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ABSTRACT

We introduce FragFM, a novel fragment-based discrete flow matching framework
for molecular graph generation. FragFM generates molecules at the fragment
level, leveraging a coarse-to-fine autoencoding mechanism to reconstruct atom-
level details. This approach reduces computational complexity while maintaining
high chemical validity, enabling more efficient and scalable molecular generation.
We benchmark FragFM against state-of-the-art diffusion- and flow-based mod-
els on standard molecular generation benchmarks and natural product datasets,
demonstrating superior performance in validity, property control, and sampling
efficiency. Notably, FragFM achieves over 99% validity with significantly fewer
sampling steps, improving scalability while preserving molecular diversity. These
results highlight the potential of fragment-based generative modeling for large-
scale, property-aware molecular design, paving the way for more efficient explo-
ration of chemical space.

1 INTRODUCTION

Deep generative models, such as diffusion and flow matching, have demonstrated remarkable suc-
cess across domains like images (Nichol et al., 2021; Rombach et al., 2022; Ho et al., 2020), text (Li
et al., 2022), and videos (Hu & Xu, 2023; Ho et al., 2022). Recently, their application to molecular
graph generation has gained attention, where they aim to generate chemically valid molecules by
leveraging the structural properties of molecular graphs (Jo et al., 2022; Vignac et al., 2022; Qin
et al., 2024).

However, existing atom-based generative models face scalability challenges, particularly in gener-
ating large and complex molecules. The quadratic growth of edges as graph size increases results
in computational inefficiencies. At the same time, the inherent sparsity of chemical bonds makes
accurate edge prediction more complex, often leading to unrealistic molecular structures or invalid
connectivity constraints (Qin et al., 2023; Chen et al., 2023). Additionally, graph neural networks
(GNNs) struggle to capture topological features such as rings and loops, leading to deviations from
chemically valid structures. While various methods incorporate auxiliary features (e.g., spectral,
ring, and valency information) to mitigate these issues, they do not fully resolve the sparsity and
scalability bottlenecks (Vignac et al., 2022).

Fragment-based molecular generation has been explored as an alternative approach, inspired by its
long-standing role in medicinal chemistry (Hajduk & Greer, 2007; Joseph-McCarthy et al., 2014;
Kirsch et al., 2019). Instead of generating molecules atom by atom, fragment-based methods con-
struct molecules using functional groups, ring systems, or chemically meaningful substructures,
reducing complexity while preserving structural validity. This approach leverages established do-
main knowledge and significantly improves scalability by representing molecules as coarse-grained
graphs. Within molecular generative frameworks, fragment-based methods enable more efficient ex-
ploration of the chemical space while maintaining structural coherence, offering better control over
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molecular properties than atom-based approaches (Jin et al., 2018; Qiang et al., 2023; Seo et al.,
2023; Hetzel et al., 2023).

Recent studies (Levy & Rector-Brooks, 2023; Chen et al., 2024) utilizing diffusion models have
demonstrated that fragment-level representations improve scalability and property control. However,
many of these approaches rely on predefined fragment libraries or non-chemically driven fragmen-
tation, which can constrain the accessible chemical space. Expanding the fragment library could
mitigate this limitation, but it introduces computational overhead and modeling challenges in han-
dling diverse fragment types. To address these challenges, we introduce FragFM, which is the first
fragment-based discrete flow matching framework for molecular graph generation. Rather than be-
ing restricted to fixed fragment libraries, FragFM employs a sub-sampling strategy and GNN-based
fragment embeddings, enabling generalization beyond predefined fragment sets while maintaining
computational efficiency.

Through extensive benchmarking on MOSES and GuacaMol (Polykovskiy et al., 2020; Brown et al.,
2019), we demonstrate that FragFM outperforms state-of-the-art diffusion and flow-based models in
validity, property-based evaluation, and Fréchet ChemNet Distance (FCD) while requiring signifi-
cantly fewer denoising steps. To further assess both scalability and the ability to capture high-level
molecular semantics (e.g., biological relevance), we introduce a natural product benchmark based
on the COCONUT dataset (Sorokina et al., 2021; Chandrasekhar et al., 2025), which contains large
and structurally intricate molecules that present a demanding testbed for fragment-based genera-
tive modeling. Our findings suggest that integrating fragment-level representations into generative
frameworks provides a scalable and interpretable solution for molecular design, paving the way for
advancements in drug discovery, materials science, and functional molecular engineering.

2 FRAGFM FRAMEWORK

We propose FragFM, a novel molecular generative framework that utilizes discrete flow matching
(DFM) at the fragment level graph. In this approach, fragments and their connections are represented
as nodes and edges respectively. This enables a discrete flow matching procedure on the resulting
fragment-level graph. Because a single fragments arrangement can correspond to multiple molecular
structures depending on how fragments junctions are permuted, we bridge fragment- and atom-
level representations via a KL-regularized autoencoder that reconstructs the atom-level graph from
its fragment-level graph with a latent variable. The learned latent variable contains the missing
information during the fragmentation procedure, and it is generated through the flow matching model
in conjunction with the fragment-level graph.

