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a b s t r a c t 

Background: Sleep staging is an important basis of sleep research, which is closely related to both nor- 

mal sleep physiology and sleep disorders. Many studies have reported various sleep staging algorithms of 

which the framework generally consists of three parts: signal preprocessing, feature extraction and clas- 

sification. However, there are few studies on the superposition of signals and feature screening for sleep 

staging. 

Objective: The objectives were to (1) Analyze the effective signal enhancement based on the superpo- 

sition of homologous and heterogeneous signals, (2) Find a better way to use multichannel signals, (3) 

Study a systematic method of feature screening for sleep staging, and (4) Improve the performance of 

automatic sleep staging. 

Methods: In this paper, a novel method of signal preprocessing and feature screening was proposed. 

In the signal preprocessing, multi-channel signal superposition was applied to improve the effective in- 

formation contained in the original signal. In the feature screening, 62 features were initially selected 

including the time-domain features, frequency-domain features and nonlinear features, and a ReliefF al- 

gorithm was employed to select 14 features highly correlated to sleep stages from the former 62 features. 

Then, Pearson correlation coefficients were used to remove 2 redundant features from the 14 features to 

eventually obtain 12 features. Next, with the aforementioned signal preprocessing method, the 12 se- 

lected features and a support vector machine (SVM) classifier were used for sleep staging based on thirty 

recordings. 

Results: Comparing the performance of sleep staging using different single-channel signals and different 

multi-channel superposition signals, we found that the best performance was obtained while using the 

superposition of two electroencephalogram (EEG) signals. The overall accuracies of sleep staging with 2–

6 classes obtained by superposing the two EEG signals reach 98.28%, 95.50%, 94.28%, 93.08% and 92.34%, 

respectively, and the kappa coefficient of sleep staging with 6 classes reaches 84.07%. 

Conclusions: Among the proposed sleep staging methods of using single-channel signal and multi- 

channel signal superposition, the best performance and consistency were obtained while using the su- 

perposition of two electroencephalogram (EEG) signals. The multichannel signal superposition method 

pointed out a valuable direction for improving the performance of automatic sleep staging in both the- 

oretical research and engineering applications, and the proposed systematical feature screening method 

opened up a reasonable pathway for better selecting type and number of features for sleep staging. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Knowledge of sleep stages has a long history. In 1929, Hans

erger [1] first recorded electroencephalogram (EEG) of the hu-

an body and found difference in EEG patterns between sleep-

https://doi.org/10.1016/j.cmpb.2019.105253
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.105253&domain=pdf
mailto:guobing@scu.edu.cn
https://doi.org/10.1016/j.cmpb.2019.105253


2 W. Huang, B. Guo and Y. Shen et al. / Computer Methods and Programs in Biomedicine 187 (2020) 105253 

Fig. 1. Normal sleep staging structure. 
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ing and waking, and thus a new journey for human sleep re-

search through EEG was initiated. In 1937, Loomis et al. [2] dis-

covered the existence of EEG staging during sleep. After that, peri-

odic changes of sleep depth were discovered by Dement and Kleit-

man [3] , which laid the foundation for the most important sleep

stages in sleep analysis. Furthermore, Alan Rechtschaffen and An-

thony Kales [4] normalized the sleep staging rules and established

a complete classification standard for sleep staging. According to

the R & K sleep staging rules, the human usually has four or five

basic repetitive sleep cycles throughout the night, and each sleep

cycle commonly consists of six states: non-rapid eye movement

(S1(N1), S2(N2), S3(N3), S4(N4)), rapid eye movement (REM), and

waking (AWA). The sleep cycles were presented in Fig. 1 . 

Sleep stages are intrinsic nature to humans and sleep stag-

ing has important physiological significance. In recent decades, re-

searchers found that sleep is closely related to some basic phys-

iological activities of the human body, such as fatigue recovery,

memory enhancement, immunity and endocrine [5–7] . 

Automatic sleep staging is a difficult problem. Agarwal et al.

[8] pointed out that the subjective and inaccurate definition of

sleep staging rules make it difficult to automatically classify sleep

stages. According to the sleep staging rules of the American

academy of sleep medicine (AASM) [9] , effective interpretation of

sleep staging needs to be based on EEG, electro-oculogram (EOG)

and electromyogram (EMG) signals, among which EEG is the most

important signal for sleep staging. An EEG signal has nonlinear and

dynamic characteristics and varies in amplitude and frequency in

different sleep stages. Therefore, it is not easy to accurately inter-

pret and analyze an EEG signal. 

Automatic sleep staging is of great significance. In spite of diffi-

culties, automatic sleep staging is efficient and labor-saving, and

can simultaneously eliminate the difference in subjective judge-

ment. Therefore, many researchers were attracted to study in this

field [10–46] . Flexer et al. [11] adopted the Gaussian observation

hidden Markov model (GOHMM) for the three-state sleep staging

using a single-channel EEG signal, and the average classification

accuracy was approximately 80%. Kullback-leibler divergence (KL)

was used by Zhovna et al. [12] for analyzing the sleep stages, and

the classification accuracy reached 93.2%. Mendez et al. [14] used

a time-varying autoregressive model to extract HRV features from

a single-channel electrocardiogram (ECG) signal and used a hid-

den Markov chain for sleep stages classification. An artificial neu-

ral network (ANN) classification method was used by Tagluk et al.

[16] to extract features from EEG, EOG and EMG signals for sleep

staging, and the accuracy was approximately 74.7 ± 1.63%. Gunes

et al. [17] extracted 129 features from a single-channel EEG sig-

nal, and applied the k-means clustering-based feature weighting

(KMCFW) and the decision tree classification algorithms for sleep

staging. In this work, the classification accuracy was improved to

82.15%. Wu et al. [19] adopted two modern adaptive signal pro-

cessing technologies, the empirical intrinsic geometry and the syn-
hro squeezing transform, to quantify the dynamic characteristics

f respiratory (Resp) and the EEG signal, and its classification ac-

uracy reaches 89.3%. Imtiaz et al. [23] extracted spectral edge

requency (SEF) features from the 8–16 Hz frequency band of a

ingle-channel EEG signal for sleep staging. In this work, the sen-

itivity and specificity reached 83% and 89%, respectively. Subse-

uently, another study from this group [24] reported that sleep

taging using a single-channel EEG signal can be achieved based

n an ultralow power chip system, and the accuracy could reach

8.7%. Chen et al. [30] developed a sleep staging decision sup-

ort algorithm with symbolic fusion (SF), and the overall classifica-

ion accuracy reached 76%. Diykh et al. [32] extracted the similar-

ty features of the time-domain and the structure diagram from a

ingle-channel EEG signal, and the k-means algorithm was used for

leep staging. Finally, an average accuracy of 95.93% was achieved.

