
OODEEL: A Holistic Library for Unified Post-Hoc
OOD Detection Research And Application

Paul Novello∗ Yannick Prudent∗ Corentin Friedrich Joseba Dalmau

IRT Saint Exupéry (DEEL Team), Artificial and Natural Intelligence Toulouse Institute (ANITI)
Toulouse, France. ∗ Equal contributors

Abstract

We present OODEEL, an open-source Post-hoc Out-of-Distribution (OOD) detec-1

tion library. OODEEL is designed as a highly customizable tool that supports a2

wide range of OOD detectors and can be applied to any model classifier architec-3

tures from both PyTorch and TensorFlow. It implements unified abstractions so4

that every building block, such as activation shaping and layer-wise aggregation,5

can be used seamlessly by any detector. It also provides a user-friendly API that6

allows for easy integration of new OOD detectors, which can then benefit from all7

these building blocks, and native compatibility with most TensorFlow and PyTorch8

models. OODEEL seamlessly handles standard OOD evaluation settings for bench-9

marking, including multiple ID/OOD datasets (both near- and far-OOD). Hence,10

we leverage its holistic implementation to address several critical aspects of OOD11

evaluation that are often overlooked in current benchmarks: robustness to model12

variability, effect of aggregation of layer-wise scores, effect of activation shaping,13

and link between in-distribution accuracy and OOD detection performances.14

1 Introduction15

Out-of-distribution (OOD) detection has become increasingly crucial for deploying robust machine16

learning systems in real-world applications. Neural network models, although effective, often exhibit17

overconfidence when encountering inputs outside their training distribution, which can lead to18

significant safety and reliability issues. To mitigate this, post-hoc OOD detection methods have19

emerged as attractive solutions, as they require no retraining and can readily be applied to existing20

pretrained models. These approaches typically operate by assigning OOD scores to inputs based on21

either model logits or internal layer feature values.22

Some libraries, such as OpenOOD [21] and PyTorch OOD [6], have been developed to foster research,23

benchmarking, and adoption of OOD detection. Despite their popularity, these libraries have notable24

limitations. Firstly, they implement OOD detectors separately, often ignoring the potential benefits25

of combining components such as activation shaping [15, 19, 2] and layer-wise score aggregation26

[5, 1, 3] across different OOD methods. Secondly, these libraries tend to restrict their usability to27

predefined models, neglecting the broader applicability of post-hoc methods to arbitrary user-provided28

classifiers. Lastly, they are generally restricted to a single deep learning framework, typically PyTorch,29

excluding TensorFlow practitioners from easy access to state-of-the-art OOD detection tools.30

In this paper, we introduce OODEEL, an open-source, highly flexible, and holistic library that31

addresses these limitations. By supporting seamless integration with arbitrary pretrained models32

from both PyTorch and TensorFlow, it provides a unified implementation of post-hoc OOD detectors33

and components such as activation shaping and layer-wise aggregation. Moreover, its intuitive and34

unified API enables effortless application to many OOD detection test cases. OODEEL also includes35
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a benchmarking functionality that allows for easy testing of implemented OOD detectors on the36

OpenOOD benchmark.37

Leveraging the versatility of OODEEL, we conduct extensive experiments to rigorously assess several38

underexplored aspects of OOD detection, including the sensitivity of methods to model variability, the39

impact of aggregating scores across multiple layers, and the influence of activation shaping strategies.40

We also provide additional insights from our experiments about the link between ID accuracy and41

AUROC, disparate performances on small-scale and large-scale datasets, and correlation between near42

and far OOD. Our findings not only reveal critical insights into the performance and robustness of43

current OOD methods but also highlight the practical advantages of a unified approach in developing44

and evaluating future OOD detection techniques. OODEEL1 is available on GitHub, and we release45

an accompanying platform2 for a comprehensive visualization of experiment results.46

2 Background47

Out-of-distribution detection can be interpreted as a binary classification problem. The most common
way of constructing an OOD detector is by using an OOD scoring function s : X → R and a threshold
τ ∈ R: {

x predicted ID if s(x) ≤ τ,

x predicted OOD if s(x) > τ.

Throughout the paper we adopt the convention that OOD scoring functions are designed so that they48

give higher scores to OOD data and lower scores to ID data. Given a pair of datasets D− for ID data49

and D+ for OOD data, and an OOD detector (s, τ), we can define the following metrics:50

• False Positive Rate (FPR). The fraction of ID data that is incorrectly classified as being51

OOD, i.e. FPR(τ) = |{x ∈ D− : s(x) > τ}|/|D−|.52

• True Positive Rate (TPR). The fraction of OOD data that is correctly classified as being53

OOD, i.e. TPR(τ) = |{x ∈ D+ : s(x) > τ}|/|D+|.54

In the context of OOD benchmarking, it is customary to measure the separation power of a scoring55

function s independently of the chosen threshold τ . The most popular such metric is the AUROC or56

area under the ROC curve, which is the parametric curve given by
{(

FPR(τ), TPR(τ)
)
, τ ∈ R

}
.57

Classical benchmarks in OOD research evaluate a score s by computing its AUROC with respect to a58

bunch of different pairs of ID/OOD datasets, where the ID/OOD pairs are usually chosen so that they59

have semantically non-overlapping classes.60

2.1 Post-hoc OOD61

Post-hoc OOD is a popular class of OOD detection methods (the library OpenOOD [21] implements
24) that apply to already trained models without requiring training or fine-tuning. Let f denote a
classifier neural network whose weights have already been fixed through a training process. We
assume the classifier f is obtained as a composition of different parametric functions called layers,

f(x) = hℓ ◦ hℓ−1 ◦ · · · ◦ h1(x).

