
Supervised Contrastive Learning from Weakly-Labeled
Audio Segments for Musical Version Matching

Joan Serrà 1 R. Oguz Araz 2 Dmitry Bogdanov 2 Yuki Mitsufuji 1 3

Abstract
Detecting musical versions (different renditions
of the same piece) is a challenging task with im-
portant applications. Because of the ground truth
nature, existing approaches match musical ver-
sions at the track level (e.g., whole song). How-
ever, most applications require to match them at
the segment level (e.g., 20 s chunks). In addition,
existing approaches resort to classification and
triplet losses, disregarding more recent losses that
could bring meaningful improvements. In this pa-
per, we propose a method to learn from weakly an-
notated segments, together with a contrastive loss
variant that outperforms well-studied alternatives.
The former is based on pairwise segment distance
reductions, while the latter modifies an existing
loss following decoupling, hyper-parameter, and
geometric considerations. With these two ele-
ments, we do not only achieve state-of-the-art
results in the standard track-level evaluation, but
we also obtain a breakthrough performance in a
segment-level evaluation. We believe that, due to
the generality of the challenges addressed here,
the proposed methods may find utility in domains
beyond audio or musical version matching.

1. Introduction
When two audio tracks contain different renditions of the
same musical piece, they are considered musical versions1.
Musical versions are inherent in human culture and predate
recorded music and notation, as ancient music was transmit-
ted solely through playing and listening (Ball, 2010), which
naturally led to variations in tunes, rhythms, structures, etc.
Learning representations of musical versions is a challeng-
ing task due to the degree and amount of variations that

1Sony AI 2Music Technology Group, Universitat Pompeu
Fabra 3Sony Group Corporation. Correspondence to: Joan Serrà
<joan.serra@sony.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

can be present between versions, which go beyond typical
augmentations used by the machine learning community.
Two musical versions may feature different instrumentation
or timbre, together with tonality and chord modifications,
altered melodies, substantial changes to rhythm and tempo,
an alternate temporal development or structure, and many
more (Yesiler et al., 2021). Yet, musical versions retain their
essence, to the point that we can generally agree whether
two of them correspond to the same piece or not2. Therefore,
learnt version representations need to encapsulate multiple
characteristics shared between versions that, at the same
time, can discriminate them from other pieces.

Musical version matching has several relevant applica-
tions (Serrà, 2011; Yesiler et al., 2021), including specific
applications to plagiarism and near-duplicate detection3.
Beyond business impact (Page, 2023) and cultural/artistic
appreciation, some applications have become even more
relevant today, given the sustained rise and improvement
of music generative models (e.g., Copet et al., 2023; Evans
et al., 2024; Liu et al., 2024). Indeed, the recent efforts on
assessing music data replication, memorization, and attri-
bution in such models exploit some form of music similar-
ity (Barnett et al., 2024; Bralios et al., 2024) or, for improved
results, musical version matching (Batlle-Roca et al., 2024).

A fundamental limitation of version matching approaches is
that they operate at the full-track level, learning and extract-
ing individual representations from relatively long record-
ings (for instance, a few-minute song). This is due to ground
truth version annotations being only available per track.
However, the segments of interest, for both classical and
modern applications, are much shorter than the track length
(for instance, around 10–20 s). This mismatch between the
learning and inference stages, as we will see, causes a dra-
matic performance degradation (Sec. 5). Another challenge
is that, in contrast to standard supervised learning tasks,
musical version data sets contain only a few items per class.

1A related but more restrictive and biased term in the literature
is “cover songs”. To better understand this restriction and bias, see
the discussion found in, for example, Yesiler et al. (2021).

2A well-known source collecting this information is https:
//secondhandsongs.com.

3Note that musical version matching may expand and subsume
traditional music fingerprinting (Cano et al., 2005).

1

https://secondhandsongs.com
https://secondhandsongs.com

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Table 1. Comparison of characteristics for a number of existing approaches and the proposed method CLEWS. We exclude multi-feature
and/or multi-modal approaches (for example fusing CQT and melody estimations or leveraging audio and lyrics information). For further
details and approaches we refer to the survey by Yesiler et al. (2021).

NAME(S) MAIN INPUT ARCH. SEGMENT PARTIAL LOSS / TRAIN RETRIEVAL
REFERENCE LEARNING MATCH CONCEPT DISTANCE

CQTNET YU ET AL. (2020) CQT CONVNET ✗ ✗ CLASSIF. COSINE
DORAS&PEETERS DORAS & PEETERS (2020) HCQT CONVNET ✗ ✗ TRIPLET COSINE
MOVE/RE-MOVE YESILER ET AL. (2020A) CREMA CONVNET ✗ ✗ TRIPLET EUCLIDEAN
PICKINET O’HANLON ET AL. (2021) CQT CONVNET ✗ ✗ CLASSIF.+CENTER COSINE
LYRACNET HU ET AL. (2022) CQT WIDERESNET ✗ ✗ CLASSIF. COSINE
BYTECOVER1/2 DU ET AL. (2022) CQT RESNET ✗ ✗ CLASSIF.+TRIPLET COSINE
COVERHUNTER LIU ET AL. (2023) CQT CONFORMER ✗ ✓ CLASSIF.+FOCAL+CENTER COSINE
BYTECOVER3/3.5 DU ET AL. (2023) CQT RESNET ✓ ✗ CLASSIF.+TRIPLET COSINE
DVINET/DVINET+ ARAZ ET AL. (2024A) CQT CONVNET ✗ ✗ TRIPLET COSINE

CLEWS (PROPOSED) THIS PAPER CQT RESNET ✓ ✓ CONTRASTIVE EUCLIDEAN

For instance, up to 56% of a recent realistic large-scale
data set of around 500 k tracks is formed by only 2-item
classes, with an average of 5 items per class (Araz et al.,
2024a). This characteristic suggests that, besides the tradi-
tional focus on classification and triplet losses, a supervised
contrastive learning approach (Sec. 2) could also work well.

In this paper, we consider a full music track as a succession
of weakly-labeled audio segments, and learn a contrastive
representation using such weak supervision. To do so, we
introduce two main methods. First, we develop a number
of pairwise distance selection strategies, which reduce a
segment-level distance matrix into a track-level distance
matrix. This enables the direct utilization of track-level
annotations without statically assigning them to some or
all of the segments. Second, we reformulate the alignment
and uniformity (A&U) loss of Wang & Isola (2020), origi-
nally introduced for self-supervised learning, to operate on a
(weakly) supervised learning task. Motivated by decoupling,
hyper-parameter, and geometric considerations, we intro-
duce several changes that convert A&U into a new loss func-
tion: the strict decoupling of positives and negatives (Yeh
et al., 2022), the simplification of hyper-parameters, the
native operation in Euclidean geometry (cf. Koishekenov
et al., 2023), and a smoothing constant for negative pairs.
With both distance reduction and contrastive learning strate-
gies, we do not only outperform existing approaches in the
segment-level evaluation by a large margin, but we also
achieve state-of-the-art results in the standard track-level
evaluation. We also perform an extensive ablation study
to empirically compare the proposed methods with several
alternatives, including additional reduction strategies and
common contrastive losses. We believe that, due to the
generality of the challenges addressed here, the proposed
methods may find utility in further domains beyond mu-
sical version matching. To facilitate understanding and
reproduction, we share our code and model checkpoints in
https://github.com/sony/clews.

2. Background
After a history of rule-, feature-, and model-based ap-
proaches (Serrà, 2011; Yesiler et al., 2021), musical ver-
sion matching is currently tackled as a supervised learning
problem, focusing on full-track pairwise matching (Table 1).
However, two versions do not necessarily need to match for
their entire duration, and actually several applications rely
on few-second partial matches. Only a couple of approaches
base their learning or retrieval stages on segments or par-
tial matches, respectively. ByteCover3 (Du et al., 2023)
pioneered learning from segments with their “maxmean”
operator. However, such operator still does not allow for
partial matches, as it forces all segments of a track to match
some segment from another track. CoverHunter (Liu et al.,
2023) is able to detect partial matches of around 45 s. How-
ever, the learning strategy to do so is based on a two-stage
brute-force approach. First, it trains a coarse detector model
on 15-second segments using classification, focal, and cen-
ter losses. Then, it resorts to this first-stage model and a
rule-based approach to (weakly) label 45-second segments,
which are finally used to train the second-stage model with
the same losses. In both stages, CoverHunter treats seg-
ments as full tracks. To our knowledge, we are the first
to consider an entirely segment-based approach for both
learning and retrieval stages.

