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ABSTRACT

Large Language Models (LLMs) can memorize and regurgitate sensitive train-
ing data, creating significant privacy and safety risks. While existing unlearn-
ing aim to address these risks, current methods are often computationally pro-
hibitive and/or significantly degrade model utility. We introduce a framework for
Inference-Time Unlearning, a new paradigm that steers an LLM’s output at in-
ference time using small secondary models, without altering the base model’s
weights. Through extensive experiments with LLMs we demonstrate that our
method is highly effective at removing targeted verbatim and semantic knowledge,
is orders of magnitude more computationally efficient than traditional approaches,
and fully preserves the base model’s general capabilities. We then explore effi-
cacy in unlearning visual semantics in generative image models and find similar
evidence of effectiveness. Finally, we introduce a new benchmark focused on un-
learning time-dependent information. Collectively, the framework offers a practi-
cal, scalable, and low-cost solution for selective forgetting, enabling more respon-
sible and adaptable model deployment. All code to reproduce this work is avail-
able at https://anonymous.4open.science/r/inference-time-unlearning-iclr2026/

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities, achieving state-of-
the-art performance on a diverse array of natural language tasks and becoming integral to a wide
range of applications (Brown et al., 2020; Touvron et al., 2023; DeepSeek-AI, 2024). However, the
very scale that enables their powerful generalization also creates significant challenges (Weidinger
et al., 2021). LLMs have been shown to memorize and regurgitate portions of their training data,
including personally identifiable information (PII), proprietary text, and harmful content (Carlini
et al., 2021). This behavior creates urgent privacy, safety, and copyright concerns (Henderson et al.,
2023), conflicting with principles like the ”right to be forgotten” mandated by regulations such as
the GDPR (Voigt & dem Bussche, 2017).

The most straightforward solution to remove unwanted data from an LLM is to retrain it from
scratch on a sanitized dataset (Bourtoule et al., 2021). Given that training a flagship model re-
quires vast computational resources, this approach is economically and practically infeasible for
frequent unlearning requests. For instance, training Meta’s Llama 3 70B model consumed approx-
imately 1.6 million GPU-hours, and other state-of-the-art models demand similarly massive-scale
resources (Hoffmann et al., 2022; Grattafiori et al., 2024; DeepSeek-AI, 2025). Consequently, the
field of machine unlearning has emerged to develop methods that can efficiently remove data’s in-
fluence from a trained model (Nguyen et al., 2025). Prevailing techniques often rely on fine-tuning
the full model, using methods like gradient ascent to maximize the likelihood of forgetting specific
data or negative preference optimization to steer the model away from undesired outputs (Eldan &
Russinovich, 2023; Jang et al., 2023). While less expensive than complete retraining, these methods
still require costly gradient updates on the entire large model and can often lead to a degradation of
the model’s overall capabilities, a phenomenon known as catastrophic forgetting (Kirkpatrick et al.,
2017).

In this work, we propose a new paradigm inspired by product of experts (Hinton, 1999) and spec-
ulative decoding (Leviathan et al., 2023): Inference-Time Unlearning. Our method, Divergence
Decoding (DD), requires no modifications to the weights of the large base model. Instead, it guides
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text generation at inference time by using a pair of much smaller, specialized models. One small
model is fine-tuned on the data to be forgotten (the “forget set”), while another is tuned on a proxy
for the data to be retained. By modifying the logits of the base model with the difference of the
“retain” and “forget” models, our method steers the output distribution away from unwanted con-
tent while leaving general knowledge and model utility largely unaffected, effectively preventing the
generation of targeted content.

Our paper makes three primary contributions to the literature on machine unlearning:

1. Efficacy: We demonstrate that Inference-Time Unlearning effectively removes both verba-
tim and semantic knowledge from a model. Our experiments on the MUSE (Shi et al.,
2025) and TOFU (Maini et al., 2024) benchmarks show a significant reduction in the
model’s ability to recall targeted information from the forget set. Further, we apply our
method to VQGAN image generation models (Esser et al., 2021) and find some evidence
of unlearning visual semantics.

