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ABSTRACT

Large Language Models (LLMs) can memorize and regurgitate sensitive train-
ing data, creating significant privacy and safety risks. While existing unlearn-
ing aim to address these risks, current methods are often computationally pro-
hibitive and/or significantly degrade model utility. We introduce a framework for
Inference-Time Unlearning, a new paradigm that steers an LLM’s output at in-
ference time using small secondary models, without altering the base model’s
weights. Through extensive experiments with LLMs we demonstrate that our
method is highly effective at removing targeted verbatim and semantic knowl-
edge, is orders of magnitude more computationally efficient—through profiling
of more than 1,200 models—than traditional approaches, and fully preserves the
base model’s general capabilities. We then explore efficacy in unlearning visual
semantics in generative image models and find similar evidence of effectiveness.
Collectively, the framework offers a practical, scalable, and low-cost solution for
selective forgetting, enabling more responsible and adaptable model deployment.
All code to reproduce this work is available at the following anonymous link.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities, achieving state-of-
the-art performance on a diverse array of natural language tasks and becoming integral to a wide
range of applications (Brown et al., 2020; Touvron et al., 2023; DeepSeek-AI, 2024). However, the
very scale that enables their powerful generalization also creates significant challenges (Weidinger
et al., 2021). LLMs have been shown to memorize and regurgitate portions of their training data,
including personally identifiable information (PII), proprietary text, and harmful content (Carlini
et al., 2021). This behavior creates urgent privacy, safety, and copyright concerns (Henderson et al.,
2023), conflicting with principles like the “right to be forgotten” mandated by regulations such as
the GDPR (Voigt & dem Bussche, 2017).

The most straightforward solution to remove unwanted data from an LLM is to retrain it from
scratch on a sanitized dataset (Bourtoule et al., 2021). Given that training a flagship model re-
quires vast computational resources, this approach is economically and practically infeasible for
frequent unlearning requests. For instance, training Meta’s Llama 3 70B model consumed approx-
imately 1.6 million GPU-hours, and other state-of-the-art models demand similarly massive-scale
resources (Hoffmann et al., 2022; Grattafiori et al., 2024; DeepSeek-AI, 2025). Consequently, the
field of machine unlearning has emerged to develop methods that can efficiently remove data’s in-
fluence from a trained model (Nguyen et al., 2025). Prevailing techniques often rely on fine-tuning
the full model, using methods like gradient ascent to maximize the likelihood of forgetting specific
data or negative preference optimization to steer the model away from undesired outputs (Eldan &
Russinovich, 2023; Jang et al., 2023). While less expensive than complete retraining, these methods
still require costly gradient updates on the entire large model and can often lead to a degradation of
the model’s overall capabilities, a phenomenon known as catastrophic forgetting (Kirkpatrick et al.,
2017).

In this work, we propose a new paradigm inspired by product of experts (Hinton, 1999) and specu-
lative decoding (Leviathan et al., 2023): Inference-Time Unlearning, which simulates the effects
of unlearning in a model’s outputs without modifying its parameters. Our method, Divergence De-
coding (DD), requires no modifications to the weights of the large base model. Instead, it guides
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text generation at inference-time by using a pair of much smaller, specialized models. One small
model is fine-tuned on the data to be forgotten (the “forget set”), while another is tuned on a proxy
for the data to be retained. By modifying the logits of the base model with the difference of the
“retain” and “forget” models, our method steers the output distribution away from unwanted content
while leaving general knowledge and model utility largely unaffected, so that the model behaves as
if the content had been unlearned. This method is applicable to API-locked models or unlearning
use cases (e.g., financial research) that do not require the forget set of data to be protected.

Our paper makes three primary contributions to the literature on machine unlearning:

1. Efficacy: We demonstrate that Inference-Time Unlearning effectively suppresses both ver-
batim and semantic recall from the forget set in the model’s outputs, closely matching the
behavior of a retrained model on the standard unlearning benchmarks MUSE and TOFU.
Further, we apply our method to VQGAN image generation models (Esser et al., 2021) and
find some evidence of unlearning visual semantics.

2. Utility Preservation: Our method maintains the model’s performance on general knowl-
edge and standard evaluation benchmarks. Because the base model’s weights remain un-
changed, the impact on its core capabilities is minimal, outperforming prior methods in
preserving utility as the number of unlearning requests grows.

3. Efficiency: By restricting fine-tuning to small models (with orders of magnitude fewer
parameters than the base LLM), our approach has drastically reduced the computational
cost compared to true unlearning. For example, we find that even simple tri-gram based
LMs are effective. This makes on-demand unlearning practical and scalable.

We show that our approach provides a practical, low-cost, and effective solution to the critical prob-
lem of selectively forgetting information in LLMs, paving the way for more responsible and adapt-
able deployment of these powerful models.

2 RELATED LITERATURE

Removing knowledge from model weights. Model providers use methods such as Supervised
Safety Fine-tuning and RLHF to finetune their models to reduce the likelihood of generating certain
content when aligning the models (Touvron et al., 2023; Achiam et al., 2024). For post-alignment
methods, a variety of different variations of finetuning aim to remove knowledge from the model’s
weights while damaging its utility as little as possible. (Jang et al., 2023; Eldan & Russinovich,
2023; Zhang et al., 2024; Dong et al., 2024; Fan et al., 2024). While prior work has found that these
methods can be effective, they are generally costly and almost always result in utility loss.

General inference-time approaches. Soft-prompting and in-context learning (Muresanu et al.,
2024; Pawelczyk et al., 2024; Bhaila et al., 2025) aim to also approximate the effects of unlearning
by modifying the input to the model rather than the weights. However, these methods are still
sensitive to changes in inputs e.g., they can be jailbroken easily, and the methods tend to be very
niche/specialized use cases. There are many different approaches to placing classifiers or guardrails
before and after the base model (Gao et al., 2025; Inan et al., 2023; Sharma et al., 2025), though
these tend to be effectively binary measures to flag inappropriate inputs and outputs.

