sm] to the first172

encoder and obtain sentence representations [e1, e2,173

..., em]. Intuitively, these representations capture174

semantics of each sentence useful for determining175

 sentence one [SEP] summarizing sentence [SEP]

Sentence Contextualizer

Word Contextualizer

0 1

Figure 2: Extractive summarizer contextualizes words
and subsequently sentences. The final outputs are bi-
nary tags where 1 indicates a summarizing sentence.

their salience and how well they summarize the 176

whole article. To better capture cross-sentence de- 177

pendencies, we feed the sentence representations to 178

the second encoder and obtain contextualized rep- 179

resentations [c1, c2, ..., cm]. Finally, we feed each 180

representation ci to a feed-forward neural network 181

fθ(ci) to obtain scores. 182

3.2 Regularization 183

In transduction, when the model is solely optimized 184

for predicting extractive summaries, the previously 185

learned abstractive summarization and its perfor- 186

mance can degradate (Goodfellow et al., 2013; 187

Kemker et al., 2017); see Sec. 6.2 for a confirming 188

experiment. As a form of regularization, we pro- 189

pose to additionally predict abstractive summaries 190

from the training set using the full objective in 191

Eq. 1. In practice, we found that sampling a similar 192

amount of training pairs as in the test set (about 193
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Year Count Avg. # words Avg. # sents
2016 12799 34.65 2.46
2017 11292 32.49 2.34

Table 2: CNN summary statistics for more recent years.