2. Efficiency: By restricting fine-tuning to small models (with orders of magnitude fewer
parameters than the base LLM), our approach drastically reduces the computational cost of
unlearning. For example, we find that even simple tri-gram based LMs are effective. This
makes on-demand unlearning practical and scalable.

3. Utility Preservation: Our method maintains the model’s performance on general knowl-
edge and standard evaluation benchmarks. Because the base model’s weights remain un-
changed, the impact on its core capabilities is minimal, outperforming prior methods in
preserving utility as the number of unlearning requests grows.

We show that our approach provides a practical, low-cost, and effective solution to the critical prob-
lem of selectively forgetting information in LLMs, paving the way for more responsible and adapt-
able deployment of these powerful models.

2 RELATED LITERATURE

2.1 ALIGNMENT AND UNLEARNING

Most unlearning methods are performed on the model’s weights. Model providers use methods
such as Supervised Safety Fine-tuning and RLHF to finetune their models to reduce the likelihood
of generating certain content when aligning the models (Touvron et al., 2023; Achiam et al., 2024).
For post-alignment methods, a variety of different variations of finetuning aim to remove knowledge
from the model’s weights while damaging its utility as little as possible. (Jang et al., 2023; Eldan
& Russinovich, 2023; Zhang et al., 2024; Dong et al., 2024; Fan et al., 2024). While prior work
has found that these methods can be effective, they are generally costly and almost always result in
some utility loss.

Inference time approaches. Soft-prompting and in-context learning (Muresanu et al., 2024; Pawel-
czyk et al., 2024; Bhaila et al., 2025) aim to achieve unlearning by modifying the input to the model
rather than the weights. However, these methods are still sensitive to changes in inputs and/or user
behavior which may evolve over time, e.g., they can be jailbroken easily, since the knowledge is still
inside the model. Further, the methods tend to be very niche/specialized use cases. Other approaches
place classifiers or guardrails before and after the base model (Gao et al., 2025; Inan et al., 2023;
Sharma et al., 2025).

Smaller models do not necessarily imply a loss of performance. Evidence from (Gunasekar
et al., 2023; Bucher & Martini, 2024; Pecher et al., 2025) show that when finetuned for specialized
tasks, small models can match or outperform the performance of general larger models. In addition,
(Leviathan et al., 2023) proposed Speculative Decoding, demonstrating that smaller models can
be used to accelerate inference in tandem with larger models. Our work extends this literature by
introducing a method of unlearning which relies on small specialized models to guide a larger model
away from undesirable output.
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2.2 BENCHMARKS FOR UNLEARNING

A variety of unlearning benchmarks have been established in the literature. For example, Eldan
& Russinovich (2023) introduce unlearning the Harry Potter books as a method for evaluation.
Shi et al. (2025) release MUSE, which takes the Harry Potter challenge and adds a news dataset,
focusing on six metrics related to both data owner and model provider metrics. TOFU (Maini et al.,
2024) is similar to MUSE, focusing on Q&A, and it has a much smaller dataset sizes. WMDP
(Li et al., 2024) introduces a benchmark for unlearning harmful content across different domains.
Finally, Open Unlearning (Dorna et al., 2025) provides a comprehensive evaluation of many of
the underlying metrics used for measuring unlearning and provides a harness for the testing and
benchmarking of these methods. Collectively, the benchmarks above and others, comprehensively
evaluate copyright, right to be forgotten, and toxic content generation.

While these benchmarks are focused on unlearning specific pieces of content, e.g., a news article
for which the model provider does not own the copyright, there are other types of unlearning which
are beneficial to the community. For example, LLMs are increasingly being used as surrogates for
survey participants or generating forecasts. In such applications, it is common to want some sense
of how well the model will perform out-of-sample. For this, we may need to unlearn specific time-
dependent knowledge. Along these lines, in section 6 we extend this line of literature by introducing
a benchmark for time-based unlearning.

