

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZED INFERENCE TIME UNLEARNING — EF-FECTIVE FOR A FRACTION OF THE COST

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can memorize and regurgitate sensitive training data, creating significant privacy and safety risks. While existing unlearning aim to address these risks, current methods are often computationally prohibitive and/or significantly degrade model utility. We introduce a framework for Inference-Time Unlearning, a new paradigm that steers an LLM’s output at inference time using small secondary models, without altering the base model’s weights. Through extensive experiments with LLMs we demonstrate that our method is highly effective at removing targeted verbatim and semantic knowledge, is orders of magnitude more computationally efficient—through profiling of more than 1,200 models—than traditional approaches, and fully preserves the base model’s general capabilities. We then explore efficacy in unlearning visual semantics in generative image models and find similar evidence of effectiveness. Collectively, the framework offers a practical, scalable, and low-cost solution for selective forgetting, enabling more responsible and adaptable model deployment. All code to reproduce this work is available at the following anonymous link.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities, achieving state-of-the-art performance on a diverse array of natural language tasks and becoming integral to a wide range of applications (Brown et al., 2020; Touvron et al., 2023; DeepSeek-AI, 2024). However, the very scale that enables their powerful generalization also creates significant challenges (Weidinger et al., 2021). LLMs have been shown to memorize and regurgitate portions of their training data, including personally identifiable information (PII), proprietary text, and harmful content (Carlini et al., 2021). This behavior creates urgent privacy, safety, and copyright concerns (Henderson et al., 2023), conflicting with principles like the “right to be forgotten” mandated by regulations such as the GDPR (Voigt & dem Bussche, 2017).

The most straightforward solution to remove unwanted data from an LLM is to retrain it from scratch on a sanitized dataset (Bourtoule et al., 2021). Given that training a flagship model requires vast computational resources, this approach is economically and practically infeasible for frequent unlearning requests. For instance, training Meta’s Llama 3 70B model consumed approximately 1.6 million GPU-hours, and other state-of-the-art models demand similarly massive-scale resources (Hoffmann et al., 2022; Grattafiori et al., 2024; DeepSeek-AI, 2025). Consequently, the field of machine unlearning has emerged to develop methods that can efficiently remove data’s influence from a trained model (Nguyen et al., 2025). Prevailing techniques often rely on fine-tuning the full model, using methods like gradient ascent to maximize the likelihood of forgetting specific data or negative preference optimization to steer the model away from undesired outputs (Eldan & Russinovich, 2023; Jang et al., 2023). While less expensive than complete retraining, these methods still require costly gradient updates on the entire large model and can often lead to a degradation of the model’s overall capabilities, a phenomenon known as catastrophic forgetting (Kirkpatrick et al., 2017).

In this work, we propose a new paradigm inspired by product of experts (Hinton, 1999) and speculative decoding (Leviathan et al., 2023): **Inference-Time Unlearning**, which simulates the effects of unlearning in a model’s outputs without modifying its parameters. Our method, Divergence Decoding (DD), requires no modifications to the weights of the large base model. Instead, it guides

054 text generation at inference-time by using a pair of much smaller, specialized models. One small
 055 model is fine-tuned on the data to be forgotten (the “forget set”), while another is tuned on a proxy
 056 for the data to be retained. By modifying the logits of the base model with the difference of the
 057 “retain” and “forget” models, our method steers the output distribution away from unwanted content
 058 while leaving general knowledge and model utility largely unaffected, so that the model behaves as
 059 if the content had been unlearned. This method is applicable to API-locked models or unlearning
 060 use cases (e.g., financial research) that do not require the forget set of data to be protected.

061 Our paper makes three primary contributions to the literature on machine unlearning:
 062

- 063 **Efficacy:** We demonstrate that Inference-Time Unlearning effectively suppresses both ver-
 064 batim and semantic recall from the forget set in the model’s outputs, closely matching the
 065 behavior of a retrained model on the standard unlearning benchmarks MUSE and TOFU.
 066 Further, we apply our method to VQGAN image generation models (Esser et al., 2021) and
 067 find some evidence of unlearning visual semantics.
- 068 **Utility Preservation:** Our method maintains the model’s performance on general knowl-
 069 edge and standard evaluation benchmarks. Because the base model’s weights remain un-
 070 changed, the impact on its core capabilities is minimal, outperforming prior methods in
 071 preserving utility as the number of unlearning requests grows.
- 072 **Efficiency:** By restricting fine-tuning to small models (with orders of magnitude fewer
 073 parameters than the base LLM), our approach has drastically reduced the computational
 074 cost compared to true unlearning. For example, we find that even simple tri-gram based
 075 LMs are effective. This makes on-demand unlearning practical and scalable.

076 We show that our approach provides a practical, low-cost, and effective solution to the critical prob-
 077 lem of selectively forgetting information in LLMs, paving the way for more responsible and adapt-
 078 able deployment of these powerful models.
 079

080 2 RELATED LITERATURE

083 **Removing knowledge from model weights.** Model providers use methods such as Supervised
 084 Safety Fine-tuning and RLHF to finetune their models to reduce the likelihood of generating certain
 085 content when aligning the models (Touvron et al., 2023; Achiam et al., 2024). For post-alignment
 086 methods, a variety of different variations of finetuning aim to remove knowledge from the model’s
 087 weights while damaging its utility as little as possible. (Jang et al., 2023; Eldan & Russinovich,
 088 2023; Zhang et al., 2024; Dong et al., 2024; Fan et al., 2024). While prior work has found that these
 089 methods *can* be effective, they are generally costly and almost always result in utility loss.

090 **General inference-time approaches.** Soft-prompting and in-context learning (Muresanu et al.,
 091 2024; Pawelczyk et al., 2024; Bhaila et al., 2025) aim to also approximate the effects of unlearning
 092 by modifying the input to the model rather than the weights. However, these methods are still
 093 sensitive to changes in inputs e.g., they can be jailbroken easily, and the methods tend to be very
 094 niche/specialized use cases. There are many different approaches to placing classifiers or guardrails
 095 before and after the base model (Gao et al., 2025; Inan et al., 2023; Sharma et al., 2025), though
 096 these tend to be effectively binary measures to flag inappropriate inputs and outputs.