Assume that the values f(x) ∈ Rdℓ represent the (unnormalized) logits and let us denote by gl(x) =62

hl ◦ · · · ◦ h1(x) ∈ Rdl the l-th layer features. Traditional post-hoc OOD detection methods can be63

split into two main families:64

Logit-based. The OOD score s : X → R is obtained by applying a scoring function σ : Rdℓ → R65

on the logit space: s = σ ◦ f .66

Feature-based. The OOD score s : X → R is obtained by applying a scoring function σ : Rdl → R67

on an intermediate feature space: s = σ ◦ gl for some 1 ≤ l < ℓ. The most common choice is to take68

the penultimate layer features, i.e. l = ℓ− 1. R69

Moreover, in the OOD literature, some techniques have been applied to some of the previous OOD70

detectors to augment their performances:71

1OODEEL: https://github.com/deel-ai/oodeel
2Visualization platform: https://oodeel-benchmark.streamlit.app/

2

https://github.com/deel-ai/oodeel
https://oodeel-benchmark.streamlit.app/


Activation shaping. This methods can be seen as add-ons to logit-based scores: an additional72

(clipping, normalization,...) transformation τ : Rdℓ−1 → Rdℓ−1 is applied to the penultimate layer73

gℓ−1 before applying the last layer. The scoring function becomes s = σ ◦ hℓ ◦ τ ◦ gℓ−1.74

Layer-wise score aggregation. This method can be seen as an add-on to feature-based scores. It75

aggregates the scores computed on different internal layers. For a given example x, a set (or a subset)76

of ℓ− 1 different scores are computed from the different feature spaces sl(x) = σl ◦ gl(x), which77

are then aggregated together into a single score via an aggregation function A : Rℓ → R, i.e. the78

final score is s(x) = A
(
s1(x), . . . , sℓ−1(x)

)
.79

Note that some of the OOD methods require fitting the functions σ, τ , or A on the ID training data,80

while others do not. We give references to such techniques in Section 3.3 for conciseness.81

2.2 Motivations for (Another) Post-hoc OOD Detection Library82

Post-hoc OOD is convenient because it theoretically applies to any pre-trained model and does not83

need any specific training procedure. Moreover, it has been shown by the OpenOOD benchmark84

that this class of OOD detectors is on par with other training-based methods [21]. Hence, some85

libraries such as OpenOOD and Pytorch OOD implement a large set of post-hoc OOD detectors.86

However, (1) these libraries implement OOD detectors separately, as in the original papers, whereas87

some ideas from one could be applied to others. For instance, activation shaping techniques can be88

applied to all logit-based methods, and layer-wise score aggregation to all feature-based methods.89

In OODEEL, we use abstractions that allow us to apply these components to any OOD detector,90

when appropriate. Moreover, (2) they restrict the application of these methods to predefined models,91

which are manually overloaded one by one to be equipped with OOD detection capabilities. We92

believe that the strength of post-hoc OOD detection lies in its broad applicability to any pre-trained93

model. Hence, in OODEEL, we developed a tool to build OOD detectors on top of any user-provided94

pre-trained model. Finally (3) these libraries are developed in PyTorch only, missing the TensorFlow95

community. As we shall see, OODEEL’s engine is built to make OOD detectors available for both96

backends, without duplicating code.97

3 A Library for Unified Post-hoc OOD Detection98

In this section, we give an overview of OODEEL’s usage and features. We first emphasize the99

simplicity of its API and how to use it for any model in both TensorFlow and PyTorch. Then, we100

describe its core abstractions and how they enable a unified and broad application of Post-hoc OOD101

detection. We also provide a list of implemented OOD detectors. Finally, we describe some additional102

quality-of-life features that are bundled in OODEEL. All the described features are explained in103

detail, together with API documentation and Jupyter tutorials, in OODEEL’s documentation.104

3.1 User API105

The basic workflow of using OODEEL can be broken down into three main steps:106

1 Data preparation: Load and prepare the dataset using the DataHandler object. A Ten-107

sorFlow tf.data.Dataset or a PyTorch torch.data.Dataset is loaded either from the108

pre-specified hub (tensorflow-datasets for TensorFlow and torchvision for PyTorch109

by default, but both can load data from HuggingFace with the argument hub=huggingface),110

or from custom input data (tuple or dict of np.ndarray, or existing TensorFlow or Py-111

Torch Dataset). Then, data_loader.prepare() prepares the Dataset for scoring, and112

returns a prepared tf.data.Dataset or a torch.data.DataLoader.113

2 OOD Detector instantiation and scoring: Instantiate the detector with appropriate hyper-114

parameters depending on the chosen detector. Note that all the logit-based detectors can115

be used with implemented activation-shaping techniques, ReAct, ASH, and SCALE, with116

the arguments use_react/ash/scale=True. Then, fit the detector to the provided keras117

or torch.nn pretrained classifier. Feature-based detectors (like DKNN or Mahalanobis)118

leverage internal representations of neural network classifiers. For these detectors, the user119

has to indicate what layer(s) the detector will use to compute the score through the argument120

feature_layers_id, which is a list of names of such layers. The names can be easily121

found using .summary() functions or convenient graph visualization tools such as Netron122

app. When several layers are given as input, the detector aggregates the scores for each123
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Figure 1: User API for using Mahalanobis detector with Cifar10/SVHN as ID/OOD datasets. (1)
Data preparation: Instantiate a DataHandler depending on the backend, load the ID dataset from
the default hub. (2) Detector instantiation and scoring: Instantiate the detector, fit it to the user-
provided pretrained classifier, and score the datasets. (3) Compute OOD metrics.