andomholm et al. [33] studied sleep staging using in-ear elec-

rodes to record a single EEG signal. Chriskos et al. [34] processed

ingle-channel EEG data using modern mathematical tools such as

he synchronization likelihood ratio and graph theory metrics to

chieve an accuracy of 89.07%. A random under sampling boost-

ng technique (RUSBoost) was used by Hassan et al. [39] for auto-

atic sleep mode recognition. In 2017, another study conducted

y Hassan et al. [40] used decision support system to conduct

leep staging, and the accuracy of six-state sleep staging reached

2.43%. In recent years, deep learning algorithm has been gradu-

lly applied to sleep staging, and some progress has been made.

upratak et al. [41] extracted time-invariant features using Convo-

utional Neural Networks (CNN), and then used bidirectional Long

erm Memory (BLSTM) to automatically learn the sleep staging

onversion rules from the original data, and the accuracy reached

6.2%. Langkvist’s et al. [42] used selective attention automatic en-

oder to express learning features, and the accuracy of sleep stag-

ng reached 77.7 ± 6.9%. Yuan et al. [43] used the Hybrid Self-

ttentive Deep Learning Networks for sleep staging, and the accu-

acy was nearly 73%. Paishi et al. [44] used deep neural network

o extract features from RR time series and EEG signals for sleep

taging, and the classification accuracy of two-state sleep stag-

ng reached 85.51%. Sokolovsky et al. [45] used CNN deep learn-

ng neural network to automatically complete the feature discovery

nd classification of sleep stages, and the accuracy of sleep staging

eached 81%. Mousavi et al. [46] used the sequence-to-sequence

eep learning method to complete the sleep staging automatically

nd an accuracy of 84.26% is obtained. 

There are still insufficient studies on automatic sleep staging.

he above section presented many studies on classification meth-

ds for sleep staging. However, there are few studies on the super-

osition of signals and feature screening. 

In this paper, the method of signal preprocessing and system-

tic features screening were studied to improve the performance

f sleep staging. In terms of signal preprocessing, a multi-channel

ignal superposition method is used to reduce noise and improve

he effective information contained in original signals, and simul-

aneously study the influence of signal type in different superim-

osed signals on the results of sleep staging. In terms of feature

creening, we study systematic feature selection with an appropri-

te feature number for sleep staging. 

This paper is divided into five parts. The first part introduces

he research history, importance, related research work and au-

hor’s innovation about sleep staging. The second part describes

he materials and our proposed method, which includes original

ignal superposition and feature screening for sleep staging. The

hird part discusses the experimental results that show the perfor-

ance of sleep staging based on signal superposition and feature

creening. The fourth part presents the discussion, showing com-

arison between the proposed method and the latest method and

ointing out the future work. The fifth part concludes this work
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Table 1 

Basic information of sleep data in Sleep-EDF Expanded original database. 

Database Data Classification Number Channel Lead Sampling 

Signal Rate 

∗Sleep-EDF SCxxxxxx-PSG.edf 153 EEG Fpz-Cz 100Hz 

Expanded EEG Pz-Oz 100Hz 

EOG horizontal 100Hz 

Resp Oro-nasal 1Hz 

EMG submental 1Hz 

Temp rectal 1Hz 

Event marker 1Hz 

STxxxxxx-PSG.edf 44 EEG Fpz-Cz 100Hz 

EEG Pz-Oz 100Hz 

EOG horizontal 100Hz 

EMG submental 100Hz 

Marker 10Hz 

Table 2 

Sizes of six sleep stages labeled by experts. 

Classes/R&K Standard Number of Epochs/30s 

AWA 57329 

N1 2633 

N2 13589 

N3 2026 

N4 1677 

REM 5302 

Total 82556 
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Fig. 2. The flowchart of sleep staging based on multi-channel signal adding and 

multi-feature screening. 
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nd point out a new pathway for the study of automatic sleep

taging algorithm. 

. Materials and methods 

.1. Materials 

The recordings used for studying sleep staging have been ob-

ained from the Sleep-EDF Expanded database of MIT-BIH [47] .

he database contains 197 sleep recordings, and each recording

ontains EEG, EOG, EMG signals and event markers. The 153 SC 

∗

les (SC = Sleep Cassette) were obtained in a 1987–1991 study

f age effects on sleep in healthy Caucasians aged 25–101, and

he 44 ST ∗ files (ST = Sleep Telemetry) were obtained in a 1994

tudy of temazepam effects on sleep in 22 Caucasian males and fe-

ales, subjects had mild difficulty falling asleep. The information

f recorded data is shown in Table 1 . 

In this study, 30 recordings were randomly selected from the

ealthy people’s recordings for automatic sleep staging. All these

riginal recordings were divided into 30 second epochs, which

ere labeled by experienced doctors according to R&K rules. This

nnotation serves as a reference standard of the automatic sleep

taging. A total of 82,556 epochs labeled by these experts are con-

ained in the 30 recordings, and the numbers of epochs belonging

o each sleep stage is listed in Table 2 . 

In this paper, the experimental data set is divided into train-

ng set, verification set and test set according to the proportion of

:2:1. 

.2. Methods 

In this section, an algorithm based on multi-channel signal

dding and multi-feature screening for sleep staging is proposed.

he main idea is to make full use of the effective information in

ulti-channel original signals and systematically screen the domi-

ant features of sleep stages to improve the performance of sleep

taging. The flowchart of the algorithm is shown in Fig. 2 . 
In this flowchart, firstly, the white noises in the original signal

re reduced and the effective sleep stage information in the multi-

hannel signal is enhanced by preprocessing. Then, some time-

omain features, frequency-domain features and non-linear fea-

ures are screened by a ReliefF algorithm and the Pearson corre-

ation analysis. Finally, a support vector machine (SVM) classifier is

pplied for sleep staging. 