Steering methods modify outputs during inference. Activation-space steering computes a direc-
tion representing a conceptual contrast (e.g., “love” vs. “hate”) and injects that vector during forward
passes (Turner et al., 2024). This provides a way to push the model toward or away from certain
behaviors but is static, resulting in weaknesses such as if applied to refusals it would have a very
high false positive rate. (Lee et al., 2025) extend this line of work by making steering conditional:
the steering vector is applied only when the input resembles a predefined concept, enabling targeted
refusals without unnecessary over-refusal. Our work builds on this direction by allowing even more
adaptive, model-aware steering that generalizes beyond safety and refusal behaviors. There is also
a conceptual parallel to LLM watermarking (Dathathri et al., 2024; Li et al., 2025), which subtly
biases generation trajectories while keeping outputs fluent. In contemporaneous work, Suriyakumar
et al. (2025) empirically motivate inference-time unlearning via a linear setup based on the perfor-
mance of a single TOFU metric and individual MUSE metrics. In contrast, we aggregate the MUSE
metrics, recognizing the tradeoffs inherent in individual metric performance, and assess both linear

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and rank-based divergence decoding across more than 20 different TOFU metrics following Dorna
et al. (2025) and MUSE. We also perform extensive ablations on hyper-parameters such as model
sizes, demonstrate the efficacy of n-gram based small models, profile the compute and runtime for
over 1,200 model combinations, and explore the generalizability to domains beyond text.

Smaller models do not necessarily imply a loss of performance. Evidence from (Gunasekar
et al., 2023; Bucher & Martini, 2024; Pecher et al., 2025) show that when finetuned for specialized
tasks, small models can match or outperform the performance of general larger models. In addition,
(Leviathan et al., 2023) proposed Speculative Decoding, demonstrating that smaller models can be
used to accelerate inference in tandem with larger models. Contrastive Decoding (Li et al., 2023)
also uses a smaller model in order to boost the performance of a larger model. Our work extends this
literature by introducing a method of unlearning which relies on small specialized models to guide
a larger model away from undesirable output.

3 METHOD

We begin by defining the problem, introducing our method, and finally connecting it to existing
work. Let V denote a finite vocabulary of tokens. A token sequence of length T is denoted as
x = (x1, x2, ..., xT ) where each token xt ∈ V . The prefix of a token sequence up to token t− 1 is
denoted x<t = (x1, ..., xt−1). There are two data generating distributions DA and DB where the
support of DB is contained within DA. Finally, P (xt|x<t) and Q(xt|x<t) denote the conditional
token distributions under DA and DB , respectively.

We consider the situation where we wish to sample from Q but do not have access to it. Instead,
only P is accessible. For example, P could be a large frontier model for which it is cost prohibitive
to retrain a new model from scratch on DB . Within the finance domain, Q could be a model as
capable as P but trained up to a fixed knowledge cutoff so as to avoid look-ahead bias. Generally,
our goal is to approximate sampling from Q using only P and samples drawn from DA and DB .

3.1 DIVERGENCE DECODING

Consider two small models p(xt|x<t) and q(xt|x<t) trained on samples from DA and DB , respec-
tively. Denote the logits of a given model M as lM (x<t) ∈ R|V |. Divergence Decoding (DD)
approximates sampling from Q by adjusting the logits of P according to the divergence between q
and p. Empirically, we consider two adjustments. The first is a linear combination of the logits,

l̂LC
Q (x<t) = lP (x<t) + α · [lq(x<t)− lp(x<t)], (1)

while the second adjustment is rank based,

l̂RQ(x<t) = lP (x<t)− 1rank(lp(x<t)−lq(x<t))≤k · ∞. (2)

In the case of the linear adjustment, if the difference between Q and P is indeed linear in logit
space, then there exists some value of α, p, and q which enables Q to be perfectly recovered. If the
difference is not linear however, then this is not true. For this reason, we also explore the rank based
approach, which prevents generating the top-k most divergent tokens between p and q.

Samples can then be drawn via typical methods (e.g., Fan et al., 2018; Holtzman et al., 2020) from
the approximation,

Q̂(xt|x<t) = softmax(l̂Q(x<t)). (3)

While the adjustments in Eq. 1 and 2 require additional forward passes for p and q, we show in
Section 4 that strong performance on certain tasks can be achieved even when p and q are trigram
models—which add negligible computational overhead.

3.2 THEORETICAL MOTIVATION

While simple to implement and fast at inference-time, our method is theoretically motivated by the
Product of Experts (Hinton, 1999) and Importance Sampling (Hammersley & Handscomb, 1965)
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literature. In Appendix A, we show that the approximation Q̂ can be formulated as a Product of
Experts model,

Q̂(xt|x<t) ∝ P (xt|x<t)︸ ︷︷ ︸
Base Expert

·

[
q(xt|x<t)

p(xt|x<t)

]α

︸ ︷︷ ︸
Domain Expert

(4)

where Q̂ is the product of a “Base Expert” P responsible for providing foundational knowledge and
a “Domain Expert” comprised of the ratio of q to p. Intuitively, the role of the domain expert can be
summarized by three cases:

1. q ≈ p: Tokens are similarly likely under both DA and DB and the domain expert ratio is
close to 1 effectively leaving the probabilities from the base model P unchanged

2. q ≫ p: Tokens are much more likely under DB than DA, and the domain expert “upvotes”
such tokens by increasing the probability assigned to them

3. q ≪ p: Tokens are much less likely under DB than DA, and the domain expert “down-
votes” such tokens by decreasing the probability assigned to them

Finally, DD can also be linked to importance sampling in Monte Carlo analysis whereby the expec-
tation of some function f(x) under a target distribution Dtarget is estimated using samples drawn
from a proposal Dproposal. Formally,

Ex∼Dtarget
[f(x)] = Ex∼Dproposal

[
f(x)

Dtarget(x)

Dproposal(x)

]
, (5)

where the importance weight w(x) = Dtarget(x)
Dproposal(x)

adjusts the expectation taken over Dproposal for
differences between the proposal and target distributions. Analogously, divergence decoding uses
the ratio of q to p to adjust for differences between the inaccessible model Q and accessible one P .

