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ABSTRACT

Self-supervised learning (SSL) is gaining attention for its ability to learn effective
representations with large amounts of unlabeled data. Lightweight models can
be distilled from larger self-supervised pre-trained models using contrastive and
consistency constraints, but the different sizes of the projection heads make it
challenging for students to accurately mimic the teacher’s embedding. We propose
RETRO, which reuses the teacher’s projection head for students, and our experi-
mental results demonstrate significant improvements over the state-of-the-art on
all lightweight models. For instance, when training EfficientNet-B0O using ResNet-
50/101/152 as teachers, our approach improves the linear result on ImageNet to
66.9%, 69.3%, and 69.8%, respectively, with significantly fewer parameters.

1 INTRODUCTION

Deep learning has achieved remarkable success in various visual tasks, such as image classification,
object detection, and semantic segmentation, thanks to the availability of large-scale annotated
datasets. However, acquiring labeled data is time-consuming and expensive, making it crucial
to explore better ways to utilize unlabeled data. Self-supervised learning (SSL) has emerged as
an effective method to learn useful representations on unlabeled data, resulting in an outstanding
performance on downstream tasks (Gidaris et al., [2018}; [Noroozi & Favarol [2016; [Doersch et al.,
20155 [Pathak et al., 20165 |Chen et al., 2020atb; |Grill et al., [2020; He et al., [2020).

Despite its effectiveness, most SSL methods require large networks, and the performance deteriorates
when the model size is reduced. To address this issue, [Fang et al.| (2021) proposed SEED, a self-
supervised representation distillation method that distills the knowledge of larger pre-trained models
into lightweight models via self-supervised learning. Similarly, CompRess (Koohpayegani et al.|
2020) mimics the similarity score distribution between a teacher and a student over a dynamically
maintained queue. Gao et al.[(2022) suggests incorporating consistency constraints between teacher
and student embeddings to alleviate the Distilling Bottleneck problem via DisCo. BINGO (Xu et al.,
2021)) aims to transfer the relationship learned by the teacher to the student by leveraging a set of
similar samples constructed by the teacher and grouped within a bag.

Despite achieving state-of-the-art results across multiple tasks with high performance, some concerns
remain. First,|Gao et al.|(2022) discovered that expanding the dimension of the hidden layer in the
MLP (projection head) could alleviate the Distilling Bottleneck problem. However, this approach is
trivial since determining the size of the dimension and how large it should be remains unanswered.
Second, because the student is lightweight with limited capability, it is challenging to accurately
mimic the teacher from the encoder to the projection head. For example, in the DisCo study (Gao
et al.,[2022), they expanded the dimension to 2048, which is the projection head dimension of ResNet-
50/101/152. Consequently, this approach is equivalent to increasing the capability of mimicking the
teacher, resulting in the improved performance. However, when using ResNet-50x 2 with a dimension
of 8192 as a teacher, the performance on MobileNet-v3-Large and EfficientNet-B1 drops significantly
and is inferior to the previous method (Fang et al.,[2021). Moreover, the feature distributions of the
teacher and student models are statistically different and cannot be directly compared in practice,
even if their dimensions are the same. Therefore, the optimal dimension for the projection head and
how to efficiently distill the teacher embedding remain unanswered questions.
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In this study, we propose a novel approach
for improving the performance of distilling
lightweight models through SSL. Specifically,
we suggest reusing the pre-trained teacher pro-
jection head for students, instead of mimicking it
during training. This is based on the hypothesis
that the most valuable knowledge is contained
in the projection head, and it should be retained
during distillation. Our proposed “teacher pro-
jection head reusing strategy” involves replacing
the student projection head with the pre-trained
one from a teacher, which is a large dimension
MLP layer that has been optimized. This en- & & & & &
ables direct reuse of the projection head, without <« “ N
the need for heuristic selection of the dimension
size via trial and error. Additionally, a “dimen-
sion adapter” is inserted between the student
encoder and the teacher projection head to align
the dimension.
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Figure 1: ImageNet top-1 linear evaluation ac-
curacy on different network architectures. Our
method significantly exceeds the result of using
MoCo-V2 directly and surpasses the state-of-the-
Our approach simplifies the training objective ~art DisCo by a large margin. Particularly, the result
from mlmlcklng the representation and the em- of EfficientNet-BO is quite close to the teacher
bedding to aligning the representation with the ResNet-50, while the number of parameters of
Optima] embedding. Our experiments show that EfficientNet-BO is only 16.3% of ResNet-50. The
the proposed meth()d’ named RETRO’ ()utper_ improvement brought by RETRO is compared to
forms the existing DisCo method by a signifi- the MoCo-V2 baseline.