The literature on musical version matching has tradition-
ally considered a number of classification (Sun et al., 2014)
and triplet (Schroff et al., 2015) loss variants, and their
combination (Table 1). However, given the same ground
truth, another approach to learning version representations
would be to consider a supervised contrastive loss like N-
pairs (Sohn, 2016) or SupCon (Khosla et al., 2021). In addi-
tion, a number of well-established losses for self-supervised
learning like InfoNCE/NT-Xent (Van den Oord et al., 2018;
Chen et al., 2020), alignment and uniformity (Wang & Isola,
2020), or SigLIP (Zhai et al., 2023) could also be adapted.
An analysis of the relations between many of such losses is

2

https://github.com/sony/clews

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

carried out by Koromilas et al. (2024). Apart from the loss
function, other considerations such as positive/negative de-
coupling (Yeh et al., 2022) and the correspondence between
distance and space geometry (Koishekenov et al., 2023) are
potentially relevant in a practical case. To our knowledge,
we are the first to consider a supervised contrastive loss for
musical version matching.

3. Contrastive Learning from Weakly-Labeled
Audio Segments

We now detail our approach to perform contrastive learning
from weakly-labeled audio segments (CLEWS). The first
part deals with track-level labels and their allocation to
segment distances (we base our development on distances,
but it can be easily reformulated using similarities). The
second part details the contrastive loss function we use. The
third part explains our architecture and training procedure.

3.1. Segment Distance Reduction

Framework — Given the k-th waveform segment of the
i-th music track, xki , we compute latent representations
zki = F(xk

i), where F represents a neural network that
pools the time-varying information of the segment into a
single vector (architecture details can be found in Sec. 3.3
and Appendix A). Then, for every possible pair of segments
k and l of every possible pair of tracks i and j, we com-
pute their distance d̃klij and obtain the distance matrix D̃
(Fig. 1). At this point, if there are n query tracks and m
candidate tracks with u and v segments4, respectively, we
have D̃ ∈ Rnu×mv

≥0 . However, since labels are only pro-
vided at the track level, our binary ground truth assignments
(1 for version/positive and 0 for non-version/negative) are
A ∈ Zn×m

2 . Therefore, we need some strategy to (weakly)
allocate n×m labels to nu×mv segment distances.

A naı̈ve strategy to do such allocation would be to propa-
gate all positive/negative track assignments to all segment
comparisons in the sub-rectangle D̃ij defined by a pair of
tracks i and j. This is the approach implicitly followed by
CoverHunter (Liu et al., 2023). However, besides its poor
performance (Sec. 5), this strategy incurs a fundamental
error, in the sense that it is teaching the model that all pos-
itive segments are ‘similar’ to all other positive segments,
which in the case of musical versions is false (two segments
could reproduce two different motives of the same song;
even though it is the same song, the segments are usually
not the same, unless it is an extremely repetitive song). In-
stead of trying to allocate n×m positive/negative distances
to nu×mv segment distances, we take the opposite view

4Notice that, similar to cross-attention in Transformers, we can
deal with different track lengths by taking a maximum length u, v
and masking. See Fig. 1 (right) for a couple of examples.

z!" z!# z!$ z!%"" z!%"$

z&"

z&#

z&'

z&%""

z&%"#

z&%"'

z!%"(

z&%")

"𝑑&!'$
$𝐃&!$𝐃

Figure 1. Illustration of four reduction functions R over pair-
wise segment distances d̃klij . They are depicted on different sub-
rectangles D̃ij , where tracks i, j, and j + 1 are versions (green
squares) and track i + 1 is not (orange squares). The four func-
tions correspond to: Rmeanmin (top left), Rbpwr-3 (top right), Rbest-10

(bottom left), and Rmin (bottom right). The Rbpwr-3 strategy de-
picts its minimum/masking recursion in increasingly dark levels
(green/purple cells). The sub-rectangles for Rbpwr-3 and Rmin also
exemplify dealing with different lengths by masking (gray cells).

and reduce nu×mv segment distances to n×m track dis-
tances, matching the dimensions of positive/negative assign-
ments A. More specifically, we consider several reduction
functions R, producing D = R(D̃), where D ∈ Rn×m

≥0 .
In addition, we employ different reduction functions for
positive and negative pairs, R+ and R−, respectively.

Reduction Functions — The naı̈ve strategy outlined above
would correspond to a mean reduction over the entire sub-
rectangle determined by D̃ij :

dij = Rmean
(
D̃ij

)
=

1

uv

∑
1≤k≤u
1≤l≤v

d̃klij .

Instead, if we just consider the r best matches across seg-
ments, we have

dij = Rbest-r
(
D̃ij

)
=

1

r

∑
1≤t≤r

topr
(
D̃ij

)
t

for r ≤ uv, where topr(D) is a function that returns the
lowest r distances in D (Fig. 1, bottom left). Another possi-
bility is to consider just the single best correspondence in
the entire sub-rectangle (Fig. 1, bottom right), yielding

dij = Rmin
(
D̃ij

)
= min

1≤k≤u
1≤l≤v

d̃klij .

3

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

A further alternative is to use an operator like the one used
in ByteCover3 (Du et al., 2023), which first searches for the
candidate best match per query and then averages across all
query segments. Reformulating it for distances (Fig. 1, top
left), we obtain

dij = Rmeanmin
(
D̃ij

)
=

1

u

∑
1≤k≤u

min
1≤l≤v

d̃klij .

Notice that the Rmean, Rbest-r, and Rmeanmin strategies above
do not explicitly prevent multiple consecutive segments of
track i being assigned to the same segment of track j (ver-
tical or horizontal traces in Fig. 1). As mentioned, this is
unrealistic for the majority of music tracks (and in general
for any signal or sequence presenting a minimal variability
with time). Notice also that Rmean and Rmeanmin force a
full-track match, that is, they are teaching the model that all
segments in track i should find a match in track j. Again,
this is an unrealistic assumption for musical versions where
the structure changes (and in general for any signal or se-
quence featuring only partial matches).

Best-pair Reduction — Motivated by the issues of con-
secutive and global segment matching above, we decide to
design an additional reduction strategy that explicitly deals
with both. We term it bpwr-r, for ‘best pair without replace-
ment’ with a threshold r. In a nutshell, Rbpwr-r operates by
sorting all distances in the D̃ij sub-rectangle in increasing
order, then taking the first one (say the one involving seg-
ments k and l), removing all distances computed by using
either one or the other segment (either k or l), and iterating r
times. It then takes the average among those r best pairwise
distances. More formally, we can express it as

dij = Rbpwr-r
(
D̃ij

)
=

1

r

∑
1≤q≤r

Rmin

(
D̃

(q)

ij

)
(1)

for r ≤ min(u, v), with the recursion

D̃
(q)

ij =

{
D̃ij for q = 1,

maskmin
(

D̃
(q−1)

ij

)
for q > 1,

where maskmin(D) is a function that masks the row and the
column corresponding to the minimum element in D, such
that those elements are not eligible by the Rmin of Eq. 1 in
iterations q > 1. A schema of Rbpwr-3 is illustrated in Fig. 1
(top right; recursion is depicted by progressively darker
colors). Notice that masking rows and columns avoids the
issue of consecutive segment matching5, and that a thresh-
old r < min(u, v) avoids the issue of full-track matching,
which only happens when r = min(u, v).

5There are some specific cases where a pattern could occupy
two consecutive segments (e.g., when it is split between them or
when it is reproduced at half the speed). We claim that, in such
cases, learning from just one of the two consecutive segments is
enough (our results in Sec. 5 support this claim).

Positives and Negatives Reduction — We note that the
previous distance reduction strategies have some concep-
tual parallelism with the negative/positive mining strategies
used with triplet losses (Schroff et al., 2015) or in some
contrastive approaches (cf. Kalantidis et al., 2020). In our
case, for instance, Rmin could correspond to a hard min-
ing strategy, while Rbest-r or Rbpwr-r could be regarded as
semi-hard mining of segment pairs. Thus, inspired by those
strategies, we decide to study if applying different reduc-
tion strategies for positives and negatives has some effect in
our setup. To obtain a track-based pairwise distance matrix
that combines different reductions for positive and negative
pairs, we calculate

D = A ⊙R+
(
D̃
)
+ (1 − A)⊙R−(D̃

)
, (2)

where ⊙ denotes element-wise multiplication and 1 is the all-
ones matrix (recall that the elements in A are 1 for positives
and 0 otherwise). The reductions R+ and R− can be chosen
among the ones presented above.

3.2. Contrastive Loss

Motivation — After computing pairwise track-level dis-
tances D, we need a contrastive loss that can exploit them
and that, ideally, can outperform the existing losses in the
considered task. For that, one can consider any supervised
contrastive loss function that operates on distances, or adapt
an existing self-supervised loss to the supervised frame-
work (Sec. 2). In our case, we opt for the latter and choose
the A&U loss of Wang & Isola (2020) due to its appeal-
ing properties and intuitive derivation. One of the practical
properties we value is that, by using expectations, we have
a similar behavior for different batch sizes (Wang & Isola
2020; see also Koromilas et al. 2024). In our analysis, we
will use the concept of “potential” as introduced by Wang &
Isola (2020), but nonetheless will depart from the concept
of uniformity in the hypersphere.

