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ABSTRACT

Unsupervised representation learning has seen tremendous progress but is con-
strained by its reliance on data modality-specific stationarity and topology, a lim-
itation not found in biological intelligence systems. For instance, human vision
processes visual signals derived from irregular and non-stationary sampling lat-
tices yet accurately perceives the geometry of the world. We introduce a novel
framework that learns from high-dimensional data lacking stationarity and topol-
ogy. Our model combines a learnable self-organizing layer, density adjusted spec-
tral clustering, and masked autoencoders. We evaluate its effectiveness on sim-
ulated biological vision data, neural recordings from the primary visual cortex,
and gene expression datasets. Compared to state-of-the-art unsupervised learning
methods like SimCLR and MAE, our model excels at learning meaningful repre-
sentations across diverse modalities without depending on stationarity or topology.
It also outperforms other methods not dependent on these factors, setting a new
benchmark in the field. This work represents a step toward unsupervised learning
methods that can generalize across diverse high-dimensional data modalities.

1 INTRODUCTION

Unsupervised representation learning, also known as self-supervised representation learning (SSL),
aims to develop models that autonomously detect patterns in data and make these patterns read-
ily apparent through a specific representation. There has been tremendous progress over the past
few years in the unsupervised representation learning community. Popular methods like contrastive
learning and masked autoencoders [68; 6; 24; 70] work relatively well on typical modalities such
as images, videos, audio, time series, and point clouds. However, these methods make implicit as-
sumptions about the data domain’s topology and stationarity. Given an image, topology refers to
the neighboring pixels of each pixel, or more generally, the grid structure in images, the temporal
structure in time series and sequences, or the 3D structure in molecules and point clouds. Sta-
tionarity refers to the property that the low-level statistics of the signal remain consistent across
its domain. For instance, pixels and patches in images exhibit similar low-level statistics (mean,
variance, co-variance) regardless of their locations within the domain. The success of state-of-the-
art self-supervised representation learning relies on knowing the prior topology and stationarity of
the modalities. For example, joint-embedding SSL employs random-resized cropping augmentation
[6], and masked auto-encoding [25] utilizes masked-image-patch augmentation. What if we possess
high-dimensional signals without knowledge of their domain topology or stationarity? Can we still
craft a high-quality representation? This is not only the situation that biological vision systems have
to deal with but also a practical setting for many scientific data analysis problems. In this work, we
introduce unsupervised representation learning without stationarity or topology (URLOST) and
take a step in this direction.

As we mentioned earlier, typical modalities possess topology and stationarity prior information
that can be utilized by unsupervised representation learning. Taking images as an example, digital
cameras employ a consistent sensor grid that spans the entire visual field. However, biological
visual systems have to deal with signals with less domain regularity. For instance, unlike camera
sensors which have a uniform grid, the cones and rods in the retina distribute unevenly and non-
uniformly. This results in a non-stationary raw signal. Retinal ganglion cells connect to more
photoreceptors in the fovea than in the periphery. The correlation of the visual signal between two
different locations in the retina depends not only on the displacement between these locations but
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also on their absolute positions. Yet, biological visual systems can establish precise retinotopy from
the retina to neurons based on spontaneous locally-propagated retinal activities and external stimuli
[67; 35; 18] and leverage retinotopic input to build unsupervised representation. This implies that
we can potentially build unsupervised representation without relying on prior stationarity of the raw
signal or topology of the input domain. The ability to build unsupervised representation without
relying on topology and stationarity has huge advantages. In evolution perspective, biological visual
system develops irregular sensor for a reason. It gives us foveated vision which has both high
resolution and broad coverage. Such sensor arrangement is much more efficient than camera sensor
for dynamic environments. In order to use these efficient sensors, our visual system must be able
to develop an unsupervised learning model that does not rely on topology and stationarity of the
signal. On the other hand, if we can build such a model, we can potentially create an embodied
vision system with more efficient sensors than standard camera sensor. We can even move beyond
visual signal and create a powerful AI system that compute with any high dimensional signal.
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Figure 1: From left to right: the unsupervised representation learning through joint embedding and
masked auto-encoding; the biological vision system that perceives via unstructured sensor and un-
derstands signal without stationarity or topology [48]; and many more such diverse high dimensional
signal in natural science that our method supports while most existing unsupervised methods don’t.
Data figures are borrowed from [48; 44; 69].

In this work, we aim to build unsupervised representations for general high-dimensional vectors.
Taking images as an example again, let’s assume we receive a set of images whose pixels are shuffled
in the same order. How can we build representations in an unsupervised fashion without knowledge
of the shuffling order? If possible, can we use such a method to build unsupervised representations
for general high-dimensional data? Inspired by [53], we use low-level statistics and spectral cluster-
ing to form clusters of the pixels, which recovers a coarse topology of the input domain. These clus-
ters are analogous to image patches except that they are slightly irregularly shaped and different in
size. We mask a proportion of these “patches” and utilize a locally connected neural network and and
a Vision Transformer [15] to predict the masked “patches” based on the remaining unmasked ones.
This “learning to predict masked tokens” approach is proposed in masked autoencoders (MAE) [25]
and has demonstrated effectiveness on typical modalities. Initially, we test the proposed method
on the synthesized biological visual dataset, derived from CIFAR-10 [32] using a foveated retinal
sampling mechanism [8]. Then we generalize this method to two high-dimensional vector datasets:
a primary visual cortex neural response decoding dataset [57] and the TCGA miRNA-based can-
cer classification dataset [62; 66]. Across all these benchmarks, our proposed method outperforms
existing SSL techniques, establishing its effectiveness in building unsupervised representations for
signals lacking explicit stationarity or topology. Given the emergence of new modalities in deep
learning from natural sciences [59; 23; 49; 34], such as chemistry, biology, and neuroscience, our
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Figure 2: The overview framework of URLOST. The high-dimensional input signal undergoes
clustering and self-organization before unsupervised learning using a masked autoencoder for signal
reconstruction.

method offers a promising approach in the effort to build unsupervised representations for high-
dimensional data.