4 BENCHMARKS

We evaluate our method on two standard unlearning benchmarks—MUSE and TOFU—using the
Open Unlearning framework (Dorna et al., 2025; Maini et al., 2024; Shi et al., 2024). Following
the MUSE vocabulary, the Target model refers to the model subject to unlearning, while Retrain
denotes the best—but most costly—baseline obtained by retraining from scratch.

We fine-tune one model on the retain set and one on the forget set. To avoid excessive divergence
between p and q, the forget model may also include retain data when the retain set is substan-
tially larger. In the MUSE news dataset, the retain set is roughly twice the size of the forget set,
and training the forget model only on the forget data performs best. In contrast, for TOFU’s ‘90’
benchmark—where the retain set is nine times larger—training on both forget and retain works best.
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Figure 1: MUSE Results. Closer to retrain is better. 99% CIs are smaller than the marker sizes.
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Table 1: TOFU Results

Method Config Agg. ↑ Mem. ↑ Priv. ↑ Utility ↑
Target Full 0.02 ± 0.01 0.01 ± 0.00 0.38 ± 0.00 1.00 ± 0.04
Retrain Retain90 0.78 ± 0.01 0.53 ± 0.02 0.98 ± 0.01 1.03 ± 0.04

Linear DD α=1.5 0.78 ± 0.01 0.56 ± 0.02 0.95 ± 0.03 1.00 ± 0.04
Rank DD k=20 0.85 ± 0.02 0.80 ± 0.01 0.81 ± 0.02 0.95 ± 0.05
DPO lr=4e-6, e=2 0.31 ± 0.10 0.21 ± 0.01 0.39 ± 0.00 0.43 ± 0.29
GradAscent lr=2e-6, e=3 0.63 ± 0.01 0.51 ± 0.01 0.61 ± 0.02 0.87 ± 0.04
GradDiff lr=2e-6, e=3 0.64 ± 0.01 0.52 ± 0.01 0.62 ± 0.02 0.86 ± 0.04
NPO lr=4e-6, e=2 0.67 ± 0.01 0.57 ± 0.01 0.68 ± 0.02 0.82 ± 0.03
RMU lr=8e-7, e=4 0.67 ± 0.02 0.60 ± 0.01 0.74 ± 0.03 0.69 ± 0.04

Note: Agg. is the harmonic mean of Mem., Priv., and Utility. Each of these is itself the harmonic mean of
several tests. The top entry per column is boldfaced. See Appendix F of Dorna et al. (2025) for details on the
construction of these metrics. 99% CIs computed via hierarchical bootstrap resampling

For the MUSE benchmark (Shi et al., 2023; 2025), we use the news dataset and finetune princeton-
nlp/Sheared-LLaMA-1.3B (Xia et al., 2023) for both p and q. This model shares its tokenizer and
training data distribution with the official MUSE models. As seen in Figure 1, our method matches
or exceeds unlearning methods across memorization and Q&A dimensions.

For TOFU (Maini et al., 2024), we use the LLaMA 3.2 1B retain90 and full models as p and q,
respectively, and the LLaMA 3.1 8B model as P . As summarized in Table 1, using α slightly larger
than 1 yields an almost perfect approximation of the behavior of the retrain model.

5 ABLATIONS

For our study of hyper-parameter choice, algorithm choice, and model size for MUSE, we consider
euclidean distance to Retrain, normalized such that Target is 100%, as our all encompassing score to
capture the utility and forgetting tradeoff, for both Q&A and memorization. For TOFU, we simply
consider the aggregate score with and without privacy, as discussed in Appendix F of Dorna et al.
(2025). It is important to note that TOFU uses instruction tuned models while MUSE uses only pre-
trained models with few-shot Q&A and significantly simpler questions and answers. In addition, the
datasets used in MUSE are much larger. We keep the model training setup fixed; in principle, further
fine-tuning would allow smaller hyperparameter values. Figure 9 contains the raw data points used
in the ablation studies for MUSE, and Table 7 contains the raw information for TOFU.

5.1 HYPER-PARAMETER CHOICE AND ALGORITHM CHOICE

We first study the choice of Linear DD vs Rank DD and the sensitivity to hyper-parameter choice.
On MUSE, we find that Rank DD outperforms on memorization while Linear DD marginally outper-
forms on Q&A. On TOFU, Rank DD marginally outperforms Linear DD on the aggregate metric,
both when privacy is included and when it is excluded. We find that there are a large range of
hyper-parameter values that perform well and that Rank DD is especially flexible.

5.2 MODEL SIZE

Given that our method works well with the 1B and 1.3B small models, a natural question is how
sensitive performance is to the size of p and q. We investigate this using the the 2.7B Sheared-
LLaMA model variant for MUSE, the Llama 3.2 3B variants for TOFU models, and trigram LMs
based on Stupid Backoff (Brants et al., 2007) for both. Our trigram implementation pre-computes
all scores as arrays the size of the vocabulary, effectively giving zero inference overhead and serving
as a limiting case of “0% of P ’s size.”

We evaluate the most optimal configuration for each model size. On MUSE, scaling from 1.3B to
2.7B yields a noticeably larger gain than the corresponding jump from 1B to 3B on TOFU. Mean-
while, the trigram models—which perform surprisingly well on some MUSE settings—fail almost
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(b) TOFU Aggregate Score
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Figure 2: Effect of hyper-parameter and algorithm choice. The Alpha scale runs from 0 to 2 on
MUSE and 0 to 4 on TOFU. 99% CI are provided.
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Figure 3: Analysis of model scaling on MUSE (left) and TOFU (right). 99% CI are provided.

entirely on TOFU. Upon further inspection of the Q&A questions on MUSE where the Trigram
models perform well, we find that this is largely due to questions which are more similar to the
underlying training data. Thus, we conclude that the Trigram models are likely most useful for
unlearning verbatim content.