Changes to Alignment and Uniformity — The A&U loss,
designed for self-supervised contrastive learning, expects
one positive for each item in the batch (obtained through
some augmentation) while negatives correspond to all other
elements in the batch. To adapt A&U to supervised con-
trastive learning with multiple positives per anchor, we need
to carefully define both positive and negative sets. In partic-
ular, we want to preserve the decoupling of the alignment
and uniformity terms as, apart from respecting the original
idea of A&U, it typically yields improved performance (Yeh
et al., 2022). Therefore, from all pairwise assignments A in
the batch, we need to gather positive A+ and negative A−

assignment sets such that A+ ∩A− = ∅. This also implies
discarding comparisons of one track against itself (that is,
the diagonals of D and A, and potentially other spurious
cells corresponding to sampling the same track more than
once in the same batch).

4

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Given the sets A+ and A−, we can write a decoupled, su-
pervised version of A&U over a batch as

L̃ =
1

|A+|
∑

(i,j)∈A+

dαij + λ log

 1

|A−|
∑

(i,j)∈A−

e−γd2
ij

 ,

(3)
where | | denotes set cardinality and α, λ, and γ are hyper-
parameters. Wang & Isola (2020) do not report strong per-
formance differences by changing α, λ, and γ within a
certain range, and generally set α = 2, λ = 1, and γ = 3
for their experiments. In preliminary experiments, and for
our task, we find similar conclusions for α and λ, but not for
γ. In addition, we are motivated to use α = 2 and λ = 1, as
that makes alignment and uniformity terms more compara-
ble (same distance and same weight; see also the gradient
analysis below).

The original A&U loss employs Euclidean distances on
the hypersphere, using L2-normalized z vectors. This, in
our view, presents a potential issue, in the sense that the
employed distance function does not match with the geo-
metric structure of the space (Euclidean vs. hypersphere
surface, respectively). In our approach, instead of consid-
ering the negative arc length (which corresponds to the
geodesic distance in the hypersphere) to improve perfor-
mance like Koishekenov et al. (2023), we opt for the plain
Euclidean space (of which the Euclidean distance is its
geodesic distance). Thus, we do not constrain z to have
a unit norm. Notice that, with this change, the uniformity
concept does not apply, as we are not in an hypersphere
anymore. Nonetheless, we can still reason and base our in-
tuitions on the kernel and potential concepts used to derive
the uniformity term in Wang & Isola (2020).

With the decoupling, hyper-parameter, and geometric con-
siderations above, we formulate the CLEWS loss as

L =
1

|A+|
∑

(i,j)∈A+

d2ij + log

ε+
1

|A−|
∑

(i,j)∈A−

e−γd2
ij

 ,

where dij are distances after reduction (Eq. 2) and γ, ε > 0
are hyper-parameters. We use dimension-normalized Eu-
clidean distances (root mean squared differences), as this
does not affect our geometric considerations (it just adds
a constant) and facilitates maintaining the same hyper-
parameters when changing the dimensionality of z. The
ε hyper-parameter is initially introduced for numerical sta-
bility. However, we note that it also has a soft thresholding
or smoothing effect for the potential between negative pairs.

Role of the Hyper-parameters — We now briefly and
intuitively study the role of γ and ε in L (a full analysis
is beyond the scope of the present paper). To do so, we
consider the gradient of L for a specific distance pair dij .

Depending if the pair is in A+ or A−, we have

∇+ ≜
∂L
∂dij

∣∣∣∣
(i,j)∈A+

=
2dij
|A+|

or

∇− ≜
∂L
∂dij

∣∣∣∣
(i,j)∈A−

=
−2γdije

−γd2
ij

|A−|ε+ c+ e−γd2
ij

, (4)

where e−γd2
ij corresponds to the negative potential for the

pair i, j (Wang & Isola, 2020) and the constant c is the sum
of all potentials that do not feature (i, j). To facilitate our
analysis, we view ε as a reference potential and redefine
ε̂ = |A−|ε+c. We can then consider three cases with regard
to the relation of ε̂ and the potential for the negative pair
i, j. If ε̂ ≪ e−γd2

ij (case 1), we have ∇− ≈ −2γdij and, if
ε̂ ≈ e−γd2

ij (case 2), we have ∇− ≈ −γdij . In both cases,
and thanks to having set α = 2 after Eq. 3, the terms in ∇−

are similar to the ones in ∇+ (thus positive and negative
pairs have a comparable influence). Moreover, we see that
γ is also acting as a weight for the negative pairs’ gradient
(thus taking a similar role as the original λ in Eq. 3). Finally,
if ε̂ ≫ e−γd2

ij (case 3), we have

∇− ≈ −2γdije
−γd2

ij

ε̂
,

which implies a progressively vanishing gradient with in-
creasing dij (e−γd2

ij decreases much faster than γdij in-
creases). Thus, we obtain a smooth transition to zero gra-
dient after the potential e−γd2

ij crosses a threshold that is a
function of ε. A visualization of the effect of γ and ε on
∇− (Eq. 4) is given in Appendix A.

3.3. Architecture and Training

We now overview CLEWS’ network architecture F and
its training procedure (further details are available in Ap-
pendix A and in our code). To obtain segment embedding
vectors z on which to compute distances, we start from
the full-track audio waveform and uniformly randomly cut
a 2.5 min block x from it. We further cut x into 8 non-
overlapping 20-second segments xk (we repeat-pad the last
segment). We then compute its constant-Q spectrogram,
downsample it in time by a factor of 5, and normalize it
between 0 and 1, all following similar procedures as com-
mon version matching approaches (Yesiler et al., 2021).
After that, we pass it to a learnable frontend, formed by two
2D strided convolutions, batch normalization, and a ReLU
activation. Next, we employ a pre-activation ResNet50
backbone (He et al., 2016) with ReZero (Bachlechner et al.,
2021) and instance-batch normalization (Pan et al., 2018).
We pool the remaining spectro-temporal information with
generalized mean pooling (Radenović et al., 2019), and

5

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

project to a 1024-dimensional representation z using batch
normalization and a linear layer. We train CLEWS with
R+ = Rbpwr-5, R− = Rmin, γ = 5, and ε = 10−6 as de-
faults, and study the effect of such choices in Sec. 5. Since
test sets also contain tracks longer than the 2.5 min used for
training, in CLEWS we use our proposed Rbpwr-10 for track
matching, together with a segment hop size of 5 s.

We train all models with Adam using a learning rate of
2·10−4, following a reduce-on-plateau schedule with a 10-
epoch patience and an annealing factor of 0.2. The only
exception is in ablation experiments, where we train for
20 epochs featuring a final 5-epoch polynomial learning
rate annealing. In every epoch, we group all tracks into
batches of 25 anchors and, for each of them, we uniformly
sample with replacement 3 positives from the corresponding
version group (excluding the anchor). Thus, we get an
initial (track-based) batch size of 100. For every track in
the batch, we uniformly sample 2.5 min from the full-length
music track and create the aforementioned 8 segments per
track. Thus, we get a final (segment-based) batch size of
800. We only use time stretch, pitch roll, and SpecAugment
augmentations (Liu et al., 2023).

4. Evaluation Methodology
Data — We train and evaluate all models on the publicly-
available data sets DiscogsVI-YT (DVI; Araz et al., 2024a)
and SHS100k-v2 (SHS; Yu et al., 2020), using the prede-
fined partitions. SHS is a well-established reference data set.
However, since it is based on YouTube links, it is almost
impossible to gather it entirely nowadays (we managed to
gather 82% of it). In addition, one could consider it slightly
biased, as the version group sizes are unrealistically large (cf.
Doras & Peeters, 2020; Araz et al., 2024a). Instead, the re-
cently proposed DVI data set is 5 times larger and better
represents the real-world distribution of version group sizes.
For both data sets, we use 16 kHz mono audio and cap the
maximum length to the first 10 min.

Baselines — To compare the performance of the proposed
approach with the state of the art, we consider several base-
lines: CQTNet (Yu et al., 2020), MOVE (Yesiler et al.,
2020a), LyraC-Net (Hu et al., 2022), CoverHunter (Liu et al.,
2023), DVINet+ (Araz et al., 2024b), Bytecover2 (Du et al.,
2022), ByteCover3 (Du et al., 2023), and ByteCover3.5 (Du
et al., 2024). For CoverHunter, we just consider the first
“coarse” stage, as that is the part dealing with segments.
CoverHunter, CQTNet, and DVINet have convenient source
code available, and thus we can produce results by using it in
our own pipeline (this way we can compare those baselines
with our model rigorously under the same setting). Due to
GPU memory restrictions, we train with randomly-sampled
audio blocks of 2.5 min. For the other baselines, we can only
use already reported results as reference. The ByteCover se-

ries of models are known to be non-reproducible (O’Hanlon
et al., 2021; Hu et al., 2022), with all attempts to date sub-
stantially under-performing6 the reported results. We also
implement our version of the ByteCover models and, for the
first time, are able to obtain results that come close to the
ones reported in the original papers (Sec. 5). In the follow-
ing, we denote our approximations to ByteCover with a †
symbol. Having retrained/replicated baselines provides us
an estimation of their performance in scenarios that have not
yet been considered in the literature, such as with the DVI
data set or the segment-level evaluation proposed below.