Main contribution of this work:

1. We identify an important self-supervised learning problem that is largely ignored by the
machine learning community: how to build unsupervised representation for general high-
dimension data? High-dimensional data is prevalent in everyday life, scientific research,
and nature.

2. And, we propose a straightforward yet effective method that provides a step for solving
this problem, which combines intuition for high dimensional statistics, bio-inspired design
and state-or-the-art self-supervised learning method. Specifically, our model is inspired by
formation of retinotopy and how visual systems compute with retinotopic input.

3. We show our model can deal with diverse modalities and have numerous applications. For
example, it can serve as a vision foundation model with more efficient sensor arrangement.
It can also be used as a hypothesis testing tool on neural data and a cancer diagnosis tool.

2 METHOD

2.1 MOTIVATION AND OVERALL FRAMEWORK

Our objective is to build robust, unsupervised representations for high-dimensional signals that lack
explicit topology and stationarity. These learned representations are intended to enhance perfor-
mance in downstream tasks, such as classification. To achieve this, we begin by using low-level
statistics and clustering to approximate the signal’s topology. The clusters derived from the signal
serve as input to a masked autoencoder. As depicted in Figure 1, the masked autoencoder randomly
masks out patches in an image and trains a Transformer-based autoencoder unsupervisedly to re-
construct the original image. After the unsupervised training, the autoencoder’s latent state yields
high-quality representations. In our approach, signal clusters are input to the masked autoencoder.

Notably, the clusters differ from image patches in several key aspects due to the differences in the
input signal: they are unaligned, exhibit varied sizes and shapes, and their clustering nodes are not
confined to fixed 2D locations like pixels in image patches. To cope with these differences, we
introduce a self-organizing layer responsible for aligning these clusters through learnable transfor-
mations. The parameters of this layer are jointly optimized with those of the masked autoencoder.
Our method is termed URLOST, an acronym for Unsupervised Representation Learning withOut
Stationarity or Topology. Figure 2 provides an overview of the framework. URLOST consists
of three core components: density adjusted spectral clustering, self-organizing layer, and masked
autoencoder. The functionalities of these components are detailed in the following subsections.
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2.2 DENSITY ADJUSTED SPECTRAL CLUSTERING

Representation learning for high-dimensional signals without explicit topology is challenging.
We propose to define a metric to measure inter-dimensional relationships. This metric effec-
tively approximates a topology for the signal. Similar to [53], where they use the absolute cor-
relation values as the metric for pixels, we employ a more general metric: discrete mutual in-
formation. (refer to Appendix A.2) as the metric. Let affinity matrix Aij denote the mutual
information between dimension i and j, which approximates the manifold M that the signal lives
on. We can define the discretized Laplacian operator based on A and use the eigenvector of the
Laplacian operator to perform spectral clustering, which segments the manifold. The detailed
definition and the algorithm are left in Appendix A.2. Finding the eigenvector of the Laplacian
operator is a discretized approximation of the following optimization problem in function space:
min||f ||L2(M)

∫
M ||p(x) 1

2∇f(x)||2 where f(x) : M → [0, 1] is the normalized signal defined on
M and p(x) is the density function. The integral is taken over standard measure on M. Since
spectral clustering heavily relies on the solution of equation 6, the definition of the density function
p(x) affects the quality of the resulting clusters. Given a high dimensional dataset S ∈ Rn×m, let
Si ∈ Rn×1 be ith column of S, which represents the ith dimension of the m-dimensional signal.
Since we want to process dimensions that share similar information together, we use spectral clus-
tering to group them with mutual information graph. Let Aij = I(Si;Sj), we use A as the affinity
matrix of the graph. L = D − A is the Laplacian matrix, where D is the diagonal matrix whose
(i, i)-element is the sum of A’s i-th row. We can formulate the spectral embedding problem as find-
ing Y such that minY Y T=I tr(Y LY T ). A clustering algorithm is then applied to the embedding Y
as explained in appendix A.2. The size and shape of the clusters strongly affect the unsupervised
learning performance. To adjust the size and shape, we apply a density adjustment matrix P to
adjust L in the spectral embedding objective. The optimization problem becomes the following:

min
Y Y T=I

tr(Y P 1/2LP 1/2Y T ) (1)

where P = diag(p(i)), p(i) is the density function defined on each node i. We set p(i) =
q(i)αn(i)−β1, where n(i) =

∑
j∈TopK(Aji)

Aji and q(i) is the prior density which depends on
specific dataset and is defined in the experiment section. α, β and K are hyper-parameters. Setting
α = 0 and K = m will recover the normalized graph Laplacian. In appendix A.1, we provide a de-
tailed interpretation and motivation of density adjustment with the language of functional analysis.
We further verify its effectiveness with ablation study in section 4.2 and appendix A.4

2.3 SELF-ORGANIZING LAYER

Transforming a high-dimensional signal into a sequence of clusters using the above method is not
enough because it does not capture the internal structure within individual clusters. As an intuitive
example, given an image, we divide it into a set of image patches of the same size. If we apply
different permutations to these image patches, their inner product will no longer reflect their simi-
larity properly. Clusters we obtained from section 2.2 are analogous to image patches, but elements
in each cluster have arbitrary ordering. Thus, if we take two clusters of pixels, their inner product
are also arbitrary due to the ordering mismatch. In Transformers, since self-attention depends on
the inner products between different “clusters,” we need to align these clusters in a space, where
their inner products reflect their similarity. To effectively perform unsupervised learning on these
clusters, it is essential to align them in some manner. Directly solving the exact alignment problem
with low-level statistics of the signal is challenging. To align these clustersThus, we propose a self-
organizing layer with learnable parameters. Specifically, let vector x(i) denote the ith cluster. Each
cluster x(i) is passed through a differentiable function g(·, w(i)) with parameter w(i), resulting in a
sequence z0:

z0 = [g(x(1), w(1)), · · · g(x(M), w(M))] (2)

z0 is comprised of projected and aligned representations for all clusters. The weights of the proposed
self-organizing layer, {w(1), · · ·w(M)}, are jointly optimized with the subsequent neural network
introduced in the next subsection.