5.3 OVER-UNLEARNING, PRIVACY, AND CALIBRATION

Over-unlearning, even when utility is preserved, is not always optimal. In settings like toxic con-
tent prevention, aggressively suppressing certain outputs is entirely reasonable. However, many real-
world applications are highly sensitive to over-unlearning. For instance, in financial modeling—
such as backtesting trading strategies or stress testing banks—the goal is to evaluate performance
using only the information that would have been available at the time. For example, one would want
to unlearn the 2008 financial crisis so they could realistically assess the performance of an LLM
making decisions at the time. Over-unlearning would cause the model to overcompensate to the
point that it assigns even lower likelihoods to these events than what ultimately occurred.

More broadly, we treat the privacy metrics as indicators of over- versus under-unlearning, rather than
as definitive tests of whether individual training examples were used or successfully removed. As
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Figure 4: Analysis of Over- or Under- Unlearning on MUSE (left) and TOFU (right). Closer to
retrain is better. The optimal values for both benchmarks are Alpha∼1.5 and TopK∼20. 99% CI are
provided.
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Figure 5: The left column is sustainability - consecutive forget sets of the same size - and the right
column is scaling, increasingly large forget sets. We consider euclidean distance to the method’s
baseline performance when evaluated on the retain set and the original forget set, with the increas-
ing distance capturing both utility loss and loss of forgetting. In general, all methods except for
GradDiff perform reasonably well and within the margin of error of each other.

discussed in Section 8, these methods are not intended for open-source distributions of the weights,
though it can be used if the logits are public. The naive implementation of the rank based method—
e.g., setting targeted logits to −∞—would produce degenerate privacy scores, since the losses would
be infinite. To preserve the ability to evaluate over- versus under-unlearning in the rank-based set-
ting, we instead replace the k most divergent logits with the kth largest logit in the unmodified
distribution.

Across both MUSE and TOFU, a broad range of hyper-parameters produce models that are sta-
tistically indistinguishable from a full retrain, striking a clean balance between over- and under-
unlearning. The fact that the optimal region occurs around α > 1 aligns with the intuition from §3.1
that a simple linear combinations of logits may be a near-optimal solution.

5.4 SUSTAINABILITY AND SCALING

Finally, prior work has found that many unlearning methods exhibit poor scalability—the unlearn-
ing of very large amounts of content—and sustainability—sequential requests to unlearn additional
content. We explore the efficacy of our method along these dimensions using the MUSE scaling and
sustainability benchmarks to ensure that performance does not degrade. To extend the benchmark,
we additionally measure performance on the original forget set (Q&A), ensuring that larger and
subsequent forget requests do not come at the cost of the forget weights being overwritten.
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6 BEYOND TEXT

One benefit of our method is its generality, i.e., it can be applied to any setting where samples are
drawn from some distribution P and data exists to estimate p and q. Along these lines, we explore the
extent to which our method is effective in domains beyond text by applying it to image generation.

We begin with the setup of Esser et al. (2021) and augment the sampling in latent space per equations
1 and 2. The models p and q are estimated using data from the train split of ImageNet associated
with the dog synset. Specifically, half the descendants from the dog synset are randomly assigned to
the forget set F and the other half to the retain set R—notably, this random assignment ensures that
any preferences over dog classes will be uncorrelated with the assignment to retain versus forget.
The class-conditional ImageNet checkpoint from Esser et al. (2021) is then fine-tuned on F and R
to estimate p and q, respectively. We then sample images from the model configured without any
divergence decoding (Baseline) and with various linear and rank-based (Figure 6 and Appendix D).
As a first quantitative evaluation of the efficacy of our method, we evaluate the content of class

Figure 6: ImageNet examples, baseline generations, and generations under various divergence de-
coding setups.

conditional generations using VQAScore (Lin et al., 2024). For each class conditional generated
image, we prompt a multi-modal LLM (MLLM) to assess whether the image contains the specific
class and take the probability of “Yes” as the VQAScore—we rely on GPT-4o-mini for this task as
it requires access to the log probabilities and many modern closed models do not provide this, e.g.,
GPT-5-nano. Table 2 presents mean VQAScores for class conditional samples split by whether the
class was assigned to the retain or forget set. For linear divergence decoding setups, modest settings
of alpha display efficacy, e.g., α = 1 decreases the mean VQAScore on classes in the forget set from
97% to 20%. This is similar to our findings within the text domain where α in the range of 1 to 2
typically yielded the best results. In contrast, the rank-based setups require larger values for top-k
to reach similar efficacy, e.g., topk = 250.

As a second evaluation of the efficacy of our method, we evaluate the perceptual quality of generated
images. Notably, a naive unlearning method could simply output noise for classes in the forget set.
While this would constitute “unlearning,” it may not be particularly useful if the desired outcome is
perceptually similar and plausible generations without the indicia associated with the classes to be
forgotten, e.g., the identifiable style attributable to an artist requesting that a model provider adhere
to copyright laws. Along these lines, we follow Chen et al. (2024) and employ an MLLM-as-a-judge
to perform pairwise comparison of the visual quality between samples from our baseline setup and
a given divergence decoding setup.

Table 3 presents the performance for a variety of MLLM judges and divergence decoding setups.
In general, there is little decrease in the perceptual quality on samples conditional on classes in the
retain set. For those in the forget set, however, there is a decrease in quality. For example, a setup
with α = 5 decreases the rate at which a generated image contains the class to be forgotten from
97% to 1%, but these images are also only preferred over baseline generations 31% of the time. As
such, in practice one would have to sample, on average, two generations to get a sample which both
does not contain the class to be forgotten and meets or exceeds the baseline quality.
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Table 2: Content analysis of images generated using various divergence decoding setups. Mean
values and standard errors are presented. GPT-4o-mini is used as a judge.

Method Config Retain Forget

Baseline — 96%± 1.1 97%± 1.0

Linear α = 1 96%± 1.2 20%± 2.4
Linear α = 2 97%± 1.0 20%± 2.3
Linear α = 5 96%± 1.1 1%± 0.6
Linear α = 10 96%± 1.2 1%± 0.6
Rank topk = 20 96%± 1.1 77%± 2.5
Rank topk = 100 95%± 1.3 58%± 2.9
Rank topk = 250 95%± 1.2 20%± 2.4

Table 3: Perceptual quality analysis of images generated using various divergence decoding setups
and MLLM judges. Mean values and standard errors are presented.