layer using an aggregator object. Often, these feature-based detectors need a third ID fit124

dataset, which can be built out of the ID training dataset. In such cases, the user needs to125

specify it with the argument fit_dataset.126

3 Computing OOD metrics: Compute the selected OOD metrics from the scores computed127

in the previous step. Note that it is possible to give any metrics from sklearn.metrics as128

an argument when relevant.129

The APIs are the same for TensorFlow and Pytorch, from data loading to computing metrics. All130

these steps are illustrated for the Mahalanobis detector in Figure 1.131

3.2 Core Structure132

OODEEL is built on four main core abstractions we outline in this Section. The interactions between133

these abstractions for a detection workflow are illustrated in Figure 2.134

DataHandler From the user’s point of view, this abstraction instantiates data from dataset hubs135

Torchvision, Tensorflow Datasets, or Hugging Face, or from user-provided datasets. It also pre-136

pares datasets for scoring (prepared datasets can also be used for training). It is instantiated using137

load_data_handler(), which either loads TFDataHandler or TorchDataHandler automatically138

depending on the backend. The two child classes share the same API, which does not depend on the139

backend, so all this is transparent to the user.140

FeatureExtractor This abstraction runs completely under the hood, and extracts internal features141

of any pretrained models in keras (with KerasFeatureExtractor child class) or torch.nn (with142

TorchFeatureExtractor child class) based on layer names or indices. It is fit on a model when143

using OODBaseDetector.fit() and can be used in place of the original model. Its .predict()144

method returns the model outputs with its internal features.145

Operator This abstraction also runs under the hood and provides a single API for tensor opera-146

tions, regardless of the backend. When instanciating a detector, the backend is detected and either147

TorchOperator or TFOperator is loaded. All the detectors’ calculations are implemented with148

the Operator’s API and hence do not need a separate implementation to work with PyTorch or149

Tensorflow. The spirit of this abstraction is the same as keras.ops3 for Keras 3, or EagerPy [11].150

OODBaseDetector It is the main engine of the library, and all detectors inherit from this class.151

It manages the use of activation-shaping and layer aggregation techniques, and loads appropriate152

DataHandler, FeatureExtractor, and Operator that will be used at runtime.153

Some key practical advantages of the OODEEL implementation deserve to be highlighted.154

3https://keras.io/api/ops/
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OODBaseDetector.__init__

self.hyperparams
self.use_react/ash/scale
self.aggregator

detector.fit

detector

self.model
self.features_layer_id
self.fit_dataset

Load abstractions

self.feature_extractor = 
self.operator = 

self.data_handler = 

    model is      model is 

TorchFeatureExtractor
TorchOperator
TorchDataHandler

KerasFeatureExtractor
TFOperator
TFDataHandler

Fit detector to model and data

fitted_detector

fitted_detector.score

data to score

Torch/KerasFeatureExtractor.predict

Score function implemented with
Operator API, ran

with Torch/TFOperator

internal features
logits

Instanciate Fit Score

scores

Figure 2: Details on interactions between OODBaseDetector, DataHandler, FeatureExtractor
and Operator when using OODEEL. Note that for simplicity, we omit to represent
HFFeatureExtractor

Compatibility with both PyTorch and Tensorflow: The implementation of a common API for155

PyTorch and TensorFlow specific classes allows us to write code using this API, without worrying156

about which class, and therefore which backend will be used.157

Seamless data loading: Using DataHandler, data can be loaded from main datasets hubs: Torchvi-158

sion, Tensorflow Datasets, and HuggingFace datasets, or from custom Datasets, with a backend-159

agnostic API.160

Compatibility with any pretrained Keras and torch.nn classifier models: FeatureExtractor161

and its child classes allow the extraction of internal features from all pretrained models solely using162

the layer names. This is a key advantage compared to other OOD libraries that reimplement common163

models to make them compatible with their code.164

Unified implementation: OODBaseDetector is implemented so that, when it is applicable, every165

detector’s component that can be used with other detectors, even if it was not the case in these166

detectors’ initial implementation. Hence, we can apply activation shaping techniques such as ReAct167

to every logit-based detector, and aggregate the scores of several layers for all feature-based detectors.168

Easy implementation of new custom detectors: Using Operator, it takes only a few class overrides169

to implement a new detector that enjoys all the previous features. A tutorial in the documentation is170

provided to guide practitioners through such an implementation.171

3.3 Implemented OOD detectors172

OODEEL is not to be compared with benchmarking software like OpenOOD. It implements fewer173

OOD detection techniques since our focus is to unify their implementations and make them applicable174

to any model in both TensorFlow and PyTorch. Hence, we selected OOD detection techniques that are175

either the most cited or among the best of the OpenOOD benchmark. The included OOD detection176

techniques, sorted by category, are as follows. Feature-based detectors: Mahalanobis [7], DKNN177

[16], VIM [18], RMDS [12], SHE [20], Gram [14]. Logit-based detectors: MLS [17], MSP [4],178