2.1 FRAGMENT GRAPH NOTATION

We represent a molecule at the atom level as a graph G = (V,E), where V is the set of atoms, and E
represents chemical bonds between them. Each node vk ∈ V corresponds to a distinct atom, while
an edge ekl ∈ E denotes a bond (including non-bond interactions) between atoms vk and vl. At the
fragment level, we define a coarse-grained representation of the molecule as a graph G = (X , E).
Here, xi ∈ F corresponds to a fragment, while each edge εij ∈ E corresponds to the connectivity of
the fragments. Each fragment is interpreted as an atom-level graph. Specifically, {xi}i = {(Vi, Ei)}i
are disjoint sub-graphs of G = (V,E), where Vi ⊆ V and Ei ⊆ E, with Vi ∩ Vj = ∅ for different
fragment indices i, j. The edges in the fragment-level graph E are induced from E, meaning that two
fragments Fi, Fj ∈ X are connected if at least one bond exists between their corresponding atoms,
i.e.,

εij ∈ E if ∃ ekl ∈ E such that vk ∈ Vi, vl ∈ Vj . (1)

2.2 MOLECULAR GRAPH COMPRESSION BY COARSE-TO-FINE AUTOENCODER

Recent advances in hierarchical generative models (Razavi et al., 2019; Rombach et al., 2022; Qiang
et al., 2023) have demonstrated the effectiveness of learning structured latent representations through
autoencoding, enabling efficient perceptual compression and reconstruction of complex data distri-
butions. Motivated by this, we extend discrete generative modeling to molecular graphs by incor-
porating a coarse-to-fine autoencoding framework, where a fragment-level graph serves as a com-
pressed representation of an atom-level graph. The fragment-level graph provides a higher-level
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Figure 1: Overview of the coarse-to-fine autoencoder architecture.

abstraction of molecular structures. However, it inherently introduces ambiguity in reconstructing
atomic connectivity due to multiple valid atom-level configurations corresponding to the same frag-
ment arrangement. To resolve this, we introduce a coarse-to-fine autoencoder, where the encoder
maps the atom-level graph to a fragment-level graph G along with a continuous latent variable z,
and the decoder reconstructs the atom-level graph using both the fragment representation and the
latent space. In practice, the decoder only predicts the atom-level connectivity of connected frag-
ments, and the results are discretized by the Blossom algorithm (Edmonds, 1965). The details about
coarse-to-fine conversion is described in Appendices B.1 and B.4

2.3 DISCRETE FLOW MATCHING FOR COARSE GRAPH

We aim to model the joint distribution over the fragment-level graph and its latent representation
p(G, z) with the flow-matching formulation. Because the connectivity variable ε ∈ E is binary, and
the latent z is a real-valued vector with low dimension, we follow the DFM approach from Campbell
et al. (2024) for ε and adopt the Lipman et al. (2022) for z. Although the fragment x ∈ F is also a
discrete variable, the potentially large number of fragment types required to span the molecular space
makes the transition rate matrix of continuous time Markov chain (CTMC) in the DFM approach
prohibitively large. To address this, we introduce a stochastic bag selection strategy; for a fragment
type variable x1, we set a fragment type where the stochastic path {xt}t∈[0,1] can take the values.
For a given data x1:D

1 , we sample a type bag B that includes the types that are in present following
a distribution, B ∼ Q(·|x1:D

1 ), where D is the dimension of the discrete variables. With a clean data
x1 and B, we define temporal marginal conditioned to B, based on an linear interpolation with a
prior distribution:

pt|1(xt|x1,B) = tδB(xt, x1) + (1− t)p0(xt|B), (2)

where δB(·, ·) = 1B(·)δ(·, ·) represents the Kronecker delta multiplied by the indicator function
restricted on B and p0(·|B) is uniform over B.

Discrete flow matching is learning a denoising process meeting the marginal distribution using a
CTMC formulation. For a given fragments bag B, sampling xt|B begins with an initial distribution
p0(·|B) and propagates through a CTMC with transition rate Rt(·, ·|B) which only allows the tran-
sition between the states in the B. The evolution of the process follows the Kolmogorov forward
equation:

pt+dt|t(y|xt,B) = δB(xt, y) +Rt(xt, y|B)dt. (3)

In the sampling phase, x1 is sampled based on eq. (3), which requires B. Thus, the sampling phase
begins with sampling B from Q and x0 from p0(·|B), where the unconditional bag distribution Q
obtained by marginalizing out x1, Ex1∼pdata [Q(·|x1)]. The neural network model approximates the
distribution of x1 given xt and B, which is utilized in computing the transition rate Rt. For the
generalization of the neural network to diverse molecules, we incorporated a fragment embedding
strategy, allowing the model to make predictions on novel fragment compositions. More details
about coarse graph sampling and training algorithms are described in Appendix B.
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3 RESULTS

3.1 MOLECULAR GRAPH GENERATION

Model Class Val. ↑ Unique. ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 0.0 100.0 0.01 0.64 99.1

JT-VAE (Jin et al., 2018) Fragment + AR 100.0 100.0 99.9 97.8 1.00 0.53 10.0
GraphINVENT (Mercado et al., 2021) Atom + AR 96.4 99.8 - 95.0 1.22 0.54 12.7

DiGress (Vignac et al., 2022) Atom + Diffusion 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) Atom + Diffusion 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh-PC (Siraudin et al., 2024) Atom + Diffusion 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (# steps = 50) (Qin et al., 2024) Atom + Flow 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG (# steps = 500) (Qin et al., 2024) Atom + Flow 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (train fragments, # steps = 500) Fragment + Flow 99.9 99.6 86.0 99.3 0.71 0.57 10.8

Table 1: Molecule generation on MOSES dataset. The upper part consists of auto-regressive meth-
ods, while the second part consists of iterative denoising methods, including diffusion-based and
flow-based methods. The table compares their performance on several metrics.