.2.1. Signal preprocessing 

Wavelet transform-based filtering Wavelet transform-based filter- 

ng can be used to effectively reduce noise interference in the

riginal signal. In clinical sleep staging, only the frequency spec-

rum of EEG signals between 0.5Hz and 30Hz is usually concerned.

o reduce the noise that contributes to the frequency sub-bands

ess than 0.5Hz and more than 30Hz, Daubechies (db4) wavelet

s used to decompose the original EEG signal in seven layers, and

he wavelet coefficients in the frequency sub-bands less than 0.5Hz

nd more than 32Hz are set to zero. Subsequently, the decomposed

ignal is reconstructed by inverse transform using db4 wavelet.

ere, the Mallat algorithm is used for fast wavelet decomposition.
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Fig. 3. Wavelet decomposition of the first data epoch from the SC4001E0-PSG.edf recording. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Original signals used in different literature for sleep staging. 

Order Adding methods Signal type References 

1 Single signal EEG [10,11,13,17,18,21,23,24] [25] 

[28,33,34,36,37,39–41] [46] 

Resp [19] 

ECG [14] 

2 Multiple signals EEG + EOG+EMG [16,26,29,31,42,43] 

EEG + EMG [27] 

EEG + ECG [20,44] 

EEG + EOG [45] 

ECG + Resp [19,36] 
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The Mallat wavelet decomposition algorithm is a common fast cal-

culation algorithm using multiresolution analysis [48] . This algo-

rithm contains the H and G wavelet decomposition filters, and the

equations for wavelet decomposition are shown in Eqs. 1 –3 

A 0 [ x (n )] = x (n ) , (1)

A i [ x (n )] = 

∑ 

k 

H(2 n − k ) A i −1 [ x (n )] , (2)

D i [ x (n )] = 

∑ 

k 

G (2 n − k ) D i −1 [ x (n )] , (3)

where x ( n ) is the original signal and i is the decomposition level.

H and G are the wavelet decomposition filters. A i is the wavelet

approximate coefficient at the i layer (low frequency), and D i is

the wavelet detail coefficients at the i layer (high frequency). At

each scale of 2 i , the signal is decomposed into the wavelet ap-

proximate coefficients A i , and the wavelet detailed coefficients D i .

For the i -level wavelet signal decomposition, the frequency ranges

of node A i and D i are 0 ∼ ( f s / 2 
i +1 ) and ( f s / 2 

i +1 ) ∼ ( f s / 2 
i ) respec-

tively, where f s is the sampling frequency. The effect of wavelet

decomposition of an EEG signal is shown in Fig. 3 . 

Fig. 4 (a) shows the comparison between the original EEG signal

and the reconstructed EEG signal after wavelet filtering. Figure 4(b)

gives the comparison of amplitude spectrum between the original

signal and the reconstructed signal. As can be seen from Fig. 4 ,

the high frequency part of the reconstructed signal above 32Hz is

effectively weakened. 

Original signal adding Difference of signals would impact the

performance of automatic sleep staging. There are different studies
ocus on sleep staging using different signals, which mainly include

EG, EOG, EMG, ECG and Resp. signal [10–46] . See Table 3 . 

In Table 3 , EEG signal is the most frequently used signal, and

ost of the studies use an independent EEG signal but differ-

nt EEG leads for sleep staging, including Fpz-Cz [12,37] , Fp1-C3

13] , Fp1-A2 [23] , F3-A2 [21] , F4-A1 [21] , C3-A2 [11,21,28,33] , C4-

1 [17,18,21,25,36] , Cz-A1 [23] , Pz-Oz [33,39,40] , O1-A2 [21,23] , O2-

1 [21] . These studies have found that different single EEG lead sig-

als have different effects on sleep staging. Radha et al. [21] found

hat the prefrontal leaf lead (F3-A2) is more conducive to sleep

taging. Diykh et al. [33] found that the use of a Pz-Oz lead in

he apical and occipital regions would be better for sleep staging,

hich is supported by another research of Zhu et al. [22] . Accord-

ng to the AASM sleep staging criteria [9] , central area C is con-

idered better for determining sleep staging. Although the results
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Fig. 4. Comparison of the original signal and the filtered signal (a) Comparison of 

the original EEG and reconstructed EEG waveforms (b) Comparison of the amplitude 

spectrum between the original EEG and the reconstructed EEG. 
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f these studies are different, they have concluded that EEG lead

ocations have an impact on performance of sleep staging. 

How to choose and combine different signals for better sleep

taging? In this paper, the adding of different channel signals is

sed to enhance the effective information in the original signals.

ignal-adding techniques are often used to reduce white noise and

nhance the effective information of signals in biological signal

tudies. For example, since the visual evoked potential (VEP) is

ery weak, the effective information of VEP directly recorded is

asily overwhelmed by noise and cannot be distinguished. There-

ore, to observe the VEP, the signal must be synchronously added

ultiple times ( Fig. 5 ). As shown in Fig. 5 (a), the effective informa-

ion of the VEP without adding is not obvious. However, Fig. 5 (b)

hows that after 100 times adding the VEP data, the VEP charac-

eristics become evident. 
According to random signal theory, signal addition can effec-

ively reduce white noise. This is because the white noise of dif-

erent signals are random, and thus they are offset by each other

fter signal addition. Suppose that there is a pure random signal

 ( n ),with N observation samples. As N → ∞ , the sum of the obser-

ation samples tends to 0, as expressed in Eq. 4 
 

x (n ) = 0 n = 0 , 1 , 2 , . . . , N, N → ∞ . (4)

Suppose there are M pure random signal sequences x m 

( n ), As

 → ∞ , the sum of each corresponding point of all signal se-

uences is 0, as expressed in Eq. 5 
 

x m 

(n ) = 0 m = 0 , 1 , 2 , . . . , M, M → ∞ . (5)

According to Eqs. 4 and 5 , signal addition can weaken the white

oise interference. In addition, the signal superposition can en-

ance synchronous effective information in signals. Thus, a method

or adding original signals, which uses characteristics of different

leeping stages included in multichannel signals for sleep staging,

s proposed in this paper. The Eq. (6) for signal addition can be

xpressed as 

x (i ) = 

1 

N 

N ∑ 

k =1 

x k (i ) , (6)

here N is the number of added signals. Ax ( i ) is the average value

f N different channel signals, and x k ( i ) are the original signals

rom different channels including the EEG, EOG and EMG signals.

n principle, all three types of signals (EEG, EOG, and EMG) contain

ffective sleeping stage information, which enables the three types

f signals to combine with each other for sleep staging. 