1p(i) need to normalized to be the density function but this wouldn’t influence the optimization problem
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2.4 MASKED AUTOENCODER

After the self-organizing layer, z0 is passed to a Transformer-based masked autoencoder (MAE)
with an unsupervised learning objective. Masked autoencoder (MAE) consists of an encoder and a
decoder which both consist of stacked Transformer blocks introduced in [64]. The objective function
is introduced in [25]: masking random image patches in an image and training an autoencoder to
reconstruct them, as illustrated in Figure 1. In our case, randomly selected clusters in z0 are masked
out, and the autoencoder is trained to reconstruct these masked clusters. After training, the encoder’s
output is treated as the learned representation of the input signal for downstream tasks. The masked
prediction loss is computed as the mean square error (MSE) between the values of the masked
clusters and their corresponding predictions.

3 RESULT

Since our method is inspired by the biological vision system, we first validate its ability on a syn-
thetic biological vision dataset created from CIFAR-10. Then we evaluate the generalizability of
URLOST on two high-dimensional natural datasets collected from diverse domains. Detailed infor-
mation about each dataset and the corresponding experiments is presented in the following subsec-
tions. Across all tasks, URLOST consistently outperforms other strong unsupervised representation
learning methods.

3.1 SYNTHETIC BIOLOGICAL VISION DATASET

As discussed in the introduction, the biological visual signal serves as an ideal dataset to validate the
capability of URLOST. In contrast to digital images captured by a fixed array of sensors, the biologi-
cal visual signal is acquired through irregularly positioned ganglion cells, inherently lacking explicit
topology and stationarity. However, it is hard to collect real-world biological vision signals with
high precision. Therefore, we employ a retinal sampling technique to modify the classic CIFAR-10
dataset and simulate imaging from the biological vision signal. The synthetic dataset is referred to
as Foveated CIFAR-10. To make a comprehensive comparison, we also conduct experiments on the
original CIFAR-10, and a Permuted CIFAR-10 dataset obtained by randomly permuting the image.

Permuted CIFAR-10. To remove the grid topology inherent in digital imaging, we simply per-
mute all the pixels within the image, which effectively discards any information related to the grid
structure of the original digital image. We applied such permutation to each image in the CIFAR-10
dataset to generate the Permuted CIFAR-10 dataset. Nevertheless, permuting pixels only removes
an image’s topology, leaving its stationarity intact. To obtain the synthetic biological vision that has
neither topology nor stationarity, we introduce the Foveated CIFAR-10.

Figure 3: Retina sampling (A) An image in CIFAR-10 dataset. (B) Retina sampling lattice. Each
blue dot represents the center of a Gaussian kernel, which mimics a retinal ganglion cell. (C) Vi-
sualization of the car image’s signal sampled using the retina lattice. Each kernel’s sampled RGB
value is displayed at its respective lattice location for visualization purposes. (D) density-adjusted
spectral clustering results are shown. Each unique color represents a cluster, with each kernel col-
ored according to its assigned cluster.

Foveated CIFAR-10. Much like photosensors installed in a camera, retina ganglion cells within the
primate biological visual system sample from visual stimuli and project images. However, unlike
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Table 1: Evaluation on computer vision and synthetic biological vision dataset. ViT (Patch)
stands for the Vision Transformer backbone with image patches as inputs. ViT (Pixel) means pixels
are treated as input units. ViT (Clusters) means clusters are treated as inputs instead of patches. The
number of clusters is set to 64 for both Permuted CIFAR-10 and Foveated CIFAR-10 dataset. Eval
Acc stands for linear probing evaluation accuracy: accuracy of a linear classifier on our pretrained
model.

Dataset Method Backbone Eval Acc
CIFAR-10 MAE ViT (Patch) 88.3 %

MAE ViT (Pixel) 56.7 %
SimCLR ResNet-18 90.7 %

Permuted CIFAR-10 URLOST MAE ViT (Cluster) 86.4 %
(no topology) MAE ViT (Pixel) 56.7 %

SimCLR ResNet-18 47.9 %
Foveated CIFAR-10 URLOST MAE ViT (Cluster) 85.4 %

(no topology or stationarity) MAE ViT (Pixel) 48.5 %
SimCLR ResNet-18 38.0 %

photosensors that have uniform receptive fields and adhere to a consistent sampling pattern, retinal
ganglion cells at different locations of the retina vary in their receptive field size: smaller in the cen-
ter (fovea) but larger in the peripheral of the retina. This distinctive retina sampling pattern results
in foveated imaging [63]. It gives primates the ability to have both a high-resolution vision and a
broad overall receptive field while consequently making visual signals sampled by the retina lack
stationarity. The evidence is that responses of two ganglion cells separated by the same displace-
ment are highly correlated in the retina but less correlated in the peripheral. To mimic the foveated
imaging with CIFAR-10, we adopt the retina sampling mechanism from [8]. Specifically, each retina
ganglion cell is simplified and modeled using a Gaussian kernel. The response of each cell is de-
termined by the dot product between pixel values and the Gaussian kernel. Figure 3 illustrates the
sampling kernel locations. Applying this sampling grid and permuting the resulting pixels produces
the foveated CIFAR-10. In the natural retina, retinal ganglion cell density decreases linearly with
eccentricity, which makes fovea much denser than the peripheral, compared to the simulated lattice
in Figure 3. However, considering the low resolution of the CIFAR-10 dataset, we reduce the simu-
lated fovea’s density to prevent redundant sampling. In this dataset, we define the prior density q(i)
as the distance from ith sampling kernel to the center of the sampling lattice.