We evaluate FragFM using the MOSES (Polykovskiy et al., 2020) and GuacaMol (Brown et al.,
2019) benchmark datasets, following the dataset splits and evaluation metrics from Vignac et al.
(2022). Across both MOSES (Table 1) and GuacaMol (Table 3), FragFM consistently outperforms
existing diffusion- and flow-based models. While denoising-based models have traditionally lagged
behind auto-regressive models, FragFM is the first to surpass them, achieving state-of-the-art Fréchet
ChemNet Distance (FCD) on MOSES and KL divergence on GuacaMol. Notably, FragFM achieves
over 99% validity while also demonstrating strong property-based performance (MOSES Filters,
GuacaMol KL divergence), performing on par with JT-VAE and GraphINVENT. Furthermore,
FragFM maintains uniqueness and novelty, highlighting its ability to assemble fragments into di-
verse molecular structures. We provide non-curated samples of generated molecules in Figures 6
and 7.

On the MOSES Scaf metric, FragFM tends to underperform when generation is restricted to training
fragments, which can be attributed to the scaffold-split evaluation in MOSES. If a test molecule’s
scaffold is absent from the fragment bag, the model cannot generate it. However, when using test
fragments, FragFM significantly improves its performance, demonstrating its ability to generalize to
unseen fragments through the fragment embedding module.

3.2 NATURAL PRODUCT MOLECULE GENERATION

Model Val. ↑ Unique. ↑ Novel ↑ NP Class KL Div. ↓ KL Div. ↓ FCD ↓Superclass Class Pathway

Training set 100.0 100.0 0.0 0.0054 0.1243 0.0002 0.0042 0.13

DiGress (Vignac et al., 2022) 85.7 99.9 99.4 0.2309 1.0783 0.1842 0.1654 2.13

FragFM 92.2 96.3 95.8 0.0879 0.4517 0.0149 0.0182 1.21

Table 2: Natural product generation benchmark.

Understanding natural products is crucial as they serve as a rich source of bioactive compounds and
provide valuable insights for drug discovery (Atanasov et al., 2021; Newman & Cragg, 2020). Addi-
tionally, the COCONUT dataset includes a hierarchical classification scheme (pathway, superclass,
class) that captures structural and biosynthetic relationships, enabling a more in-depth evaluation of
generative models on complex molecular categories. Details on the dataset and evaluation metrics
are provided in Appendix C.2.2.

We compared FragFM with DiGress on the COCONUT benchmark, as summarized in Table 2.
While both models achieve high validity, validity alone does not guarantee that generated molecules
resemble natural products. FragFM outperforms DiGress, by achieving lower KL divergence across
pathway, superclass, class, and NP-likeness scores, indicating a closer alignment with the training set
natural products. This suggests that fragment-based modeling more effectively captures molecular
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structural characteristics, leading to the generation of more biologically relevant molecules. Example
molecules generated by FragFM and DiGress are shown in Figures 8 to 10.

3.3 SAMPLING EFFICIENCY
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Figure 2: Analysis of sampling steps across multiple denoising models. FragFM consistently
outperforms baseline models as the number of sampling steps decreases, exhibiting less degradation
in sampling quality. Additional metrics and further results are provided in Appendix D.3.

Generative models based on the denoising process required multiple iterative steps, making sam-
pling inefficient. Therefore, reducing the number of denoising steps while maintaining generation
quality is crucial for improving efficiency and scalability in molecular generation. Figure 2 and Ta-
ble 5 present the MOSES benchmark results across different denoising steps for various generative
models. As expected, reducing the number of denoising steps generally leads to a decrease in gen-
eration quality. However, FragFM exhibits a significantly lower decline in quality and consistently
outperforms other models, achieving over 95%validity and an FCD of 0.66 with just 10 steps, ex-
ceeding other models. This is likely due to the fragment-based discrete flow matching approach,
which reduces the number of edges that need to be predicted and allows for more stable intermedi-
ate representations during generation. Further details and sampling efficiency analysis are provided
in Appendices D.3 and D.4.

3.4 CONDITIONAL GENERATION
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Figure 3: Condition MAE and FCD curves for logP and number of rings. The triangle denotes
the unconditional models. Each curve is color-coded to represent a model with a different target
value. Additional results for QED and TPSA are provided in Appendix D.5.

Conditional generation is crucial in molecular design, enabling precise control over molecular prop-
erties. We integrate classifier-free guidance (CFG) (Ho & Salimans, 2022; Nisonoff et al., 2024) to
FragFM (details in Appendix B.6) to guide the generation process towards desired property values.
We conduct conditional molecular generation on the MOSES dataset to evaluate its effectiveness,
targeting logP, number of rings, QED, and TPSA.