cant margin when using the same architecture on

various downstream tasks. Moreover, RETRO

achieves state-of-the-art SSL results on all lightweight models, including ResNet-18/34, EfficientNet-
BO/B1, and MobileNetV3. Notably, the linear evaluation results of EfficientNet-BO on ImageNet
are comparable to ResNet-50/ResNet-101, despite having only a fraction of the parameters. On the
COCO and PASCAL VOC datasets, RETRO also achieves more than 3% mAP improvement across
different pre-trained models.

2 RELATED WORK

Self-supervised learning and knowledge distillation have emerged as crucial research areas in machine
learning, attracting significant attention in recent years. In this section, we present a review of some
of the key works in these fields.

2.1 SELF-SUPERVISED LEARNING

Self-supervised learning is an essential branch of unsupervised learning that automatically generates
supervisory signals from unlabeled data. One of the earliest and most effective techniques used in
self-supervised learning is the autoencoder, which compresses the input data and reconstructs it.
Contrastive learning is another popular self-supervised learning method that enables the model to
differentiate between similar and dissimilar pairs of examples.

Recent studies have demonstrated the efficacy of contrastive-based techniques in self-supervised
representation learning, where different perspectives of the same input are encouraged to be closer in
feature space (Chen et al.| 2020aib; (Chen & Hel [2021}; |Chen et al., 2020c; |Grill et al.| |2020; |He et al.|
2020; \Henaff}, 2020; Wang et al., [2021ajb; Zbontar et al., 2021). For instance, SImCLR (Chen et al.,
2020afb) has proved that using strong data augmentation, larger batch sizes of negative samples, and
including a projection head (MLP) after global average pooling can boost self-supervised learning.
However, the performance of SimCLR is dependent on very large batch sizes and may not be feasible
in real-world scenarios.

MoCo (Chen et al., [2020c; |He et al.| [2020), on the other hand, uses a memory bank to maintain
consistent representations of negative samples. It considers contrastive learning as a look-up dictio-
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nary, enabling it to achieve superior performance without large batch sizes, making it more practical.
BYOL (Grill et al., [2020) introduces a predictor to one branch of the network to prevent trivial
solutions and break the symmetry. DINO (Caron et al., 2021) applies contrastive learning to vision
transformers with self-distillation intuition.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a powerful technique used for transferring knowledge from a large, complex
model (known as the teacher) to a smaller, simpler model (known as the student) to improve its
performance.

The idea of knowledge distillation was first proposed by |Hinton et al.| (2015), which transfers
knowledge from a large teacher to a smaller student by minimizing the Kulback-Leibler (KL)
divergence between the outputs of the two models. [Zagoruyko & Komodakis| (2016) introduced
Attention Transfer (AT) to transfer the spatial attention of the teacher to the student by minimizing
the mean squared error (MSE) between the feature maps of the two models. This method guides the
student to focus on relevant regions of the input image, improving its performance on small datasets.

FitNets (Romero et al.,[2014) is another method of knowledge distillation that transfers knowledge
from the intermediate layers of a deep and thin teacher to a deeper but thinner student. The intermedi-
ate layers learned by the teacher are treated as hints, and the student is trained to mimic them using
mean squared error loss. Relation Knowledge Distillation (RKD) (Park et al.l 2019) is a method that
transfers the mutual relationship between the samples in a batch from the teacher to the student. RKD
uses distance-wise and angle-wise distillation loss to transfer the relationship between the samples to
the student.

2.3 SELF-SUPERVISED LEARNING AND KNOWLEDGE DISTILLATION
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Figure 2: Comparison with existing self-supervised distillers. z is the input image. The orange
arrow indicates the knowledge transfer direction. Both [2a] CompRess (Koohpayegani et al.l [2020)
and 2b| SEED (Fang et al.,[2021) transfer the knowledge of the similarity between a sample and a
negative memory bank. DisCo (Gao et al.| |2022) constrains the last embedding of the student
to be consistent with that of the teacher. [2d| Our RETRO improves DisCo by reusing the teacher
projection head for the student, which has a higher capability to generate generalized embedding.
’Adt.’ indicates the adapter layer.