5% on CNN/DM) to be sufficient. Another point194

of consideration is that the extractive summarizer,195

presented in Sec. 3.1, can erroneously select non-196

summarizing sentences, resulting in less reliable197

references. Consequently, we found it beneficial198

to also add extractive pairs from the training set199

created using a heuristic presented in Sec. 2.200

3.3 Tracking of Overfitting201

Tracking of overfitting is essential for model de-202

velopment. To monitor overfitting during trans-203

duction, we propose the following simple proce-204

dure. First, we sample a tiny subset of validation205

pairs (around 1,000). To closely resemble trans-206

duction, we produce extractive references using the207

extractive model presented in Sec. 3.1. Further,208

we combine the validation extractive pairs with the209

training and test set pairs used for transduction (see210

Sec. 3.2). Finally, we track ROUGE-L scores on211

the validation human-written abstractive references.212

This, in turn, allows us to determine when abstrac-213

tive summarization performance starts to decrease214

to perform early stopping.215

4 Experimental Setup216

4.1 Datasets217

The evaluation was performed on two main sum-218

marization datasets: CNN/DailyMail (Hermann219

et al., 2015) and New York Times (NYT) (Sand-220

haus, 2008). CNN/DM contains news articles and221

associated highlights, i.e., a few bullet points giv-222

ing a brief overview of the article. We used the223

standard splits of 287k, 13k, and 11k for training,224

validation, and testing, respectively. We did not225

anonymize entities and followed See et al. (2017)226

to pre-process the first sentences of CNN. For NYT,227

we used a provided dataset used in (Liu and Lapata,228

2019), which consists of 38264, 4002, 3421 train-229

ing, validation, and test set instances, respectively.230

The instances are news articles accompanied by231

short human-written summaries, where summaries232

shorter than 50 words were removed.233

The original CNN/DM dataset contains news234

from 2007 to 2015. To test whether transduction235

is beneficial for more recent news, we obtained236

newer snapshots of CNN, namely for 2016 and237

2017. We downloaded CNN articles published 238

in 2016 and 2017 using NewsPlease,5 extracted 239

raw contents, and retained those having a story 240

highlight as a summary in the beginning of the 241

article. The statistics are shown in Table 2. These 242

sets were used for transduction only. 243

Finally, we truncated input documents to 1000 244

subwords 6 by preserving complete sentences. To 245

monitor overfitting, we used 1k, 500, and 100 val- 246

idation instances for transduction on CNN/DM, 247

NYT, and CNN 2016/2017, respectively. In all 248

experiments, we used ROUGE-L for the stopping 249

criterion. For evaluation, we used the standard 250

ROUGE package (Lin, 2004) and report F1 scores. 251

4.2 Human Evaluation 252

For human evaluation experiments, we randomly 253

sampled 300 articles from CNN/DM test set. Fur- 254

ther, we generated and compared summaries from 255

BART + FT and TRSUM. We used Amazon Me- 256

chanical Turk (AMT) and ensured that only high- 257

quality workers could participate. We asked work- 258

ers to pass a custom qualification test, which only 259

14.6% of those who took it passed. For further de- 260

tails, see Appendix 11.1. Finally, we requested 3 261

annotators per HIT and used MACE (Hovy et al., 262

2013) to estimate annotator competences and re- 263

cover the most likely answer per HIT accordingly. 264

4.3 Model Details 265

For pre-initialization, we used the large pre-trained 266

BART model (Lewis et al., 2020) available with 267

FairSEQ. We also used a subword tokenizer with 268

maximum of 50k subwords. The model had 12 269

layers both in the encoder and decoder and a hid- 270

den size of 1024. In total, it consisted of 400M 271

parameters. During fine-tuning and transduction, 272

the architecture remained unchanged. 273

During joint fine-tuning (TRSUM−), presented 274

in Sec. 2, we masked 25% of words in input arti- 275

cles, and set α = 0.1 to produce on average 10% 276

of extractive instances at each epoch. In transduc- 277

tion, we masked 10% of input words, and sampled 278

14k and 5k training instances at each epoch for 279

CNN/DM and NYT, respectively. Here, α was 280

set to 0.1. In all experiments, we used Adam 281

(Kingma and Ba, 2014) for weight updates, and 282

beam search for summary generation with 3-gram 283

5https://github.com/fhamborg/
news-please

6The maximum number of subwords includes sentence
separator special tokens.
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blocking (Paulus et al., 2017). All experiments284