097 **Steering methods modify outputs during inference.** Activation-space steering computes a direc-
 098 tion representing a conceptual contrast (e.g., “love” vs. “hate”) and injects that vector during forward
 099 passes (Turner et al., 2024). This provides a way to push the model toward or away from certain
 100 behaviors but is static, resulting in weaknesses such as if applied to refusals it would have a very
 101 high false positive rate. (Lee et al., 2025) extend this line of work by making steering conditional:
 102 the steering vector is applied only when the input resembles a predefined concept, enabling targeted
 103 refusals without unnecessary over-refusal. Our work builds on this direction by allowing even more
 104 adaptive, model-aware steering that generalizes beyond safety and refusal behaviors. There is also
 105 a conceptual parallel to LLM watermarking (Dathathri et al., 2024; Li et al., 2025), which subtly
 106 biases generation trajectories while keeping outputs fluent. In contemporaneous work, Suriyakumar
 107 et al. (2025) empirically motivate inference-time unlearning via a linear setup based on the per-
 108 formance of a single TOFU metric and individual MUSE metrics. In contrast, we aggregate the MUSE
 109 metrics, recognizing the tradeoffs inherent in individual metric performance, and assess both linear

108 and rank-based divergence decoding across more than 20 different TOFU metrics following Dorna
 109 et al. (2025) and MUSE. We also perform extensive ablations on hyper-parameters such as model
 110 sizes, demonstrate the efficacy of n-gram based small models, profile the compute and runtime for
 111 over 1,200 model combinations, and explore the generalizability to domains beyond text.

112 **Smaller models do not necessarily imply a loss of performance.** Evidence from (Gunasekar
 113 et al., 2023; Bucher & Martini, 2024; Pecher et al., 2025) show that when finetuned for specialized
 114 tasks, small models can match or outperform the performance of general larger models. In addition,
 115 (Leviathan et al., 2023) proposed Speculative Decoding, demonstrating that smaller models can be
 116 used to accelerate inference in tandem with larger models. Contrastive Decoding (Li et al., 2023)
 117 also uses a smaller model in order to boost the performance of a larger model. Our work extends this
 118 literature by introducing a method of unlearning which relies on small specialized models to guide
 119 a larger model away from undesirable output.

120

121 3 METHOD

122

123 We begin by defining the problem, introducing our method, and finally connecting it to existing
 124 work. Let V denote a finite vocabulary of tokens. A token sequence of length T is denoted as
 125 $x = (x_1, x_2, \dots, x_T)$ where each token $x_t \in V$. The prefix of a token sequence up to token $t - 1$ is
 126 denoted $x_{<t} = (x_1, \dots, x_{t-1})$. There are two data generating distributions D_A and D_B where the
 127 support of D_B is contained within D_A . Finally, $P(x_t|x_{<t})$ and $Q(x_t|x_{<t})$ denote the conditional
 128 token distributions under D_A and D_B , respectively.

129

130 We consider the situation where we wish to sample from Q but do not have access to it. Instead,
 131 only P is accessible. For example, P could be a large frontier model for which it is cost prohibitive
 132 to retrain a new model from scratch on D_B . Within the finance domain, Q could be a model as
 133 capable as P but trained up to a fixed knowledge cutoff so as to avoid look-ahead bias. Generally,
 134 our goal is to approximate sampling from Q using only P and samples drawn from D_A and D_B .

135

3.1 DIVERGENCE DECODING

136

137 Consider two small models $p(x_t|x_{<t})$ and $q(x_t|x_{<t})$ trained on samples from D_A and D_B , respec-
 138 tively. Denote the logits of a given model M as $l_M(x_{<t}) \in \mathbb{R}^{|V|}$. Divergence Decoding (DD)
 139 approximates sampling from Q by adjusting the logits of P according to the divergence between q
 140 and p . Empirically, we consider two adjustments. The first is a linear combination of the logits,

141

$$\hat{l}_Q^{LC}(x_{<t}) = l_P(x_{<t}) + \alpha \cdot [l_q(x_{<t}) - l_p(x_{<t})], \quad (1)$$

143

144 while the second adjustment is rank based,

145

$$\hat{l}_Q^R(x_{<t}) = l_P(x_{<t}) - \mathbb{1}_{rank(l_p(x_{<t}) - l_q(x_{<t})) \leq k} \cdot \infty. \quad (2)$$

146

147 In the case of the linear adjustment, if the difference between Q and P is indeed linear in logit
 148 space, then there exists some value of α , p , and q which enables Q to be perfectly recovered. If the
 149 difference is not linear however, then this is not true. For this reason, we also explore the rank based
 150 approach, which prevents generating the top- k most divergent tokens between p and q .

151

152 Samples can then be drawn via typical methods (e.g., Fan et al., 2018; Holtzman et al., 2020) from
 153 the approximation,

154

$$\hat{Q}(x_t|x_{<t}) = \text{softmax}(\hat{l}_Q(x_{<t})). \quad (3)$$

155

156 While the adjustments in Eq. 1 and 2 require additional forward passes for p and q , we show in
 157 Section 4 that strong performance on certain tasks can be achieved even when p and q are trigram
 158 models—which add negligible computational overhead.

159

3.2 THEORETICAL MOTIVATION

160

161 While simple to implement and fast at inference-time, our method is theoretically motivated by the
 162 Product of Experts (Hinton, 1999) and Importance Sampling (Hammersley & Handscomb, 1965)

literature. In Appendix A, we show that the approximation \hat{Q} can be formulated as a Product of Experts model,

$$\hat{Q}(x_t|x_{<t}) \propto P(x_t|x_{<t}) \cdot \underbrace{\left[\frac{q(x_t|x_{<t})}{p(x_t|x_{<t})} \right]}_{\text{Base Expert}}^{\alpha} \underbrace{\left[\frac{q(x_t|x_{<t})}{p(x_t|x_{<t})} \right]}_{\text{Domain Expert}}^{\alpha} \quad (4)$$

where \hat{Q} is the product of a “Base Expert” P responsible for providing foundational knowledge and a “Domain Expert” comprised of the ratio of q to p . Intuitively, the role of the domain expert can be summarized by three cases:

1. $q \approx p$: Tokens are similarly likely under both D_A and D_B and the domain expert ratio is close to 1 effectively leaving the probabilities from the base model P unchanged
2. $q \gg p$: Tokens are much **more** likely under D_B than D_A , and the domain expert “upvotes” such tokens by **increasing** the probability assigned to them
3. $q \ll p$: Tokens are much **less** likely under D_B than D_A , and the domain expert “down-votes” such tokens by **decreasing** the probability assigned to them

Finally, DD can also be linked to importance sampling in Monte Carlo analysis whereby the expectation of some function $f(x)$ under a target distribution D_{target} is estimated using samples drawn from a proposal $D_{proposal}$. Formally,

$$\mathbb{E}_{x \sim D_{target}}[f(x)] = \mathbb{E}_{x \sim D_{proposal}} \left[f(x) \frac{D_{target}(x)}{D_{proposal}(x)} \right], \quad (5)$$

where the importance weight $w(x) = \frac{D_{target}(x)}{D_{proposal}(x)}$ adjusts the expectation taken over $D_{proposal}$ for differences between the proposal and target distributions. Analogously, divergence decoding uses the ratio of q to p to adjust for differences between the inaccessible model Q and accessible one P .