Fig. 6 shows the waveform of a signal epoch with two added

EG signals. The added signal reduces the white noise in the orig-

nal signal while retaining the original EEG signal characteristics. 

Fig. 7 shows the superposition of different types of signals.

ig. 7 (a) shows the addition of the EEG signal and the EOG sig-

al. In Fig. 7 (a), noise is weakened on the added signal, but the

aveform characteristics of the EEG signal are retained. In addi-

ion, some waveform characteristics of the EOG are fused in the

dded signal. Fig. 7 (b) shows the superposition of the EEG signal,

OG signal and EMG signal, which is similar to that showed in

ig. 7 (a). Since the sampling rate of the EMG signal in the original

ata is too low (1 Hz), there exists a loss of information. This leads

o little influence of the added EMG signal on the performance. 

.2.2. Feature extraction and screening 

Feature extraction is important for sleep staging. There are a

arge number of sleep staging features in different studies, in-

luding the time-domain features., frequency-domain features and

onlinear features. The abilities of these features for sleep staging

re different, and to improve the quality and efficiency of sleep

taging, it is necessary to screen out irrelevant and redundant fea-

ures. The flow chart for feature screening is shown in Fig. 8 . 

Extraction of initial features 

The types and numbers of sleep stage features used in different

iteratures often vary greatly, ranging from using only non-linear

eatures to using time-domain features, frequency-domain features

nd non-linear features; from using only a few features [25] to us-

ng hundreds of features [17] , there are few systematic methods to

hoose the types and quantities of sleep stage features in litera-

ures. 

In order to systematically select the type and quantity of sleep

taging features, 62 features related to sleep staging are prelimi-

arily selected from the three types of feature domains mentioned

n the literature, namely time-domain features, frequency-domain

eatures and nonlinear features, as shown in Table 4 . 
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Fig. 5. Comparison of the VEP before and after adding signals 100 times. (a) The EEG signal without adding. (b) The visual evoked potential with adding signals 100 times. 

Table 4 

Initial features extracted from signals according to the literature. 

Order Feature Features References 

class 

1 Time Minimum, Maximum, Mean, Mode, Total Distance, Standard, [2,14,21] 

Domain Deviation, Variance, Coefficient of Variation, Skewness, [33,34,36] 

Kurtosis, First Quartile, Second Quartile, Third Quartile [39,40] 

2 Frequency Spectral Edge Frequency (SEF), SEF50(8-16Hz), [10,21,23] 

Domain SEF95(8-16Hz),SEF95-SEF50(8-16Hz),SEF50(0.5-50Hz), [24,25,27] 

SEF95(0.5-50Hz),SEF95-SEF50(0.5-50Hz), Relative Spectral [31,49,50] 

Powers of δ, α, β , γ , σ , and θRhythms, Means of Absolute 

Values of Coefficients in D2 Wavelet (16-32HZ), D3 Wavelet 

(8-16HZ),D4 Wavelet (4-8HZ) and A4 Wavelet (2-4HZ), 

Coefficient Energy Mean in D2 Wavelet (16-32HZ), D3 Wavelet 

(8-16HZ),D4 Wavelet (4-8HZ) and A4 Wavelet (2-4HZ), 

Standard deviation of coefficient in D2 Wavelet (16-32HZ),D3 

Wavelet (8-16HZ), D4 Wavelet (4-8HZ) and A4 Wavelet 

(2-4HZ), Mean of Absolute Value of Wavelet Coefficients in D2 

/D1, D3/D2, D4/D3 and A4/D4, Relative Energy Ratio in 

δ/ θ , δ/ α, δ/ β/, δ/ γ , θ / α, θ / σ , θ / β , θ / γ , α/ σ , α/ β , α/ γ , δ/ σ , 

σ / β , σ / γ and β/ γ

3 Nonlinear Zero Crossing Rate, Sample Entropy, Permutation Entropy, [10,11,13] 

Approximate Entropy, Spectral Entropy, Fractal Dimension [16,21,25] 

[36] 
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The 62 relevant features show the characteristics of sleep stag-

ing from different aspects. For example, entropy is used to indi-

cate the signal complexity and becomes larger as the EEG sig-

nal becomes more complex. In the awake stage, the EEG sig-

nal is complex, and thus its entropy is high. In contrast, in the

deep sleep stage, the EEG signal is simple, and thus its entropy is

low. 

Screening features with high quality using a ReliefF algorithm 

The ReliefF algorithm is generally used to evaluate the relevance

of features to labels [51] . Highly relevant features can commend-

ably reflect the discrimination of samples from different classes

and the similarity of samples from the same class. Quantitatively,
he ReliefF algorithm outputs a weight to indicate the correspond-

ng relevance of each input feature. The pseudo code of the ReliefF

lgorithm is showed in Algorithm 1 . 

In Algorithm 1 , W [ A ] is the weight vector corresponding to fea-

ure. The higher the weight, the better the corresponding feature.

he number of iterations is denoted by m ; R i is a sample randomly

elected from the sample spaces I 1 , I 2 , ���, I n , and C represents the

ample classes. Class ( R i ) is the label of R i . H is the set of k nearest

amples (hits) sharing the same classes with R i , and M ( C ) is the

et of k nearest samples (misses) having classes C that are differ-

nt from that of R i . The number of user-defined nearest neighbors

s denoted by k . The sum of the distances between R i and H is
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Fig. 6. Comparison of the single-channel signals (EEG (Fpz-Cz), EEG (Pz-Oz)) and 

their adding signals. 

Algorithm 1 Pseudo code of the ReliefF algorithm. 

Input : a vector of attribute values and the label of each training 

sample 

Output : the weight vector W [ A ] estimating the quality of each 

feature contained in set A . 

1:Set all weights W [ A ] : = 0. 

2: for i :=1 to m do begin 

3: randomly select an instance R i . 

4: find the k nearest hits H j . 

5: for each class C � = class (R i ) do 

6: from class C find the k nearest misses M j (C) . 

7: for A = 1 to a do 

8: W [ A ] = W [ A ] − h 1 + h 2 . 