Experiments. We compare URLOST on both of the synthetic vision datasets as well as the original
CIFAR-10 with popular unsupervised representation learning methods SimCLR [6] and MAE [25].
We follow the standard evaluation framework for unsupervised learning model. All the models
conducted unsupervised learning followed by linear probing for classification accuracy. i.e. we
first train our unsupervised learning model on the data, which is generally known as the pretraining
phase. Then we convert each data point to an embedding vector with our pretrained encoder. Finally,
we perform logistic regression on embedding vectors with their labels and record the accuracy.
The evaluations are reported in Table 1. SimCLR excels on CIFAR-10 but struggles badly with
both synthetic datasets due to its inability to handle data without stationarity and topology. MAE
gets close to SimCLR on CIFAR-10 with a 4 × 4 patch size. However, the patch size no longer
makes sense when data has no topology. So we additionally tested MAE masking pixels instead of
image patches. It maintains the same performance on Permuted CIFAR-10 as on CIFAR-10, though
poorly, invariant to the removal of topology as it should be. But It still drops greatly to 48.5%
on the Foveated CIFAR-10 when stationarity is also removed. In contrast, only URLOST is able
to maintain consistently strong performances when there is no topology or stationarity, achieving
86.4% on Permuted CIFAR-10 and 85.4% on Foveated CIFAR-10 when the baselines completely
fail. For the best result, we use K = 20, α = 0.5 and β = 2. Further ablation study on the effect of
these hyper-parameter is discussed in the ablation study 4.2.
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Table 2: Evaluation on V1 response decoding and TCGA pan-cancer classification tasks.
“Raw” indicates preprocessed (standardized and normalized) raw signals. Best β values are used for
β-VAE. For URLOST MAE, cluster sizes are 200 (V1) and 32 (TCGA).We pick 15 seeds randomly
to repeat the training and evaluation for each method. We report the 95% confidence interval for
each method.

Method V1 Response Decoding Acc TCGA Classification Acc
Raw 73.9% 91.1%

β-VAE 75.1% 75.64% ± 0.11% 94.2% 94.15% ± 0.24%
MAE 64.8% 88.3%

URLOST MAE 78.2% 78.75% ± 0.18 % 94.9% 94.90% ± 0.25 %

3.2 V1 NEURAL RESPONSE TO NATURAL IMAGE STIMULUS

After accessing URLOST’s performance on synthetic biological vision data, we take a step further
to challenge its generalizability with high-dimensional natural datasets. The first task is decoding
neural response recording in the primary visual area (V1) of mice.

V1 neural response dataset. The dataset, published by [44], contains responses from over 10,000
V1 neurons captured via two-photon calcium imaging. These neurons responded to 2,800 unique
images from ImageNet [12], with each image presented twice to assess the consistency of the neural
response. In the decoding task, a prediction is considered accurate if the neural response to a given
stimulus in the first presentation closely matches the response to the same stimulus in the second
presentation within the representation space. This task presents greater challenges than the synthetic
biological vision described in the prior section. For one, the data comes from real-world neural
recordings rather than a curated dataset like CIFAR-10. For another, the geometric structure of the
V1 area is substantially more intricate than that of the retina. To date, no precise mathematical
model of the V1 neural response has been well established. The inherent topology and stationarity
of the data still remain difficult to grasp [43; 42]. Nevertheless, evidence of Retinotopy [18; 19]
and findings from prior research [41; 7; 58] suggest that the neuron population code in V1 are tiling
a low dimensional manifold. This insight led us to treat the population neuron response as high-
dimensional data and explore whether URLOST can effectively learn its representation.

Experiments. Following the approach in [44] we apply standardization and normalization to the
neural firing rate. The processed signals are high-dimensional vectors, and they can be directly
used for the decoding task, which serves as the “raw” signal baseline in Table 2. For representation
learning methods, URLOST is evaluated along with MAE and β-VAE [26]. Note that the baseline
methods need to handle high-dimensional vector data without stationarity or topology, so SimCLR is
no longer applicable. We use β-VAE instead. We first train the neural network with an unsupervised
learning task, then use the latent state of the network as the representation for the neural responses
in the decoding task. The results are presented in the table 2. Our method surpasses the original
neuron response and other methods, achieving the best performance. For the density function, since
we have no prior knowledge on the nodes in this dataset, we set K = 15, α = 0 and β = 1

3.3 GENE EXPRESSION DATA

In this subsection, we further evaluate URLOST on high-dimensional natural science data from a
completely different domain, the gene expression data.

Gene expression dataset. The dataset comes from The Cancer Genome Atlas (TCGA) [62; 66],
which is a project that catalogs the genetic mutations responsible for cancer using genome sequenc-
ing and bioinformatics. The project molecularly characterized over 20,000 primary cancers and
matched normal samples spanning 33 cancer types. We focus on the pan-cancer classification task:
diagnose and classify the type of cancer for a given patient based on his gene expression profile.
The TCGA project collects the data of 11,000 patients and uses Micro-RNA (miRNA) as their gene
expression profiles. Like the V1 response, no explicit topology and stationarity are known and each
data point is a high-dimensional vector. Specifically, 1773 miRNA identifiers are used so that each
data point is a 1773-dimensional vector. Types of cancer that each patient is diagnosed with serve
as the classification labels.
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Table 3: Ablation study on self-organizing layer. Linear probing accuracy with varying param-
eters, keeping others constant. For Locally-Permutated CIFAR-10, we use 4 × 4 patch size. For
Permutated CIFAR-10 and Foveated CIFAR-10, we set the number of clusters to 64 for the spectral
clustering algorithm. We kept the hyperparameter of the backbone model the same as in table 1.