Energy [9], Entropy [13], GEN [10], ODIN [8]. Activation-shaping techniques: ReAct [15], ASH179

[2], SCALE [19]. Layer-wise aggregation techniques: Fisher [1, 3], Normalized [14].180

3.4 Additional features181

OODEEL comes with additional Visualization and benchmarking features that we describe in the182

Appendix. We use the benchmarking feature in the following section.183
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4 A Unified Benchmark for Post-hoc OOD Detection184

OpenOOD is the reference benchmark for OOD detection. However, the leaderboard they provide185

suffers from limitations. (1) No generic feature aggregation techniques are tested with feature-based186

detectors. (2) Activation shaping is only applied to energy, whereas it could be applied to any187

logit-based methods. These two limitations are design choices that are perfectly legitimate when188

the intention is to provide a benchmark faithful to the methods presented in the original papers. (3)189

More problematically, each experiment is run on very few different neural networks. As an example,190

OOD detectors are tested on Cifar10 and Cifar100 with only one model, and on Imagenet with three191

models, whereas, as we shall see, the OOD detector’s performance rank can change a lot depending192

on the underlying model.193

Motivated by these limitations, we leverage the holistic and interoperable implementation of OODEEL194

OOD detectors to comprehensively test the impact of layer-wise score aggregation, the impact195

of activation shaping, and the effect of the model (including on activation shaping and layer-wise196

aggregation). We also leverage our experiments to provide additional insights into the link between ID197

accuracy and AUROC, disparate performances on small-scale and large-scale datasets, and correlation198

between near and far OOD199

4.1 Setting200

We test all the implemented OOD detectors following OpenOOD benchmark settings, with Cifar10,201

Cifar100, and Imagenet as ID datasets and corresponding near-OOD and far-OOD sets of OOD202

datasets. For Cifar10, Cifar100, we test the detectors on 11 different models, and for Imagenet,203

on 7 different models. We select the best hyperparameters for each OOD detector using a simple204

grid search. Logit-based detectors are all assessed with and without activation-shaping, and feature-205

based detectors with three levels of score aggregations: no aggregation, partial aggregation, where206

we aggregate the last layers, and full aggregation, where we aggregate all the layers. We use207

the Fisher aggregation technique. As a result, a total of 42 different detectors are tested on 29208

different models. All the following figures are extracted from our visualization platform https:209

//oodeel-benchmark.streamlit.app/. The full results of our experiments can be found in the210

Appendix and in the platform. Below we give a summary of the main results and takeaways by211

displaying only a subset of the results, for the sake of readability.212

4.2 Impact of the model213
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Figure 3: Box plots of the rank for each detector on Imagenet. Methods are sorted according to their
mean rank on near-OOD.
For each model, we rank the different OOD detectors according to their AUROC. We then produce214

a box plot of these ranks with respect to the models for each OOD detector. The results of this215

experiment for the Imagenet benchmark and the most common OOD detectors are reported in 3. As216

we can see, the rank varies greatly with the model, and there is no clear winner: for the near-OOD217

experiments, GEN is the best detector on average, but DKNN is the best detector for one particular218

model while it ranks 10th on average. We also provide rank correlation heatmaps between OOD219

detectors for each models in Appendix to corroborate this finding.220
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Takeaway 1 Results on OOD detectors reported on only one or few models should be interpreted221

with care, and might not be representative of the real behavior on a wider range of models.222

4.3 Impact of Layer-wise Score Aggregation223
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Figure 4: Box plot of the ∆ in AUROC between feature-based detector applied on the penultimate
layer and either a subset of the internal layers (partial) or all internal layers (full). Left: Imagenet,
Right: Cifar10.

Several recent papers suggest building OOD detectors by aggregating feature-based OOD scores224

computed layer-wise. We illustrate the impact of layer-wise score aggregation with the following225

experiment. For each model and feature-based OOD detectors, we compute the gain/loss in AUROC226

from using layer-wise aggregation with respect to the vanilla version (i.e. computed from the227

penultimate layer only). For each OOD detector, we produce the box plot of these gains/losses for228

different levels of aggregation (partial and full) with respect to the models. The results on Imagenet229

and Cifar10 Near-OOD are reported in Figure 4. For Imagenet, score aggregation can improve the230

AUROC but hurts more often than it helps. For Cifar10 the results are more positive: it helps more231

often than it hurts, and greatly boosts VIM’s detection capabilities.232

Takeaway 2 Score aggregation can have a positive impact, but this positive impact is not systematic.233

For small-scale tasks, it helps most of the time, but for large-scale tasks, it tends to deteriorate the234

performance for most models.235

4.4 Impact of Activation Shaping236

react ash scale
−0.15

−0.1

−0.05

0

0.05

react ash scale react ash scale react ash scale react ash scale react ash scale

Mode
react

ash

scale

Mode Mode Mode Mode Mode Mode

Δ
 N

ea
r A

U
R

O
C

odin energy mls gen entropy msp

react ash scale
−0.6

−0.4

−0.2

0

react ash scale react ash scale react ash scale react ash scale react ash scale

Mode
react

ash

scale

Mode Mode Mode Mode Mode Mode

Δ
 N

ea
r A

U
R

O
C

gen entropy msp energy mls odin

Figure 5: Box plot of the ∆ in AUROC between logit-based detectors and their augmentation with
activation-shaping techniques (ReAct, SCALE, and ASH). Left: Imagenet, Right: Cifar10.

