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Abstract

We present OODEEL, an open-source Post-hoc Out-of-Distribution (OOD) detec-
tion library. OODEEL is designed as a highly customizable tool that supports a
wide range of OOD detectors and can be applied to any model classifier architec-
tures from both PyTorch and TensorFlow. It implements unified abstractions so
that every building block, such as activation shaping and layer-wise aggregation,
can be used seamlessly by any detector. It also provides a user-friendly API that
allows for easy integration of new OOD detectors, which can then benefit from all
these building blocks, and native compatibility with most TensorFlow and PyTorch
models. OODEEL seamlessly handles standard OOD evaluation settings for bench-
marking, including multiple ID/OOD datasets (both near- and far-OOD). Hence,
we leverage its holistic implementation to address several critical aspects of OOD
evaluation that are often overlooked in current benchmarks: robustness to model
variability, effect of aggregation of layer-wise scores, effect of activation shaping,
and link between in-distribution accuracy and OOD detection performances.

1 Introduction

Out-of-distribution (OOD) detection has become increasingly crucial for deploying robust machine
learning systems in real-world applications. Neural network models, although effective, often exhibit
overconfidence when encountering inputs outside their training distribution, which can lead to
significant safety and reliability issues. To mitigate this, post-hoc OOD detection methods have
emerged as attractive solutions, as they require no retraining and can readily be applied to existing
pretrained models. These approaches typically operate by assigning OOD scores to inputs based on
either model logits or internal layer feature values.

Some libraries, such as OpenOOD [21] and PyTorch OOD [6], have been developed to foster research,
benchmarking, and adoption of OOD detection. Despite their popularity, these libraries have notable
limitations. Firstly, they implement OOD detectors separately, often ignoring the potential benefits
of combining components such as activation shaping [[15} 19} 2] and layer-wise score aggregation
[5 11, 13]] across different OOD methods. Secondly, these libraries tend to restrict their usability to
predefined models, neglecting the broader applicability of post-hoc methods to arbitrary user-provided
classifiers. Lastly, they are generally restricted to a single deep learning framework, typically PyTorch,
excluding TensorFlow practitioners from easy access to state-of-the-art OOD detection tools.

In this paper, we introduce OODEEL, an open-source, highly flexible, and holistic library that
addresses these limitations. By supporting seamless integration with arbitrary pretrained models
from both PyTorch and TensorFlow, it provides a unified implementation of post-hoc OOD detectors
and components such as activation shaping and layer-wise aggregation. Moreover, its intuitive and
unified API enables effortless application to many OOD detection test cases. OODEEL also includes
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a benchmarking functionality that allows for easy testing of implemented OOD detectors on the
OpenOOD benchmark.

Leveraging the versatility of OODEEL, we conduct extensive experiments to rigorously assess several
underexplored aspects of OOD detection, including the sensitivity of methods to model variability, the
impact of aggregating scores across multiple layers, and the influence of activation shaping strategies.
We also provide additional insights from our experiments about the link between ID accuracy and
AUROC, disparate performances on small-scale and large-scale datasets, and correlation between near
and far OOD. Our findings not only reveal critical insights into the performance and robustness of
current OOD methods but also highlight the practical advantages of a unified approach in developing
and evaluating future OOD detection techniques. OODEEIE] is available on GitHub, and we release
an accompanying platfornﬂ for a comprehensive visualization of experiment results.

2 Background

Out-of-distribution detection can be interpreted as a binary classification problem. The most common
way of constructing an OOD detector is by using an OOD scoring function s : X — R and a threshold
TeR:

x predicted ID if s(z) <,

x predicted OOD  if s(z) > 7.

Throughout the paper we adopt the convention that OOD scoring functions are designed so that they
give higher scores to OOD data and lower scores to ID data. Given a pair of datasets D~ for ID data
and D for OOD data, and an OOD detector (s, 7), we can define the following metrics:

* False Positive Rate (FPR). The fraction of ID data that is incorrectly classified as being
OOD, i.e. FPR(7) =|{x € D~ : s(z) > 7}|/|D~|.