From Figures 3 and 5, we observe that FragFM achieves a lower condition MAE while maintaining a
lower FCD compared to DiGress, positioning our method on the Pareto-optimal frontier in the FCD-
Condition MAE trade-off. The improvement can be attributed to the structured generative process
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of FragFM, where molecules are assembled from semantically meaningful fragments, allowing for
better preservation of structural patterns and improved property control. We provide further details
on the CFG and experiments in Appendix D.5.

4 CONCLUSION

We introduce FragFM, a fragment-based discrete flow matching framework for molecular graph
generation. By leveraging fragment-level representations with a coarse-to-fine autoencoder and a
fragment bag selection approach, FragFM enables efficient and accurate molecular generation while
preserving structural diversity and validity. Extensive benchmarks on MOSES, GuacaMol, and natu-
ral product datasets demonstrate that FragFM consistently outperforms existing diffusion and flow-
based models across multiple metrics, including validity and Fréchet ChemNet Distance (FCD),
while requiring fewer denoising steps.

Additionally, we explore efficient sampling strategies and classifier-free guidance, showcasing the
effectiveness of FragFM in property-aware molecular generation. Our results highlight the poten-
tial of fragment-based modeling to improve the scalability and expressiveness of denoising-based
molecular generation frameworks. Looking forward, an important direction is to enhance FragFM
by incorporating fragment bag control, allowing for more precise selection and optimization of frag-
ment compositions. By dynamically guiding fragment selection based on molecular properties and
downstream design objectives, this approach could further improve the controllability of molecular
generation across diverse applications, including protein-ligand binding design, OLED materials,
and novel functional molecules.
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A RELATED WORKS

A.1 DENOISING GRAPH GENERATIVE MODELS

Denoising-based generative models have become fundamental for molecular graph generation by
iteratively refining noisy graphs into structured molecular representations. Diffusion methods (Ho
et al., 2020; Song et al., 2020), which have been successful in a variety of domains, have been
extended to graph structure data (Jo et al., 2022; Niu et al., 2020), demonstrating the advantages of
applying diffusion in graph generation. This approach was further extended by incorporating discrete
stochastic processes (Austin et al., 2021), addressing the inherently discrete nature of molecular
graphs (Vignac et al., 2022). The discrete diffusion modeling is reformulated by the continuous time
Markov chain (CTMC), which has been introduced (Xu et al., 2024; Siraudin et al., 2024; Kim et al.,
2024), allowing more flexible and adaptive generative processes. More recently, flow-based models
have been explored for molecular graph generation. Continuous flow matching (Lipman et al., 2022)
has been applied to structured data (Eijkelboom et al., 2024), while discrete flow models (Campbell
et al., 2024; Gat et al., 2024) have been extended to categorical data generation, with recent methods
demonstrating their effectiveness in modeling molecular distributions (Qin et al., 2024; Hou et al.,
2024).

A.2 FRAGMENT BASED MOLECULE GENERATION

Fragment-based molecular generative models construct new molecules by assembling existing
molecular substructures, known as fragments. This strategy enhances chemical validity and facili-
tates the efficient exploration of novel molecular structures. Several works have employed fragment-
based approaches within variational autoencoders (VAEs). Jin et al. (2020); Kong et al. (2022);
Maziarz et al. (2021) generate molecules using VAEs by learning to assemble fragments in a chem-
ically meaningful way. Jin et al. (2018) adopts a stepwise generation approach, first constructing
a coarse fragment-level graph before refining it into an atom-level molecule through substructure
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completion. Seo et al. (2023); Jin et al. (2020) construct molecules by assembling fragments se-
quentially, enabling better control over molecular properties during generation.

Fragment-based approaches have also been explored in diffusion-based molecular graph generation.
Levy & Rector-Brooks (2023) proposed a method that utilizes a fixed set of frequently occurring
fragments to generate drug-like molecules, ensuring chemical validity but limiting exploration be-
yond predefined structures. Since enumerating all possible fragment types is infeasible, the method
operates solely within a fixed fragment vocabulary. In contrast, Chen et al. (2024) introduced an al-
ternative fragmentization strategy depending on the dataset based on byte-pair encoding, offering a
more flexible molecular representation. However, this approach cannot still incorporate chemically
meaningful fragmentation methods (Degen et al., 2008; Liu et al., 2017), making it challenging to
utilize domain-specific chemical priors.

B METHOD DETAILS

B.1 DETAILS OF COARSE-TO-FINE AUTOENCODER

We adopted a KL-regularized autoencoder for coarse-to-fine graph conversion. The coarse-grained
graph representation G can be interpreted as a compressed version of atom-level fine graph G. In
the fragmentation procedure, atom-level graph loose the fine-grained connection information. For
reconstructing the original atom-level graph, the fragment-level graph and the missing information
is required, which is encoded in the latent variable z. Formally, the encoding and decoding process
is defined as:

G = Fragmentation(G),

z ∼ qθ = N (Encoder(G; θ), σ), (4)

Ê = Decoder(G, z; θ),

where the decoder reconstructs only those atom-level edges Ê corresponding to the fragment con-
nectivity in the coarse representation.

To ensure that the reconstructed graph faithfully preserves the original molecular structure, we op-
timize the autoencoder using a reconstruction loss. Additionally, we introduce a small KL regular-
ization term to the training loss for latent variable to enforce a well-structured and unscaled latent
space:

LVAE(θ) = EG∼pdata

[
LCE

(
E, Ê(θ)

)
+ βDKL (qθ(z|G) ∥ p(z))

]
. (5)

We set a low regularization coefficient of β = 0.0001 to maintain high-fidelity reconstruction.