3 METHOD

We begin by defining the problem, introducing our method, and finally connecting it to existing
work. Let V denote a finite vocabulary of tokens. A token sequence of length T is denoted as
x = (x1, x2, ..., xT ) where each token xt ∈ V . The prefix of a token sequence up to token t− 1 is
denoted x<t = (x1, ..., xt−1). There are two data generating distributions DA and DB where the
support of DB is contained within DA. Finally, P (xt|x<t) and Q(xt|x<t) denote the conditional
token distributions under DA and DB , respectively.

We consider the situation where we wish to sample from Q but do not have access to it. Instead,
only P is accessible. For example, P could be a large frontier model for which it is cost prohibitive
to retrain a new model from scratch on DB . Within the finance domain, Q could be a model as
capable as P but trained up to a fixed knowledge cutoff so as to avoid look-ahead bias. Generally,
our goal is to approximate sampling from Q using only P and samples drawn from DA and DB .

3.1 DIVERGENCE DECODING

Consider two small models p(xt|x<t) and q(xt|x<t) trained on samples from DA and DB , respec-
tively. Denote the logits of a given model M as lM (x<t) ∈ R|V |. Divergence Decoding (DD)
approximates sampling from Q by adjusting the logits of P according to the divergence between q
and p. Empirically, we consider two adjustments. The first is a linear combination of the logits,

l̂LC
Q (x<t) = lP (x<t) + α · [lq(x<t)− lp(x<t)], (1)

while the second adjustment is rank based,

l̂RQ(x<t) = lP (x<t)− 1rank(lp(x<t)−lq(x<t))≤k · ∞. (2)

In the case of the linear adjustment, if the difference between Q and P is indeed linear in logit
space, then there exists some value of α, p, and q which enables Q to be perfectly recovered. If the
difference is not linear however, then this is not true. For this reason, we also explore the rank based
approach, which prevents generating the top-k most divergent tokens between p and q.

Samples can then be drawn via typical methods (e.g., Fan et al., 2018; Holtzman et al., 2020) from
the approximation,

Q̂(xt|x<t) = softmax(l̂Q(x<t)). (3)
While the adjustments in Eq. 1 and 2 require additional forward passes for p and q, we show in
Section 4 that strong performance on certain tasks can be achieved even when p and q are trigram
models—which add negligible computational overhead.

3
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3.2 THEORETICAL MOTIVATION

While simple to implement and fast at inference time, our method is theoretically motivated by the
Product of Experts (Hinton, 1999) and Importance Sampling (Hammersley & Handscomb, 1965)
literature. In Appendix A.1, we show that the approximation Q̂ can be formulated as a Product of
Experts model,

Q̂(xt|x<t) ∝ P (xt|x<t)︸ ︷︷ ︸
Base Expert

·

[
q(xt|x<t)

p(xt|x<t)

]α

︸ ︷︷ ︸
Domain Expert

(4)

where Q̂ is the product of a “Base Expert” P responsible for providing foundational knowledge and
a “Domain Expert” comprised of the ratio of q to p. Intuitively, the role of the domain expert can be
summarized by three cases:

1. q ≈ p: Tokens are similarly likely under both DA and DB and the domain expert ratio is
close to 1 effectively leaving the probabilities from the base model P unchanged

2. q ≫ p: Tokens are much more likely under DB than DA, and the domain expert “upvotes”
such tokens by increasing the probability assigned to them

3. q ≪ p: Tokens are much less likely under DB than DA, and the domain expert “down-
votes” such tokens by decreasing the probability assigned to them

Finally, DD can also be linked to importance sampling in Monte Carlo analysis whereby the expec-
tation of some function f(x) under a target distribution Dtarget is estimated using samples drawn
from a proposal Dproposal. Formally,

Ex∼Dtarget [f(x)] = Ex∼Dproposal

[
f(x)

Dtarget(x)

Dproposal(x)

]
, (5)

where the importance weight w(x) = Dtarget(x)
Dproposal(x)

adjusts the expectation taken over Dproposal for
differences between the proposal and target distributions. Analogously, divergence decoding uses
the ratio of q to p to adjust for differences between the inaccessible model Q and accessible one P .