9: end 

d  

m  

h  

Fig. 8. The flow chart of feature screening for sleep staging. 
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enoted by h 1, and the smaller h 1, the better the algorithm perfor-

ance. The sum of the distances between R i and M is denoted by

 2, and the larger h 2, the better the algorithm performance. The
ig. 7. Comparison of the single-channel signals (EEG (Fpz-Cz), EOG and EMG) and the mu

ignals. (b) EEG (Fpz-Cz), EOG, EMG signals and their superposition signals. 
quation for calculating h 1 and h 2 is shown in Eqs. 7 –9 

 1 = 

k ∑ 

j=1 

di f f (A, R i , H j ) 

m × k 
, (7) 

 2 = 

∑ 

c � = class (R i ) 
[ P(C) 

1 −P(class (R i )) 
×∑ k 

j=1 di f f (A, R i , M j (C))] / (m × k ) , 
(8) 

i f f (A, I 1 , I 2 ) = 

| v alue (A, I 1 ) − v alue (A, I 2 ) | 
max (A ) − min (A ) 

. (9)

In Eqs. 7 –9 , P ( C ) is the probability that a class C sample occu-

ies the entire lost class sample, and 1 − P (class (R i )) is the sum of

robabilities of non- R i samples; diff( A, I 1 , I 2 ) is the difference func-

ion determined by the equation in Eq. 9 for calculating the dis-

ance between samples I 1 and I 2 based on feature vector A; value ( A,

 ) is the value of feature A under sample instance I . 

The weights of 62 relevant features that are chosen based on

ther studies are calculated by a ReliefF algorithm, namely that

he larger the ReliefF weight, the higher the correlation between

he feature and sleep stages. Table 5 lists the first 30 features with
ltichannel adding signals. (a) EEG (Fpz-Cz) and EOG signals and their superposition 
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Table 5 

The first 30 features with their ReliefF weights. 

Order Feature Name ReliefF Weight 

1 Permutation entropy 0.085516 

2 Zero-crossing rate 0.080254 

3 Fractal dimension 0.057646 

4 Ratios of average absolute values of the wavelet coefficients 0.056529 

between adjacent sub-bands: D3/D2 

5 SEF50 (8-16Hz) 0.055258 

6 Minimum value 0.05264 

7 Relative energy of δ rhythm 0.050256 

8 Variation 0.048546 

9 Standard deviation 0.048387 

10 Mean 0.047813 

11 SEF95 (8-16Hz) 0.045453 

12 Range 0.044457 

13 Third quartile 0.044344 

14 Second quartile 0.04257 

15 Relative energy of β rhythm 0.041595 

16 SEF95-SEF50 (8-16Hz) 0.038316 

17 Ratios of average absolute values of the wavelet coefficients 0.03777 

between adjacent sub-bands:D4/D3 

18 First quartile 0.035883 

19 Kurtosis 0.035539 

20 Skewness 0.035482 

21 Maximum value 0.035071 

22 Relative energy of γ rhythm 0.03312 

23 Relative energy of θ rhythm 0.030555 

24 Ratios of average absolute values of the wavelet coefficients 0.029529 

between adjacent sub-bands:A4 / D4 

25 Energy ratio β/ γ 0.028282 

26 Energy ratio θ / α 0.027354 

27 Variance 0.024444 

28 Energy ratio σ / γ 0.023688 

29 Energy ratio θ / β 0.021878 

30 Energy ratio θ / σ 0.021417 

Fig. 9. Overall accuracy of sleep staging versus number of features selected by Re- 

liefF. 
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their ReliefF weights. The ReliefF weights of the features after the

30th are very small, indicating that these features would have little

positive impact on sleep staging. 

There exists a certain relationship between the number of

screened features and the performance of sleep staging. To investi-

gate the relationship, we plot the overall accuracy of sleep staging

versus the number of features from 1 to 30 screened by the Reli-

efF algorithm, as shown in Fig. 9 . Fig. 9 show that different overall

accuracy is obtained while using different number of screened fea-
ures. In addition, when the number of classified features is more

han 14, the overall accuracy of sleep staging tends to be stable,

nd adding the number of features has little influence on the ac-

uracy of sleep staging. Therefore, the first 14 features obtained by

he ReliefF algorithm are screened. 

Elimination of redundant features using Pearson correlation coeffi-

ients 

Although the above ReliefF algorithm can screen relevant fea-

ures, it cannot screen redundant features. When there is a

trong correlation between these features, redundancy is gener-

ted. Deleting redundant features is valuable for improving the ef-

ciency of sleep staging. 

In this paper, the correlation between features is calculated by

he Pearson correlation coefficients. The formula for calculating the

earson correlation coefficients is shown in Eq. 10 

(X, Y ) = 

E[(X − μX )(Y − μY )] 

σX × σY 

. (10)

In Eq. (10) , μ is the average value and σ is the standard de-

iation. E is the mathematical expectation. If a Pearson correlation

oefficient of a feature pair whose absolute value is greater than or

qual to the threshold 0.95, the feature pair is considered highly

elevant, and the features whose ReliefF weights are relatively low

an be removed. 

The Pearson correlation coefficients between the 14 features are

alculated by Eq. 10 . The feature number in Table 6 is the same as

he sorting result number in Table 5 . Table 6 shows that only two

earson correlation coefficients of the feature pairs (i) standard

eviation and variation (ii) mean and second quartile are greater

han or equal to the threshold 0.95. Therefore, two redundant fea-

ures, the standard deviation and the second quartile whose ReliefF

eights are relatively low, are removed from the 14 features. 
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Table 6 

Pearson correlation coefficients between the first 14 features. 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1.00 0.67 0.37 -0.94 0.41 -0.36 -0.25 0.18 0.18 -0.03 0.62 0.31 0.03 0.00 