4 BENCHMARKS

We evaluate our method on two standard unlearning benchmarks—MUSE and TOFU—using the Open Unlearning framework (Dorna et al., 2025; Maini et al., 2024; Shi et al., 2024). Following the MUSE vocabulary, the **Target** model refers to the model subject to unlearning, while **Retrain** denotes the best—but most costly—baseline obtained by retraining from scratch.

We fine-tune one model on the retain set and one on the forget set. To avoid excessive divergence between p and q , the forget model may also include retain data when the retain set is substantially larger. In the MUSE news dataset, the retain set is roughly twice the size of the forget set, and training the forget model only on the forget data performs best. In contrast, for TOFU’s ‘90’ benchmark—where the retain set is nine times larger—training on both forget and retain works best.

Figure 1: MUSE Results. Closer to retrain is better. 99% CIs are smaller than the marker sizes.

216
217
218 Table 1: TOFU Results
219
220
221
222
223
224
225
226
227
228

Method	Config	Agg. \uparrow	Mem. \uparrow	Priv. \uparrow	Utility \uparrow
Target	Full	0.02 ± 0.01	0.01 ± 0.00	0.38 ± 0.00	1.00 ± 0.04
Retrain	Retain90	0.78 ± 0.01	0.53 ± 0.02	0.98 ± 0.01	1.03 ± 0.04
Linear DD	$\alpha=1.5$	0.78 ± 0.01	0.56 ± 0.02	0.95 ± 0.03	1.00 ± 0.04
Rank DD	$k=20$	0.85 ± 0.02	0.80 ± 0.01	0.81 ± 0.02	0.95 ± 0.05
DPO	$lr=4e-6, e=2$	0.31 ± 0.10	0.21 ± 0.01	0.39 ± 0.00	0.43 ± 0.29
GradAscent	$lr=2e-6, e=3$	0.63 ± 0.01	0.51 ± 0.01	0.61 ± 0.02	0.87 ± 0.04
GradDiff	$lr=2e-6, e=3$	0.64 ± 0.01	0.52 ± 0.01	0.62 ± 0.02	0.86 ± 0.04
NPO	$lr=4e-6, e=2$	0.67 ± 0.01	0.57 ± 0.01	0.68 ± 0.02	0.82 ± 0.03
RMU	$lr=8e-7, e=4$	0.67 ± 0.02	0.60 ± 0.01	0.74 ± 0.03	0.69 ± 0.04

229 Note: Agg. is the harmonic mean of Mem., Priv., and Utility. Each of these is itself the harmonic mean of
230 several tests. The top entry per column is boldfaced. See Appendix F of Dorna et al. (2025) for details on the
231 construction of these metrics. 99% CIs computed via hierarchical bootstrap resampling

232
233 For the MUSE benchmark (Shi et al., 2023; 2025), we use the news dataset and finetune *princeton-nlp/Sheared-LLaMA-1.3B* (Xia et al., 2023) for both p and q . This model shares its tokenizer and
234 training data distribution with the official MUSE models. As seen in Figure 1, our method matches
235 or exceeds unlearning methods across memorization and Q&A dimensions.

236
237 For TOFU (Maini et al., 2024), we use the LLaMA 3.2 1B *retain90* and *full* models as p and q ,
238 respectively, and the LLaMA 3.1 8B model as P . As summarized in Table 1, using α slightly larger
239 than 1 yields an almost perfect approximation of the behavior of the retrain model.

241 5 ABLATIONS

242
243 For our study of hyper-parameter choice, algorithm choice, and model size for MUSE, we consider
244 euclidean distance to Retrain, normalized such that Target is 100%, as our all encompassing score to
245 capture the utility and forgetting tradeoff, for both Q&A and memorization. For TOFU, we simply
246 consider the aggregate score with and without privacy, as discussed in Appendix F of Dorna et al.
247 (2025). It is important to note that TOFU uses instruction tuned models while MUSE uses only pre-
248 trained models with few-shot Q&A and significantly simpler questions and answers. In addition, the
249 datasets used in MUSE are much larger. We keep the model training setup fixed; in principle, further
250 fine-tuning would allow smaller hyperparameter values. Figure 9 contains the raw data points used
251 in the ablation studies for MUSE, and Table 7 contains the raw information for TOFU.

252 5.1 HYPER-PARAMETER CHOICE AND ALGORITHM CHOICE

253
254 We first study the choice of Linear DD vs Rank DD and the sensitivity to hyper-parameter choice.
255 On MUSE, we find that Rank DD outperforms on memorization while Linear DD marginally outper-
256 forms on Q&A. On TOFU, Rank DD marginally outperforms Linear DD on the aggregate metric,
257 both when privacy is included and when it is excluded. We find that there are a large range of
258 hyper-parameter values that perform well and that Rank DD is especially flexible.

260 5.2 MODEL SIZE

261
262 Given that our method works well with the 1B and 1.3B small models, a natural question is how
263 sensitive performance is to the size of p and q . We investigate this using the the 2.7B Sheared-
264 LLaMA model variant for MUSE, the Llama 3.2 3B variants for TOFU models, and trigram LMs
265 based on *Stupid Backoff* (Brants et al., 2007) for both. Our trigram implementation pre-computes
266 all scores as arrays the size of the vocabulary, effectively giving zero inference overhead and serving
267 as a limiting case of “0% of P ’s size.”

268
269 We evaluate the most optimal configuration for each model size. On MUSE, scaling from 1.3B to
270 2.7B yields a noticeably larger gain than the corresponding jump from 1B to 3B on TOFU. Mean-
271 while, the trigram models—which perform surprisingly well on some MUSE settings—fail almost

Figure 2: Effect of hyper-parameter and algorithm choice. The Alpha scale runs from 0 to 2 on MUSE and 0 to 4 on TOFU. 99% CI are provided.

entirely on TOFU. Upon further inspection of the Q&A questions on MUSE where the Trigram models perform well, we find that this is largely due to questions which are more similar to the underlying training data. Thus, we conclude that the Trigram models are likely most useful for unlearning verbatim content.

5.3 OVER-UNLEARNING, PRIVACY, AND CALIBRATION

Over-unlearning, even when utility is preserved, is not always optimal. In settings like toxic content prevention, aggressively suppressing certain outputs is entirely reasonable. However, many real-world applications are highly sensitive to *over*-unlearning. For instance, in financial modeling—such as backtesting trading strategies or stress testing banks—the goal is to evaluate performance using only the information that would have been available at the time. For example, one would want to unlearn the 2008 financial crisis so they could realistically assess the performance of an LLM making decisions at the time. **Over-unlearning would cause the model to overcompensate** to the point that it assigns even lower likelihoods to these events than what ultimately occurred.

More broadly, we treat the privacy metrics as indicators of over- versus under-unlearning, rather than as definitive tests of whether individual training examples were used or successfully removed. As

Figure 4: Analysis of Over- or Under- Unlearning on MUSE (left) and TOFU (right). Closer to retrain is better. The optimal values for both benchmarks are $\text{Alpha} \sim 1.5$ and $\text{TopK} \sim 20$. 99% CI are provided.