* True Positive Rate (TPR). The fraction of OOD data that is correctly classified as being
00D, i.e. TPR(7) = |{z € Dt : s(x) > 7}|/|DT|.

In the context of OOD benchmarking, it is customary to measure the separation power of a scoring
function s independently of the chosen threshold 7. The most popular such metric is the AUROC or
area under the ROC curve, which is the parametric curve given by { (FPR(7),TPR(7)),T € R}.

Classical benchmarks in OOD research evaluate a score s by computing its AUROC with respect to a
bunch of different pairs of ID/OOD datasets, where the ID/OOD pairs are usually chosen so that they
have semantically non-overlapping classes.

2.1 Post-hoc OOD

Post-hoc OOD is a popular class of OOD detection methods (the library OpenOOD [21]] implements
24) that apply to already trained models without requiring training or fine-tuning. Let f denote a
classifier neural network whose weights have already been fixed through a training process. We
assume the classifier f is obtained as a composition of different parametric functions called layers,

fx)y=htoh' 1o ohl(x).

Assume that the values f(z) € R% represent the (unnormalized) logits and let us denote by ¢'(z) =
hlo ..o hl(x) € R% the I-th layer features. Traditional post-hoc OOD detection methods can be
split into two main families:

Logit-based. The OOD score s : X — R is obtained by applying a scoring function ¢ : R% — R
on the logit space: s = o o f.

Feature-based. The OOD score s : X — R is obtained by applying a scoring function o : R%* — R
on an intermediate feature space: s = o o gl for some 1 < [ < ¢. The most common choice is to take
the penultimate layer features, i.e. [ = ¢ — 1. R

Moreover, in the OOD literature, some techniques have been applied to some of the previous OOD
detectors to augment their performances:

'OODEEL: https://github.com/deel-ai/oodeel
2Visualization platform: https://oodeel-benchmark.streamlit.app/
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Activation shaping. This methods can be seen as add-ons to logit-based scores: an additional
(clipping, normalization,...) transformation 7 : R%-1 — R%-1 is applied to the penultimate layer
g"~ ! before applying the last layer. The scoring function becomes s = o o h’ o 70 g*~ 1.

Layer-wise score aggregation. This method can be seen as an add-on to feature-based scores. It
aggregates the scores computed on different internal layers. For a given example x, a set (or a subset)
of ¢ — 1 different scores are computed from the different feature spaces s;(x) = o; o g'(x), which
are then aggregated together into a single score via an aggregation function A : R — R, i.e. the
final score is s(z) = A(s1(), ..., se—1(z)).

Note that some of the OOD methods require fitting the functions o, 7, or A on the ID training data,
while others do not. We give references to such techniques in Section [3.3|for conciseness.

2.2 Motivations for (Another) Post-hoc OOD Detection Library

Post-hoc OOD is convenient because it theoretically applies to any pre-trained model and does not
need any specific training procedure. Moreover, it has been shown by the OpenOOD benchmark
that this class of OOD detectors is on par with other training-based methods [21]. Hence, some
libraries such as OpenOOD and Pytorch OOD implement a large set of post-hoc OOD detectors.
However, (1) these libraries implement OOD detectors separately, as in the original papers, whereas
some ideas from one could be applied to others. For instance, activation shaping techniques can be
applied to all logit-based methods, and layer-wise score aggregation to all feature-based methods.
In OODEEL, we use abstractions that allow us to apply these components to any OOD detector,
when appropriate. Moreover, (2) they restrict the application of these methods to predefined models,
which are manually overloaded one by one to be equipped with OOD detection capabilities. We
believe that the strength of post-hoc OOD detection lies in its broad applicability to any pre-trained
model. Hence, in OODEEL, we developed a tool to build OOD detectors on top of any user-provided
pre-trained model. Finally (3) these libraries are developed in PyTorch only, missing the TensorFlow
community. As we shall see, OODEEL’s engine is built to make OOD detectors available for both
backends, without duplicating code.