Evaluation — During testing, to compute candidate em-
beddings, we treat all models as if they were segment-based
and extract overlapping blocks or segments using the same
length as in training and a hop size of 5 s (this yielded a
marginal improvement for full-track baselines trained on
2.5 min blocks). With these candidate embeddings, we per-
form both track- and segment-level evaluations. The former
is equivalent to the usual evaluation setup in musical ver-
sion matching, while the latter focuses on the retrieval of
best-matching segments. For the track-level evaluation, we
use the same segment length (the training segment length)
and hop size for both queries and candidates. Then, to mea-
sure the performance of the system working at the full-track
level, we use Rmeanmin to compute the final query-candidate
distance. For the segment-level evaluation, we keep the
same segment configuration as in the track-level case, but
we vary the query segment length τ . This way we assess
a model’s performance on different query lengths found in
real-world scenarios. Then, to measure the performance
of the system working at the segment level, we use Rmin
to compute a best-match query-candidate distance. With
this best-match approach, we simulate the performance of
an equivalent segment-based retrieval system using all raw
segments as candidates (see Appendix B). As evaluation
measures, we compute the usual mean average precision
(MAP) plus an enhanced version of the normalized average
rank (NAR; see Appendix B). MAP focuses on the precision
in the top candidates while NAR focuses more on the overall
recall, which we think is a better option for musical version
matching, especially for segment-based applications.

5. Results
Comparison with the State of the Art — First of all, we
focus on the track-level evaluation and compare with the
state of the art. We observe that CLEWS outperforms all
considered approaches, many of them by a large margin
(Table 2). CLEWS obtains a NAR of 2.70 on DVI-Test and
a MAP of 0.876 on SHS-Test, setting a new state-of-the-art
result on both data sets. Besides CLEWS, an interesting

6See for instance https://github.com/Orfium/
bytecover/issues/2.

6

https://github.com/Orfium/bytecover/issues/2
https://github.com/Orfium/bytecover/issues/2

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Table 2. Track-level evaluation and comparison with the state of the art. The symbol † denotes that it is our implementation and the ±
symbol denotes 95% confidence intervals.

APPROACH DVI-TEST SHS-TEST
NAR ↓ MAP ↑ NAR ↓ MAP ↑

COVERHUNTER-COARSE (LIU ET AL., 2023) 10.36 ± 0.07 0.157 ± 0.001 4.09 ± 0.17 0.491 ± 0.007
MOVE (YESILER ET AL., 2020A) N/A N/A N/A 0.519
CQTNET (YU ET AL., 2020) 6.68 ± 0.07 0.493 ± 0.002 2.67 ± 0.16 0.677 ± 0.007
DVINET+ (ARAZ ET AL., 2024B) 3.69 ± 0.06 0.643 ± 0.002 2.39 ± 0.16 0.720 ± 0.007
LYRAC-NET (HU ET AL., 2022) N/A N/A N/A 0.765
BYTECOVER3† (BASED ON DU ET AL., 2023) 5.64 ± 0.05 0.513 ± 0.002 1.91 ± 0.14 0.783 ± 0.006
BYTECOVER1/2† (BASED ON DU ET AL., 2022) 4.98 ± 0.06 0.595 ± 0.002 1.95 ± 0.14 0.813 ± 0.006
BYTECOVER3 (DU ET AL., 2023) N/A N/A N/A 0.824
BYTECOVER3.5 (DU ET AL., 2024) N/A N/A N/A 0.857
BYTECOVER2 (DU ET AL., 2022) N/A N/A N/A 0.863
CLEWS (PROPOSED) 2.70 ± 0.05 0.774 ± 0.002 1.27 ± 0.12 0.876 ± 0.005

5 10 20 30 40 60 90
τ [s]

1

2

5

10

20

50

N
A

R
↓

5 10 20 30 40 60 90
τ [s]

0.0

0.2

0.4

0.6

0.8

1.0
M

A
P
↑

CoverHunter-Coarse
CQTNet
DVINet+
ByteCover1/2 †
ByteCover3 †
CLEWS (proposed)

Figure 2. Segment-level evaluation with DVI-Test. NAR (left) and MAP (right) for different query segment lengths τ (notice the
logarithmic axis for NAR). The shaded regions correspond to 95% confidence intervals (barely visible due to the size of DVI-Test).
Comparatively similar results for SHS-Test and also for an alternative evaluation protocol are available in Appendix C.

observation to make is that the rank of an existing approach
considerably varies between SHS-Test and DVI-Test. That
is the case of DVINet+, which obtains a modest performance
on SHS-Test, but achieves the best performance among the
existing approaches on DVI-Test. We hypothesize that this
is thanks to being the only considered approach (apart from
CLEWS) that does not learn from a classification loss: be-
cause SHS-Train has more items per class than the more real-
istic DVI-Train (an average of 12 vs. 2, respectively), a clas-
sification loss is able to learn a useful representation from
SHS-Train, but not from DVI-Train. Both DVINet+ and
CLEWS, utilizing triplet and contrastive losses, respectively,
do not suffer from this issue and maintain a comparatively
similar performance across the two data sets. Another obser-
vation to make with regard to the consideration of segments
is that treating them independently (CoverHunter-Coarse)
yields worse results than developing some specific strategies
(ByteCover3, ByteCover3†, and CLEWS), and that learning
from a global match (ByteCover3 and ByteCover3†) is not
as optimal as learning from a partial match (CLEWS). The
latter is further supported by our ablations below.

Segment-based Version Matching — We now focus on
the segment-level evaluation and study the performance as
a function of the query segment length τ . We observe that
CLEWS again outperforms all considered models both in
DVI-Test (Fig. 2) and SHS-Test (Appendix C), and for both
NAR and MAP measures. Importantly, CLEWS maintains
a high performance for all considered lengths (Fig. 2). The
only exception is with τ = 5 where, according to our listen-
ing experience, it is sometimes difficult even for a human
to establish if two audio segments are versions or not. Ac-
cording to our segment-level evaluation, ByteCover3† fea-
tures some noticeable performance degradation with large
τ , perhaps due to the global match approach. CQTNet
and DVINet+, both based on the same plain convolutional
architecture, show an early performance decline for τ < 60.

Ablations and Hyper-parameters — Finally, we focus our
attention on possible variations to the default CLEWS. We
start by studying the effect of positive R+ and negative R−

segment distance reductions (Table 3). For R+, if we keep
R−=Rmin, we observe that, depending on the evaluation

7

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Table 3. Results on DVI-Valid for different positive R+ and nega-
tive R− distance reductions. The default CLEWS reductions are
R+ = Rbpwr-5 and R− = Rmin. As above, ± denotes 95% c.i.

R+ R− NAR ↓ MAP ↑
CLEWS (PROPOSED) 2.57 ± 0.09 0.804 ± 0.003
Rbpwr-3 Rmin 2.60 ± 0.09 0.809 ± 0.003
Rbpwr-8 Rmin 2.51 ± 0.09 0.789 ± 0.003
Rmeanmin Rmin 2.58 ± 0.09 0.798 ± 0.003
Rbest-10 Rmin 2.63 ± 0.09 0.795 ± 0.003
Rmin Rmin 2.79 ± 0.09 0.799 ± 0.003
Rbpwr-5 Rbest-10 2.82 ± 0.10 0.779 ± 0.003
Rbpwr-5 Rbpwr-5 2.88 ± 0.10 0.778 ± 0.003
Rbpwr-5 Rmeanmin 4.95 ± 0.12 0.488 ± 0.004

Table 4. Results on DVI-Valid for different loss functions using
the default CLEWS reductions of R+ = Rbpwr-5 and R− = Rmin.

LOSS FUNCTION NAR ↓ MAP ↑
CLEWS (PROPOSED) 2.57 ± 0.09 0.804 ± 0.003
SUPCON 2.69 ± 0.09 0.676 ± 0.004
SIGLIP 2.79 ± 0.09 0.684 ± 0.004
TRIPLET 3.08 ± 0.11 0.717 ± 0.004
SUPCON-DECOUPLED 3.14 ± 0.11 0.739 ± 0.004
A&U-DECOUPLED 3.25 ± 0.11 0.620 ± 0.004
CLASSIFICATION XENT 8.91 ± 0.14 0.205 ± 0.003

measure, we have two options that are better than the default:
Rbpwr-8 for NAR and Rbpwr-3 for MAP. Nonetheless, we
decide to keep the default one as a compromise between the
two. With such compromise in mind, we observe that, for
positive reductions, global matches (Rbpwr-8 and Rmeanmin)
under-perform a partial matches (Rbpwr-r), and that learning
from consecutive segments (Rbest-10 and Rmeanmin) is not as
competitive as avoiding them (Rbpwr-r). For R−, if we keep
R+=Rbpwr-5, we see that all considered negative reductions
under-perform the default Rmin. We hypothesize that, as
with triplet losses, a hard negative mining or worst-case
strategy is beneficial (cf. Schroff et al., 2015; Kalantidis
et al., 2020). Reduction strategies based on Rmean did not
learn well, both for R+ and R− (not shown).