Figure 5: The left column is sustainability - consecutive forget sets of the same size - and the right column is scaling, increasingly large forget sets. We consider euclidean distance to the method’s baseline performance when evaluated on the retain set and the **original** forget set, with the increasing distance capturing both **utility loss** and **loss of forgetting**. In general, all methods except for GradDiff perform reasonably well and within the margin of error of each other.

discussed in Section 8, these methods are not intended for open-source distributions of the weights, though it can be used if the logits are public. The naive implementation of the *rank based method*—e.g., setting targeted logits to $-\infty$ —would produce degenerate privacy scores, since the losses would be infinite. To preserve the ability to evaluate over- versus under-unlearning in the rank-based setting, we instead replace the k most divergent logits with the k th largest logit in the unmodified distribution.

Across both MUSE and TOFU, a broad range of hyper-parameters produce models that are statistically **indistinguishable** from a full retrain, striking a clean balance between over- and under-unlearning. The fact that the optimal region occurs around $\alpha > 1$ aligns with the intuition from §3.1 that a simple linear combinations of logits may be a near-optimal solution.

5.4 SUSTAINABILITY AND SCALING

Finally, prior work has found that many unlearning methods exhibit poor scalability—the unlearning of very large amounts of content—and sustainability—sequential requests to unlearn additional content. We explore the efficacy of our method along these dimensions using the MUSE scaling and sustainability benchmarks to ensure that performance does not degrade. To extend the benchmark, we additionally measure performance on the original forget set (Q&A), ensuring that larger and subsequent forget requests **do not** come at the cost of the forget weights being overwritten.

378

6 BEYOND TEXT

381 One benefit of our method is its generality, i.e., it can be applied to any setting where samples are
 382 drawn from some distribution P and data exists to estimate p and q . Along these lines, we explore the
 383 extent to which our method is effective in domains beyond text by applying it to image generation.

384 We begin with the setup of Esser et al. (2021) and augment the sampling in latent space per equations
 385 1 and 2. The models p and q are estimated using data from the train split of ImageNet associated
 386 with the dog synset. Specifically, half the descendants from the dog synset are randomly assigned to
 387 the forget set F and the other half to the retain set R —notably, this random assignment ensures that
 388 any preferences over dog classes will be uncorrelated with the assignment to retain versus forget.
 389 The class-conditional ImageNet checkpoint from Esser et al. (2021) is then fine-tuned on F and R
 390 to estimate p and q , respectively. We then sample images from the model configured without any
 391 divergence decoding (Baseline) and with various linear and rank-based (Figure 6 and Appendix D).
 392 As a first quantitative evaluation of the efficacy of our method, we evaluate the content of class

404 Figure 6: ImageNet examples, baseline generations, and generations under various divergence de-
 405 coding setups.

406
 407
 408 conditional generations using VQAScore (Lin et al., 2024). For each class conditional generated
 409 image, we prompt a multi-modal LLM (MLLM) to assess whether the image contains the specific
 410 class and take the probability of “Yes” as the VQAScore—we rely on GPT-4o-mini for this task as
 411 it requires access to the log probabilities and many modern closed models do not provide this, e.g.,
 412 GPT-5-nano. Table 2 presents mean VQAScores for class conditional samples split by whether the
 413 class was assigned to the retain or forget set. For linear divergence decoding setups, modest settings
 414 of alpha display efficacy, e.g., $\alpha = 1$ decreases the mean VQAScore on classes in the forget set from
 415 97% to 20%. This is similar to our findings within the text domain where α in the range of 1 to 2
 416 typically yielded the best results. In contrast, the rank-based setups require larger values for top-k
 417 to reach similar efficacy, e.g., $topk = 250$.

418 As a second evaluation of the efficacy of our method, we evaluate the perceptual quality of generated
 419 images. Notably, a naive unlearning method could simply output noise for classes in the forget set.
 420 While this would constitute “unlearning,” it may not be particularly useful if the desired outcome is
 421 perceptually similar and plausible generations without the *indicia* associated with the classes to be
 422 forgotten, e.g., the identifiable style attributable to an artist requesting that a model provider adhere
 423 to copyright laws. Along these lines, we follow Chen et al. (2024) and employ an MLLM-as-a-judge
 424 to perform pairwise comparison of the visual quality between samples from our baseline setup and
 425 a given divergence decoding setup.

426 Table 3 presents the performance for a variety of MLLM judges and divergence decoding setups.
 427 In general, there is little decrease in the perceptual quality on samples conditional on classes in the
 428 retain set. For those in the forget set, however, there is a decrease in quality. For example, a setup
 429 with $\alpha = 5$ decreases the rate at which a generated image contains the class to be forgotten from
 430 97% to 1%, but these images are also only preferred over baseline generations 31% of the time. As
 431 such, in practice one would have to sample, on average, two generations to get a sample which both
 does not contain the class to be forgotten and meets or exceeds the baseline quality.

432 Table 2: Content analysis of images generated using various divergence decoding setups. Mean
 433 values and standard errors are presented. GPT-4o-mini is used as a judge.

435	Method	Config	Retain	Forget
436	Baseline	—	96% \pm 1.1	97% \pm 1.0
437	Linear	$\alpha = 1$	96% \pm 1.2	20% \pm 2.4
438	Linear	$\alpha = 2$	97% \pm 1.0	20% \pm 2.3
439	Linear	$\alpha = 5$	96% \pm 1.1	1% \pm 0.6
440	Linear	$\alpha = 10$	96% \pm 1.2	1% \pm 0.6
441	Rank	$topk = 20$	96% \pm 1.1	77% \pm 2.5
442	Rank	$topk = 100$	95% \pm 1.3	58% \pm 2.9
443	Rank	$topk = 250$	95% \pm 1.2	20% \pm 2.4

444 Table 3: Perceptual quality analysis of images generated using various divergence decoding setups
 445 and MLLM judges. Mean values and standard errors are presented.