4 BENCHMARKS

Our primary unlearning experiments were conducted using the Open Unlearning framework (Dorna
et al., 2025; Maini et al., 2024; Shi et al., 2024) on a cluster with two NVIDIA H100 GPUs. We adopt
the MUSE vocabulary: the Target model refers to the model subject to unlearning, while Retrain
denotes the best—but most costly—of retraining from scratch, which we aim to approximate.

We fine-tune one model on the retain set and one on the forget set. To reduce excessive divergence
between p and q, the forget model may also include retain data if the retain set is much larger.
For MUSE, specifically the news dataset, the retain set is about twice the size of the forget set, so
training the forget model on only the forget set ends up outperforming. However, in TOFU’s ‘90’
benchmark, the retain set is approximately nine times larger than the forget set, in this case, we find
that performance is improved by training on a mix of both sets of data.

We interpret privacy benchmarks as a measure of over- or under-unlearning. This interpretation is
particularly relevant in settings such as backtesting, forecasting, and prediction, where overunlearn-
ing even without utility loss would skew the results. One caveat which is specific to the rank-based
divergence decoding setup is that a naive implementation, i.e., one where logits for targeted tokens
are set to −∞, would lead to degenerate privacy scores since all the unlearned material will have
logits of −∞. As we still want to evaluate over- or under-unlearning for rank-based DD, for we
instead replace the k most divergent logits with the kth largest logit in the original distribution. Of
course, if an attacker has access to the logits, this substitution would be no better than the approach
of setting masked logits to −∞ since it is very unlikely that many tokens would have identical logit

4
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values. As we discuss in section 7, a limitation of the rank-based method that it is not designed to
be applied where the logits are publicly available and where the content being unlearned must be
protected.

4.1 MUSE

Our first experiment leverages the news dataset from the MUSE benchmark (Shi et al., 2023; 2025).
For the specialized p and q models, we finetune princeton-nlp/Sheared-LLaMA-1.3B (Xia et al.,
2023), which shares a tokenizer with the official MUSE benchmark models (Shi et al., 2025). Our
method exceeds—or achieves parity with—the unlearning frontier while preserving downstream
utility (Figure 1). This performance is especially notable given the significantly reduced computa-
tional cost of our method relative to prior work. Detailed analysis of the setup, hyper-parameter
choices, and the scaling and sustainability benchmarks are provided in Appendix B.1.
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Figure 1: MUSE Results. Closer to retrain is better.

4.1.1 P AND Q MODEL SIZE

Given that applying our method using the 1.3B models for p and q is effective, a natural question is
how sensitive this performance is to model size. We investigate this using princeton-nlp/Sheared-
LLaMA-2.7B and trigram LMs based on Stupid Backoff (Brants et al., 2007). We select the most
optimal configuration of every model size, based on the minimum euclidean distance to Retrain,
and rescale the metric such that Target is 100%. The Trigram models outperform on the Verbatim
Memorization and perform slightly worse than the LLMs on Q&A. Upon further inspection of the
Q&A questions where the Trigram models perform well, we find that this is largely due to questions
which are more similar to the underlying training data. Thus, we conclude that the Trigram models
are likely most useful for unlearning verbatim content.

4.1.2 SUSTAINABILITY AND SCALING

Finally, prior work has found that many unlearning methods exhibit poor scalability—the unlearn-
ing of very large amounts of content—and sustainability—sequential requests to unlearn additional
content. We explore the efficacy of our method along these dimensions using the MUSE scaling and
sustainability benchmarks to ensure that performance does not degrade. To extend the benchmark,
we additionally measure performance on the original forget set (Q&A), ensuring that improved gen-
eralization does not come at the cost of overwriting prior forgetting, specifically with the weights of
the forget model being overwritten.