The next aspect we study is the effect of the loss function
given the default reduction strategies for R+ and R− (Ta-
ble 4). We observe that the proposed CLEWS loss performs
better in both NAR and MAP, with a significant difference
in the latter measure. Standard losses like SupCon, SigLIP,
and Triplet (Sec. 2) come next, not being able to take as
much profit from R+ and R− as CLEWS in the task we
study. As already mentioned, a standard classification loss
based on cross-entropy does not perform well, especially
when training with very few instances per class.

The last aspect we study is the effect of hyper-parameters γ
and ε. If we zoom in the resolution of NAR and MAP, we

1 2 5 8 12

γ (using ε = 10−6)

2.25

2.50

2.75

3.00

3.25

N
A

R
↓

0.725

0.750

0.775

0.800

0.825

M
A

P
↑

10−310−410−510−610−710−8

ε (using γ = 5)

2.25

2.50

2.75

3.00

3.25

N
A

R
↓

0.725

0.750

0.775

0.800

0.825

M
A

P
↑

Figure 3. Effect of hyper-parameters γ (top) and ε (bottom) on
DVI-Valid. Shaded regions correspond to 95% confidence inter-
vals, and the default value is highlighted with a square marker.

observe an opposite trend for the two evaluation measures
(Fig. 3): with progressively decreasing NAR (better perfor-
mance), we obtain a progressively decreasing MAP (worse
performance). This indicates that hyper-parameters γ and ε
can be deliberately tuned to benefit one or the other measure
(we did not extensively tune them for the results reported
previously). Moreover, we actually see that setting γ = 2
could have provided a better NAR and a slighlty increased
MAP. Overall, however, if we zoom ourselves out from the
resolution shown in Fig. 3, we essentially observe a plateau
of performance between γ ∈ [2, 8] and ε ∈ [10−8, 10−5].

6. Conclusion
In this paper, we tackle the task of segment-based musi-
cal version matching, and propose both a strategy to deal
with weakly-labeled segments and a contrastive loss that
outperforms well-studied alternatives. Through a series of
extensive experiments, we show that our approach not only
achieves state-of-the-art results in two different datasets and
two different metrics, but also that it significantly outper-
forms existing approaches in a best-match, segment-level
evaluation. We also study the effect of different reduction
strategies, compare against existing losses, and analyze the
effect of the hyper-parameters in our ablation studies. As
weakly labeled segment information is ubiquitous in many
research areas, and since the concepts exploited here are gen-
eral to a wide range of contrastive learning tasks, we believe
our methods could serve as inspiration or find usefulness in
domains beyond audio and musical version matching.

8

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Acknowledgements
We thank Toshimitsu Uesaka for his comments on an earlier
version of the paper. R. Oguz Araz is supported by the
pre-doctoral program AGAUR-FI ajuts (2024 FI-3 00065)
Joan Oró, and the Cátedras ENIA program “IA y Música:
Cátedra en Inteligencia Artificial y Música” (TSI-100929-
2023-1).

Impact Statement
This paper presents work whose goal is to advance the fields
of machine learning and music information retrieval. Musi-
cal version matching can be used to enhance music discov-
ery, preserve cultural heritage, and support fair copyright
management. By connecting versions across styles and per-
formances, musical version matching also fosters creativity,
promotes artistic appreciation, and paves the way for more
equitable solutions in the music industry, benefiting society
at large. As with any machine learning tool, however, there
always exists the possibility of some potential misuses of
itself or of some of its components, none of which we feel
must be specifically highlighted here.

References
Araz, R. O., Serra, X., and Bogdanov, D. Discogs-VI: a

musical version identification dataset based on public
editorial metadata. In Proc. of the Int. Soc. for Music
Information Retrieval Conf. (ISMIR), pp. in press, 2024a.

Araz, R. O., Serrà, J., Serra, X., Mitsufuji, Y., and Bog-
danov, D. Discogs-VINet-MIREX. In Music Information
Retrieval Evaluation eXchange (MIREX), 2024b.

Bachlechner, T., Majumder, B., Mao, H., Cottrell, G., and
McAuley, J. ReZero is all you need: fast convergence
at large depth. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence (UAI), pp. 1352–1361, 2021.

Ball, P. The music instinct. Random House, London, UK,
2010.

Barnett, J., Flores Garcia, H., and Pardo, B. Exploring
musical roots: applying audio embeddings to empower
influence attribution for a generative music model. ArXiv,
2401.14542, 2024.

Batlle-Roca, R., Liao, W.-H., Serra, X., Mitsufuji, Y., and
Gómez, E. Towards assessing data replication in music
generation with music similarity metrics on raw audio.
In Proc. of the Int. Soc. for Music Information Retrieval
Conf. (ISMIR), pp. in press, 2024.

Bosteels, K. and Kerre, E. E. Fuzzy audio similarity mea-
sures based on spectrum histograms and fluctuation pat-

terns. In Proc. of the Int. Conf. on Multimedia and Ubiq-
uitous Engineering (MUE), pp. 361–365, 2007.

Bralios, D., Wichern, G., Germain, F. G., Pan, Z., Khurana,
S., Hori, C., and Le Roux, J. Generation or replication:
auscultating audio latent diffusion models. In Proc. of
the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1156–1160, 2024.

Cano, P., Batlle, E., Kalker, T., and Haitsma, J. A review of
audio fingerprinting. Journal of VLSI Signal Processing
Systems for Signal, Image and Video Technology, 41:271–
284, 2005.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual repre-
sentations. In Proc. of the Int. Conf. on Machine Learning
(ICML), pp. 1597–1607, 2020.

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve,
G., Adi, Y., and Défossez, A. Simple and controllable
music generation. In Advances in Neural Information
Processing Systems (NeurIPS), volume 36, pp. 47704–
47720. 2023.

Doras, G. and Peeters, G. A prototypical triplet loss for
cover detection. In Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 3797–
3801, 2020.

Du, X., Chen, K., Wang, Z., Zhu, B., and Ma, Z.
ByteCover2: towards dimensionality reduction of latent
embedding for efficient cover song identification. In Proc.
of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pp. 616–620, 2022.

Du, X., Wang, Z., Liang, X., Liang, H., Zhu, B., and Ma, Z.
ByteCover3: accurate cover song identification on short
queries. In Proc. of the IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2023.

Du, X., Liu, M., and Zou, P. X-Cover: better music ver-
sion identification system by integrating pretrained ASR
model. In Proc. of the Int. Soc. for Music Information
Retrieval Conf. (ISMIR), pp. in press, 2024.

Evans, Z., Carr, C. J., Taylor, J., Hawley, S. H., and Pons, J.
Fast timing-conditioned latent audio diffusion. In Proc.
of the Int. Conf. on Machine Learning (ICML), volume
235, pp. 12652–12665, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In Proc. of the European Conf.
on Computer Vision (ECCV), pp. 630–645, 2016.

Hu, S., Zhang, B., Lu, J., Jiang, Y., Wang, W., Kong, L.,
Zhao, W., and Jiang, T. WideResNet with joint repre-
sentation learning and data augmentation for cover song

9

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

identification. In Proc. of the Conf. of the Int. Speech
Association (INTERSPEECH), pp. 4187–4191, 2022.

Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel,
P., and Larlus, D. Hard negative mixing for contrastive
learning. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 21798–21809. 2020.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. Supervised
contrastive learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 18661–18673. 2021.

Koishekenov, Y., Vadgama, S., Valperga, R., and Bekkers,
E. J. Geometric contrastive learning. In Proc. of the
IEEE/CVF Int. Conf. on Computer Vision Workshops
(ICCVW), pp. 206–215, 2023.

Koromilas, P., Bouritsas, G., Giannakopoulos, T., Nicolaou,
M., and Panagakis, Y. Bridging mini-batch and asymp-
totic analysis in contrastive learning: from InfoNCE to
kernel-based losses. In Proc. of the Int. Conf. on Machine
Learning (ICML), pp. 25276–25301, 2024.

Liu, F., Tuo, D., Xu, Y., and Han, X. CoverHunter: cover
song identification with refined attention and alignments.
In Proc. of the IEEE Int. Conf. on Multimedia and Expo
(ICME), pp. 1080–1085, 2023.

Liu, H., Tian, Q., Yuan, Y., Liu, X., Mei, X., Kong, Q.,
Wang, Y., Wang, W., Wang, Y., and Plumbley, M. D.
AudioLDM 2: learning holistic audio generation with
self-supervised pretraining. IEEE/ACM Trans. on Audio,
Speech, and Language Processing, 32:2871–2883, 2024.

Müller, H., Müller, W., Squire, D. M., Marchand-Maillet,
S., and Pun, T. Performance evaluation in content-based
image retrieval: overview and proposals. Pattern Recog-
nition Letters, 22(5):593–601, 2001.