Activation shaping techniques transform the penultimate layer features before applying the last linear237

layer and computing logit-based scores. In the original papers of the ReAct, ASH and SCALE238

methods, results are reported by combining these activation shaping techniques with the Energy239

logit-based score alone. In order to evaluate the impact of activation shaping on other logit-base240

scores, we perform the following experiment. For each model and feature-based OOD detectors, we241

compute the gain/loss in AUROC from using activation shaping with respect to the vanilla version, i.e.242

without activation shaping. For each OOD detector, we produce the box plot of these gains/losses for243

React, ASH and SCALE with respect to the models. The results on Imagenet and Cifar10 Near-OOD244

are reported in Figure 5. As we can see, activation shaping is mostly beneficial on Imagenet: it is245

systematically so for the ReAct method, while for ASH and SCALE greater care should be taken, as246

there are models for which they have negative effects. These results are in great contrast to those247

obtained for Cifar-10: ASH and SCALE have a nefarious effect on most logit-based scores and248

models, losing up to 0.6 in AUROC, while the effect of using ReAct is negligible.249
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Takeaway 3 Using Activation shaping helps on large-scale tasks (for React, consistently, and for250

ASH and SCALE, more randomly). For small-scale tasks, it has little effect in most cases, while251

SCALE and ASH have the potential to greatly damage the original detectors.252

4.5 Additional Insights253

4.5.1 Link Between ID Accuracy and OOD Detection Performances254
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Figure 6: Scatter plot with in-distribution accuracy on x-axis and AUROC on y-axis. Each point is a
model, whose assigned AUROC is the best among all OOD detectors applied to this model. Left:
Imagenet, Right: Cifar10.

OODEEL allows for a thorough evaluation of ID accuracy versus OOD detection performance across255

different neural network architectures. In 5 we report the results of testing multiple different model256

architectures on the Imagenet and Cifar10 Near-OOD benchmarks. For each model architecture,257

the AUROC of the best OOD detector (for that model and setting) is reported. As we can see, ID258

accuracy and OOD detection are linearly correlated in the case of Cifar-10, while there is no clear259

pattern emerging from the Imagenet experiment: the four best models achieve similar ID accuracy260

while having very different OOD detection performances. This conclusion contrasts with [17], which261

observed that improving ID accuracy was an efficient way of enhancing OOD detection performances.262

Takeaway 4 Correlation between ID accuracy and OOD detection seems to be near linear for263

small-scale tasks and absent for large-scale tasks.264

4.5.2 Disparate Performances for detectors on Small-scale and Large-scale tasks265
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Figure 7: Box plots of the rank with standard deviation for each method (OOD detector) on Cifar10.
Methods are sorted according to their mean rank on near-OOD.

By comparing the ranks of the different detectors on Imagenet as displayed in Figure 3 with those266

obtained by performing the equivalent experiment on Cifar10 (Figure 7), we can conclude that267

logit-based detectors perform better for large scale models while feature-based detectors perform268
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better the winners for small-scale tasks. This might explain why activation shaping dedicated to269

logit-based helps for Imagenet but not for Cifar10, and conversely for feature aggregation.270

Takeaway 5 Logit-based detectors perform better on large-scale tasks, and feature-based detectors271

perform better on small-scale tasks.272

4.5.3 Trade-off Between Near-OOD and Far-OOD273

We can also observe from Figure 8 that for some ID datasets, there is a tradeoff between performing274

well on the Near-OOD datasets and performing well on the Far-OOD datasets. This is particularly275

clear in the case of the Cifar-100 dataset, and even if less so, it remains true for Imagenet and Cifar-10.276
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Figure 8: Scatter plot with near-OOD AUROC on x-axis and far-OOD AUROC on y-axis. EAch
point is a pair model / OOD detector. Left: Cifar10, Middle: Cifar100, Right: Imagenet.

Takeaway 6 For some tasks, Near-OOD and Far-OOD might not be correlated.277

Overall Takeaway

Perhaps the most important takeaway of this work is that in Post-Hoc OOD detection, detector
performances greatly depend on the task (dataset and model). Benchmarking their performance
appropriately requires testing it on at least several models, which is not classically done in
post-hoc OOD detection research. But it can at most mitigate the issue. For post-hoc OOD
detection on real-world applications, i.e., with user-specific datasets and models, it is crucial
to be able to test detectors on the specific task at hand, hence the value of OODEEL, which
can be applied to any model and datasets.

278

5 Conclusion and Future Works279

We introduced OODEEL, a holistic and extensible library for post-hoc OOD detection, designed280

to work seamlessly across PyTorch and TensorFlow models. By unifying key components—such281

as activation shaping and layer-wise score aggregation—OODEEL provides a powerful platform282

for both practical application and rigorous experimentation. Our large-scale benchmarking reveals283

important nuances in post-hoc OOD detection performance, including the impact of model choice, the284

varying utility of aggregation and activation shaping techniques, the context-dependent relationship285

between ID accuracy and OOD detection efficacy, the disparate performances of OOD detectors on286

different tasks and on near-OOD and far-OOD detection. These findings emphasize the need for287

careful, context-aware evaluation of OOD detectors. With its open-source release and accompanying288

benchmarking interface, OODEEL aims to support reproducible, extensible, and insightful OOD289

research for the broader machine learning community.290

While OODEEL offers a comprehensive and modular framework for post-hoc OOD detection, some291

areas of improvement remain. First, the library currently implements a subset of the most cited292

and best-performing OOD detectors from OpenOOD, prioritizing compatibility and unification293

over exhaustiveness. Consequently, newer or more experimental detectors may not be readily294

available. Second, although our benchmark expands beyond existing evaluations by testing across295

many models and configurations, it remains limited to image classification tasks. Since OODEEL’s296