4.2 TOFU

In our second experiment, we evaluate our method on TOFU (Maini et al., 2024). For p and q, we
use the LLaMA 3.2 1B and 3B retain90 and full models (for retain and forget, respectively), and

5
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Figure 2: Analysis of Model Scaling and Over- or Under- Unlearning on MUSE

0

20

40

U
til

ity

Sustainability Scalability

0th 1st 2nd 3rd 4th
Nth Forget Request

0

20

40

60

Fo
rg

et

0.0M 0.8M 1.7M 2.5M 3.3M
Size of Forget Set

Linear DD Rank DD GradDiff NPO SimNPO

Figure 3: MUSE Scaling and Sustainability. The left column is sustainability - consecutive forget
sets of the same size - and the right column is scaling, increasingly large forget sets. The top row is
utility on the retain set, while the bottom row is the utility on the original forget set. We want the
lines to stay flat after the first point on both rows, with the lines curving upwards on the bottom row
being undesirable.

use the LLaMA 3.1 8B model as P . In Table 1, we find that with alphas slightly larger than 1, our
method achieves an almost perfect approximation of the retrain model—including near perfect
privacy scores. Performance gaps between the 1B and 3B model are much smaller compared to the
1.3B and 2.7B used in MUSE. Further details about the setup are provided in Appendix B.2

5 BEYOND TEXT

One benefit of our method is its generality, i.e., it can be applied to any setting where samples are
drawn from some distribution P and data exists to estimate p and q. In a final set of experiments we
explore the extent to which our method is effective in domains beyond text by applying it to image
generation.

We begin with the setup of Esser et al. (2021) and augment the sampling in latent space per equations
1 and 2. We estimate p and q using data from the train split of ImageNet which are associated with
the dog synset. Specifically, we randomly assign half the descendants from the dog synset to the
forget set F and the other half to the retain set R. We fine-tune the class-conditional ImageNet
checkpoint from Esser et al. (2021) on F and R to estimate p and q, respectively. We then sample
images from the model configured without any divergence decoding (Baseline) and with various
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Table 1: TOFU Results

Method Config Agg. ↑ Mem. ↑ Priv. ↑ Utility ↑
Target Full 0.02 0.01 0.38 1.00
Retrain Retain90 0.78 0.53 1.00 1.03

Linear DD 1B α=1.5 0.78 0.56 0.95 1.00
Linear DD 3B α=1.2 0.79 0.56 0.98 1.00
Rank DD 1B topk=20 0.85 0.80 0.81 0.95
Rank DD 3B topk=20 0.85 0.86 0.77 0.93
DPO lr=4e-6, epoch=2 0.32 0.21 0.39 0.46
GradAscent lr=2e-6, epoch=3 0.63 0.51 0.61 0.86
GradDiff lr=2e-6, epoch=3 0.63 0.52 0.62 0.85
NPO lr=4e-6, epoch=2 0.67 0.57 0.68 0.81
RMU lr=8e-7, epoch=4 0.67 0.60 0.74 0.68

Note: Agg. is the harmonic mean of Mem., Priv., and Utility. Each of these is itself the harmonic mean of
several tests. The top two entries per column are boldfaced. See Appendix F of Dorna et al. (2025) for details
on the construction of these metrics.

linear and rank-based setups. Following prior work (e.g., Heusel et al., 2017), we measure the
quality of the generated images using the Fréchet Inception Distance (FID).

Ideally, samples from the model would no longer exhibit image semantics associated with the data
in the forget set F , while retaining high perceptual quality relative to the retain set R. We assess per-
formance by computing the FID between three pairs of data: (i) baseline images from the retain set
and generated images using classes from the retain set (FID(BR,GR)), (ii) baseline images from the
forget set and generated images using classes from the forget set (FID(BF ,GF )), and (iii) baseline
images from the retain set and generated images using classes from the forget set (FID(BR,GF )).

Efficacy in this setting preserves perceptual quality relative to the retain set, i.e., low FID(BR,GR)
and low FID(BR,GF ), while increasing the distance between the forget set and images generated
based on those classes, i.e., high FID(BF ,GF ). In Table 2, we present FID statistics for a variety of
decoding setups. For the linear setup, an α = 1 seems to work well, e.g., a roughly 33% increase in
FID(BF ,GF ) with only a 5% increase in FID(BR,GR) relative to the baseline. In contrast, the topk
based methods appear to require much larger values of k to be effective.

Table 2: Quality of images generated using various divergence decoding setups.