2 0.67 1.00 0.79 -0.63 0.51 -0.07 -0.72 -0.12 -0.12 -0.01 0.41 0.03 -0.06 0.01 

3 0.37 0.79 1.00 -0.28 0.36 0.21 -0.83 -0.34 -0.34 0.01 0.15 -0.26 -0.11 0.02 

4 -0.94 -0.63 -0.28 1.00 -0.50 0.42 0.14 -0.26 -0.26 0.03 -0.76 -0.37 -0.06 0.01 

5 0.41 0.51 0.36 -0.50 1.00 -0.15 -0.23 0.07 0.07 0.06 0.69 0.16 0.08 0.07 

6 -0.36 -0.07 0.21 0.42 -0.15 1.00 -0.23 -0.85 -0.83 0.27 -0.33 -0.92 -0.10 0.25 

7 -0.25 -0.72 -0.83 0.14 -0.23 -0.23 1.00 0.32 0.32 0.00 0.01 0.26 0.11 -0.01 

8 0.18 -0.12 -0.34 -0.26 0.07 -0.85 0.32 1.00 1.00 -0.03 0.23 0.91 0.41 -0.01 

9 0.18 -0.12 -0.34 -0.26 0.07 -0.83 0.32 1.00 1.00 0.03 0.23 0.91 0.46 0.05 

10 -0.03 -0.01 0.01 0.03 0.06 0.27 0.00 -0.03 0.03 1.00 0.01 0.02 0.89 1.00 

11 0.62 0.41 0.15 -0.76 0.69 -0.33 0.01 0.23 0.23 0.01 1.00 0.32 0.10 0.03 

12 0.31 0.03 -0.26 -0.37 0.16 -0.92 0.26 0.91 0.91 0.02 0.32 1.00 0.40 0.05 

13 0.03 -0.06 -0.11 -0.06 0.08 -0.10 0.11 0.41 0.46 0.89 0.10 0.40 1.00 0.90 

14 0.00 0.01 0.02 0.01 0.07 0.25 -0.01 -0.01 0.05 1.00 0.03 0.05 0.90 1.00 
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.2.3. SVM for sleep staging 

In this paper, a support vector machine (SVM) classifier is

sed to classify sleep stages. An SVM can be transformed into a

uadratic optimization problem. Therefore, the global optimal so-

ution can be theoretically obtained. In addition, the objective func-

ion of an SVM is optimized according to the principle of structural

isk minimization; thus, an SVM has comparatively good general-

zation ability. 

In this paper, SVM is used to construct an one-vs-one multi-

lass classifier to classify six sleep states [52,53] . The equations

ith the used SVM are expresses as Eqs. 11 to 13 . Eq. 11 expresses

he maximum objective function of SVM 

ax α
∑ n 

i =1 αi − 1 
2 

∑ n 
i, j=1 αi α j y i y j κ(x i , x j ) 

 . t . C ≥ αi ≥ 0 , i = 1 , 2 , . . . , n ∑ n 
i =1 αi y i = 0 . 

(11) 

In Eq. 11 , x i and x j refer to the eigenvalues of the i th and the

 th samples, respectively, y i and y j are labels for the i th and the

 th samples, respectively. αi and αj are the parameters to be opti-

ized, and C is the penalty coefficient. n is the number of training

amples. The kernel function κ( x i , x j ) is chosen as a radial kernel

unction, which can be expressed as 

(x i , x j ) = exp 

(
−|| x i − x j || 2 

2 σ 2 

)
(12)

here σ 2 is the nuclear parameter, which can control the width of

he radial kernel function. The classification decision function can

e expressed as 

f (x ) = sign 

[ 

n ∑ 

i =1 

α∗
i y i κ(x, x i ) + b ∗

] 

(13) 

 

∗ = y j −
n ∑ 

i =1 

α∗
i y i κ(x i , x j ) (14)

here α∗
i 

is the optimal solution of αi . 

In order to improve the classification performance of SVM, the

raining set and verification set are used in the training process

o optimize the hyper-parameters ( C, σ 2 ) of SVM by the cross-

alidation. 

. Results 

.1. Performance of sleep staging using a single selected feature 

To verify the effectiveness of these selected features for sleep

taging, we independently investigate each selected feature. Con-

retely, the performance of sleep staging will be investigated based
n a single feature using the same 30 subjects and a fixed SVM

lassifier.We first plot the boxplots of each selected feature on six

leep stages, as shown in Fig. 10 . 

As shown in Fig. 10 (a), the difference among the sleep stages

s significant when the Permutation entropy feature is used, indi-

ating that this feature has a good ability to classify sleep stages.

n contrast, Figs. 10 (i)–(l) show that the features whose ReliefF

eights are low is not as well as the features with high weights.

able 7 lists the overall accuracies and Kappa coefficients of the

nal 12 selected features, where the Kappa coefficient is used to

easure the consistency of the classification. 

As shown in Table 7 , although the 12 selected features are all

ffective features, the overall accuracy and Kappa coefficient of

leep staging using a single feature are relatively low, which are

ot more than 80.76% and 56%, respectively. This is because a sin-

le feature could discriminate a part of sleep stages, such as N1,

2, N3 and N4, but hard to discriminate the rest of the sleep

tages, such as REM and N4, which may result in a poor overall

erformance. Although using a single feature may suffer this diffi-

ulty, but their can complement each other while using them to-

ether for sleep staging. Therefore, to improve the overall perfor-

ance, it is necessary to use multi-features for sleep staging. 

.2. Performance of sleep staging based on the proposed signal 

dding methods 

In this section, we compare the performance of sleep staging

sing the single EEG, EMG, and EOG signals and different multi-

hannel superposition signals. The 10-fold cross-validation is used

o predict the labels of test samples, and the average of ten pre-

icted results is used as the final results. The performances of

he six-state sleep staging using different single signals and multi-

hannel superposition signals are shown in Table 8 and Fig. 11 . In

able 8 , MSen, MSpe, MF1 and MAUC denote the macro averages

f sensitivity, specificity, F1-score and AUC of the six sleep stages,

espectively. 

As shown in Table 8 and Fig. 11 , when using different single-

hannel signals for sleep staging, it is clear that the best classifica-

ion performance is achieved by using the EEG signals, followed by

hat using the EOG signal. When using the EMG signal, the classifi-

ation performance achieved is the worst, which may be due to the

nformation loss caused by the low 1Hz sampling rate of the EMG

ignal in the original sleep data. When using different multichan-

el superposition signals for sleep staging, using the EEG1+EEG2

ignal achieves the highest overall accuracy 92.34% and the high-

st Kappa coefficient 84.07%. When the EEG signal is added to the

OG and EMG heterogeneous signals, the classification accuracy is

ot significantly improved, and the Kappa coefficient is reduced,

ndicating that the classification performance becomes worse. It is



10 W. Huang, B. Guo and Y. Shen et al. / Computer Methods and Programs in Biomedicine 187 (2020) 105253 

Fig. 10. Samples of each selected feature distributed on the six sleep stages. The selected feature include (a) Permutation entropy, (b)Zero-crossing rate (c) Fractal dimension 

(8-16Hz), (d) D3/D2, (e) SEF50 (8-16Hz), (f) Minimum value, (g) Relative energy of δ rhythm, (h) Variation, (i) Mean, (j) SEF95 (8-16Hz), (k) Range and (l) Third quartile. 
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Table 7 

Overall accuracies and Kappa coefficients of sleep staging using single selected features. 