Gemini 2.5 Flash-Lite GPT-5-nano Qwen3-VL 8B
Method Config Retain Forget Retain Forget Retain Forget

Linear α = 1 52%± 1.7 38%± 1.4 50%± 1.6 38%± 1.4 50%± 1.6 36%± 1.3
Linear α = 2 49%± 1.6 37%± 1.3 49%± 1.6 38%± 1.4 49%± 1.6 39%± 1.4
Linear α = 5 52%± 1.6 31%± 1.2 49%± 1.6 31%± 1.3 52%± 1.6 31%± 1.3
Linear α = 10 47%± 1.6 31%± 1.3 47%± 1.6 32%± 1.3 50%± 1.6 32%± 1.2
Rank topk = 20 49%± 1.6 47%± 1.6 48%± 1.6 47%± 1.6 48%± 1.6 48%± 1.6
Rank topk = 100 47%± 1.6 50%± 1.5 45%± 1.6 46%± 1.5 45%± 1.6 45%± 1.5
Rank topk = 250 48%± 1.6 20%± 1.1 49%± 1.6 21%± 1.1 46%± 1.6 21%± 1.1

7 COST AND LATENCY ANALYSIS

A key consideration of applying our method is the increased inference-time compute from running
the two small models in tandem with the large model. Denote the number of parameters in the large
model as N and n the number in each small model. Following the approximation of Kaplan et al.
(2020), the total inference cost increases from 2N −→ 2(N + 2n), with the relative increase given
by 2n/N . In Figure 7, we empirically measure the increase in compute costs associated with running
over 1,200 different combinations of models in a distributed setting within a single 8x{H100|B200}
instance (see Appendix B for details). We find that the compute costs tend to scale closely with our
theoretical approximation. In Appendix B, we examine the effect of our method on latency and find
that the increase is generally less than 0.1%.
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Figure 7: Empirical increases in compute requirements for a sample of more than 1,200 models.
Size of P ranges from 300M to 80B.
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8 LIMITATIONS

A key limitation lies in the method’s sensitivity to instruction-tuning. For instance, when unlearn-
ing financial knowledge, the model may generate stock recommendations in the format:

“**1. {firm name}:**”

If the smaller models anticipate a different structure (e.g., a ticker symbol or bullet marker after
the ‘1.’), the divergence in logits at the critical step may be diluted or entirely noisy. Worse, if one
small model aligns closely with the large model while the other does not, differences fail to cancel
and can yield unstable or unintended outputs. Independent researchers adopting this method may
therefore need to carefully re-tune instruction following behavior using publicly available datasets
after modifying training mixtures, while in house researchers may not find this to be a problem. In
general we expect this to be used by model providers for API-locked models.

Finally, DD does not erase internal representations; it only constrains outputs at decode time. This
makes it unsuitable for preventing toxic or copyrighted generations in open-weight settings, since
releasing the forget model’s weights could reveal sensitive information. However, for API locked
models it is still possible to expose the final logits or log-probabilities. For Linear DD, the resulting
logits should be virtually indistinguishable from the base model. For rank DD, there may be strate-
gies beyond the naive implementations of the method—such as masking with random samples, or
only adjusting logits that are in the top-p/top-k of the original distribution—to safely make the logits
indistinguishable.

9 CONCLUSION

In this work, we introduce a method to simulate unlearning at inference-time for selectively remov-
ing information from Large Language Models without costly retraining or fine-tuning of the base
model. Our method, Divergence Decoding, leverages smaller, specialized models to guide text gen-
eration away from undesirable content at the point of inference. Our experiments demonstrate three
key contributions. First, our approach is highly effective, significantly reducing the model’s ability
to recall both verbatim and semantic knowledge from a designated “forget set.” Second, by confining
training to small secondary models, our method offers a dramatically more efficient and scalable so-
lution than machine unlearning, reducing computational overhead by orders of magnitude compared
to existing techniques. Finally, because the weights of the large base model remain untouched, our
method excels at utility preservation, maintaining performance on general knowledge benchmarks
even as the number of unlearning requests grows. By providing a practical, low-cost, and effective
solution to a critical challenge in AI safety and privacy, divergence decoding can potentially enable
more responsible and adaptable deployment of large-scale language models.

REPRODUCIBILITY STATEMENT

We took care to modify OpenUnlearning as little as possible, and have details about our setups
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A CONNECTION TO PRODUCT OF EXPERTS

Hinton (1999) introduced the Product of Experts (PoE) framework whereby n probability models
are multiplicatively combined into a single model. Let the i-th expert be denoted by fi(x|θi), then a
PoE model R comprised of n experts is given by,

R(x|θ1, ..., θn) =
1

Z

n∏
i=1

fi(x|θi), (6)

where Z is a normalization constant. To highlight the connection between divergence decoding and
PoE, recall Eq. 1:

l̂Q(x<t) = lP (x<t) + α · [lq(x<t)− lp(x<t)].

In Eq. 1, a given model M has logits which are equal to the log-probabilities up to an additive
constant which depends on the token sequence prefix x<t but not the token xt, i.e.,

lM (x<t) = logM(xt|x<t) + CM (x<t). (7)

Substituting Eq. 7 into Eq. 1 for each model, gathering the constants, and performing some algebra
reveals the link to PoE:

log Q̂(xt|x<t) = logP (xt|x<t) + α · [log q(xt|x<t)− log p(xt|x<t)] + C

Q̂(xt|x<t) ∝ exp
(
logP (xt|x<t) + α · [log q(xt|x<t)− log p(xt|x<t)]

)
∝ P (xt|x<t) · q(xt|x<t)

α · p(xt|x<t)]
−α

∝ P (xt|x<t) ·

[
q(xt|x<t)

p(xt|x<t)

]α

.