447	Method	Config	Gemini 2.5 Flash-Lite		GPT-5-nano		Qwen3-VL 8B	
			Retain	Forget	Retain	Forget	Retain	Forget
450	Linear	$\alpha = 1$	52% \pm 1.7	38% \pm 1.4	50% \pm 1.6	38% \pm 1.4	50% \pm 1.6	36% \pm 1.3
451	Linear	$\alpha = 2$	49% \pm 1.6	37% \pm 1.3	49% \pm 1.6	38% \pm 1.4	49% \pm 1.6	39% \pm 1.4
452	Linear	$\alpha = 5$	52% \pm 1.6	31% \pm 1.2	49% \pm 1.6	31% \pm 1.3	52% \pm 1.6	31% \pm 1.3
453	Linear	$\alpha = 10$	47% \pm 1.6	31% \pm 1.3	47% \pm 1.6	32% \pm 1.3	50% \pm 1.6	32% \pm 1.2
454	Rank	$topk = 20$	49% \pm 1.6	47% \pm 1.6	48% \pm 1.6	47% \pm 1.6	48% \pm 1.6	48% \pm 1.6
455	Rank	$topk = 100$	47% \pm 1.6	50% \pm 1.5	45% \pm 1.6	46% \pm 1.5	45% \pm 1.6	45% \pm 1.5
	Rank	$topk = 250$	48% \pm 1.6	20% \pm 1.1	49% \pm 1.6	21% \pm 1.1	46% \pm 1.6	21% \pm 1.1

457 7 COST AND LATENCY ANALYSIS

460 A key consideration of applying our method is the increased inference-time compute from running
 461 the two small models in tandem with the large model. Denote the number of parameters in the large
 462 model as N and n the number in each small model. Following the approximation of Kaplan et al.
 463 (2020), the total inference cost increases from $2N \rightarrow 2(N + 2n)$, with the relative increase given
 464 by $2n/N$. In Figure 7, we empirically measure the increase in compute costs associated with running
 465 over 1,200 different combinations of models in a distributed setting within a single 8x{H100|B200}
 466 instance (see Appendix B for details). We find that the compute costs tend to scale closely with our
 467 theoretical approximation. In Appendix B, we examine the effect of our method on latency and find
 468 that the increase is generally less than 0.1%.

483 Figure 7: Empirical increases in compute requirements for a sample of more than 1,200 models.
 484 Size of P ranges from 300M to 80B.

486 8 LIMITATIONS
487488 A key limitation lies in the method’s **sensitivity to instruction-tuning**. For instance, when unlearn-
489 ing financial knowledge, the model may generate stock recommendations in the format:
490491 “**1. {firm name}:**”
492493 If the smaller models anticipate a different structure (e.g., a ticker symbol or bullet marker after
494 the ‘1.’), the divergence in logits at the critical step may be diluted or entirely noisy. Worse, if one
495 small model aligns closely with the large model while the other does not, differences fail to cancel
496 and can yield unstable or unintended outputs. Independent researchers adopting this method may
497 therefore need to carefully re-tune instruction following behavior using publicly available datasets
498 after modifying training mixtures, while in house researchers may not find this to be a problem. In
499 general we expect this to be used by model providers for API-locked models.500 Finally, DD does not erase internal representations; it only constrains outputs at decode time. This
501 makes it unsuitable for preventing toxic or copyrighted generations in **open-weight settings**, since
502 releasing the forget model’s weights could reveal sensitive information. However, for API locked
503 models it is still possible to expose the final logits or log-probabilities. For Linear DD, the resulting
504 logits should be virtually indistinguishable from the base model. For rank DD, there may be strate-
505 gies beyond the naive implementations of the method—such as masking with random samples, or
506 only adjusting logits that are in the top-p/top-k of the original distribution—to safely make the logits
507 indistinguishable.508 9 CONCLUSION
509510 In this work, we introduce a method to simulate unlearning at inference-time for selectively remov-
511 ing information from Large Language Models without costly retraining or fine-tuning of the base
512 model. Our method, Divergence Decoding, leverages smaller, specialized models to guide text gen-
513 eration away from undesirable content at the point of inference. Our experiments demonstrate three
514 key contributions. First, our approach is highly effective, significantly reducing the model’s ability
515 to recall both verbatim and semantic knowledge from a designated “forget set.” Second, by confining
516 training to small secondary models, our method offers a dramatically more efficient and scalable so-
517 lution than machine unlearning, reducing computational overhead by orders of magnitude compared
518 to existing techniques. Finally, because the weights of the large base model remain untouched, our
519 method excels at utility preservation, maintaining performance on general knowledge benchmarks
520 even as the number of unlearning requests grows. By providing a practical, low-cost, and effective
521 solution to a critical challenge in AI safety and privacy, divergence decoding can potentially enable
522 more responsible and adaptable deployment of large-scale language models.523 REPRODUCIBILITY STATEMENT
524525 We took care to modify OpenUnlearning as little as possible, and have details about our setups
526 for MUSE and TOFU in Appendix C. All code to reproduce this work is available at the following
527 anonymous repository link: <https://anonymous.4open.science/r/inference-time-unlearning-iclr2026/>

528 We will release fine-tuned models and additional data on Hugging Face after the review period.

531 ETHICS STATEMENT
532533 In general, we intend unlearning to support beneficial use cases - for debiasing models, prevent-
534 ing toxic and copyrighted content generation, and legitimate research in domains such as finance.
535 However, we acknowledge the approach could be misused to induce undesirable or harmful biases.537 REFERENCES
538539 Josh Achiam, Steven Adler, and the OpenAI GPT-4 Team. Gpt-4 technical report, 2024. URL
 <https://arxiv.org/abs/2303.08774>.

540 Karuna Bhaila, Minh-Hao Van, and Xintao Wu. Soft prompting for unlearning in large language
 541 models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Con-*
 542 *ference of the Nations of the Americas Chapter of the Association for Computational Lin-*
 543 *guistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 4046–4056, Albuquerque,
 544 New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
 545 6. doi: 10.18653/v1/2025.nacl-long.204. URL [https://aclanthology.org/2025.](https://aclanthology.org/2025.nacl-long.204/)
 546 [naacl-long.204/](https://aclanthology.org/2025.nacl-long.204/).

547 Louis Bourtoule, Armin W. Thomas, Fabian Pedregosa, Blake Sorensen, Robert West,
 548 Manuel Gomez Rodriguez, and Nicolas Papernot. Machine unlearning. *2021 IEEE Symposium*
 549 *on Security and Privacy (SP)*, pp. 568–584, 2021. doi: 10.1109/SP40001.2021.00045.

550 Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language models
 551 in machine translation. In Jason Eisner (ed.), *Proceedings of the 2007 Joint Conference on Em-*
 552 *pirical Methods in Natural Language Processing and Computational Natural Language Learning*
 553 *(EMNLP-CoNLL)*, pp. 858–867, Prague, Czech Republic, June 2007. Association for Computa-
 554 *tional Linguistics*. URL <https://aclanthology.org/D07-1090/>.

555 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 556 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 557 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 558 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 559 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 560 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 561 <https://arxiv.org/abs/2005.14165>.

562 Martin Juan José Bucher and Marco Martini. Fine-tuned 'small' llms (still) significantly outperform
 563 zero-shot generative ai models in text classification, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2406.08660)
 564 [2406.08660](https://arxiv.org/abs/2406.08660).

565 Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 566 Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong Song, Úlfar Erlingsson, Alina Oprea, and
 567 Colin Raffel. Extracting training data from large language models. In *USENIX Security Sympo-*
 568 *sium*, 2021. URL <https://api.semanticscholar.org/CorpusID:229156229>.