were performed on 8-GPU p3.8xlarge Amazon in-285

stance. For CNN/DM, we performed joint fine-286

tuning for 6 epochs and transduction for 3 epochs.287

For NYT, 9 epochs of joint fine-tuning and 3 epochs288

for transduction.289

4.4 Extractive Summarizer290

To obtain extractive references for transduction291

(EXTREF), we used the BART’s fine-tuned encoder,292

and an additional transformer encoder (Vaswani293

et al., 2017) to contextualize sentence representa-294

tions. For CNN/DM, we set the number of layers to295

3, and attention heads to 16. For NYT, we set it to296

2 layers with attention heads number to 8. To pro-297

duce binary scores, we used a linear transformation298

that is followed by the sigmoid function.299

To select summarizing sentences from the train-300

ing set input articles, we used a greedy heuristic301

(ORACLE) that maximizes ROUGE scores between302

the summarizing sentences and the gold summary303

as in Nallapati et al. (2016a); Liu and Lapata (2019).304

We selected up to 3 sentences per input article. In305

inference, we ranked candidate sentences by scores306

and selected top-3 sentences. Also, we applied N-307

gram blocking during selection to avoid repetitive308

content as in Liu and Lapata (2019). Given a cur-309

rent extractive summary s and candidate sentence c,310

we skip c if there exists a trigram overlap between311

c and s.312

5 Evaluation Results313

5.1 Automatic Evaluation314

Standard Datasets We report automatic evalu-315

ation based on ROUGE F1 on the CNN/DM and316

NYT test sets, the results are shown in Table 3.317

First of all, we observed that joint fine-tuning318

(TRSUM−), which utilizes both extractive and ab-319

stractive summaries of the training set, outperforms320

the standard fine-tuning that utilizes only the for-321

mer. Second, we observed that transduction fur-322

ther improves the performance of the jointly fine-323

tuned model on both datasets. We also performed324

an independent-samples t-test to compare our full325

model to BART+FT. It indicates that all results326

are statistically significant under p < 0.05 except327

ROUGE-2 on NYT.328

Recent News It is common to assume train-329

ing and test sets to share a common distribution330

(Quadrianto et al., 2009; Kann and Schütze, 2018).331

However, in practice, this assumption might need 332

to be violated (Ueffing et al., 2007). For instance, 333

we might want to transduct a summarizer on fresh 334

news while it was fine-tuned on more dated news. 335

To test our approach, we used a summarizer jointly 336

fine-tuned on the standard CNN/DM training set, 337

spanning news from 2007 to 2015 and transducted 338

on more recent CNN news (2016 and 2017). The 339

results are presented in Table 4. 340

First of all, we observed that joint fine-tuning 341

is superior to the standard one on both datasets. 342

Second, even though extractive noisy references 343

(EXTREF) have low ROUGE scores, we further 344

improve the results by performing transduction. 345

Moreover, when higher quality extractive refer- 346

ences were used, namely produced using the or- 347

acle heuristic (TRSUM \w ORACLE), additional 348

improvements were observed. This shows that our 349

approach is beneficial for settings where training 350

set and test set distributions are different. 351

5.2 Human Evaluation 352

To gain deeper insights into how extractive refer- 353

ences affect the coherence of summaries our model 354

generates, we performed a human evaluation study. 355

Additionally, we evaluated the factual consistency 356

of generated summaries, which is an open problem 357

in summarization (Kryscinski et al., 2020; Maynez 358

et al., 2020). 359

Coherence In evaluation, generated summaries 360

were presented in a random order, as well as the 361

input article and reference summary for context. 362

For each HIT, we asked the 3 annotators which 363

of the two generated summaries, if any, was more 364

coherent. We gave the following definition: ”The 365

more coherent summary has better structure and 366

flow, is easier to follow. The facts are presented in 367

more logical order.” The TRSUM model was pre- 368

ferred 110 times (22.0%), while BART + FT was 369

preferred 89 times (17.8%). In 101 cases (20.2%), 370

the annotators indicated that none of the two sum- 371

maries was preferable. We conclude that the TR- 372

SUM summaries were significantly more coherent 373

than the BART + FT summaries (p < 0.05 using a 374

one-sided z-test). 375

We observed that CNN/DM articles tend to be 376

more coherent than the associated bullet point sum- 377

maries. Further, we observed that summarizing 378

sentences we used for learning (EXTREF) tend to 379

be among lead 5 (61.1%) with a very small gap 380

between them (0.529 sentences on average). There- 381
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CNN/DailyMail New York Times
R1 R2 RL R1 R2 RL

ORACLE 55.21 32.86 51.36 61.70 42.23 58.34
LEAD-3 40.42 17.62 36.67 38.28 19.75 34.96

Extractive / Compressive
SUMMARUNNER (Nallapati et al., 2016a) 39.60 16.20 35.30 - - -
REFRESH (Narayan et al., 2018) 40.00 18.20 36.60 - - -
SUMO (Liu et al., 2019) 41.00 18.40 37.20 42.30 22.70 38.60
COMPRESS (Durrett et al., 2016) - - - 42.20 24.90 -
JETS (Xu and Durrett, 2019) 41.70 18.50 37.90 - - -
BERTSUMEXT (Liu and Lapata, 2019) 43.25 20.24 39.63 46.66 26.35 42.62
MATCHSUM (Zhong et al., 2020) 44.41 20.86 40.55 - - -

Abstractive
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 43.71 26.40 -
BOTTOMUP (Gehrmann et al., 2018) 41.22 18.68 38.34 - - -
DRM (Paulus et al., 2017) - - - 42.94 26.02 -
BERTSUMEXTABS (Liu and Lapata, 2019) 42.13 19.60 39.18 49.02 31.02 45.55
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11 - - -
BART + FT (reported) (Lewis et al., 2020) 44.16 21.28 40.90 - - -
BART + FT (ours)7 44.01 21.13 40.81 52.97 35.19 49.32

Ours
TRSUM− 44.59 21.58 41.50 53.55 35.54 49.81
TRSUM 44.96 21.89 41.86 53.72 35.72 50.06
EXTREF 43.93 21.12 40.20 47.49 27.57 43.88

Table 3: ROUGE F1 scores on the standard CNN/DM and New York Times test sets.