FeatureExtractor class can be applied to any model, this is the most direct follow-up of our work.297
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NeurIPS Paper Checklist350

1. Claims351

Question: Do the main claims made in the abstract and introduction accurately reflect the352

paper’s contributions and scope?353

Answer: [Yes]354

Justification: The main contribution is the library OODEEL. The library as well as its main355

features are accurately reported in the abstract and introduction.356

Guidelines:357

• The answer NA means that the abstract and introduction do not include the claims358

made in the paper.359

• The abstract and/or introduction should clearly state the claims made, including the360

contributions made in the paper and important assumptions and limitations. A No or361

NA answer to this question will not be perceived well by the reviewers.362

• The claims made should match theoretical and experimental results, and reflect how363

much the results can be expected to generalize to other settings.364

• It is fine to include aspirational goals as motivation as long as it is clear that these goals365

are not attained by the paper.366

2. Limitations367

Question: Does the paper discuss the limitations of the work performed by the authors?368

Answer: [Yes]369

Justification: We added a few limitations in the Conclusion section.370

Guidelines:371

• The answer NA means that the paper has no limitation while the answer No means that372

the paper has limitations, but those are not discussed in the paper.373

• The authors are encouraged to create a separate "Limitations" section in their paper.374

• The paper should point out any strong assumptions and how robust the results are to375

violations of these assumptions (e.g., independence assumptions, noiseless settings,376

model well-specification, asymptotic approximations only holding locally). The authors377

should reflect on how these assumptions might be violated in practice and what the378

implications would be.379

• The authors should reflect on the scope of the claims made, e.g., if the approach was380

only tested on a few datasets or with a few runs. In general, empirical results often381

depend on implicit assumptions, which should be articulated.382

• The authors should reflect on the factors that influence the performance of the approach.383

For example, a facial recognition algorithm may perform poorly when image resolution384

is low or images are taken in low lighting. Or a speech-to-text system might not be385

used reliably to provide closed captions for online lectures because it fails to handle386

technical jargon.387

• The authors should discuss the computational efficiency of the proposed algorithms388

and how they scale with dataset size.389

• If applicable, the authors should discuss possible limitations of their approach to390

address problems of privacy and fairness.391

• While the authors might fear that complete honesty about limitations might be used by392

reviewers as grounds for rejection, a worse outcome might be that reviewers discover393

limitations that aren’t acknowledged in the paper. The authors should use their best394

judgment and recognize that individual actions in favor of transparency play an impor-395

tant role in developing norms that preserve the integrity of the community. Reviewers396

will be specifically instructed to not penalize honesty concerning limitations.397

3. Theory assumptions and proofs398

Question: For each theoretical result, does the paper provide the full set of assumptions and399

a complete (and correct) proof?400
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Answer: [NA] .401

Justification: The paper does not include theoretical results.402

Guidelines:403

• The answer NA means that the paper does not include theoretical results.404

• All the theorems, formulas, and proofs in the paper should be numbered and cross-405

referenced.406

• All assumptions should be clearly stated or referenced in the statement of any theorems.407

• The proofs can either appear in the main paper or the supplemental material, but if408

they appear in the supplemental material, the authors are encouraged to provide a short409

proof sketch to provide intuition.410

• Inversely, any informal proof provided in the core of the paper should be complemented411

by formal proofs provided in appendix or supplemental material.412

• Theorems and Lemmas that the proof relies upon should be properly referenced.413

4. Experimental result reproducibility414

Question: Does the paper fully disclose all the information needed to reproduce the main ex-415

perimental results of the paper to the extent that it affects the main claims and/or conclusions416

of the paper (regardless of whether the code and data are provided or not)?417

Answer: [Yes]418

Justification: Not only does the paper include all information needed to reproduce the419

main experimental results. The OODEEL library as well as the repository we use for the420

benchmarking experiments are open-source and public.421

Guidelines:422

• The answer NA means that the paper does not include experiments.423

• If the paper includes experiments, a No answer to this question will not be perceived424

well by the reviewers: Making the paper reproducible is important, regardless of425

whether the code and data are provided or not.426

• If the contribution is a dataset and/or model, the authors should describe the steps taken427

to make their results reproducible or verifiable.428

• Depending on the contribution, reproducibility can be accomplished in various ways.429

For example, if the contribution is a novel architecture, describing the architecture fully430

might suffice, or if the contribution is a specific model and empirical evaluation, it may431

be necessary to either make it possible for others to replicate the model with the same432

dataset, or provide access to the model. In general. releasing code and data is often433

one good way to accomplish this, but reproducibility can also be provided via detailed434

instructions for how to replicate the results, access to a hosted model (e.g., in the case435

of a large language model), releasing of a model checkpoint, or other means that are436

appropriate to the research performed.437

• While NeurIPS does not require releasing code, the conference does require all submis-438

sions to provide some reasonable avenue for reproducibility, which may depend on the439

nature of the contribution. For example440

(a) If the contribution is primarily a new algorithm, the paper should make it clear how441

to reproduce that algorithm.442

(b) If the contribution is primarily a new model architecture, the paper should describe443

the architecture clearly and fully.444

(c) If the contribution is a new model (e.g., a large language model), then there should445

either be a way to access this model for reproducing the results or a way to reproduce446

the model (e.g., with an open-source dataset or instructions for how to construct447

the dataset).448

(d) We recognize that reproducibility may be tricky in some cases, in which case449

authors are welcome to describe the particular way they provide for reproducibility.450