569 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
 570 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: assessing multimodal lilm-as-a-judge with
 571 vision-language benchmark. In *Proceedings of the 41st International Conference on Machine*
 572 *Learning*, ICML'24. JMLR.org, 2024.

573 Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
 574 Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi
 575 Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra
 576 Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and
 577 Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. *Nature*,
 578 634(8035):818–823, Oct 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL
 579 <https://doi.org/10.1038/s41586-024-08025-4>.

580 DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
 581 model, 2024. URL <https://arxiv.org/abs/2405.04434>.

582 DeepSeek-AI. Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.

583 Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vulić. Undial: Self-
 584 distillation with adjusted logits for robust unlearning in large language models, 2024. URL
 585 <https://arxiv.org/abs/2402.10052>.

586 Vineeth Dorna, Anmol Mekala, Wenlong Zhao, Andrew McCallum, Zachary C Lipton, J Zico
 587 Kolter, and Pratyush Maini. OpenUnlearning: Accelerating LLM unlearning via unified bench-
 588 marking of methods and metrics. *arXiv preprint arXiv:2506.12618*, 2025. URL <https://arxiv.org/abs/2506.12618>.

594 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms, 2023.
 595 URL <https://arxiv.org/abs/2310.02238>.
 596

597 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 598 synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 599 nition (CVPR)*, pp. 12873–12883, June 2021.

600 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Iryna
 601 Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Associa-
 602 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 889–898, Melbourne, Aus-
 603 tralia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL
 604 <https://aclanthology.org/P18-1082/>.
 605

606 Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Sim-
 607 plicity prevails: Rethinking negative preference optimization for LLM unlearning. In *Neurips
 608 Safe Generative AI Workshop 2024*, 2024. URL <https://openreview.net/forum?id=pVACX02m0p>.
 609

610 Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, and Qi Zhu. On large lan-
 611 guage model continual unlearning, 2025. URL <https://arxiv.org/abs/2407.10223>.
 612

613 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 614 Al-Dahle, and the rest of the Llama 3 team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 615

616 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
 617 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
 618 Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
 619 Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL <https://arxiv.org/abs/2306.11644>.
 620

621 J.M. Hammersley and D.C. Handscomb. *Monte Carlo Methods*. Methuen's monographs on applied
 622 probability and statistics. Chapman and Hall, 1965. ISBN 9789400958203. URL <https://books.google.com/books?id=P3FqAAAAMAAJ>.
 623

624 Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley, and Percy
 625 Liang. Foundation models and fair use. *Journal of Machine Learning Research*, 24(400):1–79,
 626 2023. URL <http://jmlr.org/papers/v24/23-0569.html>.
 627

628 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 629 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Proceedings
 630 of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp.
 631 6629–6640, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.
 632

633 Geoffrey E. Hinton. Products of experts. 1999. URL <https://api.semanticscholar.org/CorpusID:15059668>.
 634

635 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 636 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 637 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 638 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 639 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.
 640

641 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 642 degeneration. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.
 643

645 Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
 646 Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-
 647 based input-output safeguard for human-ai conversations, 2023. URL <https://arxiv.org/abs/2312.06674>.
 648

648 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 649 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models, 2023. URL
 650 <https://openreview.net/forum?id=zAxuIJLb38>.

651 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 652 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 653 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

654 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
 655 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
 656 sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
 657 getting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–
 658 3526, 2017. doi: 10.1073/pnas.1611835114. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1611835114>.

659 Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Man-
 660 ish Nagireddy, and Amit Dhurandhar. Programming refusal with conditional activation steer-
 661 ing. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 662 <https://openreview.net/forum?id=Oi47wc10sm>.

663 Yann Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 664 decoding, 2023. URL <https://arxiv.org/abs/2211.17192>.

665 Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J. Su. A statistical framework of
 666 watermarks for large language models: Pivot, detection efficiency and optimal rules. *The An-
 667 nals of Statistics*, 53(1), February 2025. ISSN 0090-5364. doi: 10.1214/24-aos2468. URL
 668 <http://dx.doi.org/10.1214/24-AOS2468>.

669 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 670 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
 671 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 672 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12286–
 673 12312, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
 674 v1/2023.acl-long.687. URL [https://aclanthology.org/2023.acl-long.687/](https://aclanthology.org/2023.acl-long.687).

675 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang,
 676 and Deva Ramanan. Evaluating text-to-visual generation withnbsp;image-to-text generation. In
 677 *Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October
 678 4, 2024, Proceedings, Part IX*, pp. 366–384, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN
 679 978-3-031-72672-9. doi: 10.1007/978-3-031-72673-6_20. URL https://doi.org/10.1007/978-3-031-72673-6_20.

680 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. TOFU:
 681 A task of fictitious unlearning for LLMs. In *First Conference on Language Modeling*, 2024.

682 Andrei Muresanu, Anvith Thudi, Michael R. Zhang, and Nicolas Papernot. Unlearnable algorithms
 683 for in-context learning, 2024. URL <https://arxiv.org/abs/2402.00751>.

684 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 685 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *ACM Trans.
 686 Intell. Syst. Technol.*, July 2025. ISSN 2157-6904. doi: 10.1145/3749987. URL <https://doi.org/10.1145/3749987>.

687 Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
 688 as few-shot unlearners. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
 689 Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st Inter-
 690 national Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning
 691 Research*, pp. 40034–40050. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/pawelczyk24a.html>.

692 Branislav Pecher, Ivan Srba, and Maria Bielikova. Comparing specialised small and general large
 693 language models on text classification: 100 labelled samples to achieve break-even performance,
 694 2025. URL <https://arxiv.org/abs/2402.12819>.

702 Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, Scott Goodfriend, Euan Ong, Al-
 703 win Peng, Raj Agarwal, Cem Anil, Amanda Askell, Nathan Bailey, Joe Benton, Emma Bluemke,
 704 Samuel R. Bowman, Eric Christiansen, Hoagy Cunningham, Andy Dau, Anjali Gopal, Rob
 705 Gilson, Logan Graham, Logan Howard, Nimit Kalra, Taesung Lee, Kevin Lin, Peter Lofgren,
 706 Francesco Mosconi, Clare O’Hara, Catherine Olsson, Linda Petrini, Samir Rajani, Nikhil Sax-
 707 ena, Alex Silverstein, Tanya Singh, Theodore Sumers, Leonard Tang, Kevin K. Troy, Constantin
 708 Weisser, Ruiqi Zhong, Giulio Zhou, Jan Leike, Jared Kaplan, and Ethan Perez. Constitutional
 709 classifiers: Defending against universal jailbreaks across thousands of hours of red teaming, 2025.
 710 URL <https://arxiv.org/abs/2501.18837>.

711 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 712 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models, 2023.
 713

714 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao Liu,
 715 Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. MUSE: Machine unlearning six-way
 716 evaluation for language models. 2024. URL <https://arxiv.org/abs/2407.06460>.