CNN 2016 CNN 2017
R1 R2 RL R1 R2 RL

ORACLE 53.05 36.87 49.89 52.58 36.97 49.57
LEAD-3 31.87 16.62 29.06 28.82 14.32 26.21
BERTSUMEXTABS 33.17 14.43 30.56 30.44 12.51 27.98
BART + FT 34.93 15.83 32.14 32.62 14.27 29.98
TRSUM− 35.40 15.92 32.62 32.92 14.21 30.24
TRSUM 35.58 16.32 32.78 33.07 14.63 30.45
TRSUM \w ORACLE 36.10 16.72 33.27 33.37 15.01 30.71
EXTREF 32.14 15.37 29.17 29.19 13.30 26.43

Table 4: ROUGE F1 scores on more recent CNN test sets. In TRSUM \w ORACLE we used ORACLE extractive
references transduction.

fore, we hypothesize that the model learns from382

consecutive sentences more natural text structures383

that emanate in summaries.384

Factual Consistency For evaluating factual con-385

sistency, each HIT presented one input article and386

one generated summary from BART + FT or TR-387

SUM. To simplify the task, we focused the workers’388

attention on a single highlighted sentence per sum-389

mary, which we picked at random, and asked if that390

sentence, as shown in the context of the full sum- 391

mary, is factually consistent with the article. We 392

gave detailed guidelines and examples for factual 393

errors, see Appendix 11.1. Effectively, this setup 394

measured how likely a randomly chosen summary 395

sentence is factually consistent with the summa- 396

rized article. We found that 263 of the 300 BART 397

+ FT summary sentences (87.7%) were judged fac- 398

tual, compared to 254 for the 300 TRSUM sum- 399

maries (84.7%). This is a small difference that we 400
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R1 R2 RL
BART + FT 44.01 21.13 40.81
BART + FT + TR 44.83 21.79 41.69
TRSUM− 44.59 21.58 41.50
TRSUM 44.96 21.89 41.86

Table 5: Comparison between transduction of the
BART model that was fine-tuned using our and the de-
fault method on the CNN/DM test set.

found not statistically significant (p < 0.05 using a401

one-sided z-test).402

6 Analysis403

6.1 Transduction of Fine-tuned BART404

We further explored whether it is possible to405

perform transduction of the BART model that406

was already fine-tuned only on abstractive sum-407

maries (BART + FT). The results on the standard408

CNN/DM dataset are presented in Table 5. They409

indicate that transduction is beneficial and notice-410

ably improves the results. We hypothesize that the411

model also benefits from the training set extractive412

instances that are predicted. However, it does not413

reach the results achieved by our full approach.414

6.2 Ablation415

To gain insights into the inner workings of trans-416

duction, we performed an ablation study by remov-417

ing components from models fine-tuned jointly418

and only on abstractive references. We plot the419

ROUGE-L scores on the validation subset that was420

used for transduction in Fig. 3.421

First of all, we observed that masking is impor-422

tant in both cases, and without it the models degra-423

date. We believe that the mask token is used as424

a mode indicator for the decoder. And without425

it, the decoder is unable to differentiate the two426

modes (extractive vs abstractive summary predic-427

tion). Second, we observed that the removal of428

the training set instances, as explained in Sec. 3.2,429

makes TRSUM− converge to the same ROUGE430

score as the extractive references used for trans-431

duction. On the other hand, it makes BART + FT432

degradate. Finally, without ablations, we observed433

two different learning dynamics. BART + FT ini-434

tially decreases in the ROUGE score for 2 epochs,435

and then slowly starts to improve by surpassing436

the baseline extractive references at epoch 4. We437

7We used shorter input with only complete sentences that
we believe resulted in a slightly worse performance.