B DETAILED ANALYSIS OF COMPUTE AND RUNTIME COSTS

In this section we explore the compute and runtime costs associated with our method using theo-
retical and empirical analyses. Additionally, we compare these costs to those associated with other
unlearning methods to provide guidance on when our method is desirable. In general, we find that
our method introduces minimal latency (less than 0.1% increases in realistic production environ-
ments) and compares favorably to other unlearning methods for a wide range of compute budgets.

B.1 COMPUTE REQUIREMENTS

As presented in Section 7, the compute increase associated with our method can be approximated
as 2n/N where n and N are the number of parameters in the small and big models, respectively.
For example, applying our method to a 10B parameter model using 1B parameter small models is
expected to require a 20% increase in compute. While this is a useful theoretical approximation, we
empirically explore this approximation using a distributed setup on 8xH100 and 8xB200 instances
using more than 1,200 unique combinations of models for P , p, and q.

For our specific setup, we target an environment where the small models p and q are running on
some number of accelerators while multiple copies of the large model P is running on additional
accelerators. We consider the set of candidate models for P , p, and q as those listed in Table A9
of Hoffmann et al. (2022) and add several models in the range of 19-70B parameters following the
Llama 3 architecture (Grattafiori et al., 2024). Additionally, we consider four vocabulary sizes for
each model: 215, 216, 217, and 218.

We then match models for p and q to P such that 2n ≤ N and only consider models for P where
N > 8e9. The compute increase required to run a given combination of models is then measured
as the ratio (tP + tp + tq)/tP where t is the time required to run the models measured in GPU-hrs.
Results for all combinations of models, vocabulary sizes, and devices are presented in Figure 7. In
general, we find a strong agreement with the theoretical approximation.
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B.2 LATENCY

An additional consideration of applying our method is latency, i.e., many applications require fast
responses to users and the an increase in latency of 10-20% could be unacceptable. Following from
Section B.1 above, we explore the latency impact of our method in a distributed environment where
the small models p and q can be run in parallel with multiple copies of P . In this setting, the
primary contributor to latency is the time required to sync the logits in Eq. 1 across devices such
that sampling from the approximation to Q can be performed.

Along these lines, we measure the increase in runtime as the ratio tQ/tP where the time t is the total
time required to generate a sequence of fixed length, tQ is the time to do this under the distributed
divergence decoding setup, and tP is the time to do this under a setup where P is run on a single
GPU with no synchronization overhead. The two key factors here are the vocabulary size which de-
termines the size of the data being synchronized across GPUs and the size N of P which determines
the baseline runtime required. Figure 8 shows that for most model configurations, the increase in
runtime is less than 0.1%. For smaller “large” models, i.e., N < 20e9, and the largest vocabulary
size, the increase is in runtime is roughly 0.2-0.5%. Thus, while there is undeniably an increase in
latency, it is relatively modest at < 0.5% for the vast majority of realistic model configurations.
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Figure 8: Effect of model and vocabulary size on runtime for two generations of accelerators

B.3 RELATIVE TO OTHER UNLEARNING METHODS

Additionally, let dr and df be the sizes of the retain and forget datasets (in tokens), let eN and en be
the number of epochs the large and small models are trained for, respectively, and let I be the number
of inference tokens. Hence, we want to know after how many inference tokens does it become more
costly to use DD over another method, assuming both work equally well. Considering one of the
simplest unlearning methods, Gradient Ascent (Jang et al., 2023) without any kind of regularizer,
DD becomes more costly once:

6nen(dr + df ) + 2(N + 2n)I ≥ 6NeN (df ) + 2NI

I ≥ 3NeNdf
2n

− 3en(dr + df )

2

C DETAILED EXPERIMENTAL SETUPS

C.1 MUSE

We finetune the LlaMA models using the AdamW Torch optimizer and a cosine scheduler
for 10 epochs. We set the learning rate such that the loss approximately halves over the
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course of training. We swept the LLaMA models with α ∈ {0.5, 0.6, . . . , 1.5} and top-k ∈
{1, 5, 20, 50, 100, 200, 500, 1000} and the trigram models at α ∈ {5, 10, . . . 30} and top-k ∈
{1, 2, 3, 5, 10}.
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Figure 9: All hyper-parameter and model size configurations. Increasing values are darker and
usually with reduced scores on both utility and memorization (to the bottom and left.)

Table 4: Configuration MUSE

Model Initial LR Best Verbatim Best Q&A
Stupid Backoff Trigram TopK=1 Alpha=10
princeton-nlp/Sheared-LLaMA-1.3B 5e-5 TopK=100 Alpha=0.8
princeton-nlp/Sheared-LLaMA-2.7B 4e-5 TopK=200 Alpha=1.0

For the other methods, we use the default settings provided by OpenUnlearning

Table 5: MUSE Configurations

Method Epochs Method-Specific Hyperparameters

GradDiff 1∗ α = 1.0, γ = 1.0
NPO 10 β = 0.1, α = 1.0, γ = 1.0
SimNPO 10 δ = 0, β = 4.5, α = 1.0, γ = 0.125

Default hyperparameters: batch size = 32, learning rate = 1×10−5, warmup epochs = 1, weight decay = 0.01,
retain loss = NLL. ∗ For GradDiff, the 1 epoch setting is the only deviation from the defaults.