Method Config FID(BR,GR) ↓ FID(BF ,GF ) ↑ FID(BR,GF ) ↓
Baseline — 18.2 18.0 30.1

Linear α = 1 19.2 24.1 27.3
Linear α = 2 20.5 28.7 26.8
Linear α = 5 22.8 31.6 25.8
Linear α = 10 22.6 31.4 25.3
Rank topk=20 19.1 20.0 29.2
Rank topk=100 20.1 22.1 28.7
Rank topk=250 21.1 28.1 26.0

6 A TIME-UNLEARNING BENCHMARK

Existing unlearning methods—combined with improved data sanitation—are generally effective at
eliminating the generation of toxic or copyrighted content. However, one of the most pressing mo-
tivations for unlearning arises in finance, where backtesting strategies on historical data is hindered
by look-ahead bias, i.e., overly optimistic estimates of performance due to the model having been
trained on data from the backtest period. Ideally, one would be able to leverage unlearning methods

7
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to enable simulation of frontier models that had been trained to different knowledge cutoffs, thereby
alleviating concerns about look-ahead bias.

To support the development of such methods, we propose a benchmark for measuring time-based
unlearning by constructing a tractable proxy dataset which reflects contemporaneous events. Specif-
ically, we download questions from Kalshi, a large, public prediction market. We retain all “one-off”
or “two-off” questions (based on the series marker), which provide concise representations of events
that were significant at the time or rumors that were trending at the time. In addition, we take the
probability distribution one hour after the market has been created as our estimate of when the ini-
tial probabilities have converged and the market is liquid. Table 3 provides examples of questions,
all of which were relevant at the time.

Table 3: Example prediction questions included in the benchmark. Correct answers appear in bold.

Question Open Date Close Date Answer Choices

ChatGPT-5 revealed in 2024? 2023-12-13 2025-01-01 Revealed, Not revealed

Which team will draft Bronny James? 2024-05-03 2024-06-28
Undrafted,

Portland Trail Blazers,
. . . Los Angeles Lakers

Will Bitcoin hit $100k again in 2024? 2024-12-11 2024-12-11 Yes, No

Importantly, these questions are inherently counterfactual in nature: they concern both events that
did occur and those that did not. For evaluation, we pose each question as if it was the day market
opened, and we score as if we spent $1 on contracts based on the recommendation of the model.
Therefore, if the market is efficient, trading without any information edge (e.g., random guessing
or always selecting the favorite) yields an expected average profit per trade of $0. Prior literature
examining look-ahead bias in LLMs (e.g., Glasserman & Lin, 2023; Sarkar & Vafa, 2024) suggests
estimates of model performance based on in-sample data will be overly optimistic. In Table 4, we
find exactly this pattern, where apparent predictive ability in-sample vanishes out-of-sample.

Model Pre-Cutoff Post-Cutoff Post-Release

GPT-4.1 mini 0.728 (n=222) -0.006 (n=337) -0.144 (n=250)
GPT-4.1 1.513 (n=222) 0.067 (n=337) -0.064 (n=250)
o4-mini 1.026 (n=222) 0.152 (n=337) 0.023 (n=250)
Claude 3.5 Haiku 0.938 (n=248) 0.298 (n=7) -0.027 (n=554)
Claude 3.7 Sonnet 1.106 (n=256) 0.007 (n=248) 0.062 (n=305)
Claude 3.7 Sonnet - Extended Thinking 1.194 (n=256) 0.038 (n=248) -0.053 (n=305)
Llama 3.1 8B Instruct Turbo 0.626 (n=186) 0.010 (n=53) -0.163 (n=570)
Llama 3.1 70B Instruct Turbo 1.010 (n=186) 0.091 (n=53) -0.136 (n=570)
Llama 3.1 405B Instruct Turbo 1.300 (n=186) 0.047 (n=53) -0.254 (n=570)
DeepSeek V3 1.147 (n=253) -0.201 (n=76) -0.042 (n=480)
DeepSeek R1 1.342 (n=253) 0.025 (n=189) -0.002 (n=367)

Table 4: Model performance across different time periods. Average profit per trade from buying the
model’s chosen answer. Numbers significantly different from zero (p < 0.05) are bolded. Models
exhibit significant look-ahead bias pre-cutoff and limited out-of-sample trading performance.