3 A Library for Unified Post-hoc OOD Detection

In this section, we give an overview of OODEEL’s usage and features. We first emphasize the
simplicity of its API and how to use it for any model in both TensorFlow and PyTorch. Then, we
describe its core abstractions and how they enable a unified and broad application of Post-hoc OOD
detection. We also provide a list of implemented OOD detectors. Finally, we describe some additional
quality-of-life features that are bundled in OODEEL. All the described features are explained in
detail, together with API documentation and Jupyter tutorials, in OODEEL’s documentation.

3.1 User API
The basic workflow of using OODEEL can be broken down into three main steps:

1 Data preparation: Load and prepare the dataset using the DataHandler object. A Ten-
sorFlow tf .data.Dataset or a PyTorch torch.data.Dataset is loaded either from the
pre-specified hub (tensorflow-datasets for TensorFlow and torchvision for PyTorch
by default, but both can load data from HuggingFace with the argument hub=huggingface),
or from custom input data (tuple or dict of np.ndarray, or existing TensorFlow or Py-
Torch Dataset). Then, data_loader.prepare() prepares the Dataset for scoring, and
returns a prepared tf .data.Dataset or a torch.data.DatalLoader.

2 OOD Detector instantiation and scoring: Instantiate the detector with appropriate hyper-
parameters depending on the chosen detector. Note that all the logit-based detectors can
be used with implemented activation-shaping techniques, ReAct, ASH, and SCALE, with
the arguments use_react/ash/scale=True. Then, fit the detector to the provided keras
or torch.nn pretrained classifier. Feature-based detectors (like DKNN or Mahalanobis)
leverage internal representations of neural network classifiers. For these detectors, the user
has to indicate what layer(s) the detector will use to compute the score through the argument
feature_layers_id, which is a list of names of such layers. The names can be easily
found using . summary () functions or convenient graph visualization tools such as Netron
app. When several layers are given as input, the detector aggregates the scores for each
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godeel.datasets Load_data_handler oodeel.methods Mahalanobis

data_handler = load_data_handler("torch") oodeel.aggregator StdNormalizedAggregator
mahalanobis = Mahalanobis(
ds_fit = data_handler.load_dataset( eps=0.05,
"CIFAR10", load_kwa oot": data_path, "train": , "download": aggregator=StdNormalizedAggregator ()
)
ds_in = data_handler.load_d {{

is.fit
"CIFAR1O", load_kwal ": data_path, "train": , "download" : (RGN

) model,
feature_layers_id=[

ds_out = data_handler. 1o aset( "layerl.2.relu",

“SVHN", load_kwargs={"root": data_path, "split": "test”, "download": "layer2.2.relu",

) "layer3.2.relu",

1,
fit_dataset=ds_fit,

)
scores_in, _ = mahalanobis.score(ds_in)
scores_out, _ = mahalanobis.score(ds_out)
ds_fit = data_handler.prepare(
ds_fit, batch_size, preprocess_fn, shuffle=7ruc, columns=["input®, "label"]
)
ds_in = data_handler.prepare(

: ds_in, batch_size, preprocess_fn, columns=["input®, "label"] TERIES = (TGS

ds_out = data_handler.prepare( (scores_in, scores_out),
ds_out, batch_size, preprocess_fn, columns=["input”, "label"] metrics=["auroc", "fpr95tpr"],

) )

Figure 1: User API for using Mahalanobis detector with Cifar]10/SVHN as ID/OOD datasets. (1)
Data preparation: Instantiate a DataHandler depending on the backend, load the ID dataset from
the default hub. (2) Detector instantiation and scoring: Instantiate the detector, fit it to the user-
provided pretrained classifier, and score the datasets. (3) Compute OOD metrics.

layer using an aggregator object. Often, these feature-based detectors need a third ID fit
dataset, which can be built out of the ID training dataset. In such cases, the user needs to
specify it with the argument fit_dataset.

3 Computing OOD metrics: Compute the selected OOD metrics from the scores computed
in the previous step. Note that it is possible to give any metrics from sklearn.metrics as
an argument when relevant.