O’Hanlon, K., Benetos, E., and Dixon, S. Detecting cover
songs with pitch class key-invariant networks. In Proc. of
the IEEE Int. Workshop on Machine Learning for Signal
Processing (MLSP), 2021.

Page, W. Music smashes box office records:
global value of music copyright soars to
$45.5 bn, now worth more than cinema, 2023.
URL https://pivotaleconomics.com/
undercurrents/music-copyright-2023.

Pan, X., Luo, P., Shi, J., and Tang, X. Two at once: enhanc-
ing learning and generalization capacities via IBN-Net. In
Proc. of the European Conf. on Computer Vision (ECCV),
pp. 484–500, 2018.

Radenović, F., Tolias, G., and Chum, O. Fine-tuning CNN
image retrieval with no human annotation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41
(7):1655–1668, 2019.

Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: a
unified embedding for face recognition and clustering. In
Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 815–823, 2015.

Serrà, J. Identification of versions of the same musical com-
position by processing audio descriptions. PhD Thesis,
Universitat Pompeu Fabra, 2011.

Sohn, K. Improved deep metric learning with multi-class
N-pair loss objective. In Advances in Neural Information
Processing Systems (NIPS), volume 29, pp. 1857–1865.
2016.

Sun, Y., Wang, X., and Tang, X. Deep learning face repre-
sentation from predicting 10,000 classes. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 1891–1898, 2014.

Van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. ArXiv,
1807.03748, 2018.

Wang, T. and Isola, P. Understanding contrastive repre-
sentation learning through alignment and uniformity on
the hypersphere. In Proc. of the Int. Conf. on Machine
Learning (ICML), volume 119, pp. 9929–9939, 2020.

Yeh, C.-H., Hong, C.-Y., Hsu, Y.-C., Liu, T.-L., Chen, Y.,
and LeCun, Y. Decoupled contrastive learning. In Proc.
of the European Conf. on Computer Vision (ECCV), pp.
668–684, 2022.

Yesiler, F., Serrà, J., and Gómez, E. Accurate and scal-
able version identification using musically-motivated em-
beddings. In Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 21–25,
2020a.

Yesiler, F., Serrà, J., and Gómez, E. Less is more: faster
and better music version identification with embedding
distillation. In Proc. of the Int. Soc. for Music Information
Retrieval Conf. (ISMIR), pp. 884–802, 2020b.

Yesiler, F., Doras, G., Bittner, R. M., Tralie, C. J., and Serrà,
J. Audio-based musical version identification: elements
and challenges. IEEE Signal Processing Magazine, 38
(6):115–136, 2021.

Yu, Z., Xu, X., Chen, X., and Yang, D. Learning a rep-
resentation for cover song identification using convolu-
tional neural network. In Proc. of the IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), pp.
541–545, 2020.

10

https://pivotaleconomics.com/undercurrents/music-copyright-2023
https://pivotaleconomics.com/undercurrents/music-copyright-2023

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Zhai, X., Mustafa, B., Kolesnikov, A., and Beyer, L. Sig-
moid loss for language image pre-training. In Proc. of
the IEEE/CVF Int. Conf. on Computer Vision (ICCV), pp.
11975–11986, 2023.

11

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

APPENDIX

In this supplementary part of the paper we provide further information on the proposed method (Appendix A). We also
explain with detail our evaluation methodology (Appendix B). Finally, we show additional results that could not fit in the
main manuscript (Appendix C).

A. Method Details
A.1. Loss Gradient Visualization

In Sec. 3.2 of the main manuscript, we study the effect of hyper-parameters γ and ε on the gradient of negative pairs ∇−.
Here, to further facilitate understanding, we plot the result of ∇− (Eq. 4) for a range of potentials e−γd2

ij under different
values of γ and ε in Fig. 4. We do so using |A−| = 128 and c = (|A−| − 1)e−γd2

ij . With the latter, we approximate the case
where the average negative potential is not far from the potential of the i, j pair.

10−12 10−9 10−6 10−3 100

e−γd2
i j

−0.15

−0.10

−0.05

0.00

∇
−

γ = 2

10−12 10−9 10−6 10−3 100

e−γd2
i j

−0.15

−0.10

−0.05

0.00

γ = 5

10−12 10−9 10−6 10−3 100

e−γd2
i j

−0.15

−0.10

−0.05

0.00

γ = 10

Figure 4. Plot of ∇− as a function of the negative pair potential e−γd2ij for different values of γ and ε. From left to right, we show
γ = {2, 5, 10}. From darker to lighter, colors correspond to ε = {10−8, 10−7, 10−6, 10−5, 10−4, 10−3}. Dash-dotted lines indicate
each ε value (notice that, in L, ε is compared to an average negative pair potential, hence placing ε as a reference in the potential axis
makes sense).

A.2. A More Numerically-Friendly Version of L
For conducting all our experiments, we found no issue in the use of L with regard to numerical stability with 32-bit precision.
However, we should note that L, as written in the main manuscript, may have some numerical instability, especially when
employing abnormally small/large values of ε/γ, or potentially when using a numerical precision below 32 bits. In such
cases, we recommend switching to the formulation below.

First of all, we multiply the terms inside the logarithm by 1/ε:

L =
1

|A+|
∑

(i,j)∈A+

d2ij + log

ε+
1

|A−|
∑

(i,j)∈A−

e−γd2
ij

 =
1

|A+|
∑

(i,j)∈A+

d2ij + log

1 +
1

ε|A−|
∑

(i,j)∈A−

e−γd2
ij

+ log(ε).

With this, we obtain the term log(ε), which is just a constant that does not affect the gradient and can thus be dropped. Next,
we perform the change of variable 1/(ε|A−|) = βeb, where b ≥ 0 is a constant we will set for the upper numerical limit we
allow to the exponential. With this change and a few simple operations, we arrive to

L =
1

|A+|
∑

(i,j)∈A+

d2ij + log

1 + β
∑

(i,j)∈A−

eb−γd2
ij

 ,

where β = 1/(ε|A−|eb). We can now choose b as a compromise between the overflow of eb when dij = 0 and the underflow
of eb−γd2

ij when dij is large. For normalized Euclidean distances d and the ranges of ε and γ we consider, we choose b = 10.
Note that, in addition, log(1 + x) can be implemented with log1p(x) in most scientific programming languages.

12

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

A.3. Model

We here provide further specification of our network architecture (for full detail we refer the interested reader to the published
code). As mentioned, we use 16 kHz mono audio with a maximum length of 10 min for both training and evaluation. For
training, we cut 2.5 min blocks uniformly at random. For CLEWS, we divide such blocks into 8 non-overlapping 20-second
segments. As the last segment is only 10 s, we take the opportunity to repeat-pad such segment and also consider it in our
training, with the hope that this will facilitate retrieval with query lengths shorter than 20 s (which we also repeat-pad as they
would not be long enough to accommodate the total striding factor of our architecture).

After obtaining segments, we apply a constant-Q transform (CQT) with 20 ms hop size, spanning 7 octaves (from a minimum
frequency of 32.7 Hz), and with 12 bins per octave (we use the nnAudio library7 in non-trainable mode, with the rest of
the parameters set as default). We then take the CQT magnitude and average in time every 5 consecutive frames without
overlap. This CQT representation is sent to three data augmentation functions (explained in the next subsection).

The neural network architecture starts by taking the square root of the CQT magnitude, normalizing every segment’s
representation between 0 and 1, and applying a learnable affine transformation. Next, we apply a 128-channel 2D
convolution with a frequency-time kernel size of 12×3 and a frequency-time stride of (1,2). This is followed by batch
normalization (BN), a ReLU activation, and a 256-channel 2D convolution with a kernel size of 12×3 and a stride of (2,2).
This constitutes our frontend. Unless stated otherwise, we use the default PyTorch8 parameters from version 2.3.1.

As mentioned in the main manuscript, our backbone is formed by pre-activation ResNet modules with ReZero and instance-
batch normalization (IBN). We use 3, 4, 6, and 3 residual blocks with 256, 512, 1024, and 2048 channels, respectively. The
strides are (1,1), (2,2), (2,2), and (1,1) for each block. The residual blocks have an IBN–ReLU–conv–BN–ReLU–conv
structure, with a kernel of 3×3 in the convolution layers. To reduce GPU memory consumption, we employ half the channel
dimension inside the residual block. If there is some channel or stride change, the skip connection features a BN-ReLU-conv
block also with a 3×3 kernel.

The output of the backbone is time- and frequency-pooled by a generalized mean pooling operation with a single learnable
exponent. Finally, the result is processed with BN and projected to 1024 dimensions by a linear layer. None of our linear
or convolutional layers feature bias terms. As mentioned in the main manuscript, we use normalized squared Euclidean
distances (mean squared differences) between embedding vectors.