N1 N2 N3
Gold 0.178 0.528 0.718
BART + FT 0.019 0.101 0.186
BART + FT + TR 0.026 0.132 0.234
TRSUM− 0.028 0.135 0.238
TRSUM 0.029 0.145 0.254

Table 6: The proportion of novel n-grams on the stan-
dard CNN/DM test set.

hypothesize that it is caused by unfamiliarity with 438

predicting extractive summaries. On the other hand, 439

TRSUM experiences only a minor decrease in the 440

beginning, possibly due to the lower quality of ex- 441

tractive references of the test set tagged by a model 442

in Sec. 3.1, and then it steadily improves. 443

6.3 Novel N-grams 444

We also analyzed generated summaries in terms 445

of the proportion of novel n-grams that appear in 446

the produced summaries but not in the source texts. 447

The results are shown in Table 6. We observed 448

that joint fine-tuning and transduction increase the 449

proportion of novel n-grams, thus making sum- 450

maries more abstractive. By comparing extractive 451

and abstractive summaries, we noticed the selected 452

sentences in extractive summaries often paraphrase 453

sentences in the abstractive ones. We hypothesize 454

that the exposure to the references with paraphrases 455

allows the model to generate more variant sum- 456

maries. 457

7 Related Work 458

Single-document extractive and abstractive summa- 459

rization is a well-established field with a large body 460

of prior research (Dasgupta et al., 2013; Rush et al., 461

2015; Nallapati et al., 2016b; Tan et al., 2017; See 462

et al., 2017; Fabbri et al., 2020; Laban et al., 2020). 463

The utilization of extractive summaries to im- 464

prove abstractive summarization has also received 465

some recent attention. Commonly, in a two-step 466

procedure where summarizing fragments are first 467

selected, and then paraphrased into abstractive sum- 468

maries (Chen and Bansal, 2018; Bae et al., 2019). 469

Alternatively, to alter attention weights (Hsu et al., 470

2018; Gehrmann et al., 2018) to bias the model to 471

rely more on summarizing input content. Finally, 472

to perform pre-training on extractive references 473

prior to abstractive summarization (Liu and Lapata, 474

2019). In our case, we predict extractive references 475

word-by-word by constructing a denoising objec- 476
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Figure 3: Ablation during the transduction phase. ROUGE-L scores on the 1k subset of the standard CNN/DM
validation set; extractive indicates the extractive references used for transduction.