Dataset Projection Eval Acc
Locally-Permuted shared 81.4 %

CIFAR-10 non-shared 87.6 %
Permuted shared 80.7 %
CIFAR-10 non-shared 86.4 %

(a) Replacing the non-shared projections of the
self-organizing layer with the shared projection
layer entails a significant drop in performance.

Dataset Cluster Eval Acc
Foveated SC 82.7 %

CIFAR-10 DSC 85.4 %

(b) “SC” denotes spectral clustering with uniform den-
sity clustering and “DSC” denotes density adjusted
spectral clustering. For Foveated CIFAR-10 using den-
sity adjusted spectral clustering to create clusters will
make the model perform better than using standard
spectral clustering with uniform density.

Experiments. Similar to Section 3.2, URLOST is compared with the original signals, MAE, and
β-VAE, which is the state-of-the-art unsupervised learning method on TCGA cancer classification
[71; 72]. We also randomly partition the dataset do five-fold cross-validation and report the average
performance in Table 2. Again, our method learns meaningful representation from the original sig-
nal. The learned representation benefited the classification task and achieved the best performance,
demonstrating URLOST’s ability to learn meaningful representation of data from diverse domains.
For the density function, since we have no prior knowledge on the nodes in this dataset, we set
K = 15, α = 0 and β = 1.

4 ABLATION STUDY

4.1 SELF-ORGANIZING LAYER VS SHARED PROJECTION LAYER

Conventional SSL models take a sequential input x = [x(1), · · ·x(M)] and embed them into latent
vectors with a linear transformation:

z0 = [Ex(1), · · ·Ex(M)] (3)

which is further processed by a neural network. The sequential inputs can be a list of language
tokens [14; 50], pixel values [5], image patches [15], or overlapped image patches [6; 24; 70]. E
can be considered as a projection layer that is shared among all elements in the input sequence.
The self-organizing layer g(·, w(i)) introduced in Section 2.3 can be considered as a non-shared
projection layer. We conducted an ablation study comparing the two designs to demonstrate the
effectiveness of the self-organizing layers both quantitatively and qualitatively. To facilitate the
ablation, we further synthesized another dataset.

Locally-permuted CIFAR-10. To directly evaluate the performance of the non-shared projection
approach, we designed an experiment involving intentionally misaligned clusters. In this experi-
ment, we divide each image into patches and locally permute all the patches. The i-th image patch is
denoted by x(i), and its permuted version, permutated by the permutation matrix E(i), is expressed
as E(i)x(i). We refer to this manipulated dataset as the Locally-Permuted CIFAR-10. Our hypoth-
esis posits that models using shared projections, as defined in Equation 3, will struggle to adapt
to random permutations, whereas self-organizing layers equipped with non-shared projections can
autonomously adapt to each patch’s permutation, resulting in robust performance. This hypothesis
is evaluated quantitatively and through the visualization of learned weights w(i).

Permuted CIFAR-10. Meanwhile, we also run the ablation study on the Permuted CIFAR-10.
Unlike locally permuted CIFAR-10, a visualization check is not viable since the permutation is done
globally. However, we can still quantitatively measure the performance of the task.

Quantitative results. Table 3 confirms our hypothesis, demonstrating a significant performance
decline in models employing shared projections when exposed to permuted data. In contrast, the
non-shared projection model maintains stable performance.

Visual evidence. Using linear layers to parameterize the self-organizing layers, i.e. let g(x,W (i)) =
W (i)x, we expect that if the projection layer effectively aligns the input sequence, E(i)TW (i) should
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exhibit visual similarities. That is, after applying the inverse permutation E(i)T , the learned projec-
tion matrix W (i) at each location should appear consistent or similar. The proof of this statement
is provided in Appendix A.5. The model trained on Locally-Permuted CIFAR10 provides visual
evidence supporting this claim. In Figure 4, the weights show similar patterns after reversing the
permutations. These observations demonstrate that URLOST can also be used as an unsupervised
learning method to recover topology and enforce stationary on the signal. This is different than
just using the model to extract representations for downstream tasks. We believe this is a unique
potential of URLOST.

Figure 4: Learnt weights of a self-organizing layer. (A) Image is cropped into patches, where
each patch x(i) first undergoes a different permutation E(i), then the inverse permutation E(i)T . (B)
The learned weight of the linear self-organizing layer. The 12th column of W (i) at all positions i
are reshaped into patches and visualized. When W (i) undergoes the inverse permutation E(i)T , they
show similar patterns. (C) Visualization of the 37th column of W (i). Similar to (B).

4.2 DENSITY ADJUSTED CLUSTERING VS UNIFORM DENSITY CLUSTERING

As explained in Section 2.2, the shape and size of each cluster depend on how the density function
p(i) is defined. Let q(i) represent the eccentricity, the distance from ith kernel to the center of the
sampling lattice, and let n(i) =

∑
j Aji where A is the affinity matrix, then the density is defined

as:
p(i) = q(i)αn(i)−β (4)

where n(i) =
∑

j∈Topk(Aji)
Aji, A is the affinity matrix, q(i) represent the eccentricity, the distance

from ith kernel to the center of the sampling lattice. Setting α and β nonzero, the density function
is eccentricity-dependent. Setting both α and β to zero will make n(i) constant which recovers the
uniform density spectral clustering. We vary the parameters α and β to generate different sets of
clusters for the foveated CIFAR-10 dataset and run URLOST using each of these sets of clusters.
Results in Table 4 validate that the model performs better with density adjusted clustering. The in-
tuitive explanation is that by adjusting the values of α and β, we can make each cluster carry similar
amounts of information (refer to Appendix A.4.). A balanced distribution of information across clus-
ters enhances the model’s ability to learn meaningful representations. Without this balance, masking
a low-information cluster makes the prediction task trivial, while masking a high-information cluster
will make the prediction task too difficult. In either scenario, the model’s ability to learn effective
representations is compromised.