The APIs are the same for TensorFlow and Pytorch, from data loading to computing metrics. All
these steps are illustrated for the Mahalanobis detector in Figure [T}

3.2 Core Structure

OODEEL is built on four main core abstractions we outline in this Section. The interactions between
these abstractions for a detection workflow are illustrated in Figure 2]

DataHandler From the user’s point of view, this abstraction instantiates data from dataset hubs
Torchvision, Tensorflow Datasets, or Hugging Face, or from user-provided datasets. It also pre-
pares datasets for scoring (prepared datasets can also be used for training). It is instantiated using
load_data_handler (), which either loads TFDataHandler or TorchDataHandler automatically
depending on the backend. The two child classes share the same API, which does not depend on the
backend, so all this is transparent to the user.

FeatureExtractor This abstraction runs completely under the hood, and extracts internal features
of any pretrained models in keras (with KerasFeatureExtractor child class) or torch.nn (with
TorchFeatureExtractor child class) based on layer names or indices. It is fit on a model when
using 00DBaseDetector.fit () and can be used in place of the original model. Its .predict ()
method returns the model outputs with its internal features.

Operator This abstraction also runs under the hood and provides a single API for tensor opera-
tions, regardless of the backend. When instanciating a detector, the backend is detected and either
TorchOperator or TFOperator is loaded. All the detectors’ calculations are implemented with
the Operator’s API and hence do not need a separate implementation to work with PyTorch or
Tensorflow. The spirit of this abstraction is the same as keras. opﬂ for Keras 3, or EagerPy [11]].

0OODBaseDetector It is the main engine of the library, and all detectors inherit from this class.
It manages the use of activation-shaping and layer aggregation techniques, and loads appropriate
DataHandler, FeatureExtractor, and Operator that will be used at runtime.

Some key practical advantages of the OODEEL implementation deserve to be highlighted.

*https://keras.io/api/ops/
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Figure 2: Details on interactions between 00DBaseDetector, DataHandler, FeatureExtractor
and Operator when using OODEEL. Note that for simplicity, we omit to represent
HFFeatureExtractor

Compatibility with both PyTorch and Tensorflow: The implementation of a common API for
PyTorch and TensorFlow specific classes allows us to write code using this API, without worrying
about which class, and therefore which backend will be used.

Seamless data loading: Using DataHandler, data can be loaded from main datasets hubs: Torchvi-
sion, Tensorflow Datasets, and HuggingFace datasets, or from custom Datasets, with a backend-
agnostic APL

Compatibility with any pretrained Keras and torch.nn classifier models: FeatureExtractor
and its child classes allow the extraction of internal features from all pretrained models solely using
the layer names. This is a key advantage compared to other OOD libraries that reimplement common
models to make them compatible with their code.

Unified implementation: 00DBaseDetector is implemented so that, when it is applicable, every
detector’s component that can be used with other detectors, even if it was not the case in these
detectors’ initial implementation. Hence, we can apply activation shaping techniques such as ReAct
to every logit-based detector, and aggregate the scores of several layers for all feature-based detectors.

Easy implementation of new custom detectors: Using Operator, it takes only a few class overrides
to implement a new detector that enjoys all the previous features. A tutorial in the documentation is
provided to guide practitioners through such an implementation.

3.3 Implemented OOD detectors

OODEEL is not to be compared with benchmarking software like OpenOOD. It implements fewer
OOD detection techniques since our focus is to unify their implementations and make them applicable
to any model in both TensorFlow and PyTorch. Hence, we selected OOD detection techniques that are
either the most cited or among the best of the OpenOOD benchmark. The included OOD detection
techniques, sorted by category, are as follows. Feature-based detectors: Mahalanobis [7], DKNN
[L6], VIM [18], RMDS [12], SHE [20], Gram [14]. Logit-based detectors: MLS [17], MSP [4]],
Energy [9], Entropy [13], GEN [10], ODIN [8]. Activation-shaping techniques: ReAct [15], ASH
[2], SCALE [19]]. Layer-wise aggregation techniques: Fisher [1,[3], Normalized [14].

3.4 Additional features

OODEEL comes with additional Visualization and benchmarking features that we describe in the
Appendix. We use the benchmarking feature in the following section.