We discretize the decoded edges Ê during the fine-graph sampling procedure. In this process, we
employ the blossom algorithm detailed in Appendix B.4, which yields robust sampling performance.

B.2 FRAGMENT DENOISING FLOW MATCHING

For sampling, we now want to design a stochastic process that meets the temporal marginal distribu-
tions of eq. (2) along with the Kolmogorov forward equation eq. (3). Campbell et al. (2024) proposed
such a transition rate conditioned on x1 that aligns with the linear interpolated distributions, and we
modified the equation in the B conditioned form, which is as:

R∗
t (xt, y|x1,B) =

ReLU
[
∂tpt|1(y|x1,B)− ∂tpt|1(xt|x1,B)

]
Z>0
t pt|1(xt|x1,B)

for xt ̸= y, (6)

while Z>0
t = |zt : pt|1(xt|x1,B) > 0|. The entries for zt = y are calculated by normalization.

For a D dimensional case, where D is the number of dimensions we model, Campbell et al. (2024)
proposed an approximation of CTMC under mild conditions, independently conducting the Euler
step for each dimension. With a finite time step ∆t:

p̃t+∆t|t
(
x1:D
t+∆t|x1:D

t ,B
)
=

∏D
d=1

(
δB

(
x
(d)
t , x

(d)
t+∆t

)
+ E

p
(d)

1|t

(
x
(d)
1 |x1:D

t ,B
) [R(d)

t

(
x
(d)
t , x

(d)
t+∆t|x

(d)
1 ,B

)]
∆t

)
.

(7)
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Based on the transition kernel on eq. (7), we can sample x1 given the fragments bag B. To define
Q(·|x1) for sampling fragment bags, we use a two-stage procedure: (1) select a fixed number of
molecules from the data distribution and include x1 among them, and (2) gather all fragments from
these molecules to form the fragment bag B. During training, we sample Q(·|x1). However, in the
sampling (inference) phase, x1 is not available a priori, so we employ the unconditional distribution
Q given by,

Q = Ex1∼pdata [Q(·|x1)] . (8)

Sampling from Q follows a similar two-stage procedure, except we do not force the inclusion of any
particular x1 in the initial set of molecules. In practice, we gathered 256 molecules from the training
dataset to sample the fragments bag.

B.3 NEURAL NETWORK PARAMETERIZATION
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Figure 4: Schematic of FragFM’s fragment denoising module.

First, we model the coarse-to-fine autoencoder with simple MPNN. We model p1|t(G1|Gt;ϕ) using
a fragment embedding message passing neural network (fragment encoder) and a graph transformer
(GT) to facilitate message passing in the fragment-level graph. Through fragment MPNN, each
fragment type in F is represented as a 1-dimenstional latent vector:

hi = FragmentEncoder(xi;ϕ), for xi ∈ F . (9)

Using these embedded fragment representations, we construct a fragment-level graph where nodes
correspond to individual fragment embeddings, edges representing fragment-level connectivity, and
global features z, a latent variable from the coarse-to-fine autoencoder. We incorporate the graph
transformer backbone from Vignac et al. (2022); Qin et al. (2024) to propagate information across
the fragment graph. After l layers of graph transformer, we obtain node embeddings, edge embed-
dings, and the global embedding for the fragment graph, denoted as h

(l)
i , e

(l)
ij , g

(l). For fragment
edge types eij and the continuous latent variable z, FragFM utilizes simple linear layers. For frag-
ment type prediction, we perform a softmax operation over the fragment bag, where the logit score
is computed as the inner product between the fragment embeddings and the node embeddings:

p̂i = Softmax
(
{h(l)

i · h(0)
k }xk∈B

)
. (10)

B.4 ATOM-LEVEL GRAPH RECONSTRUCTION FROM FRAGMENT GRAPHS

We utilize the Blossom algorithm (Edmonds, 1965) to determine the optimal matching in the atom-
level connectivity given coarse-to-fine decoder output. The Blossom algorithm is an optimization
technique used to find the maximum matching in general graphs by iteratively contracting and ex-
panding odd-length cycles (blossoms) to identify augmenting paths efficiently. We leverage this
algorithm in our framework to accurately reconstruct atom-level connectivity from fragment-level
graphs, ensuring chemically valid molecular structures. The algorithm takes as input the matching
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nodes Vm, edges Em, and edge weights wij . Once the fragment-level graph and the probabilities of
atom-level edges from the coarse-to-fine autoencoder are computed, we define Vm ⊆ V̂ as the set of
junction atoms in fragment graphs, which are marked as * in Figure 11, and Em as the set of connec-
tions between junction atoms belonging to connected fragments. Formally, an edge ekl exists in Em

if the corresponding atoms belong to different fragments that are connected in the fragment-level
graph, expressed as:

ekl ∈ Em if vk ∈ V̂i, vl ∈ V̂j , and εij ∈ E . (11)

The edge weights wij correspond to the predicted log probability of each connection obtained
from the coarse-to-fine autoencoder. The Blossom algorithm is then applied to solve the maximum
weighted matching problem, formulated as

M∗ = argmaxM⊆Em

∑
(i,j)∈M

wij . (12)

Here, M∗ represents the optimal set of fragment-level connections that best reconstructs atom-level
connectivity; maximizing the joint probability of the autoencoder preidction. Although the algorithm
has a O(N3) complexity for N fragment junctions, its computational cost remains negligible in our
case, as the number of fragment junctions is relatively tiny compared to the total number of atoms
in a molecule.