5 ADDITIONAL RELATED WORKS

Several interconnected pursuits are linked to this work, and we will briefly address them here:

Topology in biological visual signal. 2-D topology of natural images is strong prior that requires
many bits to encode [13; 2]. Such 2-D topology is encoded in the natural image statistic [55; 28],
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which can be recovered [53] and [31]. However, these “topology recovering” work cannot be ef-
fectively integrated with state-of-the-art self-supervised learning algorithms. For example, [53] use
manifold learning to infer the 2-d position of each pixel. The community tried to feed the “recovered
topology” to a graph neural network (GNN) [3], but suffer from inherent scalability issues on using
GNN to do unsupervised learning. Optic and neural circuits in the retina result in a more irregular
2-D topology than the natural image, which can still be simulated [52; 46; 47; 45; 61; 30]. This
information is further processed by the primary visual cortex. Evidence of retinotopy suggests the
low-dimensional geometry of visual input from retina is encoded by the neuron in primary visual
cortex [40; 20; 27; 19; 65; 48]. These evidences suggest we can recover the topology using signal
from retinal ganglion cell and V1 neurons.

Evidence of self-organizing mechanism in the brain. In computational neuroscience, many works
use the self-organizing maps (SOM) as a computational model for V1 functional organization:
[16; 60; 1; 17; 39; 31]. In other words, this idea of self-organizing is likely a principle govern-
ing how the brain performs computations. Even though V1 functional organizations are present at
birth, numerous studies also indicate that the brain’s self-organizing mechanisms continue after full
development [22; 54; 29].

Learning with signal on non-euclidean geometry. In recent years, researchers from the machine
learning community have made efforts to consider geometries and special structures beyond classic
images, text, and feature vectors. [33] treats an image as a set of points but depends on the 2D co-
ordinates. The geometric deep learning community tries to generalize convolution neural networks
beyond the Euclidean domain [3; 37; 11; 21]. Recent research also explores adapting the Trans-
former to domains beyond Euclidean spaces [10; 9]. However, none of them has tried to tackle the
issue when the data has no explicit topology or stationarity, which is the focus of URLOST.

Self-supervised learning. Self-supervised learning (SSL) has made substantial progress in recent
years. Different SSL method is designed for each modality, for example: predicting the masked/next
token in NLP[14; 50; 4], solving pre-text tasks, predicting masked patches, or building contrastive
image pairs in computer vision [36; 25; 68; 6; 24; 70]. These SSL methods have demonstrated
descent scalability with a vast amount of unlabeled data and have shown their power by achieving
performance on par with or even surpassing supervised methods. They have also exhibited huge
potential in cross-modal learning, such as the CLIP by [51]. However, we argue that these SSL
methods are all built upon specific modalities with explicit topology and stationarity which URLOST
goes beyond.

6 DISCUSSION

The success of most current state-of-the-art self-supervised representation learning methods relies on
the assumption that the data has known stationarity and domain topology, such as the grid-like RGB
images and time sequences. However, biological vision systems have evolved to deal with signals
with less regularity so it can develop more efficient sensor arrangements. In this work, we explore
unsupervised representation learning under a more general assumption, where the stationarity and
topology of the data are unknown to the machine learning model and its designers. We argue that
this is a general and realistic assumption for high-dimensional data in modalities of natural science.
We propose a novel unsupervised representation learning method that works under this assumption
and demonstrates our method’s effectiveness and generality on a synthetic biological vision dataset
and two datasets from natural science that have diverse modalities. We also perform a step-by-step
ablation study to show the effectiveness of the novel components in our model.

During experiments, we found that density adjusted spectral clustering is crucial for the quality of
representation learning. How to adjust the density and obtain a balanced clustering for any given
data or even learning the clusters end-to-end with the representation via back-propagation is worth
future investigation. Moreover, our current self-organizing layer is still simple though it shows
effective performance. Extending it to a more sophisticated design and potentially incorporating it
with various neural network architectures is also worth future exploration.

In summary, our method offers a handy and general unsupervised learning tool when dealing with
high-dimensional data of arbitrary modality with unknown stationarity and topology, particularly
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common in the field of natural sciences, where many present strong unsupervised learning baselines
cannot directly adapt. We hope it can provide inspiration for work in related fields.
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A APPENDIX

A.1 MOTIVATION OF DENSITY ADJUSTED SPECTRAL CLUSTERING

Using the terminologies in high-dimensional statistics and functional analysis, the mutual infor-
mation graph defined in section 2.2 corresponds to a compact Riemannian manifold M and the
Laplacian matrix L is a discrete analogous to the Laplace Beltrami operator L on M. Minimiz-
ing the spectral embedding objective tr(Y LY T ) directly corresponds to the following optimization
problem in function space:

min
||f ||L2(M)

∫
M

||∇f ||2dλ (5)

where f(x) : M → [0, 1] is the normalized signal defined on M. We particularly want to write out
the continuous form of spectral embedding so we can adapt it to non-stationary signal. To do so, we
assume the measure λ is absolutely continuous with respect to standard measure µ. By apply the
Radon-Nikodym derivative to equation 5, we get:∫

M
||∇f ||2dλ =

∫
M

||∇f ||2 dλ
dµ

dµ

where the quantitfy dλ
dµ is called the Radon-Nikodym, which is some form of denstiy function. Let

p(x) = dλ
dµ , we can rewrite the optimization problem as the following:

min
||f ||L2(M)

∫
M

||p(x) 1
2∇f(x)||2dµ (6)

The density function p(x) on the manifold is analogous to the density adjustment matrix in equa-
tion 1. Standard approaches in equation 5 assume that nodes are uniformly distributed on the man-
ifold, thereby treating p(x) as a constant and excluding it from the optimization process. However,
this assumption does not hold in our case involving non-stationary signals. Our work introduces a
variable density function p(x) for each signal, making it a pivotal component in building good rep-
resentations for non-stationary signal. This component is referred to as Density Adjusted Spectral
Clustering. Empirical evidence supporting this design is provided through visualization and ablation
studies in the experimental section.