In the case of closed-source models, it may be that access to the model is limited in451

some way (e.g., to registered users), but it should be possible for other researchers452

to have some path to reproducing or verifying the results.453

5. Open access to data and code454
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Question: Does the paper provide open access to the data and code, with sufficient instruc-455

tions to faithfully reproduce the main experimental results, as described in supplemental456

material?457

Answer: [Yes]458

Justification: All code is provided in the OODEEL library and the additional repository for459

benchmarking experimets, the necessary information to reproduce the experiments is also460

included.461

Guidelines:462

• The answer NA means that paper does not include experiments requiring code.463

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/464

public/guides/CodeSubmissionPolicy) for more details.465

• While we encourage the release of code and data, we understand that this might not be466

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not467

including code, unless this is central to the contribution (e.g., for a new open-source468

benchmark).469

• The instructions should contain the exact command and environment needed to run to470

reproduce the results. See the NeurIPS code and data submission guidelines (https:471

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.472

• The authors should provide instructions on data access and preparation, including how473

to access the raw data, preprocessed data, intermediate data, and generated data, etc.474

• The authors should provide scripts to reproduce all experimental results for the new475

proposed method and baselines. If only a subset of experiments are reproducible, they476

should state which ones are omitted from the script and why.477

• At submission time, to preserve anonymity, the authors should release anonymized478

versions (if applicable).479

• Providing as much information as possible in supplemental material (appended to the480

paper) is recommended, but including URLs to data and code is permitted.481

6. Experimental setting/details482

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-483

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the484

results?485

Answer: [Yes]486

Justification: The main details are provided in the paper in the appendix. The full details are487

provided in the public repository488

Guidelines:489

• The answer NA means that the paper does not include experiments.490

• The experimental setting should be presented in the core of the paper to a level of detail491

that is necessary to appreciate the results and make sense of them.492

• The full details can be provided either with the code, in appendix, or as supplemental493

material.494

7. Experiment statistical significance495

Question: Does the paper report error bars suitably and correctly defined or other appropriate496

information about the statistical significance of the experiments?497

Answer: [No]498

Justification: There is no randomness involved in our experiments, as OOD detection is499

performed by computing metrics over the entire datasets in question. Thus it is standard500

practice not to include error bars in expereiments.501

Guidelines:502

• The answer NA means that the paper does not include experiments.503

• The authors should answer "Yes" if the results are accompanied by error bars, confi-504

dence intervals, or statistical significance tests, at least for the experiments that support505

the main claims of the paper.506
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• The factors of variability that the error bars are capturing should be clearly stated (for507

example, train/test split, initialization, random drawing of some parameter, or overall508

run with given experimental conditions).509

• The method for calculating the error bars should be explained (closed form formula,510

call to a library function, bootstrap, etc.)511

• The assumptions made should be given (e.g., Normally distributed errors).512

• It should be clear whether the error bar is the standard deviation or the standard error513

of the mean.514

• It is OK to report 1-sigma error bars, but one should state it. The authors should515

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis516

of Normality of errors is not verified.517

• For asymmetric distributions, the authors should be careful not to show in tables or518

figures symmetric error bars that would yield results that are out of range (e.g. negative519

error rates).520

• If error bars are reported in tables or plots, The authors should explain in the text how521

they were calculated and reference the corresponding figures or tables in the text.522

8. Experiments compute resources523

Question: For each experiment, does the paper provide sufficient information on the com-524

puter resources (type of compute workers, memory, time of execution) needed to reproduce525

the experiments?526

Answer: [TODO]527

Justification: All this information is detailed in the Appendix found in the supplementary528

materials529

Guidelines:530

• The answer NA means that the paper does not include experiments.531

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,532

or cloud provider, including relevant memory and storage.533

• The paper should provide the amount of compute required for each of the individual534

experimental runs as well as estimate the total compute.535

• The paper should disclose whether the full research project required more compute536

than the experiments reported in the paper (e.g., preliminary or failed experiments that537

didn’t make it into the paper).538

9. Code of ethics539

Question: Does the research conducted in the paper conform, in every respect, with the540

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?541

Answer: [Yes]542

Justification: We perform no human experiments. All datasets used are well-established, pub-543

lic academic research datasets. The algorithms implemented are state-of-the-art published544

algorithms.545

Guidelines:546

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.547

• If the authors answer No, they should explain the special circumstances that require a548

deviation from the Code of Ethics.549

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-550

eration due to laws or regulations in their jurisdiction).551

10. Broader impacts552

Question: Does the paper discuss both potential positive societal impacts and negative553

societal impacts of the work performed?554

Answer: [NA]555

Justification: The paper does not introduce any new algorithms or methods, it only introduces556

a library where published state-of-the-art methods are implemented.557
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Guidelines:558

• The answer NA means that there is no societal impact of the work performed.559

• If the authors answer NA or No, they should explain why their work has no societal560

impact or why the paper does not address societal impact.561

• Examples of negative societal impacts include potential malicious or unintended uses562