In recent years, there has been a growing interest in combining knowledge distillation and self-
supervised learning to improve the learning process. Some recent works, such as CRD (Tian et al.,
2019) and SSKD (Xu et al., 2020), have used self-supervision as an auxiliary task to enhance
knowledge distillation in fully supervised settings by transferring relationships between different
modalities or mimicking transformed data and self-supervision tasks.

On the other hand, CompRess (Koohpayegani et al., 2020) and SEED (Fang et al., 2021)) have
focused on improving self-supervised visual representation learning on small models by incorporating
knowledge distillation. They leverage the memory bank of MoCo (He et al.| |2020) to maintain the
consistency of the student’s distribution with that of the teacher. Meanwhile, DisCo (Gao et al., [2022)
proposes to align the final embedding of the lightweight student with that of the teacher, exploiting the
student’s learning ability to maximize knowledge. They also increase the dimension of the student’s
projection head to better mimic the teacher’s embedding.
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However, the questions of which knowledge is essential for the student and how to efficiently distill it
remain unanswered. Moreover, previous approaches focused only on making the student mimic the
teacher instead of exploiting the student’s learning ability. Our proposed method aims to enhance the
self-supervised representation learning ability of lightweight models by aligning the student encoder
with the teacher’s projection head instead of merely mimicking the teacher. Figure 2] illustrates the
differences between our proposed method and CompRess, SEED, and DisCo.

3 METHOD

In this section, we will provide a detailed description of our proposed method, RETRO. We will start
by reviewing the preliminary concepts of contrastive-learning-based SSL. Next, we will discuss the
overall framework of RETRO and explain how it works. Finally, we will introduce the objective of
RETRO and describe the process of updating its parameters.

3.1 PRELIMINARY ON CONTRASTIVE LEARNING BASED SSL
3.1.1 CONTRASTIVE LEARNING BASED SSL

In contrastive-learning-based SSL, the goal is to predict whether a pair of instances belong to the same
class or different classes. The two instances are obtained by applying different data augmentation
techniques to the same input image z, resulting in two augmented views v and v’ of the same
instance. The objective is to make the two views similar while views of different instances should be
dissimilar. Each view is then passed through two encoders f (-) and f; () to obtain the corresponding
representations zg and z;.

To map the high-dimensional representations to a lower-dimensional embedding, a projection head
g (+), which is a non-linear MLP, is used. Specifically, g takes the representation z as input and maps
it to an embedding E as E = g (z) = g o f (x). These embeddings are then used to estimate the
similarity in contrastive learning. The projection head is crucial to the success of self-supervised
learning, as demonstrated in prior works such as MoCo (He et al.} 2020) and SimCLR (Chen et al.,
2020a)). The encoder can be any network architecture, such as ResNet or EfficientNet.

The projection head consists of two linear layers followed by a non-linear activation function such as
ReLU. The output dimension of the projection head is typically set to a smaller value, such as 128, to
obtain a low-dimensional embedding.

3.1.2 DisCo

In DisCo, the input « is transformed into two views v and v’ using two different augmentation
strategies in each iteration. The views are fed into both the student encoder f and the teacher encoder
f# to create four representations z, 2%, z¢, and z;. These representations are then projected using two
different projection heads g, and g; to produce low-dimensional embeddings E, E., E}, and E},
respectively. The same process is also applied with the mean student, resulting in representations z,,,
2z and embeddings E,,, E!,. The embeddings are then used to compute the contrastive learning
loss using InfoNCE loss (Oord et al.,|[2018]), similar to MoCo (He et al., [2020), as follows:

exp (q-k*/7)
Sli= OKexp(q~ki/7')7

where q is the embedding E; of the student on view v, k is the embedding !, of the mean student
on view v’, 7 is the temperature, and K is the size of the memory bank. Additionally, the embeddings
are used to compute a consistency loss using cosine similarity, which is represented using mean
squared error (MSE) as follows:

Leon = —log ey

Las = |Es — E4||3 + | E, — Ef|I3 2

3.2 RETRO

The overall framework of RETRO is illustrated in Figure[3] RETRO comprises a lightweight student
s(-), a mean student m (-), and a pre-trained frozen teacher ¢ (-), which is similar to the DisCo
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framework (Gao et al.| 2022). However, unlike DisCo, we propose that the pre-trained teacher
projection head can be used directly for the students since it contains the most valuable knowledge.
Therefore, the objective is to train the student encoder to align the representation with the teacher
projection head, instead of learning to mimic the teacher’s behavior. In addition, we leverage the
power of the multi-view strategy by inputting both views into the mean student and enforcing the
similarity constraint on pairs of embeddings between the student and the mean student.
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Figure 3: The pipeline of the proposed RETRO technique. Two different data augmentation techniques
first transform a single image into two views. A self-supervised pre-trained teacher is added in addition
to the original contrastive SSL component, and the final embeddings generated by the learnable
student and the frozen teacher must be consistent for each view. The contrastive is conducted with
both views, and the projection head is frozen and reused in the student model.

To achieve this, we replace the student projection head with the teacher’s projection head g, ensuring
the consistency of all projection heads. However, since the input dimension of the student projection
head is smaller than that of the teacher, we place an adapter a (-) between the encoder and projection
head to align the dimension. This process can be formulated as Es = go a (z5), E, = go a(z)),
Ei=g(z), B, =g(%), Emp =g 0d (2m),and E], = ¢’ 0ad’ (2],,), where &’ (-) and ¢’ (-) are the
mean adapter and mean projection head, respectively. These embeddings are then used to compute
the contrastive loss and consistency loss.

3.3 LOSS FUNCTION AND PARAMETER UPDATE PROCESS

We follow BYOL (Grill et al.,2020) to symmetrize the contrastive loss in RETRO as follows:

1 exp (q : k/+/7) 1 exp (q' 'k+/T)
Leon = 5 - IOg K , + 5 - IOg K ; (€)]
Yicoexp(q-k'i/7) >imoexp(d - ki/7)

Here, ¢ and ¢’ are the embeddings from the student, while k and &’ are the embeddings from the
mean student. We use two different memory banks for the two different views v and v, respectively.

The overall loss function of RETRO is formulated as follows:

L= Lgs + '}/Econ 4
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where L is the consistency loss, and L, is the contrastive loss of the conventional SSL method.
« is a hyperparameter used to control the weight of the contrastive loss, which is typically set to 1.
The parameters of the student encoder are optimized using the objective from Equation ] while the
parameters of the entire mean student are updated using the exponential moving average strategy as
follows:

O < mby + (1 —m) b, (5)

Here, m € [0, 1) is the momentum coefficient, which is typically set to 0.999, and @ represents the
model parameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We first pre-train the self-supervised teacher models on the ImageNet dataset (Russakovsky et al.}
2015)), which contains 1.3 million training images and 50, 000 validation images with 1,000 cat-
egories, using the MoCo-V2 (He et al., |[2020) framework. We use ResNet as the backbone for
the teacher models with different widths/depths, such as ResNet-50 (22.4M), ResNet-101 (40.5M),
ResNet-152 (55.4M), and ResNet-50x2 (94M). We pre-train ResNet-50/101 using the MoCo-V2
framework for 200 epochs, ResNet-152 for 800 epochs, while ResNet-50x2 is pre-trained using the
SwAV (Caron et al., 2020) method for 400 epochs.

We evaluate our RETRO method on five lightweight networks as students, including EfficientNet-BO
(4.0M), EfficientNet-B1 (6.4M), MobileNet-v3-Large (4.2M), ResNet-18 (10.7M), and ResNet-34
(20.4M). We use the same learning rate and optimizer as MoCo-V2 and train all student models for
200 epochs. During distillation, the teacher’s and student’s projection heads are frozen for RETRO,
while SEED, DisCo, and BINGO only freeze the teacher. As a result, RETRO has fewer trainable
parameters and simpler training objectives. Note that SEED trains the models using a SWAV pre-
trained teacher for 400 epochs, and BINGO uses CutMix regularization (Yun et al., | 2019) and more
positive samples (5x) during training, resulting in a higher benchmark score. Additionally, BINGO
is not an end-to-end framework.

We later fine-tune the self-supervised distillation models for linear evaluation on ImageNet for 100
epochs. We set the initial learning rate to 3 for EfficientNet-B0/B1 and MobileNet-v3-Large, and 30
for ResNet-18/34. The learning rate is scheduled to decrease by a factor of 10 at 60 and 80 epochs,
and we use SGD as the optimizer. We follow the other hyperparameters strictly as in MoCo-V2 (He
et al.l [2020).