B.5 SAMPLING TECHNIQUES

B.5.1 TARGET GUIDANCE

Diffusion and flow models are typically designed to predict the clean data Gf,1 = {Vf,1, Ef,1} from
noisy input. Building on this, (Qin et al., 2024) proposed a modified sampling method for DFM by
adjusting the rate matrix toward the predicted clean data. Specifically, the rate matrix is redefined as

Rt(xt, y | x1) = R∗
t (xt, y | x1) +Rω

t (xt, y | x1) (13)

for xt ̸= y, where

Rω
t (xt, y | x1) = ω

δ(y, x1)

Z>0
t pt|1(xt | x1)

(14)

This modification introduces a slight O(ω) violation of the Kolmogorov equation. However, em-
pirical findings suggest that a small ω improves sample quality without significantly distorting the
learned distribution. For our results, we use a small value of ω = 0.002.

B.5.2 DETAILED BALANCE

The space of valid rate matrices extends beyond the original formulation of R∗
t (zt, zt+dt | z1),

meaning that alternative formulations can still satisfy the Kolmogorov equation. Building on this,
Campbell et al. (2024) explored this space and demonstrated that any rate matrix RDB

t satisfying
the detailed balance condition,

pt|1(xt | x1)R
DB
t (xt, y | x1) = pt|1(y | x1)R

DB
t (y, xt | x1), (15)

can be used to construct a modified rate matrix:

Rη
t = R∗

t + ηRDB
t , η ∈ R+, (16)

which remains consistent with the Kolmogorov equation. Increasing η introduces additional stochas-
ticity into CTMC, enabling more transition pathways between states. We integrate this stochasticity
into our FragFM framework, enabling variability in fragment-type transitions while maintaining
valid generative pathways. We set η = 0.1 in our experiments.

B.6 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) allows for controllable molecular generation by interpolating be-
tween conditioned and unconditioned models, eliminating the need for explicit property classifiers
(Ho & Salimans, 2022). This approach, widely used in continuous diffusion models, was recently
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extended to discrete flow matching (Nisonoff et al., 2024). We adopt this technique to enhance the
controllability of FragFM while maintaining sample diversity.

During training, FragFM learns both conditional rate matrix Rθ
t (xt, y | c) and an unconditional

rate matrix Rθ
t (xt, y) simultaneously by conditioning on property labels c for 90% of samples and

conditioning with the masked label φ for the remaining 10%. During sampling, the rate matrix is
adjusted using the guidance level γ:

Rθ,γ
t (xt, y | c) = Rθ

t (xt, y | c)γRθ
t (xt, y | φ)1−γ . (17)

Setting γ = 0 corresponds to purely unconditional generation while increasing γ strengthens class
adherence, biasing transitions toward the desired property distribution. However, excessively high γ
values can constrain exploration, generating molecules that diverge from the overall unconditional
data distribution. Ho & Salimans (2022) demonstrated that this trade-off follows a characteristic
pattern: as guidance strength increases, sample fidelity (e.g., lower FID) improves at the cost of
class adherence (e.g., lower IS).

C EXPERIMENTAL DETAILS

C.1 BASELINES

Our experiments compare FragFM with several state-of-the-art graph and molecule generative mod-
els. For non-denoising methods, we include JT-VAE (Jin et al., 2018), GraphINVENT (Mercado
et al., 2021), NAGVAE (Kwon et al., 2020), and MCTS (Jensen, 2019). For diffusion-based models,
we evaluate DiGress (Vignac et al., 2022), DisCo (Xu et al., 2024), and Cometh (Siraudin et al.,
2024). In addition, we compare with DeFog (Qin et al., 2024) for flow-based approaches.

C.2 DATASET AND METRICS

C.2.1 MOSES AND GUACAMOL

MOSES and GuacaMol provide standardized molecular-generation benchmarking frameworks, of-
fering predefined training, test datasets, and automated evaluation metrics. Validity refers to the
percentage of generated molecules that adhere to fundamental valency constraints, ensuring chemi-
cally plausible structures. Uniqueness quantifies the proportion of generated molecules with distinct
SMILES representations, indicating non-isomorphism. Novelty measures the number of generated
molecules that do not appear in the training dataset, assessing the model’s ability to create new
structures.

The filter score evaluates the percentage of molecules that satisfy the same chemical constraints
applied during test set construction. Fréchet ChemNet Distance (FCD) quantifies the similarity be-
tween training and test molecules based on learned neural network embeddings. SNN (Similarity to
Nearest Neighbor) captures how closely generated molecules resemble their closest counterparts in
the training set based on Tanimoto similarity. Scaffold similarity assesses how well the distribution
of Bemis-Murcko scaffolds in the generated molecules aligns with that of actual molecules. Finally,
KL divergence compares the distributions of various physicochemical properties.