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations563

(e.g., deployment of technologies that could make decisions that unfairly impact specific564

groups), privacy considerations, and security considerations.565

• The conference expects that many papers will be foundational research and not tied566

to particular applications, let alone deployments. However, if there is a direct path to567

any negative applications, the authors should point it out. For example, it is legitimate568

to point out that an improvement in the quality of generative models could be used to569

generate deepfakes for disinformation. On the other hand, it is not needed to point out570

that a generic algorithm for optimizing neural networks could enable people to train571

models that generate Deepfakes faster.572

• The authors should consider possible harms that could arise when the technology is573

being used as intended and functioning correctly, harms that could arise when the574

technology is being used as intended but gives incorrect results, and harms following575

from (intentional or unintentional) misuse of the technology.576

• If there are negative societal impacts, the authors could also discuss possible mitigation577

strategies (e.g., gated release of models, providing defenses in addition to attacks,578

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from579

feedback over time, improving the efficiency and accessibility of ML).580

11. Safeguards581

Question: Does the paper describe safeguards that have been put in place for responsible582

release of data or models that have a high risk for misuse (e.g., pretrained language models,583

image generators, or scraped datasets)?584

Answer: [NA]585

Justification: The paper poses no such risks.586

Guidelines:587

• The answer NA means that the paper poses no such risks.588

• Released models that have a high risk for misuse or dual-use should be released with589

necessary safeguards to allow for controlled use of the model, for example by requiring590

that users adhere to usage guidelines or restrictions to access the model or implementing591

safety filters.592

• Datasets that have been scraped from the Internet could pose safety risks. The authors593

should describe how they avoided releasing unsafe images.594

• We recognize that providing effective safeguards is challenging, and many papers do595

not require this, but we encourage authors to take this into account and make a best596

faith effort.597

12. Licenses for existing assets598

Question: Are the creators or original owners of assets (e.g., code, data, models), used in599

the paper, properly credited and are the license and terms of use explicitly mentioned and600

properly respected?601

Answer: [Yes]602

Justification: We use standard benchmarking datasets such as Imagenet or Cifar-10 which is603

explicitly stated and credited in the paper.604

Guidelines:605

• The answer NA means that the paper does not use existing assets.606

• The authors should cite the original paper that produced the code package or dataset.607

• The authors should state which version of the asset is used and, if possible, include a608

URL.609

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.610
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• For scraped data from a particular source (e.g., website), the copyright and terms of611

service of that source should be provided.612

• If assets are released, the license, copyright information, and terms of use in the613

package should be provided. For popular datasets, paperswithcode.com/datasets614

has curated licenses for some datasets. Their licensing guide can help determine the615

license of a dataset.616

• For existing datasets that are re-packaged, both the original license and the license of617

the derived asset (if it has changed) should be provided.618

• If this information is not available online, the authors are encouraged to reach out to619

the asset’s creators.620

13. New assets621

Question: Are new assets introduced in the paper well documented and is the documentation622

provided alongside the assets?623

Answer: [Yes]624

Justification: We introduce the OODEEL library which is an open-source publicly available625

library and a companion benchmarking repo, both of therm are documented.626

Guidelines:627

• The answer NA means that the paper does not release new assets.628

• Researchers should communicate the details of the dataset/code/model as part of their629

submissions via structured templates. This includes details about training, license,630

limitations, etc.631

• The paper should discuss whether and how consent was obtained from people whose632

asset is used.633

• At submission time, remember to anonymize your assets (if applicable). You can either634

create an anonymized URL or include an anonymized zip file.635

14. Crowdsourcing and research with human subjects636

Question: For crowdsourcing experiments and research with human subjects, does the paper637

include the full text of instructions given to participants and screenshots, if applicable, as638

well as details about compensation (if any)?639

Answer: [NA]640

Justification: The paper does not involve crowdsourcing nor research with human subjects.641

Guidelines:642

• The answer NA means that the paper does not involve crowdsourcing nor research with643

human subjects.644

• Including this information in the supplemental material is fine, but if the main contribu-645

tion of the paper involves human subjects, then as much detail as possible should be646

included in the main paper.647

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,648

or other labor should be paid at least the minimum wage in the country of the data649

collector.650

15. Institutional review board (IRB) approvals or equivalent for research with human651

subjects652

Question: Does the paper describe potential risks incurred by study participants, whether653

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)654

approvals (or an equivalent approval/review based on the requirements of your country or655

institution) were obtained?656

Answer: [NA]657

Justification: The paper does not involve crowdsourcing nor research with human subjects.658

Guidelines:659

• The answer NA means that the paper does not involve crowdsourcing nor research with660

human subjects.661
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• Depending on the country in which research is conducted, IRB approval (or equivalent)662

may be required for any human subjects research. If you obtained IRB approval, you663

should clearly state this in the paper.664

• We recognize that the procedures for this may vary significantly between institutions665

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the666

guidelines for their institution.667

• For initial submissions, do not include any information that would break anonymity (if668

applicable), such as the institution conducting the review.669

16. Declaration of LLM usage670

Question: Does the paper describe the usage of LLMs if it is an important, original, or671

non-standard component of the core methods in this research? Note that if the LLM is used672

only for writing, editing, or formatting purposes and does not impact the core methodology,673

scientific rigorousness, or originality of the research, declaration is not required.674

Answer: [NA]675

Justification: The core method development in this research does not involve LLMs as any676

important, original, or non-standard components.677

Guidelines:678

• The answer NA means that the core method development in this research does not679

involve LLMs as any important, original, or non-standard components.680

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)681

for what should or should not be described.682
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