4.2 LINEAR EVALUATION

The results presented in Table [I| demonstrate that students distilled by RETRO outperform their
counterparts pre-trained by MoCo-V2 (Baseline), and also outperform the prior state-of-the-art DisCo
by a significant margin. However, we have not included CompRess in our comparison since it uses a
teacher that was trained for 600 epochs longer and distills for 400 epochs longer than SEED, DisCo,
and RETRO. Therefore, it would be unfair to compare RETRO to CompRess in this context.

The results in Tableﬂ]demonstrate that RETRO outperforms prior methods SEED, DisCo, and BINGO
across all benchmarked models. Notably, when using ResNet-50 as the teacher, RETRO achieves
state-of-the-art top-1 accuracy on all student models. Moreover, using ResNet-152 instead of ResNet-
50 as the teacher leads to a significant improvement in the performance of ResNet-34, from 56.8%
to 69.4%. It is worth noting that when using RETRO with ResNet-50/101 as the teacher, the linear
evaluation result of EfficientNet-BO is very close to that of the teacher, despite EfficientNet-B0 having
only 9.4%/16.3% of the parameters of ResNet-50/101.

4.3 SEMI-SUPERVISED LINEAR EVALUATION

We also evaluate our method in semi-supervised scenarios, following previous methodologies. We
use 1% and 10% sampled subsets of the ImageNet training data (i.e., 13 and 128 samples per class,
respectively) to fine-tune the student models. As shown in Table[2] our RETRO approach consistently
outperforms the baseline under any quantity of labeled data. Notably, our method achieves these
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Table 1: ImageNet Test Accuracy (%) using Linear Classification on Different Student Architectures.
In the table, ¢ indicates that the teacher and students are pre-trained with MoCo-V2, while T indicates
that the teacher is pre-trained by SwAV. SEED distilled for 800 epochs using R-50x2 as the teacher,
while DisCo, BINGO, and RETRO distilled for 200 epochs. "T" denotes the teacher, and "S" denotes
the student. The subscript in green represents the improvement compared to the MoCo-V2 baseline.

Method \ y | Efb0 | Efibl | Mobv3 | R-18 | R-34
| T | m T | ™1 T | T4 T5 | T1 T5 | T1 T5
Supervised | 770 933 | 7192 %44 | 752 | 721 | 750
Self-supervised ‘

MoCo-V2 (Baseline)(
SSL Distillation

SEED (Fang et al.|[2021 R-50 (67.4)0 61.3 82.7 61.4 83.1 55.2 80.3 57.6 81.8 58.5 82.6
DisCo (Gao et al. R-50 (67.4)0 66.5 87.6 66.6 87.5 64.4 86.2 60.6 83.7 62.5 85.4
BINGO (Xu et al. R-50 (67.4)0 - - - - - - 61.4 84.3 63.5 85.7
(20.11) (16.01 | (18.77) (14671 | (30.01) (2511 | (10.71) (7.8 731 GTDH
SEED ( 2021 R-101 (70.3) 63.0 83.8 63.4 84.6 59.9 83.5 58.9 82.5 61.6 84.9

{ED (Fang et al.|2021
DisCo (Gao et al.[2022) | R-101 (69.)0 | 689 889 | 690 8.1 | 657 867 | 623 8.1 | 644 865

2251 A7671) | 2151 d6.11) | B3 (2651 | (1267 9.0 931 (6.871)

SEED (Fang etal|2021) | R-152(74.2) | 653 8.0 | 673 869 | 614 846 | 5905 833 | 627 858
DisCo (Gao et al.||2022) | R-152(74.1)0 | 678 870 | 731 912 | 637 849 | 655 867 | 681 886
BINGO (Xu et al.|[2021) | R-152 (74.1)0 - - - - - - 659 871 | 691 889

23.01 (18.01

50
1
®
o0

SEED (Fang et al.|2021) | R-50x2 (77.3)} 67.6 87.4 68.0 87.6 68.2 88.2 63.0 84.9 65.7 86.8
DisCo (Gao et al. R-50x2 (77.3)} 69.1 88.9 64.0 84.6 58.9 81.4 65.2 86.8 67.6 88.6
BINGO (Xu et al. R-50x2 (77.3)} - = - = = - 65.5 87.0 68.9 89.0

2347 (A821) | 254 A78D | 3391 @7.IPH | A37T (951 | 1211 B671)

results while strictly following the settings from SEED 2021) and DisCo (Gao et al.|
[2022), whereas BINGO uses a higher learning rate (10) for the classifier layer.