717 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
 718 Liu, Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. MUSE: Machine unlearning six-
 719 way evaluation for language models. In *The Thirteenth International Conference on Learning
 720 Representations*, 2025. URL <https://openreview.net/forum?id=TArmA033BU>.

721 Vinith M. Suriyakumar, Ayush Sekhari, and Ashia Wilson. Ucd: Unlearning in llms via contrastive
 722 decoding, 2025. URL <https://arxiv.org/abs/2506.12097>.
 723

724 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 725 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 726 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 727 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 728 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 729 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 730 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 731 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 732 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 733 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 734 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 735 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 2023. URL <https://arxiv.org/abs/2307.09288>.

736 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
 737 and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
 738 <https://arxiv.org/abs/2308.10248>.
 739

740 Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). *A Practical
 741 Guide, 1st Ed.*, 2017.

742 Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
 743 Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will
 744 Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne
 745 Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social
 746 risks of harm from language models, 2021. URL <https://arxiv.org/abs/2112.04359>.
 747

748 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 749 model pre-training via structured pruning. *arXiv preprint arXiv:2310.06694*, 2023.

750 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 751 tropic collapse to effective unlearning, 2024. URL <https://arxiv.org/abs/2404.05868>.
 752

753

754

755

756 A CONNECTION TO PRODUCT OF EXPERTS
757

758 Hinton (1999) introduced the Product of Experts (PoE) framework whereby n probability models
759 are multiplicatively combined into a single model. Let the i -th expert be denoted by $f_i(x|\theta_i)$, then a
760 PoE model R comprised of n experts is given by,
761

$$762 \quad 763 \quad 764 \quad R(x|\theta_1, \dots, \theta_n) = \frac{1}{Z} \prod_{i=1}^n f_i(x|\theta_i), \quad (6)$$

765 where Z is a normalization constant. To highlight the connection between divergence decoding and
766 PoE, recall Eq. 1:
767

$$768 \quad \hat{l}_Q(x_{<t}) = l_P(x_{<t}) + \alpha \cdot [l_q(x_{<t}) - l_p(x_{<t})].$$

769 In Eq. 1, a given model M has logits which are equal to the log-probabilities up to an additive
770 constant which depends on the token sequence prefix $x_{<t}$ but not the token x_t , i.e.,
771

$$772 \quad l_M(x_{<t}) = \log M(x_t|x_{<t}) + C_M(x_{<t}). \quad (7)$$

773 Substituting Eq. 7 into Eq. 1 for each model, gathering the constants, and performing some algebra
774 reveals the link to PoE:
775

$$776 \quad \log \hat{Q}(x_t|x_{<t}) = \log P(x_t|x_{<t}) + \alpha \cdot [\log q(x_t|x_{<t}) - \log p(x_t|x_{<t})] + C$$

$$777 \quad \hat{Q}(x_t|x_{<t}) \propto \exp(\log P(x_t|x_{<t}) + \alpha \cdot [\log q(x_t|x_{<t}) - \log p(x_t|x_{<t})])$$

$$778 \quad \propto P(x_t|x_{<t}) \cdot q(x_t|x_{<t})^\alpha \cdot p(x_t|x_{<t})^{-\alpha}$$

$$779 \quad \propto P(x_t|x_{<t}) \cdot \left[\frac{q(x_t|x_{<t})}{p(x_t|x_{<t})} \right]^\alpha.$$

$$780 \quad 781 \quad 782 \quad 783$$

784 B DETAILED ANALYSIS OF COMPUTE AND RUNTIME COSTS
785

786 In this section we explore the compute and runtime costs associated with our method using theo-
787 retical and empirical analyses. Additionally, we compare these costs to those associated with other
788 unlearning methods to provide guidance on when our method is desirable. In general, we find that
789 our method introduces minimal latency (less than 0.1% increases in realistic production environ-
790 ments) and compares favorably to other unlearning methods for a wide range of compute budgets.
791

792 B.1 COMPUTE REQUIREMENTS
793

794 As presented in Section 7, the compute increase associated with our method can be approximated
795 as $2n/N$ where n and N are the number of parameters in the small and big models, respectively.
796 For example, applying our method to a 10B parameter model using 1B parameter small models is
797 expected to require a 20% increase in compute. While this is a useful theoretical approximation, we
798 empirically explore this approximation using a distributed setup on 8xH100 and 8xB200 instances
799 using more than 1,200 unique combinations of models for P , p , and q .
800

801 For our specific setup, we target an environment where the small models p and q are running on
802 some number of accelerators while multiple copies of the large model P is running on additional
803 accelerators. We consider the set of candidate models for P , p , and q as those listed in Table A9
804 of Hoffmann et al. (2022) and add several models in the range of 19-70B parameters following the
805 Llama 3 architecture (Grattafiori et al., 2024). Additionally, we consider four vocabulary sizes for
806 each model: 2^{15} , 2^{16} , 2^{17} , and 2^{18} .
807

808 We then match models for p and q to P such that $2n \leq N$ and only consider models for P where
809 $N > 8e9$. The compute increase required to run a given combination of models is then measured
810 as the ratio $(t_P + t_p + t_q)/t_P$ where t is the time required to run the models measured in GPU-hrs.
811 Results for all combinations of models, vocabulary sizes, and devices are presented in Figure 7. In
812 general, we find a strong agreement with the theoretical approximation.
813

810
811

B.2 LATENCY

812
813
814
815
816
817

An additional consideration of applying our method is latency, i.e., many applications require fast responses to users and the an increase in latency of 10-20% could be unacceptable. Following from Section B.1 above, we explore the latency impact of our method in a distributed environment where the small models p and q can be run in parallel with multiple copies of P . In this setting, the primary contributor to latency is the time required to sync the logits in Eq. 1 across devices such that sampling from the approximation to Q can be performed.

818
819
820
821
822
823
824
825
826

Along these lines, we measure the increase in runtime as the ratio t_Q/t_P where the time t is the total time required to generate a sequence of fixed length, t_Q is the time to do this under the distributed divergence decoding setup, and t_P is the time to do this under a setup where P is run on a single GPU with no synchronization overhead. The two key factors here are the vocabulary size which determines the size of the data being synchronized across GPUs and the size N of P which determines the baseline runtime required. Figure 8 shows that for most model configurations, the increase in runtime is less than 0.1%. For smaller “large” models, i.e., $N < 20e9$, and the largest vocabulary size, the increase in runtime is roughly 0.2-0.5%. Thus, while there is undeniably an increase in latency, it is relatively modest at < 0.5% for the vast majority of realistic model configurations.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842843
844
845

Figure 8: Effect of model and vocabulary size on runtime for two generations of accelerators