Order Feature Name Overall Accuracy(%) Kappa Coefficient(%) 

1 Permutation entropy 80.76 56.00 

2 Zero-crossing rate 70.37 8.21 

3 Fractal dimension 68.68 0 

4 Ratios of average absolute values 

of the wavelet coefficients 79.63 54.68 

between adjacent sub-bands:D3/D2 

5 SEF50 (8-16Hz) 65.91 0 

6 Minimum value 74.71 38.81 

7 Relative energy of δ rhythm 69.73 0 

8 Variation 72.77 32.88 

9 Mean 68.46 0 

10 SEF95 (8-16Hz) 72.90 34.75 

11 Range 74.39 37.56 

12 Third quartile 68.70 0 

Table 8 

The performance of six-state sleep staging based on different single-channel signals and multichannel 

superposition signals. 

No. Analytical Signal Overall Kappa(%) MSen(%) MSpe(%) MF1(%) MAUC 

Accuracy(%) 

1 EEG1(Fpz-Cz) 92.04 83.32 71.38 97.91 72.77 0.96 

2 EEG2 (Pz-Oz) 91.63 82.54 68.94 97.95 70.10 0.97 

3 EOG 90.48 80.08 67.17 97.53 68.84 0.96 

4 EMG 77.19 45.93 28.74 91.47 28.85 0.73 

5 EEG1 + EEG2 92.34 84.07 72.48 98.21 73.58 0.97 

6 EEG1 + EMG 92.24 83.82 72.68 98.05 73.93 0.97 

7 EEG1 + EOG 92.10 83.52 72.50 98.01 73.80 0.97 

8 EEG2 + EMG 91.65 82.59 68.89 97.98 70.01 0.96 

9 EEG2 + EOG 91.88 83.07 70.32 98.05 71.67 0.97 

10 EOG + EMG 90.28 79.58 65.21 97.43 67.20 0.95 

11 EEG1 + EEG2+EOG 92.17 83.70 71.54 98.15 72.83 0.97 

12 EEG1 + EEG2+EMG 92.09 83.56 71.51 98.16 72.52 0.97 

13 EEG1 + EOG+EMG 92.12 83.56 72.19 98.00 73.56 0.97 

14 EEG2 + EOG+EMG 91.94 83.08 68.37 97.94 70.54 0.95 

15 EEG1 + EEG2+ 91.96 83.25 70.76 98.07 72.01 0.97 

EOG + EMG 

Fig. 11. The overall accuracies and Kappa coefficients of six-state sleep staging are compared between different single-channel signals and multichannel superposition signals. 

(a) Overall Accuracy comparison; (b) Kappa coefficient comparison. 
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robably because there exists difference of phases between these

eterogeneous signals that results in the weakening of the effec-

ive information when they are superposed, thereby reducing the

verall classification performance. 

Fig. 12 compares overall accuracies of sleep staging with dif-

erent numbers of classes based on different single-channel sig-

als and multichannel superposition signals. As can be seen

rom Fig. 12 , the curves of overall accuracies with different
umbers of classes present the same trend for all the signals.

n addition, by comparing the overall accuracies using differ-

nt single-channel signals and multichannel superposition sig-

als for sleep staging, we found that using the EEG1+ EEG2

ignal achieves the best performance of sleep staging from 2

alsses to 6 classes. Tables 9–13 present the confusion matrix ob-

ained when the EEG1+EEG2 signal is used for 2–6 states sleep

taging. 
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Fig. 12. The overall accuracies of 2–6 classes sleep staging are compared between 

different single-channel signals and multichannel superposition signals. 

Table 9 

Confusion matrix of EEG1+EEG2 for 2-state sleep stag- 

ing. 

True/Predicted AWA N1-N4,REM Sen(%) 

AWA 56783 546 99.05 

N1-N4,REM 875 24352 96.53 

Table 10 

Confusion matrix of EEG1+EEG2 for 3-state sleep staging. 

True/Predicted AWA N1-N4 REM Sen(%) 

AWA 56783 404 142 99.05 

N1-N4 675 18047 1203 90.57 

REM 200 1092 4010 75.63 

Table 11 

Confusion matrix of EEG1+EEG2 for 4-state sleep staging. 

True/Predicted AWA N1-N2 N3-N4 REM Sen(%) 

AWA 56783 395 9 142 99.05 

N1-N2 616 13972 433 1201 86.13 

N3-N4 59 573 3069 2 82.88 

REM 200 1088 4 4010 75.63 

Table 12 

Confusion matrix of EEG1+EEG2 for 5-state sleep staging. 

True/Predicted AWA N1 N2 N3-N4 REM Sen(%) 

AWA 56783 264 131 9 142 99.05 

N1 433 981 638 3 578 37.26 

N2 183 357 11996 430 623 88.28 

N3-N4 59 3 570 3069 2 82.88 

REM 200 367 721 4 4010 75.63 

Table 13 

Confusion matrix of EEG1+EEG2 for 6-state sleep staging. 

True/Predicted AWA N1 N2 N3 N4 REM Sen(%) 

AWA 56783 264 131 9 0 142 99.05 

N1 433 981 638 3 0 578 37.26 

N2 183 357 11996 399 31 623 88.28 

N3 29 3 536 1173 284 1 57.90 

N4 30 0 34 325 1287 1 76.74 

REM 200 367 721 3 1 4010 75.63 
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.3. Hypnogram 

Hypnogram is a graphical representation of the final outcome

f sleep staging. Fig. 13 shows the hypnograms of four subjects

rom the Sleep-EDF Expanded database of MIT-BIH, in which the

esults obtained by using the proposed algorithm (red curve) and

hose annotated by these experts (blue curve) are compared. The

lack small circles on the red curves represent the samples that are

orrectly predicted by the proposed algorithm, and the green solid

ircles on the red curves represent the samples that are wrongly

redicted. 