A.4. Training

We train all models with Adam using the default PyTorch parameters, a learning rate of 2·10−4, and a batch size of
800 segments chosen from 100 tracks featuring 3 positives per anchor. In the main experiments, we follow a reduce-on-
plateau strategy for the learning rate, monitoring an average between MAP and NAR measures on the validation set. We
define an epoch as using all training tracks as anchor once, and set a 10-epoch patience period and an annealing factor of 0.2.
Using this strategy, training CLEWS on SHS and DVI takes approximately 2 and 9 days, respectively, using two NVIDIA
H100-80GB GPUs. In the ablation experiments, to reduce the computational burden, we only train for 20 epochs and, during
the last 5 epochs, we apply a polynomial learning rate annealing with an exponent of 2.

During training, we employ three CQT data augmentation functions: SpecAugment, time stretch, and pitch roll. For
SpecAugment, we mask a maximum of 15% of the time/frequency tiles. For time stretch, we resample by a uniformly
sampled factor between 0.6 and 1.8. For pitch roll, we choose a uniform value between −12 and +12. In the DVI data set,
we use a probability of 0.1 independently for each augmentation. However, since the SHS data set is considerably smaller
than DVI and potentially features less variability, we find some benefit in increasing such probability for SHS. In that case,
we set the augmentation probabilities to 0.4, 0.3, and 0.5 for SpecAugment, time stretch, and pitch roll, respectively.

B. Evaluation Methodology Details
B.1. Track- and Segment-level Evaluations

For the track-level evaluation, we cut the entire raw waveform (up to the first 10 min) into overlapping blocks or segments
using a hop size of 5 s. For both the queries and the candidates, the length of such blocks/segments corresponds to the same

7https://github.com/KinWaiCheuk/nnAudio
8https://pytorch.org/docs/2.3/

13

https://github.com/KinWaiCheuk/nnAudio
https://pytorch.org/docs/2.3/

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

length we used to train each model (that is, 2.5 min for CQTNet, DVINet+, and ByteCover1/2† and 20 s for CoverHunter,
ByteCover3†, and CLEWS). Next, we compute pairwise distances for each query-candidate block/segment and apply a
distance reduction function. We use Rmeanmin for all models except CLEWS, which exploits the newly proposed Rbpwr-10.
After reduction we obtain a track-based distance matrix that we can use to sort candidates per query and compute common
evaluation measures.

For the segment-level evaluation, we also cut the entire raw waveform into overlapping blocks/segments with a hop
size of 5 s. For candidates, we also use the same length that we used to train each model (same as in the track-level
evaluation). However, for the queries, we extract multiple-length segments with a hop size of 5 s (we consider segment
lengths τ = {5, 10, 20, 30, 40, 60, 90} s). Then, given a segment length, we compute pairwise distances for each query-
candidate block/segment, and apply the Rmin distance reduction to obtain a track-based distance matrix. After that, the
evaluation proceeds as with the track-level evaluation (and any common evaluation protocol in musical version matching).
The usage of Rmin puts the focus on the best-matching segment per track, and is equivalent to performing version matching
on an index formed by all possible segments, treating them independently, and removing duplicate track names after sorting.

B.2. Normalized Average Rank

To evaluate retrieval performance and complement mean average precision (MAP), we employ an enhanced version of the
normalized average rank (NAR), originally proposed by Müller et al. (2001). Given a list of retrieved items R, sorted in
descending order of predicted relevance to a query q, and containing a set of target matches M = {m1, . . .m|M |}, M ⊂ R,
Bosteels & Kerre (2007) redefined NAR as

ÑARq =
1

|M ||R|

|M |∑
i=1

(
rank(mi, R)− i

)
,

where the function rank(m,R) ∈ [1, |R|] returns the rank of m in R. This definition, as well as the one of Müller et al.
(2001), yields 0 for perfect retrieval, 0.5 for random retrieval, and approaches 1 as performance worsens. However, a value
equal to one is never obtained. Not only that, but the maximum bound inversely depends on |M | and, therefore, can be
different for each query q. To avoid that, one should replace the number of retrieved items |R| in the denominator by the
number of non-relevant retrieved items |R| − |M |. Hence, we correct the definition of Bosteels & Kerre (2007) and employ

NARq =
100

|M | (|R| − |M |)

|M |∑
i=1

(
rank(mi, R)− i

)
,

which additionally yields a convenient % value, now between 0 and 100 for all sizes of M . Our final number is the average
over all queries Q:

NAR =
1

|Q|
∑
q∈Q

NARq.

Note that, in research evaluation scenarios, one must compute both MAP and NAR measures excluding the query from the
candidate list.

C. Additional Results
C.1. Segment-level Evaluation with the Best Match Protocol

In the main manuscript, we present the results for the segment-level evaluation on DVI-Test (Fig. 2). The exact numbers for
such plots can be found here in Table 5. For SHS-Test, we obtain comparable results, which can be found below in Fig. 5
and Table 6.

C.2. Segment-level Evaluation with the Random Segment Protocol

In our segment-level evaluation, we adopt a best match protocol as specified in Sec. 4. However, Du et al. (2023) introduced
what could be termed as the ‘random segment’ protocol: “For each query, we constructed a query set consisting of the
original full-track recording, and 9 music clips randomly cut from it, with the duration being 6, 10, 15, 20, 25, 30, 40, 50 and
60 seconds respectively” (Du et al., 2023). Apart from lacking further specification, we claim that using random segments

14

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

biases the evaluation, as we can never reach a perfect accuracy (a random segment from a song does not necessarily need to
have a match in a version song). Furthermore, if the objective is to match tracks by their segments, we believe using random
segments for evaluation may implicitly favor approaches exploiting more generic or global track characteristics than the
specific matching-segment information. These are the reasons why we introduce our segment-based protocol. However, in
the spirit of comparing with existing reported values, and to avoid any doubt on the performance of the proposed approach,
we replicate such protocol (to our best) and compute again results for all methods considered here. They are shown in
Fig. 6 and Table 7 below, together with the MAP values of ByteCover2, ByteCover3, and Re-MOVE (Yesiler et al., 2020b)
reported by Du et al. (2023).

C.3. Runtime

To conclude, we also provide an informal runtime analysis for the considered models (Table 8). For a fair comparison,
inference times are measured with the segment-based evaluation protocol, thus all models perform the same task of segment-
based retrieval with a 5 s hop size, using Rmin. We should also note that the time complexity of the naı̈ve implementation
of the reductions studied above is O(uv) for Rmean and Rmin, O(uv + u) for Rmeanmin, O(r + uv log(uv)) for Rbest-r, and
O(r(uv + u+ v)) for Rbpwr-r, where r ≤ min(u, v) and u, v are the number of considered segments in a sub-rectangle (see
main text). Note that the values for r, u, and v are small for today’s computation standards. For instance, a 5 min song with
20 s segments and no overlap yields u = 15.

Table 5. Segment-level evaluation with DVI-Test. NAR (top) and MAP (bottom) results for different lengths of query segments τ . The ±
symbol marks 95% confidence intervals.

APPROACH τ [S]
5 10 20 30 40 60 90

COVERHUNTER-COARSE 14.97 ± 0.07 12.01 ± 0.07 11.01 ± 0.07 10.89 ± 0.07 10.88 ± 0.07 10.95 ± 0.07 11.07 ± 0.07
CQTNET 49.96 ± 0.10 48.48 ± 0.10 16.35 ± 0.08 8.67 ± 0.07 7.20 ± 0.07 6.65 ± 0.07 6.60 ± 0.07
DVINET+ 49.80 ± 0.13 42.11 ± 0.12 10.42 ± 0.07 5.23 ± 0.06 4.20 ± 0.06 3.84 ± 0.06 3.76 ± 0.06
BYTECOVER1/2 † 29.91 ± 0.10 13.50 ± 0.08 6.77 ± 0.06 5.75 ± 0.06 5.42 ± 0.06 5.19 ± 0.06 5.09 ± 0.06
BYTECOVER3 † 30.11 ± 0.10 18.45 ± 0.08 8.66 ± 0.06 6.62 ± 0.06 6.18 ± 0.06 6.42 ± 0.06 7.06 ± 0.06
CLEWS (OURS) 5.10 ± 0.06 3.02 ± 0.05 2.86 ± 0.05 2.84 ± 0.05 2.85 ± 0.05 2.87 ± 0.05 2.89 ± 0.05

COVERHUNTER-COARSE 0.060 ± 0.001 0.106 ± 0.001 0.132 ± 0.001 0.133 ± 0.001 0.132 ± 0.001 0.129 ± 0.001 0.127 ± 0.001
CQTNET 0.001 ± 0.000 0.001 ± 0.000 0.011 ± 0.000 0.078 ± 0.001 0.282 ± 0.002 0.426 ± 0.002 0.475 ± 0.002
DVINET+ 0.001 ± 0.000 0.002 ± 0.000 0.026 ± 0.000 0.171 ± 0.001 0.421 ± 0.002 0.561 ± 0.002 0.616 ± 0.002
BYTECOVER1/2 † 0.008 ± 0.000 0.083 ± 0.001 0.363 ± 0.002 0.483 ± 0.002 0.529 ± 0.002 0.564 ± 0.002 0.582 ± 0.002
BYTECOVER3 † 0.001 ± 0.000 0.062 ± 0.001 0.358 ± 0.002 0.452 ± 0.002 0.508 ± 0.002 0.503 ± 0.002 0.473 ± 0.002
CLEWS (OURS) 0.271 ± 0.002 0.670 ± 0.002 0.754 ± 0.002 0.756 ± 0.002 0.755 ± 0.002 0.747 ± 0.002 0.738 ± 0.002

5 10 20 30 40 60 90
τ [s]

1

2

5

10

20

50

N
A

R
↓

5 10 20 30 40 60 90
τ [s]

0.0

0.2

0.4

0.6

0.8

1.0

M
A

P
↑

CoverHunter-Coarse
CQTNet
DVINet+
ByteCover1/2 †
ByteCover3 †
CLEWS (proposed)

Figure 5. Segment-level evaluation with SHS-Test. NAR (left) and MAP (right) for different lengths of query segments τ (notice the
logarithmic axis for NAR). The shaded regions correspond to 95% confidence intervals.