tive that also masks input words. We use the same477

model without modifications, and predict extractive478

and abstractive references jointly.479

Transductive learning has been applied to a num-480

ber of language-related tasks, such as machine481

translation (Ueffing et al., 2007), paradigm com-482

pletion (Kann and Schütze, 2018), syntactic and483

semantic analysis (Ouchi et al., 2019), and more484

recently to style transfer (Xiao et al., 2021). How-485

ever, to the best of our knowledge, transductive486

learning has never been applied to summarization.487

More recently, PEGASUS (Zhang et al., 2020)488

leveraged text fragments for pre-training. The text489

fragments are selected using heuristics, such as top-490

K sentences. Instead, we utilize a separate extrac-491

tive model or gold summaries to select sentences492

that form extractive references.493

8 Conclusions494

In this work, we present the first application of495

transductive learning to summarization. We pro-496

pose learning from summarizing sentences ex-497

tracted from the test set’s input articles to better498

capture their specifics. We additionally propose499

a mechanism to regularize and validate the trans-500

ductive model. The proposed method achieves501

state-of-the-art results in automatic evaluation on502

the CNN/DM and NYT datasets, and it generates503

more abstractive and coherent summaries. Finally,504

we demonstrate that transduction is useful when505

trained on dated news and transducted on more506

recent news.507

9 Future Work 508

First, learning from single data points in the online 509

fashion can be a promising direction. This, in turn, 510

could call for the decoder’s modularization that is 511

less prone to overfitting. This could be achieved 512

using more efficient fine-tuning methods, such as 513

adapters (Houlsby et al., 2019) and continuous pre- 514

fixes (Li and Liang, 2021). Second, we believe 515

that content fidelity can be improved by learning 516

from the test set’s input using specialized methods. 517

Third, where training and test sets are in different 518

domains, adaptation in the transduction phase can 519

be fruitful, similar to Ueffing et al. (2007). 520

10 Ethics Statement 521

Human Evaluation We used a publicly avail- 522

able service (Amazon Mechanical Turk) to hire vol- 523

untary participants, requesting native speakers of 524

English. The participants were compensated above 525

the minimum hourly wage in their self-identified 526

countries of residence. 527

Dataset The dataset was collected and used in 528

accordance to non-commercial personal purpose 529

permitted by the data provider. 530
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11 Appendices744

11.1 Details on the Mechanical Turk Setup745

Custom Qualification Test. For all our evalua-746

tions on Mechanical Turk, we first created a custom747

qualification test that could be taken by any worker748

from a country whose main language is English,749

who has completed 100 or more HITs so far with an750

acceptance rate of 95% or higher. The qualification751

test consisted of three questions from our factual752

consistency setup; two of which had to be answered753

correctly, along with an explanation text (5 words754

or more) to explain when ”not factually consis-755

tent” was chosen. 53% of workers who started the756

test provided answers to all three questions, and757

27.6% of these answered at least two correctly and758

provided a reasonable explanation text, i.e., only759

14.6% of the test takers were granted the qualifica-760

tion. The qualification enabled workers to work on761

our factual consistency HITs as well as our HITs762

judging summary coherence.763

Payment and Instructions. The coherence task764

took workers a median time of 125 seconds per765

HIT, for which we paid $0.40 with a bonus pf $0.20,766

amounting to an hourly rate of $17. The factual767

consistency task took workers a median time of768

30 seconds per summary; the payment was $0.12769

plus a bonus of $0.05, amounting to an hourly rate770

of $20. This task was relatively quick to do as a771

single summary sentence had to be judged; we also772

highlighted article sentences that are semantically773

similar to the highlighted summary sentence, in774

order to make the relevant information from the775

article more quickly accessible for fact checking.8776

The factual consistency task contained instructions777

shown in Fig. 4. The instructions for the coherence778

task are quoted in the main text above.779

Excluding Spammers. For both tasks, we ran780

code attempting to automatically detect potential781

spammers and label them for exclusion, in order to782

ensure high quality annotations. Anyone labeled783

for exclusion was disqualified for further HITs,784

their HIT answers were excluded from the results785

and HITs were extended to seek replacement an-786

swers. For the coherence task, any worker who787

spent less than 10 seconds per HIT was labeled788

for exclusion. For the factual consistency task, the789

minimum time per HIT required was 5 seconds; in790

8We used the cosine distance of the universal sentence
embeddings (Cer et al., 2018) to measure semantic similarity.

Figure 4: Instructions for evaluating if a summary
sentence (highlighted in blue) was factually consistent
with the source article.

addition; workers who wrote very short explanation 791

texts for their ”not factually consistent” answers 792

(median length 3 words or less) were excluded. 793

We also added 10 HITs with known factuality, and 794

workers who answered 3 or more of them but with 795

an accuracy less than 2/3 were excluded as well. 796

Any worker who was not excluded according to the 797

above criteria received the bonus. 798

Inter-Annotator Agreement and MACE For 799

the binary factual consistency evaluation, 521 of 800

the 600 HITs (86.8%) had a full agreement of all 3 801

workers; all other HITs had two agreements. For 802

the coherence evaluation, in which 3 different an- 803

swers were possible (first or second summary more 804

coherent; or none), 258 of the 300 HITs (86.0%) 805

had an agreement of 2 or more workers per HIT. As 806

noted in the main text above, we ran MACE (Hovy 807

et al., 2013) to further improve upon these raw an- 808

swers by unsupervised estimation of worker trust- 809

worthiness and subsequent recovery of the most 810

likely final answer per HIT. 811
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