We consider the diversity of questions on our test a major strength. We don’t intend to provide a
forget corpus or for users to finetune directly on the questions. Instead, we intend for this to be used
a general benchmark of any method that claims to reduce all look ahead bias.

7 LIMITATIONS

One limitation is the potential increase in inference-time cost due to running the small models in
tandem with the large model. Let N denote the number of parameters in the large model and n the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

number of parameters in each small model. Measured in FLOPs Kaplan et al. (2020), the inference
cost scales from

2N −→ 2(N + 2n).

Additionally, let dr and df be the sizes of the retain and forget datasets (in tokens), let eN and en be
the number of epochs the large and small models are trained for, respectively, and let I be the number
of inference tokens. Hence, we want to know after how many inference tokens does it become more
costly to use DD over another method, assuming both work equally well. Considering one of the
simplest unlearning methods, Gradient Ascent (Jang et al., 2023) without any kind of regularizer,
DD becomes more costly once:

6nen(dr + df ) + 2(N + 2n)I ≥ 6NeN (df ) + 2NI

I ≥ 3NeNdf
2n

− 3en(dr + df )

2

A second limitation is that DD does not erase internal representations; it only constrains outputs
at decode time. This makes it unsuitable for preventing toxic or copyrighted generations in open-
weight settings, since releasing the forget model’s weights could reveal sensitive information. In
addition, it would also be a privacy risk to allow users to access the topk logits or log probabilities
from an API, since that could also reveal sensitive information.

A third limitation lies in the method’s sensitivity to instruction-tuning. For instance, when un-
learning financial knowledge, the model may generate stock recommendations in the format:

“**1. {firm name}:**”

If the smaller models anticipate a different structure (e.g., a ticker symbol or bullet marker after
the ‘1.’), the divergence in logits at the critical step may be diluted or entirely noisy. Worse, if one
small model aligns closely with the large model while the other does not, differences fail to cancel
and can yield unstable or unintended outputs. Independent researchers adopting this method may
therefore need to carefully re-tune instruction following behavior using publicly available datasets
after modifying training mixtures, while in house researchers may not find this to be a problem.

8 CONCLUSION

In this work, we introduce an inference-time unlearning paradigm for selectively removing informa-
tion from Large Language Models without costly retraining or fine-tuning of the base model. Our
method, Divergence Decoding, leverages smaller, specialized models to guide text generation away
from undesirable content at the point of inference. Our experiments demonstrate three key contribu-
tions. First, our approach is highly effective, significantly reducing the model’s ability to recall both
verbatim and semantic knowledge from a designated ”forget set.” Second, by confining training to
small secondary models, our method offers a dramatically more efficient and scalable solution for
machine unlearning, reducing computational overhead by orders of magnitude compared to existing
techniques. Finally, because the weights of the large base model remain untouched, our method
excels at utility preservation, maintaining performance on general knowledge benchmarks even as
the number of unlearning requests grows. By providing a practical, low-cost, and effective solution
to a critical challenge in AI safety and privacy, divergence decoding can potentially enable more
responsible and adaptable deployment of large-scale language models.

REPRODUCIBILITY STATEMENT

We took care to modify OpenUnlearning as little as possible, and have details about our setups
for MUSE and TOFU in Appendix B. All code to reproduce this work is available at the following
anonymous repository link: https://anonymous.4open.science/r/inference-time-unlearning-iclr2026/

We will release fine-tuned models and data on Hugging Face after the review period.
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ETHICS STATEMENT

In general, we intend unlearning to support beneficial use cases - for debiasing models, prevent-
ing toxic and copyrighted content generation, and legitimate research in domains such as finance.
However, we acknowledge the approach could be misused to induce undesirable or harmful biases.
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A THEORETICAL RESULTS

A.1 CONNECTION TO PRODUCT OF EXPERTS

Hinton (1999) introduced the Product of Experts (PoE) framework whereby n probability models
are multiplicatively combined into a single model. Let the i-th expert be denoted by fi(x|θi), then a
PoE model R comprised of n experts is given by,

R(x|θ1, ..., θn) =
1

Z

n∏
i=1

fi(x|θi), (6)

where Z is a normalization constant. To highlight the connection between divergence decoding and
PoE, recall Eq. 1:

l̂Q(x<t) = lP (x<t) + α · [lq(x<t)− lp(x<t)].