C.2.2 NATURAL PRODUCT GENERATION BENCHMARK

While understanding natural products is crucial, their intrinsically complex structures and large
molecular sizes pose significant challenges for molecular design. To address this, we designed a
natural product generation benchmark to evaluate the ability of generative models to capture and
reproduce the biochemical characteristics of natural products.

We first preprocessed the COCONUT dataset (Sorokina et al., 2021; Chandrasekhar et al., 2025)
, the most extensive open-access collection of natural products by filtering out molecules, includ-
ing charges, retaining only natural compounds. We also excluded metal-containing molecules and
selected only those composed of the following atom types: B, N, C, O, F, Si, P, S, Cl, Br, I, Se,
and As. Additionally, molecules exceeding 99 heavy atoms were removed to avoid arbitrarily large
molecules. This processing resulted in a final dataset of 416,249 molecules, which was randomly
split into training (85%), validation (5%), and test (10%) sets.
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We sampled 10, 000 molecules for benchmarking and evaluated them based on validity, unique-
ness, novelty, and Fréchet ChemNet Distance (FCD), following the MOSES benchmarking pro-
tocol. However, achieving high validity and uniqueness alone does not guarantee that the gener-
ated molecules resemble natural products. To address this, we applied the hierarchical classification
scheme from NPClassifier (Kim et al., 2021), which categorizes molecules at three levels: Path-
way, representing broad biosynthetic origins with seven categories; Superclass, defining structural
groupings within pathways within 70 categories; and Class, providing a finer-grained classification
of 672 structural categories. We compute the Kullback-Leibler (KL) divergence across these cate-
gorical distributions to assess the alignment between generated molecules and the training dataset.
Additionally, since the COCONUT dataset includes NP-likeness scores (Ertl et al., 2008), we also
evaluated the KL divergence of the NP-likeness score distribution, quantifying how closely the gen-
erated molecules resemble authentic natural products.

D ADDITIONAL RESULTS

D.1 RESULTS ON GUACAMOL DATASET

Model Class Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 0.0 92.8

NAGVAE (Kwon et al., 2020) VAE 92.9 88.7 88.7 38.4 0.9
MCTS (Jensen, 2019) - 100.0 100.0 95.4 82.2 1.5

DiGress (Vignac et al., 2022) Atom + Diffusion 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) Atom + Diffusion 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) Atom + Diffusion 98.9 98.9 97.6 96.7 72.7
DeFoG (# steps = 50) (Qin et al., 2024) Atom + Flow 91.7 91.7 91.2 92.3 57.9
DeFoG (# steps = 500) (Qin et al., 2024) Atom + Flow 99.0 99.0 97.9 97.7 73.8

FragFM (train fragments, # steps = 500) Fragment + Flow 99.1 98.9 93.2 99.6 87.2

Table 3: Molecule generation on GuacaMol dataset. The upper part consists of non-denoising
models, while the second part consists of iterative denoising methods, including diffusion-based and
flow-based methods. The table compares their performance on several metrics.

D.2 ANALYSIS OF COARSE-TO-FINE AUTOENCODER

Dataset Train set Test set
Bond acc. Graph acc. Bond acc. Graph acc.

MOSES 99.99 99.96 99.99 99.93
GuacaMol 99.99 99.43 99.98 99.42
Coconut 99.98 97.62 99.71 97.43

Table 4: Coarse-to-fine autoencoder accuracy.

To evaluate the performance of the coarse-to-fine autoencoder, we assess the accuracy of bond and
graph reconstruction. As shown in Table 4, the model achieves nearly perfect bond and graph recov-
ery on the MOSES and GuacaMol datasets, with bond accuracy exceeding 99%, demonstrating its
reliability in preserving the information of atom-level graph. The model also achieves strong recov-
ery performance on the more complex COCONUT dataset, demonstrating its robustness in handling
diverse and structurally complicated molecular graphs.

D.3 SAMPLING STEP

A key challenge in generative models based on stochastic processes is the need for multiple itera-
tive refinement steps, which can significantly impact computational efficiency. While increasing the
number of denoising steps generally improves the sampling of diffusion and flow-based models, it
also extends the time required for sampling, making large-scale generation impractical. To evaluate
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# Step Model Val. ↑ V.U. ↑ V.U.N. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
- Training set 100.0 100.0 0.0 100.0 0.01 0.64 99.1

10
DiGress* 6.3 6.3 6.2 66.4 9.30 0.37 10.7
Cometh 26.1 26.1 26.0 59.9 7.88 0.36 8.9
FragFM 95.8 95.7 88.3 98.7 0.66 0.54 13.0

50

DiGress* 75.2 75.2 72.1 94.1 1.38 0.51 15.1
DeFog 83.9 83.8 81.2 96.5 1.87 0.59 14.4
Cometh 82.9 82.9 80.5 94.6 1.54 0.49 18.4
FragFM 99.4 99.2 90.4 98.8 0.57 0.55 11.9

100
DiGress* 82.8 82.8 79.4 95.1 1.11 0.51 14.7
Cometh 85.8 85.7 82.9 96.5 1.43 0.50 17.2
FragFM 99.4 99.2 90.3 98.8 0.56 0.55 11.0

300
DiGress* 85.2 85.2 80.9 96.4 1.10 0.52 14.6
Cometh 86.9 86.9 83.8 97.1 1.44 0.51 17.8
FragFM 99.5 99.4 90.7 98.9 0.57 0.54 11.8