As can be seen from Fig. 13 , the hypnogram annotated by ex-

erts in each sleep data contains 3–5 complete sleep cycles. Except

or the sleep data in Fig. 13 (b) that only contains few N4 stage,

he first two sleep cycles in the rest of sleep data contain more

4 stage and few deep sleep stages contained in the subsequent

leep cycle(s), which is consistent with the normal hypnogram. The

ypnograms plotted by the proposed algorithm are almost consis-

ent with the expert annotation, except for less samples that are

redicted as the wrong sleep stages. Figs. 13 (a)to –(d) show that

o samples are wrongly predicted as N1 stage, and very few sam-

les are wrongly predicted as N4 stage. 

Generally, the above results show that the best performance of

leep staging can be obtained by adding two EEG signals. Com-

ared with using a single-channel EEG signal for sleep staging,

sing multi-channel EEG signals can achieve better performance

f sleep staging and backup each other between signals, but this

ethod may reduce computational efficiency and cause inconve-

ience, especially in portable sleep staging devices. In contrast, us-

ng single-channel EEG signals to classify sleep stages would be

ore convenient. 

. Discussion 

There are many studies on sleep staging which usually focus

n the classification methods [10–46] . Some studies adopted the

raditional time-frequency analysis method for sleep staging [17–

8] , and some other studies adopted the deep learning neural net-

ork for sleep staging [41–46,54–56] . Table 14 compares the clas-

ification accuracies obtained by the proposed method and some

ethods of sleep staging in the last 5 years. As can be seen from

able 14 , the overall accuracies of 2–6 state sleep staging obtained

y using the proposed method are next to and very close to those

y Hassan et al. [35] . However, it should be noticed that the met-

ics used in these methods are not exactly the same. For exam-

le, we used the overall accuracy as the metric to assess the per-

ormance of sleep staging, but Diykh et al. [33] and Hassan team

40] used the average value of accuracies of all classes as the met-

ic. 

The study on the enhancement of the original data itself plays

n important role in the improvement of sleep staging. This pa-

er attempts to improve the overall accuracy of sleep staging from

he very beginning by using the original signal adding method.

hus study found that adding the homogeneous signals such as

EG+EEG, could improve the performance of sleep staging com-

ared with that using a single-channel signal. However, adding

he heterogeneous signals, such as EEG+EOG or EEG+EOG+EMG,

id not improve the performance of sleep staging. This may be

ue to the loss of effective information of added signals caused

y the phase differences of heterogeneous signals. Currently, we

an only study two EEG signals that are provided in the Sleep-EDF

xpanded database. But in the future, we may be able to study

he signal enhancement by adding different leads of EEG signals if

ore EEG data are provided. In addition, because the class imbal-

nce exists in the sleep data, how to balance them in preprocessing

s also a valuable research topic. 
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Fig. 13. Comparison of hypnograms ploted by the proposed algorithm and marked by experts. (a) Data SC4012E0-PSG (b) Data SC4061E0-PSG (c) Data SC4112E0-PSG (d) 

SC4031E0-PSG. 

Table 14 

Comparison of accuracy (%) between the proposed method and the latest methods. 

Methods Channels 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 

Liu et al. [30] EEGs – – – 80.47 –

Chen et al. [31] EEGs, EOGs, EMG – – – 76.00 –

Diykh et al. [33] EEG – – – – 95.93 

Stochholm et al. [34] EEG 94.64 – – 82 –

Hassan et al. [35] EEG 97.73 93.55 91.2 90.11 88.62 

Chriskos et al. [36] EEGs – – 89.07 – –

Sertbas et al. [37] EEG – – – 86.66 –

Beattie et al. [38] 3D accelerometer, PPG – – 69 – –

Hassan et al. [39] EEG 98.15 94.23 92.66 83.49 88.07 

Hassan et al. [40] EEG 99.75 96.55 94.36 93.69 92.43 

Supratak et al. [41] EEG – – – 82.00 –

Langkvist et al. [42] EEGs, EOGs, EMG – – – 77.70 –

Yuan et al. [43] EEGs, EOGs, EMG, et al. – – – 73.28 –

Tripathy et al. [44] EEG, ECG 85.51 – – 73.70 –

Sokolovsky et al. [45] EEGs, EOG – – – 81.00 –

Mousavi et al. [46] EEG – – – 84.26 –

Michielli et al. [54] EEG – – 90.8 86.74 –

Sors et al. [55] EEG – – – 87 –

Yildirim et al. [56] EEG + EOG 98.06 94.64 92.36 91.22 91.00 

Proposed Method EEG1 + EEG2 98.28 95.50 94.28 93.08 92.34 

 

t  

e  

s  

s  

f  

o  

t  

t  

t  
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a  
Feature selection is another important and worthwhile factor

hat affects the performance of sleep staging. In this paper, 62 rel-

vant features were studied, among which the features for sleep

taging were screened by using a ReliefF algorithm and the Pear-

on correlation coefficient. In this study, we found that different

eatures extracted from the original data have different influence
n sleep staging. Due to the complexity of EEG signals, the ex-

racted features and the classification methods used are related

o the original data, which is why it is difficult to unify the fea-

ures and classification methods. Therefore, finding more general-

zed features for sleep staging based on different original data is

nother direction that needs to be studied. In addition, how to
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screen the optimal features with an appropriate feature number to

improve the performance of sleep staging is another direction that

need to be studied in the future. Finally, how to construct new and

effective f eatures for sleep staging, such as the features based on

graph theory, is also a direction that needs to be studied. 

5. Conclusion 

In this paper, we proposed a multi-channel signal adding

method for sleep staging. The results showed that a good per-

formance was obtained while using the proposed method, and in

six-state sleep staging, the highest overall classification accuracy

of 92.34% was obtained based on the superposition of two EEG

signals. Using the multi-channel signal superposition method for

sleep staging has the theoretical and engineering significance. The-

oretically, the adding signals can reduce the white noise interfer-

ence and enhance the effective information in signals. In engineer-

ing, superposition signals can be backed up each other automati-

cally, which lays a foundation for automatic sleep staging analysis.

In addition, a ReliefF algorithm was used to systematically screen

the extracted features for sleep staging. The results showed that,

when the number of features was selected to a certain threshold,

increasing the number of features has limited improvement on the

overall accuracy. Therefore, selecting appropriate types and num-

ber of effective features could improve the accuracy and efficiency

of algorithms for sleep staging. 
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