A.2 SPECTRAL CLUSTERING ALGORITHM

Given a high dimensional dataset S ∈ Rn×m, Let Si be ith column of S, which represents the
ith dimension of the signal. We create probability mass functions P (Si) and P (Sj) and the joint
distribution P (Si, Sj) for Si and Sj using histogram. Let the number of bins be K. Then we
measure the mutual information between P (Si) and P (Sj) as:

I(Si;Sj) =

K∑
l=1

K∑
k=1

P (Si, Sj)[l, k] log2

(
P (Si, Sj)[l, k]

P (Si)[l]P (Sj)[k])

)

Let Aij = I(Si;Sj) be the affinity matrix, and let density adjustment matrix be P defined in 2.2.
Correlation is used instead of mutual information when dimension is really high, since compute
mutual information is expensive.p(i) be the density function defined in 4. We follow the steps from
[38] to perform spectral clustering with a modification to adjust the density:
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Table 4: Evaluation on foveated CIFAR-10 with varying hyperparameter for density function.
For each set of values of α and β, we perform density adjusted spectral clustering and run URLOST
with the corresponding cluster. The evaluation of each trial is provided in the table.

beta = 0 beta = 2

alpha = 0 82.74 % 84.24 %
alpha = 0.5 84.52 % 85.43 %
alpha = 1.0 83.83 % 81.62 %

1. Define D to be the diagonal matrix whose (i,i)-element is the sum of A’s i-th row, P be
the diagnol matrix where Pii = p(i). Construct the matrix L = P

1
2D− 1

2AD− 1
2P

1
2 .

2. Find x1, x2, · · · , xk, the k largest eigenvectors of L, and form the matrix X =
[x1, x2, · · · , xk] ∈ Rn×k by stacking the eigenvectors in columns.

3. Form the matrix Y from X by renormalizing each of X’s rows to have unit norms. (i.e.
Yij = Xij/(

∑
i X

2
ij)

1
2 )

4. Treating each row of Y as a point in Rk, cluster them into k clusters via K-means or other
algorithms.

Some other interpretation of spectral embedding allows one to design a specific clustering algorithm
in step 4. For example, [56] interprets the eigenvector problem in 6 as a relaxed continuous version
of K-way normalized cuts problem, where they only allow X to be binary, i.e. X ∈ {0, 1}N×K .
This is an NP-hard problem. Allowing X to take on real value relaxed this problem but created a
degeneracy solution. Given a solution X∗ and Z = D− 1

2X∗, for any orthonormal matrix R, RZ is
another solution to the optimization problem 6. Thus, [56] designed an algorithm to find the optimal
orthonormal matrix R that converts X∗ to discrete value in {0, 1}N×K . From our experiment, [56]
is more consistent than K-means and other clustering algorithms, so we stick to using it for our
model.

A.3 DATA SYNTHESIZE PROCESS

We followed the retina sampling approach described in [8] to achieve foveated imaging. Specifically,
each retina ganglion cell is represented using a Gaussian kernel. The kernel is parameterized by its
center, denoted as x⃗i, and its scalar variance, σ′2

i , i.e. N (x⃗i, σ
′2
i I), which is illustrated in Figure 5.A.

The response of each cell, denoted as G[i], is computed by the dot product between the pixel value
and the corresponding discrete Gaussian kernel. This can be formulated as:

G[i] =

N∑
n

W∑
m

K(x⃗i, σ
′
i)[n,m]I[n,m]

where N and W are dimensions of the image, and I represents the image pixels.

For foveated CIFAR-10, since the image is very low resolution, we first upsample it 3 times from
32× 32 to 96× 96, then use in total of 1038 Gaussian kernels to sample from the upsampled image.
The location of each kernel is illustrated in Figure 5.B. The radius of the kernel scales proportionally
to the eccentricity. Here, we use the distance from the kernel to the center to represent eccentricity.
The relationship between the radius of the kernel and eccentricity is shown in Figure 5.C. As men-
tioned in the main paper, in the natural retina, retinal ganglion cell density decreases linearly with
eccentricity, which makes the fovea much denser than the peripheral, unlike the simulated lattice we
created. The size of the kernel should scale linearly with respect to eccentricity as well. However,
for the low-resolution CIFAR-10 dataset, we reduce the simulated fovea’s density to prevent redun-
dant sampling. In this case, we pick the exponential scale for the relationship between the size of the
kernel and eccentricity so the kernel visually covers the whole visual field. We also implemented a
convolution version of the Gaussian sampling kernel to speed up data loading.
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Figure 5: Foveated retinal sampling (A) Illustration of a Guassian kernel shown in [8]. Diagram
of single kernel filter parameterized by a mean µ′ and variance σ′. (B) the location of each Gaussian
kernel is summarized as a point with 2D coordinate µ′. In total, the locations of 1038 Gaussian
kernels are plotted. (C) The relationship between eccentricity (distance of the kernel to the center)
and radius of the kernel is shown.

A.4 DENSITY ADJUSTED SPECTRAL CLUSTERING ON FOVEATED CIFAR10 DATASET

We provide further intuition and visualization on why density adjusted spectral clustering allows the
model to learn a better representation on the foveated CIFAR-10 dataset.

As shown in Figure 5, the kernel at the center is much smaller in size than the kernel in the peripheral.
This makes the kernel at the center more accurate but smaller, which means it summarizes less
information. Spectral clustering with constant density will make each cluster have a similar number
of elements in them. Since the kernel in the center is smaller, the cluster in the center will be
visually smaller, than the cluster in the peripheral. The effect is shown in Figure 6. Moreover, since
we’re upsampling an already low-resolution image (CIFAR-10 image), even though the kernel at the
center is more accurate, we’re not getting more information. There, to make sure each cluster has
similar information, the clusters in the center need to have more elements than the clusters in the
peripheral. In order to make the clusters at the center have more elements, we need to weight the
clusters in the center more with the density function. Since the sampling kernels at the center have
small eccentricity and are more correlated to their neighbor, increasing α and β will make sampling
kernels at the center have higher density, which makes the cluster at the center larger. This is why
URLOST with density adjusted spectral clustering performs better than URLOST with constant
density spectral clustering, which is shown in Table 4. Meanwhile, setting α and β too large will
also hurt the model’s performance because it creates clusters that are too unbalanced.