C.2 TOFU

For p and q we use open-unlearning/tofu Llama-3.2-1B-Instruct full, open-unlearning/tofu Llama-
3.2-1B-Instruct retain90, and the counterparts for 3B. For the other methods, we grid search learning
rates {5×10−7, 8×10−7, 1×10−6, 2×10−6, 3×10−6, 4×10−6, 5×10−6, 1×10−5} and epochs
from 1 to 10. Below, we summarize the default hyperparameters provided by OpenUnlearning.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: TOFU Default Configurations (defaults apply unless noted)

Method Method-Specific Hyperparameters

DPO β = 0.1, α = 1.0, γ = 1.0, retain loss = NLL
GradAscent N/A
GradDiff α = 1.0, γ = 1.0, retain loss = NLL
NPO β = 0.1, α = 1.0, γ = 1.0, retain loss = NLL
RMU α = 1.0, γ = 1.0, steering coef = 2, retain loss = Embed Diff

Default (shared) hyperparameters: batch size = 32, warmup epochs = 1, weight decay = 0.01.
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Table 7: All TOFU Divergence Decoding Results

Size Method Param Agg. ↑ Agg w/o Priv. ↑ Mem. ↑ Priv. ↑ Utility ↑
1B Linear α=0.5 0.31 ± 0.02 0.28 ± 0.02 0.16 ± 0.01 0.38 ± 0.00 1.00 ± 0.04
1B Linear α=1.0 0.59 ± 0.01 0.63 ± 0.02 0.46 ± 0.01 0.53 ± 0.02 1.00 ± 0.04
1B Linear α=1.1 0.64 ± 0.01 0.65 ± 0.02 0.48 ± 0.01 0.63 ± 0.02 1.00 ± 0.04
1B Linear α=1.2 0.69 ± 0.01 0.67 ± 0.02 0.51 ± 0.01 0.74 ± 0.03 1.00 ± 0.04
1B Linear α=1.3 0.74 ± 0.01 0.69 ± 0.02 0.53 ± 0.01 0.86 ± 0.03 1.00 ± 0.04
1B Linear α=1.4 0.77 ± 0.02 0.71 ± 0.02 0.55 ± 0.02 0.96 ± 0.02 1.00 ± 0.04
1B Linear α=1.5 0.78 ± 0.01 0.72 ± 0.02 0.56 ± 0.02 0.95 ± 0.03 1.00 ± 0.04
1B Linear α=2.0 0.76 ± 0.01 0.78 ± 0.02 0.65 ± 0.02 0.73 ± 0.02 0.99 ± 0.04
1B Linear α=2.5 0.76 ± 0.01 0.82 ± 0.02 0.71 ± 0.02 0.67 ± 0.01 0.97 ± 0.05
1B Linear α=3.0 0.76 ± 0.01 0.84 ± 0.02 0.76 ± 0.02 0.64 ± 0.01 0.93 ± 0.05
1B Linear α=3.1 0.76 ± 0.01 0.84 ± 0.02 0.77 ± 0.02 0.64 ± 0.01 0.92 ± 0.04
1B Linear α=3.2 0.76 ± 0.01 0.84 ± 0.02 0.78 ± 0.02 0.64 ± 0.01 0.92 ± 0.04
1B Linear α=3.3 0.76 ± 0.01 0.85 ± 0.02 0.79 ± 0.02 0.64 ± 0.01 0.91 ± 0.04
1B Linear α=3.4 0.76 ± 0.01 0.84 ± 0.02 0.80 ± 0.02 0.64 ± 0.01 0.90 ± 0.04
1B Linear α=3.5 0.76 ± 0.01 0.85 ± 0.02 0.80 ± 0.02 0.63 ± 0.01 0.89 ± 0.04
1B Linear α=4.0 0.75 ± 0.01 0.83 ± 0.02 0.83 ± 0.01 0.63 ± 0.01 0.82 ± 0.04

3B Linear α=0.5 0.39 ± 0.01 0.38 ± 0.02 0.24 ± 0.01 0.39 ± 0.00 1.01 ± 0.04
3B Linear α=1.0 0.70 ± 0.01 0.68 ± 0.02 0.52 ± 0.01 0.73 ± 0.02 1.00 ± 0.04
3B Linear α=1.1 0.76 ± 0.01 0.70 ± 0.02 0.54 ± 0.02 0.89 ± 0.03 1.00 ± 0.04
3B Linear α=1.2 0.79 ± 0.02 0.72 ± 0.02 0.56 ± 0.02 0.97 ± 0.02 1.00 ± 0.04
3B Linear α=1.3 0.78 ± 0.02 0.73 ± 0.02 0.58 ± 0.02 0.88 ± 0.02 1.00 ± 0.05
3B Linear α=1.4 0.76 ± 0.01 0.75 ± 0.02 0.60 ± 0.02 0.80 ± 0.02 1.00 ± 0.05
3B Linear α=1.5 0.76 ± 0.01 0.76 ± 0.02 0.62 ± 0.02 0.75 ± 0.02 0.99 ± 0.04
3B Linear α=2.0 0.76 ± 0.01 0.82 ± 0.02 0.70 ± 0.02 0.66 ± 0.01 0.97 ± 0.04
3B Linear α=2.5 0.76 ± 0.01 0.84 ± 0.02 0.76 ± 0.02 0.64 ± 0.01 0.94 ± 0.04
3B Linear α=2.6 0.76 ± 0.01 0.85 ± 0.02 0.77 ± 0.02 0.64 ± 0.01 0.94 ± 0.04
3B Linear α=2.7 0.77 ± 0.01 0.85 ± 0.02 0.78 ± 0.02 0.64 ± 0.01 0.94 ± 0.04
3B Linear α=2.8 0.77 ± 0.01 0.86 ± 0.02 0.79 ± 0.02 0.63 ± 0.01 0.93 ± 0.04
3B Linear α=2.9 0.77 ± 0.01 0.86 ± 0.02 0.80 ± 0.02 0.63 ± 0.01 0.92 ± 0.04
3B Linear α=3.0 0.77 ± 0.01 0.86 ± 0.02 0.81 ± 0.02 0.63 ± 0.01 0.91 ± 0.04
3B Linear α=3.1 0.76 ± 0.01 0.86 ± 0.02 0.82 ± 0.02 0.63 ± 0.01 0.90 ± 0.04
3B Linear α=3.2 0.76 ± 0.01 0.85 ± 0.02 0.83 ± 0.02 0.63 ± 0.01 0.88 ± 0.04
3B Linear α=3.5 0.76 ± 0.01 0.85 ± 0.02 0.85 ± 0.01 0.63 ± 0.01 0.85 ± 0.04
3B Linear α=4.0 0.74 ± 0.01 0.82 ± 0.02 0.87 ± 0.01 0.62 ± 0.01 0.77 ± 0.03