Moreover, our experiments demonstrate that RETRO is stable under varying percentages of anno-
tations, indicating that students always benefit from being distilled by larger teacher models. The
results also suggest that having more labeled data can help improve the final performance of the
student models.

Table 2: Semi-supervised learning by fine-tuning 1% and 10% images on ImageNet using ResNet-18.

Method T 1% labels 10% labels
MoCo-V2 (Baseline) - 30.9 45.8
SEED(Fang et al. R-50 (67.4) 39.1 50.2
DlSCOGaO et al. R-50 (67.4) 39.2 50.1
R-50 (67.4) 42.8 57.5

SEED(Fang et al. 2021} R-101 (70.3) 414 54.8
DisCo(Gao et al.[[2022 R-101 (69.1) 47.8 54.7
SEED(Fang et al. R-152 (74.1) 44.3 54.8
DISCOGaO et al. R-152 (74.1) 47.1 54.7

R-152 (74.1)

BINGO(Xu etal|[2021) R-50x2(77.3) 482 60.2

4.4 TRANSFER TO CIFAR-10/CIFAR-100

We conducted further evaluations to assess the generalization of representations obtained by RETRO
on CIFAR-10 and CIFAR-100 datasets, using ResNet-18/EfficientNet-BO as a student and ResNet-
50/ResNet-101/ResNet-152 as a teacher. The models were fine-tuned for 100 epochs, with an initial
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learning rate of 3 and the learning rate scheduler decreasing by a factor of 10 at 60 and 80 epochs.
All images were resized to 224 x 224, following the methodology from (Fang et al., 2021} since
the original image resolution of the CIFAR dataset is 32 x 32. The results presented in Figure 4]
show that RETRO outperforms prior methods SEED and DisCo across the datasets. Furthermore,
the improvement brought by RETRO becomes more apparent as the quality of the teacher models
improves.
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Figure 4: Top-1 accuracy for transfer learning on CIFAR-10 (#a] [4b) and CIFAR-100 dataset.

4.5 TRANSFER TO DETECTION AND SEGMENTATION

For segmentation and downstream detection tasks, we adopt the fine-tuning methodology used in
SEED (Fang et al., 2021} and DisCo (Gao et al.,|2022), where all parameters are fine-tuned. For the
detection task on VOC (Everingham et al.| 2015), the model is initialized with an initial learning
rate of 0.1, with 200 warm-up iterations, and the learning rate is decreased by a factor of 10 at 18k
and 22.2k steps. The detector is trained for 48k steps, with a total batch size of 32. During training,
the input is randomly scaled from 400 to 800, and set to 800 during inference. For detection and
segmentation on COCO (Lin et al., 2014), the model is trained for 180k iterations with an initial
learning rate of 0.11. During training, the image scale is randomly sampled from 600 to 800.

Table 3: Object detection and instance segmentation results on VOC-07 test and COCO val2017
using ResNet-34 as the backbone. The subscript in green represents the improvement compared to
the MoCo-V2 baseline.

| | | Object Detection | Instance Segmentation
S | T | Method \ voc \ €oCo \ €oCo