A.5 SELF-ORGANIZING LAYER LEARNS INVERSE PERMUTATION

For locally-permuted CIFAR-10, we divide each image into patches and locally permute all the
patches. The i-th image patch is denoted by x(i), and its permuted version, permuted by the permu-
tation matrix E(i), is expressed as E(i)x(i). We use linear layers to parameterize the self-organizing
layers. Let g(x,W (i)) = W (i)x denotes the ith element of the self-organizing layer. We’re provid-
ing the proof for the statement related to the visual evidence shown in Section 4.1

Statement: If the self-organizing layer effectively aligns the input sequence, then E(i)Tw(i) should
exhibit visual similarities.

Proof: we first need to formally define what it means for the self-organizing layer to effectively
align the input sequence. Let ek denote the kth natural basis (one-hot vector at position k), which
represents the pixel basis at location k. Permutation matrix E(i) will send kth pixel to some location
accordingly. Mathematically, if the projection layer effectively aligns the input sequence, it means
g(E(j)ek,W

(j)) = g(E(i)ek,W
(i)) for all i, j, k. We can further expand this property to get the
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Figure 6: Effect of density adjusted clustering. Eccentricity-based sampling lattice. The center of
the sampling lattice has more pixels which means higher resolution compared to the peripheral. (A)
Result of density adjusted spectral clustering (α = 0.5, β = 2). Clusters in the center have more
elements than clusters in the peripheral. But clusters look more visually similar in size than B. (B)
Result of uniform density spectral clustering (α = 0, β = 0). Each cluster has a similar number of
elements in them but the clusters in the center are much smaller than the clusters in the periphery.

following two equations:

g(E(i)ek,W
(i)) = W (i)E(i)ek

g(E(j)ek,W
(j)) = W (j)E(j)ek

for all i, j, k. Since the above equation holds for all ek, by linearity and the property of permutation
matrix, we have:

W (i)E(i) = W (j)E(j)

E(i)TW (i) = E(j)TW (j)

This implies E(i)Tw(i) should exhibit visual similarities for all i.

A.6 TRAINING AND EVALUATION DETAILS

β-VAE. β-VAE was trained for 1000 epochs and 300 epochs on the V1 neura l and TCGA gene
expression respectively. We use the Adam optimizer with a learning rate of 0.001 and a cosine
annealing learning rate scheduler. The encoder is composed of a 2-layer MLP with batch normal-
ization and LeakyReLU activation. Then two linear layers are applied to get the mean and standard
for reparameterization. The decoder also has a 2-layer MLP, symmetric to the encoder but using
standard ReLU activation and no batch normalization. We tried out different hyperparameters and
empirically found this setting gives the best performance.

MAE. MAE follows the official implementation from the original paper. For CIFAR10, we ran
our model for 10,000 epochs. We use Adam optimizer with learning rate 0.00015 and a cosine
annealing. To fit in our tasks, we use 8 layers encoder and 4 layer decoder with hidden dimension
192. The ViT backbone can take different patch sizes are we indicated them accordingly in Table 1.
ViT(Pixel) means treating each pixel as a patch, so essentially the patch size is 1. This is also used
for the real-world high-dimensional dataset since no concept of patch is defined in the signal space.
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For V1 neural recording and TCGA gene expression task, we use 4 layers encoder and 2 layer. We
use hidden dimension 1380 for 1000 epochs and hidden dimension 384 with 3000 epochs for V1
neural recording and TCGA dataset task. The hidden dimension and the number of epochs we used
for MAE is greater than β-VAE. However, when we use the same parameters on β-VAE, we did not
seem to find a performance gain. Training transformer usually require large number of data. For
example, the original transformer on vision is pretrained over 14M images.

URLOST MAE The parameter of URLOST MAE is the same as MAE except for the specific
hyper-parameter in the method section. For CIFAR10, we use K = 20, α = 0.5 and β = 2. We set
number of clusters to be 64. For V1 neural recording, we use K = 15, α = 0 and β = 1. We set
number of clusters to be 200. For TCGA dataset, we use K = 10, α = 0 and β = 1. We set number
of clusters to be 32.

A.7 VISUALIZING THE WEIGHT OF SELF-ORGANIZING

As explained in the previous section (Appendix A.5) and visualized in Figure 7, we can visualize
the weights of the learned self-organizing layer when trained on the locally-permuted CIFAR-10
dataset. If we apply the corresponding inverse permutation E(i)T to its learned filter W (i) at position
i, the pattern should show similarity across all position i. This is because the model is trying to
align all the input clusters. We have shown this is the case when the model converges to a good
representation. On the other hand, what if we visualize the weight E(i)TW (i) as training goes
on? If the model learns to align the clusters as it is trained for the mask prediction task, E(i)TW (i)

should become more and more consistent as training goes on. We show this visualization in Figure 7,
which confirms our hypothesis. As training goes on, the pattern E(i)TW (i) becomes more and more
visually similar, which implies the model learns to gradually learn to align the input clusters.
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Figure 7: Visualize the weight of the self-organizing layer after applying inverse permutation.
A snapshot of E(i)TW (i) is shown at different training epoch. The number of epochs is shown on
the top row. Each figure shows one column of the weight of the self-organizing layer, at different
positions, i.e. W (1)

:,k , where k is the column number and i is the position index. In total, 9 columns
are shown.
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