In Eq. 1, a given model M has logits which are equal to the log-probabilities up to an additive
constant which depends on the token sequence prefix x<t but not the token xt, i.e.,

lM (x<t) = logM(xt|x<t) + CM (x<t). (7)

Substituting Eq. 7 into Eq. 1 for each model, gathering the constants, and performing some algebra
reveals the link to PoE:

log Q̂(xt|x<t) = logP (xt|x<t) + α · [log q(xt|x<t)− log p(xt|x<t)] + C

Q̂(xt|x<t) ∝ exp
(
logP (xt|x<t) + α · [log q(xt|x<t)− log p(xt|x<t)]

)
∝ P (xt|x<t) · q(xt|x<t)

α · p(xt|x<t)]
−α

∝ P (xt|x<t) ·

[
q(xt|x<t)

p(xt|x<t)

]α

.

B EXPERIMENTS

B.1 DETAILED MUSE SETUP AND ANALYSIS

We finetune the LlaMA models using the AdamW Torch optimizer and a cosine scheduler for 10
epochs. We set the learning rate such that the loss approximately halves over the course of training.

We sweep α ∈ {0.5, 0.6, . . . , 1.5} and top-k ∈ {1, 5, 20, 50, 100, 200, 500, 1000} for the LLaMA
models, and at α ∈ {5, 10, . . . 30} and top-k ∈ {1, 2, 3, 5, 10} for the trigram models. We choose
the most optimal point as the point closest in euclidean distance to Retrain. We find that in general,
rank DD outperforms on verbatim memorization while linear DD outperforms on Q&A knowledge.

Table 5: Configuration MUSE

Model Initial LR Best Verbatim Best Q&A
Stupid Backoff Trigram TopK=1 Alpha=10
princeton-nlp/Sheared-LLaMA-1.3B 5e-5 TopK=100 Alpha=0.8
princeton-nlp/Sheared-LLaMA-2.7B 4e-5 TopK=200 Alpha=1.0
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Figure 4: All hyper-parameter and model size configurations

For the other methods, we use the default settings provided by OpenUnlearning

Table 6: MUSE Configurations

Method Epochs Method-Specific Hyperparameters

GradDiff 1∗ α = 1.0, γ = 1.0
NPO 10 β = 0.1, α = 1.0, γ = 1.0
SimNPO 10 δ = 0, β = 4.5, α = 1.0, γ = 0.125

Default hyperparameters: batch size = 32, learning rate = 1×10−5, warmup epochs = 1, weight decay = 0.01,
retain loss = NLL. ∗ For GradDiff, the 1 epoch setting is the only deviation from the defaults.

B.2 DETAILED TOFU SETUP

For the other methods, we grid search learning rates {5× 10−7, 8× 10−7, 1× 10−6, 2× 10−6, 3×
10−6, 4 × 10−6, 5 × 10−6, 1 × 10−5} and epochs from 1 to 10. Below, we summarize the default
hyperparameters provided by OpenUnlearning.

Table 7: TOFU Default Configurations (defaults apply unless noted)

Method Method-Specific Hyperparameters

DPO β = 0.1, α = 1.0, γ = 1.0, retain loss = NLL
GradAscent N/A
GradDiff α = 1.0, γ = 1.0, retain loss = NLL
NPO β = 0.1, α = 1.0, γ = 1.0, retain loss = NLL
RMU α = 1.0, γ = 1.0, steering coef = 2, retain loss = Embed Diff

Default (shared) hyperparameters: batch size = 32, warmup epochs = 1, weight decay = 0.01.
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