| | AP AP AP | AP® AP APH | AP™ APy argh

| x| MoCo-V2 | 536 791 587 | 381 568 407 | 330 532 353

SEED (Fang et al.||2021) 53.7 79.4 59.2 38.4 57.0 41.0 333 53.2 353

R-50 DisCo (Gao et al.|2022) 56.5 80.6 62.5 40.0 59.1 43.4 34.9 56.3 37.1

RETRO 57.2 814 63.3 41.5 60.2 45.3 359 57.8 38.8

R34 SEED (Fang et al.||2021) 54.1 79.8 59.1 38.5 57.3 41.4 33.6 54.1 35.6

i R-101 DisCo (Gao et al.|[2022) 56.1 80.3 61.8 40.0 59.1 43.2 34.7 55.9 374

RETRO 57.3 81.8 63.5 41.5 60.3 454 36.0 57.8 38.9

SEED (Fang et al.||2021) 54.4 80.1 59.9 38.4 57.0 41.0 333 53.7 353

R-152 DisCo (Gao et al.|[2022) 56.6 80.8 63.4 39.4 58.7 42.7 34.4 55.4 36.7

BINGO (Xu et al.;2021) - - - 39.9 59.4 435 35.7 56.5 38.2

RETRO 57.5 81.9 64.1 414 60.6 454 36.1 57.3 39.2

We also performed tests on detection and segmentation tasks for generalization analysis. Faster
R-CNN (Ren et al., 2015) based on C4 is used for object detection for VOC and R-CNN Mask
(He et al.,|2017)) is used for object detection and version segmentation for COCO. The results are
displayed in Table[3] In object detection, our method can yield clear improvements for both VOC and
COCO datasets. Also, as claimed by SEED (Fang et al.| 2021), the COCO training dataset has 118k
images, while VOC has only 16.5k training images, so the improvement of COCO is relatively small
compared to VOC. Therefore, the gain from initialization weight is relatively small. RETRO also has
an advantage when it comes to instance segmentation tasks.
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4.6 ABLATION STUDY

Impact of each contribution: In this section, we report the effectiveness of each of our contribu-
tions. @ Reusing teacher projection head and @ symmetric contrastive learning loss. We verify this
via students that are trained with ResNet-50 as a teacher.

Table 4: ImageNet top-1 accuracy (%) using linear classification on different strategies.

Student
Model Eff-b0 | Eff-bl | Mob-v3 | R-18 | R-34
Setting
MoCo-V2 (Baseline) | 468 | 484 | 362 | 522 | 56.8
DisCo (Gao et al.|[2022) 66.5 66.6 64.4 60.6 | 62.5
+@ 66.7 66.9 65.8 62.5 | 63.4
+ @ (RETRO) 66.9 67.1 66.2 629 | 64.1

Computational Complexity: As illustrated in Figure[3] the computational cost of RETRO is higher
compared to SEED (Fang et al.| 2021} and DisCo (Gao et al., 2022} due to the additional forward
propagation required for the mean student. The total number of forward propagation is 6, which is
three times higher than SEED and MoCo-V2. However, these additional forward propagations are
not used during inference, so there is no overhead at inference time. The results in Table [5|show that
RETRO has a lower number of learnable parameters than DisCo. Therefore, the run-time overhead
of RETRO is small and negligible compared to DisCo and BINGO. It should be noted that BINGO
requires a KNN run to create a bag of positive samples, while RETRO is an end-to-end approach.

Table 5: Comparison for the number of learnable parameters between DisCo and RETRO.

Method | Eff-b0 | Eff-bl | Mob-v3 | R-18 | R-34

DisCo (Gao et al.|[2022) 6.57TM 8.96M 6.76M 11.91M 21.55M

RETRO 6.32M 8.71M 6.51M 11.66M 21.30M
Comparison with other Distillation: For further verify-

ing the strengths of RETRO, we conducted the comparison  Typle 6: Top-1 linear classification accu-

against several different distillation strategies. We include
feature-based distillation (KD) and relation-based distil-
lation (RKD), following DisCo (Gao et al.l [2022) and
BINGO (Xu et al.l, 2021). As shown in Table @ RETRO
shows superior performance compared with other distilla-
tion methods and surpasses them by a large margin.

5 CONCLUSION

In this paper, we introduce Reusing Teacher Projec-
tion head strategy (RETRO), a novel approach for effi-
ciently distilling self-supervised pre-trained teachers on
lightweight models. Additionally, we impose symmetry
contrastive learning to improve the representation between
the student and mean student model. Despite its simplicity,
our method outperforms prior methods by a large margin,
demonstrating the importance of the projection head in
distillation on lightweight models with fewer learnable

racy on ImageNet utilizing various distil-
lation techniques on the ResNet-18 stu-
dent model (ResNet-50 is used as teacher
model).

Method Top-1
MoCo-V2 (Baseline) (He et al.|2020)  52.2
MoCo-V2 + KD (Fang et al.|[2021) 553
MoCo-V2 + RKD (Park et al.[[2019) 61.6
DisCo + KD (Gao et al.|[2022) 60.6
DisCo + RKD (Gao et al.|[2022) 60.6
BINGO (Xu et al.[[2021) 61.4
RETRO 62.9

parameters. RETRO does not introduce any overhead during the inference phase. Our experiments
show its superior performance across a range of architectures and tasks.
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