500

DiGress* 84.9 84.9 82.0 94.5 1.35 0.50 16.5
DeFog 92.8 92.7 85.4 98.9 1.95 0.55 14.4
Cometh 87.0 86.9 83.8 97.2 1.44 0.51 15.9
FragFM 99.6 99.5 90.7 98.9 0.56 0.54 14.6

700
DiGress* 85.4 85.4 82.4 95.2 1.36 0.50 16.7
Cometh 87.2 87.1 83.9 97.2 1.43 0.51 15.9
FragFM 99.5 99.4 90.0 98.9 0.55 0.55 12.6

1000
DiGress* 84.4 84.4 81.0 96.0 1.35 0.51 14.4
Cometh 87.2 87.2 84.0 97.2 1.44 0.51 17.3
FragFM 99.6 99.4 90.1 98.9 0.56 0.55 12.5

Table 5: Performance comparison of denoising graph generative frameworks on the MOSES
dataset across varying numbers of sampling steps. To solely evaluate the effect of sampling steps,
all FragFM results are obtained without utilizing target guidance and noise. For DiGress, we re-
trained the model using different diffusion timesteps.

this trade-off, we analyzed how different generative models behave under varying step conditions,
focusing on their ability to maintain validity, uniqueness, and structural diversity.

As shown in Table 5, reducing the number of denoising steps leads to a general decline in molecular
quality across all models. However, the extent of this degradation varies considerably depending on
the model architecture. DiGress, for example, suffers a catastrophic performance drop, achieving
only 6.3% validity and an FCD of 9.30 at 10 steps, highlighting its heavy reliance on many iterative
refinements. Continuous-time models, such as DeFoG and Cometh, exhibit better robustness but still
experience a significant decline in performance when operating with a low number of steps.

In contrast, FragFM maintains high validity even with significantly fewer denoising steps. In fact,
at just 10 steps, FragFM achieves 95.8% validity while preserving other key MOSES benchmark
metrics. This performance surpasses other models, typically requiring at least 50 to 100 steps to
reach comparable results. This improvement can be attributed to the fragment-based discrete flow
matching approach, which reduces the number of nodes and edges in the molecular graph, lower-
ing the computational complexity of edge prediction. Since molecular fragments inherently capture
larger structural motifs, they provide a more structured and stable generative process, allowing for
efficient sampling with fewer denoising steps while preserving overall molecular validity.
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D.4 SAMPLING TIME ANALYSIS

MOSES GuacaMol COCONUT

Property
Min. nodes 8 2 2
Max. nodes 27 88 99
Sampled Molecules 25000 10000 10000

Sampling Time (h)

DiGress (# steps = 500) 3.0 - 12.5
DeFoG* (# steps = 500) 5 7 -
FragFM (# steps = 500) 1.1 0.6 1.7
FragFM (# steps = 50) 0.4 0.1 0.3

Table 6: Comparison of sampling time across different datasets and methods. All experiments
were performed using a single NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6234
CPU @ 3.30GHz. *Results for DeFoG are borrowed from the original paper, where experiments
were conducted on an NVIDIA A100 GPU

While graph representations exhibit a quadratic increase in edge dimensions as the number of nodes
grows, fragment-level graphs contain significantly fewer nodes and edges, resulting in lower com-
putational complexity than atom-level graphs. A detailed analysis of sampling time is provided in
Table 6, where FragFM demonstrates the fastest sampling time across all datasets with 500 sampling
steps. Furthermore, as shown in Table 5, FragFM achieves comparable or superior performance to
baseline models even with just 50 sampling steps. This suggests that its sampling time can be fur-
ther optimized, enabling speeds ×10 to ×30 times faster than other models while maintaining the
generative quality.

D.5 CONDITIONAL GENERATION
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Figure 5: Condition MAE, FCD curves of QED (left) and TPSA (right) over CFG guidance
strengths for MOSES models.
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D.6 VISUALIZATION OF GENERATED MOLECULES

Figure 6: Randomly selected samples generated by FragFM trained on the MOSES dataset.

Figure 7: Randomly selected samples generated by FragFM trained on the GuacaMol dataset.

Figure 8: Randomly selected samples generated by FragFM trained on the COCONUT dataset.
The top row displays molecules with a heavy atom count below 30, while the bottom row includes
those with a count between 30 and 60. FragFM can generate complex natural products such as
steroids, peptides, and saccharides.
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Figure 9: Cherry-picked samples generated by FragFM trained on COCONUT dataset, with
natural product substructures highlighted. The model successfully generates molecules that are
steroid, flavonoid, and coumarin derivatives, showcasing its ability to generate natural product-like
molecules successfully.

Figure 10: Randomly selected samples generated by DiGress trained on the COCONUT
dataset. The top row presents molecules with a heavy atom count below 30, while the bottom
row includes those with a count between 30 and 60. Atom-based models often struggle to generate
chemically stable structures, frequently producing molecules with sterically strained and chemically
implausible fused ring systems (second in the top row; first, second, and third in the bottom row).
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Figure 11: Top 100 Common fragments extracted from the MOSES dataset using BRICS de-
composition. More frequently occurring fragments are positioned towards the top left.
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