1B Rank k=1 0.58 ± 0.01 0.77 ± 0.02 0.64 ± 0.02 0.38 ± 0.00 0.98 ± 0.04
1B Rank k=5 0.73 ± 0.01 0.85 ± 0.02 0.74 ± 0.01 0.57 ± 0.02 0.98 ± 0.04
1B Rank k=20 0.85 ± 0.02 0.87 ± 0.02 0.80 ± 0.01 0.81 ± 0.02 0.95 ± 0.05
1B Rank k=50 0.75 ± 0.01 0.75 ± 0.02 0.63 ± 0.02 0.75 ± 0.02 0.92 ± 0.04
1B Rank k=100 0.81 ± 0.02 0.86 ± 0.02 0.85 ± 0.01 0.73 ± 0.01 0.87 ± 0.05
1B Rank k=200 0.75 ± 0.01 0.76 ± 0.02 0.67 ± 0.02 0.72 ± 0.01 0.88 ± 0.04
1B Rank k=500 0.74 ± 0.01 0.75 ± 0.02 0.72 ± 0.02 0.72 ± 0.01 0.79 ± 0.04
1B Rank k=1000 0.72 ± 0.02 0.73 ± 0.02 0.75 ± 0.02 0.72 ± 0.01 0.71 ± 0.04

3B Rank k=1 0.60 ± 0.01 0.84 ± 0.02 0.72 ± 0.02 0.38 ± 0.00 0.99 ± 0.04
3B Rank k=5 0.81 ± 0.01 0.89 ± 0.02 0.82 ± 0.01 0.69 ± 0.02 0.97 ± 0.04
3B Rank k=20 0.85 ± 0.01 0.89 ± 0.02 0.86 ± 0.01 0.77 ± 0.02 0.93 ± 0.04
3B Rank k=50 0.76 ± 0.01 0.77 ± 0.02 0.67 ± 0.02 0.74 ± 0.01 0.90 ± 0.04
3B Rank k=100 0.81 ± 0.02 0.85 ± 0.03 0.89 ± 0.01 0.73 ± 0.01 0.82 ± 0.06
3B Rank k=200 0.76 ± 0.01 0.78 ± 0.02 0.73 ± 0.02 0.73 ± 0.01 0.84 ± 0.04
3B Rank k=500 0.76 ± 0.01 0.77 ± 0.02 0.77 ± 0.02 0.72 ± 0.01 0.78 ± 0.04
3B Rank k=1000 0.74 ± 0.02 0.74 ± 0.02 0.78 ± 0.02 0.72 ± 0.01 0.70 ± 0.04
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D APPLICATION TO IMAGE GENERATION

In this section we detail the experimental setup used to assess the quality of generated images and
additionally present (i) distributional statistics of image quality generated using our divergence de-
coding setup and (ii) a random sample of generated images for qualitative analysis.

D.1 EXPERIMENTAL SETUP

Each image in our sample is generated using class conditional generation using the default genera-
tion parameters of (Esser et al., 2021) for their ImageNet checkpoint. We fine-tune the parameters of
auto-regressive transformer in this model to arrive at checkpoints for p and q using a peak learning
rate of 10% of that used in (Esser et al., 2021) training for 10 epochs each over the retain and forget
sets. We then generate image samples following Eq. 3 where the adjustment from p and q is based
solely on the output from the auto-regressive transformer.

D.2 MEASURING IMAGE CONTENT AND QUALITY

Image content is measured using VQAScore (Lin et al., 2024). This approach requires access to
the log probabilities of the multi-modal LLM (MLLM) used to assess quality, therefore these as-
sessments rely on the GPT-4o-mini rather than newer models such as GPT-5-nano for which the log
probabilities are not exposed. When measuring perceptual quality, we use a MLLM-as-a-judge in
a pairwise comparison configuration (Chen et al., 2024). Since this setup does not require access
to the log probabilities, we leverage several state of the art small MLLMs for this task: Gemini 2.5
Flash-Lite, GPT-5-nano, and Qwen3-VL 8B.

D.3 DISTRIBUTIONAL PROPERTIES OF GENERATED IMAGES

Ideally, samples from the model would no longer exhibit image semantics associated with the data in
the forget set F , while retaining high perceptual quality relative to the retain set R. Following prior
work (e.g., Heusel et al., 2017), we measure the quality of the generated images using the Fréchet
Inception Distance (FID).

We assess performance by computing the FID between three pairs of data: (i) baseline images from
the retain set and generated images using classes from the retain set (FID(BR,GR)), (ii) baseline
images from the forget set and generated images using classes from the forget set (FID(BF ,GF )),
and (iii) baseline images from the retain set and generated images using classes from the forget set
(FID(BR,GF )).

Efficacy in this setting preserves perceptual quality relative to the retain set, i.e., low FID(BR,GR)
and low FID(BR,GF ), while increasing the distance between the forget set and images generated
based on those classes, i.e., high FID(BF ,GF ). In Table 8, we present FID statistics for a variety of
decoding setups. For the linear setup, an α = 1 seems to work well, e.g., a roughly 33% increase in
FID(BF ,GF ) with only a 5% increase in FID(BR,GR) relative to the baseline. In contrast, the topk
based methods appear to require much larger values of k to be effective.

Table 8: Content analysis of images generated using various divergence decoding setups.

Method Config FID(BR,GR) ↓ FID(BF ,GF ) ↑ FID(BR,GF ) ↓
Baseline — 18.2 18.0 30.1

Linear α = 1 19.2 24.1 27.3
Linear α = 2 20.5 28.7 26.8
Linear α = 5 22.8 31.6 25.8
Linear α = 10 22.6 31.4 25.3
Rank topk=20 19.1 20.0 29.2
Rank topk=100 20.1 22.1 28.7
Rank topk=250 21.1 28.1 26.0
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D.4 IMAGE GENERATION SAMPLES

ImageNet
Sample

Baseline
Generation = 1 = 2 = 5 = 10 topk = 20 topk = 100 topk = 250

Linear Rank

Figure 10: Random sample of image generations for classes in the forget set.
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Figure 11: Random sample of image generations for classes in the retain set.
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