184

185
186
187
188
189
190
191
192
193

194
195
196
197
198
199

200

201
202
203
204

206
207
208
209
210
211
212

213

214
215
216
217
218
219
220

4 A Unified Benchmark for Post-hoc OOD Detection

OpenOOD is the reference benchmark for OOD detection. However, the leaderboard they provide
suffers from limitations. (1) No generic feature aggregation techniques are tested with feature-based
detectors. (2) Activation shaping is only applied to energy, whereas it could be applied to any
logit-based methods. These two limitations are design choices that are perfectly legitimate when
the intention is to provide a benchmark faithful to the methods presented in the original papers. (3)
More problematically, each experiment is run on very few different neural networks. As an example,
OOD detectors are tested on Cifar10 and Cifar100 with only one model, and on Imagenet with three
models, whereas, as we shall see, the OOD detector’s performance rank can change a lot depending
on the underlying model.

Motivated by these limitations, we leverage the holistic and interoperable implementation of OODEEL
OOD detectors to comprehensively test the impact of layer-wise score aggregation, the impact
of activation shaping, and the effect of the model (including on activation shaping and layer-wise
aggregation). We also leverage our experiments to provide additional insights into the link between ID
accuracy and AUROC, disparate performances on small-scale and large-scale datasets, and correlation
between near and far OOD

4.1 Setting

We test all the implemented OOD detectors following OpenOOD benchmark settings, with Cifar10,
Cifar100, and Imagenet as ID datasets and corresponding near-OOD and far-OOD sets of OOD
datasets. For Cifarl0, Cifar100, we test the detectors on 11 different models, and for Imagenet,
on 7 different models. We select the best hyperparameters for each OOD detector using a simple
grid search. Logit-based detectors are all assessed with and without activation-shaping, and feature-
based detectors with three levels of score aggregations: no aggregation, partial aggregation, where
we aggregate the last layers, and full aggregation, where we aggregate all the layers. We use
the Fisher aggregation technique. As a result, a total of 42 different detectors are tested on 29
different models. All the following figures are extracted from our visualization platform https:
//oodeel-benchmark.streamlit.app/. The full results of our experiments can be found in the
Appendix and in the platform. Below we give a summary of the main results and takeaways by
displaying only a subset of the results, for the sake of readability.

4.2 TImpact of the model
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Figure 3: Box plots of the rank for each detector on Imagenet. Methods are sorted according to their
mean rank on near-OOD.

For each model, we rank the different OOD detectors according to their AUROC. We then produce
a box plot of these ranks with respect to the models for each OOD detector. The results of this
experiment for the Imagenet benchmark and the most common OOD detectors are reported in[3] As
we can see, the rank varies greatly with the model, and there is no clear winner: for the near-OOD
experiments, GEN is the best detector on average, but DKNN is the best detector for one particular
model while it ranks 10th on average. We also provide rank correlation heatmaps between OOD
detectors for each models in Appendix to corroborate this finding.
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Takeaway 1 Results on OOD detectors reported on only one or few models should be interpreted
with care, and might not be representative of the real behavior on a wider range of models.

4.3 Impact of Layer-wise Score Aggregation

EEE

A Near AUROC
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Figure 4: Box plot of the A in AUROC between feature-based detector applied on the penultimate
layer and either a subset of the internal layers (partial) or all internal layers (full). Left: Imagenet,
Right: Cifarl0.

Several recent papers suggest building OOD detectors by aggregating feature-based OOD scores
computed layer-wise. We illustrate the impact of layer-wise score aggregation with the following
experiment. For each model and feature-based OOD detectors, we compute the gain/loss in AUROC
from using layer-wise aggregation with respect to the vanilla version (i.e. computed from the
penultimate layer only). For each OOD detector, we produce the box plot of these gains/losses for
different levels of aggregation (partial and full) with respect to the models. The results on Imagenet
and Cifar10 Near-OOD are reported in Figure ] For Imagenet, score aggregation can improve the
AUROC but hurts more often than it helps. For Cifar10 the results are more positive: it helps more
often than it hurts, and greatly boosts VIM’s detection capabilities.

Takeaway 2 Score aggregation can have a positive impact, but this positive impact is not systematic.
For small-scale tasks, it helps most of the time, but for large-scale tasks, it tends to deteriorate the

performance for most models.