15

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Table 6. Segment-level evaluation with SHS-Test. NAR (top) and MAP (bottom) results for different lengths of query segments τ . The ±
symbol marks 95% confidence intervals.

APPROACH τ [S]
5 10 20 30 40 60 90

COVERHUNTER-COARSE 10.78 ± 0.23 6.61 ± 0.20 4.90 ± 0.18 4.62 ± 0.18 4.54 ± 0.18 4.52 ± 0.18 4.56 ± 0.18
CQTNET 49.80 ± 0.48 44.98 ± 0.47 9.45 ± 0.25 4.32 ± 0.18 3.21 ± 0.16 2.74 ± 0.16 2.67 ± 0.16
DVINET+ 49.44 ± 0.52 43.12 ± 0.52 16.05 ± 0.36 5.45 ± 0.22 3.29 ± 0.18 2.62 ± 0.17 2.52 ± 0.17
BYTECOVER1/2 † 22.68 ± 0.42 6.53 ± 0.22 2.71 ± 0.16 2.28 ± 0.15 2.12 ± 0.15 2.07 ± 0.15 2.03 ± 0.14
BYTECOVER3 † 15.78 ± 0.32 10.73 ± 0.20 3.84 ± 0.16 2.97 ± 0.15 2.71 ± 0.15 2.68 ± 0.15 4.53 ± 0.19
CLEWS (OURS) 3.39 ± 0.17 1.49 ± 0.13 1.33 ± 0.12 1.35 ± 0.12 1.37 ± 0.12 1.42 ± 0.12 1.47 ± 0.13

COVERHUNTER-COARSE 0.099 ± 0.004 0.274 ± 0.007 0.414 ± 0.007 0.435 ± 0.007 0.440 ± 0.007 0.439 ± 0.007 0.435 ± 0.007
CQTNET 0.003 ± 0.000 0.003 ± 0.000 0.038 ± 0.001 0.095 ± 0.003 0.361 ± 0.007 0.603 ± 0.007 0.652 ± 0.007
DVINET+ 0.003 ± 0.000 0.005 ± 0.000 0.028 ± 0.001 0.093 ± 0.003 0.365 ± 0.007 0.630 ± 0.007 0.691 ± 0.007
BYTECOVER1/2 † 0.033 ± 0.002 0.250 ± 0.006 0.640 ± 0.007 0.738 ± 0.007 0.770 ± 0.006 0.790 ± 0.006 0.800 ± 0.006
BYTECOVER3 † 0.098 ± 0.004 0.237 ± 0.007 0.628 ± 0.008 0.687 ± 0.008 0.690 ± 0.007 0.674 ± 0.007 0.576 ± 0.008
CLEWS (OURS) 0.394 ± 0.007 0.806 ± 0.006 0.859 ± 0.005 0.861 ± 0.005 0.859 ± 0.005 0.852 ± 0.006 0.847 ± 0.006

5 10 20 30 40 60 90
τ [s]

1

2

5

10

20

50

N
A

R
↓

5 10 20 30 40 60 90
τ [s]

0.0

0.2

0.4

0.6

0.8

1.0

M
A

P
↑

CoverHunter-Coarse
CQTNet
DVINet+
ByteCover1/2 †
ByteCover3 †
Re-MOVE
ByteCover3
ByteCover2
CLEWS (proposed)

Figure 6. Segment-level evaluation with SHS-Test using the random segment protocol of Du et al. (2023). NAR (left) and MAP (right) for
different lengths of random query segments τ (notice the logarithmic axis for NAR). The shaded regions correspond to 95% confidence
intervals. The dotted lines correspond to values reported by Du et al. (2023).

Table 7. Segment-level evaluation with SHS-Test using the random segment protocol of Du et al. (2023). NAR (top) and MAP (bottom)
results for different lengths of random query segments τ . The ± symbol marks 95% confidence intervals. Du et al. (2023) did not report
any confidence interval.

APPROACH τ [S]
5 10 20 30 40 60 90

COVERHUNTER-COARSE 15.15 ± 0.30 9.97 ± 0.25 7.42 ± 0.22 6.56 ± 0.21 6.03 ± 0.21 5.62 ± 0.20 5.27 ± 0.19
CQTNET 49.73 ± 0.48 46.67 ± 0.47 18.55 ± 0.32 10.21 ± 0.25 7.18 ± 0.23 4.88 ± 0.20 3.78 ± 0.18
DVINET+ 49.50 ± 0.52 44.13 ± 0.51 22.65 ± 0.38 11.41 ± 0.28 7.09 ± 0.24 4.57 ± 0.20 3.50 ± 0.19
BYTECOVER1/2 † 31.96 ± 0.40 19.16 ± 0.34 9.65 ± 0.26 6.55 ± 0.22 5.04 ± 0.21 3.77 ± 0.19 3.02 ± 0.17
BYTECOVER3 † 23.41 ± 0.37 10.95 ± 0.28 6.64 ± 0.23 5.23 ± 0.21 4.68 ± 0.20 4.03 ± 0.19 5.52 ± 0.12
CLEWS (OURS) 15.27 ± 0.30 8.09 ± 0.25 4.46 ± 0.19 3.30 ± 0.17 2.81 ± 0.16 2.32 ± 0.15 2.07 ± 0.15

COVERHUNTER-COARSE 0.068 ± 0.003 0.193 ± 0.005 0.314 ± 0.006 0.354 ± 0.007 0.370 ± 0.007 0.385 ± 0.007 0.399 ± 0.007
CQTNET 0.003 ± 0.000 0.003 ± 0.000 0.019 ± 0.001 0.088 ± 0.003 0.276 ± 0.006 0.474 ± 0.007 0.586 ± 0.007
DVINET+ 0.003 ± 0.000 0.004 ± 0.000 0.016 ± 0.001 0.089 ± 0.003 0.276 ± 0.006 0.498 ± 0.007 0.623 ± 0.007
BYTECOVER1/2 † 0.022 ± 0.001 0.110 ± 0.004 0.357 ± 0.006 0.516 ± 0.007 0.607 ± 0.007 0.691 ± 0.007 0.746 ± 0.007
BYTECOVER3 † 0.044 ± 0.002 0.133 ± 0.004 0.432 ± 0.007 0.511 ± 0.007 0.528 ± 0.007 0.539 ± 0.007 0.469 ± 0.008
RE-MOVE 0.023 0.069 0.196 0.308 0.407 0.505 N/A
BYTECOVER3 0.084 0.257 0.496 0.600 0.666 0.732 N/A
BYTECOVER2 0.016 0.074 0.282 0.442 0.564 0.684 N/A
CLEWS (OURS) 0.140 ± 0.004 0.455 ± 0.006 0.652 ± 0.007 0.714 ± 0.006 0.746 ± 0.006 0.780 ± 0.006 0.802 ± 0.006

16

Supervised Contrastive Learning from Weakly-Labeled Audio Segments for Musical Version Matching

Table 8. Training and inference runtimes (informal) using a single NVIDIA H100 GPU. Training runtime is measured using a batch
construction as specified in the main text (2.5 min audio blocks, 25 anchors, 3 positives per anchor, total of 100 audio blocks). Inference
runtime is measured following the segment-based evaluation protocol (5 s hop size, τ =20 s, R = Rmin). Retrieval time corresponds to a
database with 2000 candidates, and grows linearly with them for all approaches.

APPROACH PARAMETERS TRAINING [S/BATCH] INFERENCE
EMBEDDING [MS/SONG] RETRIEVAL [MS/QUERY]

COVERHUNTER-COARSE 28 M 0.68 22.5 2.9
CQTNET 35 M 0.48 57.6 2.0
DVINET+ 11 M 0.38 60.9 2.2
BYTECOVER3 † 969 M 0.71 27.4 5.1
BYTECOVER1/2 † 202 M 0.50 62.2 5.1
CLEWS 199 M 1.19 40.3 3.5

17