4.4 TImpact of Activation Shaping
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Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode

Figure 5: Box plot of the A in AUROC between logit-based detectors and their augmentation with
activation-shaping techniques (ReAct, SCALE, and ASH). Left: Imagenet, Right: Cifar10.

Activation shaping techniques transform the penultimate layer features before applying the last linear
layer and computing logit-based scores. In the original papers of the ReAct, ASH and SCALE
methods, results are reported by combining these activation shaping techniques with the Energy
logit-based score alone. In order to evaluate the impact of activation shaping on other logit-base
scores, we perform the following experiment. For each model and feature-based OOD detectors, we
compute the gain/loss in AUROC from using activation shaping with respect to the vanilla version, i.e.
without activation shaping. For each OOD detector, we produce the box plot of these gains/losses for
React, ASH and SCALE with respect to the models. The results on Imagenet and Cifar10 Near-OOD
are reported in Figure[5] As we can see, activation shaping is mostly beneficial on Imagenet: it is
systematically so for the ReAct method, while for ASH and SCALE greater care should be taken, as
there are models for which they have negative effects. These results are in great contrast to those
obtained for Cifar-10: ASH and SCALE have a nefarious effect on most logit-based scores and
models, losing up to 0.6 in AUROC, while the effect of using ReAct is negligible.
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Takeaway 3 Using Activation shaping helps on large-scale tasks (for React, consistently, and for
ASH and SCALE, more randomly). For small-scale tasks, it has little effect in most cases, while
SCALE and ASH have the potential to greatly damage the original detectors.

4.5 Additional Insights

4.5.1 Link Between ID Accuracy and OOD Detection Performances
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Figure 6: Scatter plot with in-distribution accuracy on x-axis and AUROC on y-axis. Each point is a
model, whose assigned AUROC is the best among all OOD detectors applied to this model. Left:
Imagenet, Right: Cifarl0.

OODEEL allows for a thorough evaluation of ID accuracy versus OOD detection performance across
different neural network architectures. In[5]we report the results of testing multiple different model
architectures on the Imagenet and Cifar10 Near-OOD benchmarks. For each model architecture,
the AUROC of the best OOD detector (for that model and setting) is reported. As we can see, ID
accuracy and OOD detection are linearly correlated in the case of Cifar-10, while there is no clear
pattern emerging from the Imagenet experiment: the four best models achieve similar ID accuracy
while having very different OOD detection performances. This conclusion contrasts with [[17], which
observed that improving ID accuracy was an efficient way of enhancing OOD detection performances.

Takeaway 4 Correlation between ID accuracy and OOD detection seems to be near linear for
small-scale tasks and absent for large-scale tasks.

4.5.2 Disparate Performances for detectors on Small-scale and Large-scale tasks
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Figure 7: Box plots of the rank with standard deviation for each method (OOD detector) on Cifarl0.
Methods are sorted according to their mean rank on near-OOD.

By comparing the ranks of the different detectors on Imagenet as displayed in Figure 3] with those
obtained by performing the equivalent experiment on Cifar10 (Figure [7), we can conclude that
logit-based detectors perform better for large scale models while feature-based detectors perform
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better the winners for small-scale tasks. This might explain why activation shaping dedicated to
logit-based helps for Imagenet but not for Cifar10, and conversely for feature aggregation.

Takeaway 5 Logit-based detectors perform better on large-scale tasks, and feature-based detectors
perform better on small-scale tasks.

4.5.3 Trade-off Between Near-OOD and Far-OOD

We can also observe from Figure [§] that for some ID datasets, there is a tradeoff between performing
well on the Near-OOD datasets and performing well on the Far-OOD datasets. This is particularly
clear in the case of the Cifar-100 dataset, and even if less so, it remains true for Imagenet and Cifar-10.
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Figure 8: Scatter plot with near-OOD AUROC on x-axis and far-OOD AUROC on y-axis. EAch
point is a pair model / OOD detector. Left: Cifar10, Middle: Cifar100, Right: Imagenet.

Takeaway 6 For some tasks, Near-OOD and Far-OOD might not be correlated.

Overall Takeaway

Perhaps the most important takeaway of this work is that in Post-Hoc OOD detection, detector
performances greatly depend on the task (dataset and model). Benchmarking their performance
appropriately requires testing it on at least several models, which is not classically done in
post-hoc OOD detection research. But it can at most mitigate the issue. For post-hoc OOD
detection on real-world applications, i.e., with user-specific datasets and models, it is crucial
to be able to test detectors on the specific task at hand, hence the value of OODEEL, which
can be applied to any model and datasets.

5 Conclusion and Future Works

We introduced OODEEL, a holistic and extensible library for post-hoc OOD detection, designed
to work seamlessly across PyTorch and TensorFlow models. By unifying key components—such
as activation shaping and layer-wise score aggregation—OODEEL provides a powerful platform
for both practical application and rigorous experimentation. Our large-scale benchmarking reveals
important nuances in post-hoc OOD detection performance, including the impact of model choice, the
varying utility of aggregation and activation shaping techniques, the context-dependent relationship
between ID accuracy and OOD detection efficacy, the disparate performances of OOD detectors on
different tasks and on near-OOD and far-OOD detection. These findings emphasize the need for
careful, context-aware evaluation of OOD detectors. With its open-source release and accompanying
benchmarking interface, OODEEL aims to support reproducible, extensible, and insightful OOD
research for the broader machine learning community.

While OODEEL offers a comprehensive and modular framework for post-hoc OOD detection, some
areas of improvement remain. First, the library currently implements a subset of the most cited
and best-performing OOD detectors from OpenOOD, prioritizing compatibility and unification
over exhaustiveness. Consequently, newer or more experimental detectors may not be readily
available. Second, although our benchmark expands beyond existing evaluations by testing across
many models and configurations, it remains limited to image classification tasks. Since OODEEL’s
FeatureExtractor class can be applied to any model, this is the most direct follow-up of our work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution is the library OODEEL. The library as well as its main
features are accurately reported in the abstract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We added a few limitations in the Conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Not only does the paper include all information needed to reproduce the
main experimental results. The OODEEL library as well as the repository we use for the
benchmarking experiments are open-source and public.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code is provided in the OODEEL library and the additional repository for
benchmarking experimets, the necessary information to reproduce the experiments is also
included.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main details are provided in the paper in the appendix. The full details are
provided in the public repository

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: There is no randomness involved in our experiments, as OOD detection is
performed by computing metrics over the entire datasets in question. Thus it is standard
practice not to include error bars in expereiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]

Justification: All this information is detailed in the Appendix found in the supplementary
materials

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We perform no human experiments. All datasets used are well-established, pub-
lic academic research datasets. The algorithms implemented are state-of-the-art published
algorithms.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not introduce any new algorithms or methods, it only introduces
a library where published state-of-the-art methods are implemented.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use standard benchmarking datasets such as Imagenet or Cifar-10 which is
explicitly stated and credited in the paper.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the OODEEL library which is an open-source publicly available
library and a companion benchmarking repo, both of therm are documented.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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662 * Depending on the country in which research is conducted, IRB approval (or equivalent)

663 may be required for any human subjects research. If you obtained IRB approval, you
664 should clearly state this in the paper.

665 * We recognize that the procedures for this may vary significantly between institutions
666 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
667 guidelines for their institution.

668 * For initial submissions, do not include any information that would break anonymity (if
669 applicable), such as the institution conducting the review.

670 16. Declaration of LLM usage

671 Question: Does the paper describe the usage of LLMs if it is an important, original, or
672 non-standard component of the core methods in this research? Note that if the LLM is used
673 only for writing, editing, or formatting purposes and does not impact the core methodology,
674 scientific rigorousness, or originality of the research, declaration is not required.

675 Answer: [NA]

676 Justification: The core method development in this research does not involve LLMs as any
677 important, original, or non-standard components.

678 Guidelines:

679 * The answer NA means that the core method development in this research does not
680 involve LLMs as any important, original, or non-standard components.

681 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
682 for what should or should not be described.
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