846
847
848
849
850
851
852
853

B.3 RELATIVE TO OTHER UNLEARNING METHODS

Additionally, let d_r and d_f be the sizes of the retain and forget datasets (in tokens), let e_N and e_n be the number of epochs the large and small models are trained for, respectively, and let I be the number of inference tokens. Hence, we want to know after how many inference tokens does it become more costly to use DD over another method, **assuming both work equally well**. Considering one of the simplest unlearning methods, Gradient Ascent (Jang et al., 2023) **without any kind of regularizer**, DD becomes more costly once:

854
855
856
857
858

$$6ne_n(d_r + d_f) + 2(N + 2n)I \geq 6Ne_N(d_f) + 2NI$$

$$I \geq \frac{3Ne_Nd_f}{2n} - \frac{3e_n(d_r + d_f)}{2}$$

859
860
861
862
863

C DETAILED EXPERIMENTAL SETUPS

C.1 MUSE

We finetune the LLaMA models using the **AdamW Torch optimizer** and a **cosine scheduler** for **10** epochs. We set the learning rate such that the loss approximately halves over the

864 course of training. We swept the LLaMA models with $\alpha \in \{0.5, 0.6, \dots, 1.5\}$ and $\text{top-}k \in$
 865 $\{1, 5, 20, 50, 100, 200, 500, 1000\}$ and the trigram models at $\alpha \in \{5, 10, \dots, 30\}$ and $\text{top-}k \in$
 866 $\{1, 2, 3, 5, 10\}$.
 867
 868
 869

884 Figure 9: All hyper-parameter and model size configurations. Increasing values are darker and
 885 usually with reduced scores on both utility and memorization (to the bottom and left.)
 886
 887
 888
 889
 890
 891

Table 4: Configuration MUSE

Model	Initial LR	Best Verbatim	Best Q&A
Stupid Backoff Trigram		TopK=1	Alpha=10
princeton-nlp/Sheared-LLaMA-1.3B	5e-5	TopK=100	Alpha=0.8
princeton-nlp/Sheared-LLaMA-2.7B	4e-5	TopK=200	Alpha=1.0

897 For the other methods, we use the default settings provided by OpenUnlearning
 898
 899
 900

Table 5: MUSE Configurations

Method	Epochs	Method-Specific Hyperparameters
GradDiff	1*	$\alpha = 1.0, \gamma = 1.0$
NPO	10	$\beta = 0.1, \alpha = 1.0, \gamma = 1.0$
SimNPO	10	$\delta = 0, \beta = 4.5, \alpha = 1.0, \gamma = 0.125$

908 Default hyperparameters: batch size = 32, learning rate = 1×10^{-5} , warmup epochs = 1, weight decay = 0.01,
 909 retain loss = NLL. * For GradDiff, the 1 epoch setting is the only deviation from the defaults.
 910
 911

C.2 TOFU

915 For p and q we use *open-unlearning/tofu_Llama-3.2-1B-Instruct_full*, *open-unlearning/tofu_Llama-3.2-1B-Instruct_retain90*, and the counterparts for 3B. For the other methods, we grid search learning
 916 rates $\{5 \times 10^{-7}, 8 \times 10^{-7}, 1 \times 10^{-6}, 2 \times 10^{-6}, 3 \times 10^{-6}, 4 \times 10^{-6}, 5 \times 10^{-6}, 1 \times 10^{-5}\}$ and epochs
 917 from 1 to 10. Below, we summarize the default hyperparameters provided by OpenUnlearning.

918
919
920 Table 6: TOFU Default Configurations (defaults apply unless noted)
921
922
923
924
925
926

Method	Method-Specific Hyperparameters
DPO	$\beta = 0.1$, $\alpha = 1.0$, $\gamma = 1.0$, retain loss = NLL
GradAscent	N/A
GradDiff	$\alpha = 1.0$, $\gamma = 1.0$, retain loss = NLL
NPO	$\beta = 0.1$, $\alpha = 1.0$, $\gamma = 1.0$, retain loss = NLL
RMU	$\alpha = 1.0$, $\gamma = 1.0$, steering coef = 2, retain loss = Embed Diff

927 Default (shared) hyperparameters: batch size = 32, warmup epochs = 1, weight decay = 0.01.
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 7: All TOFU Divergence Decoding Results

974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	Size	Method	Param	Agg. \uparrow	Agg w/o Priv. \uparrow	Mem. \uparrow	Priv. \uparrow	Utility \uparrow
1B	Linear	$\alpha=0.5$	0.31 ± 0.02	0.28 ± 0.02	0.16 ± 0.01	0.38 ± 0.00	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.0$	0.59 ± 0.01	0.63 ± 0.02	0.46 ± 0.01	0.53 ± 0.02	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.1$	0.64 ± 0.01	0.65 ± 0.02	0.48 ± 0.01	0.63 ± 0.02	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.2$	0.69 ± 0.01	0.67 ± 0.02	0.51 ± 0.01	0.74 ± 0.03	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.3$	0.74 ± 0.01	0.69 ± 0.02	0.53 ± 0.01	0.86 ± 0.03	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.4$	0.77 ± 0.02	0.71 ± 0.02	0.55 ± 0.02	0.96 ± 0.02	1.00 ± 0.04																																																				
1B	Linear	$\alpha=1.5$	0.78 ± 0.01	0.72 ± 0.02	0.56 ± 0.02	0.95 ± 0.03	1.00 ± 0.04																																																				
1B	Linear	$\alpha=2.0$	0.76 ± 0.01	0.78 ± 0.02	0.65 ± 0.02	0.73 ± 0.02	0.99 ± 0.04																																																				
1B	Linear	$\alpha=2.5$	0.76 ± 0.01	0.82 ± 0.02	0.71 ± 0.02	0.67 ± 0.01	0.97 ± 0.05																																																				
1B	Linear	$\alpha=3.0$	0.76 ± 0.01	0.84 ± 0.02	0.76 ± 0.02	0.64 ± 0.01	0.93 ± 0.05																																																				
1B	Linear	$\alpha=3.1$	0.76 ± 0.01	0.84 ± 0.02	0.77 ± 0.02	0.64 ± 0.01	0.92 ± 0.04																																																				
1B	Linear	$\alpha=3.2$	0.76 ± 0.01	0.84 ± 0.02	0.78 ± 0.02	0.64 ± 0.01	0.92 ± 0.04																																																				
1B	Linear	$\alpha=3.3$	0.76 ± 0.01	0.85 ± 0.02	0.79 ± 0.02	0.64 ± 0.01	0.91 ± 0.04																																																				
1B	Linear	$\alpha=3.4$	0.76 ± 0.01	0.84 ± 0.02	0.80 ± 0.02	0.64 ± 0.01	0.90 ± 0.04																																																				
1B	Linear	$\alpha=3.5$	0.76 ± 0.01	0.85 ± 0.02	0.80 ± 0.02	0.63 ± 0.01	0.89 ± 0.04																																																				
1B	Linear	$\alpha=4.0$	0.75 ± 0.01	0.83 ± 0.02	0.83 ± 0.01	0.63 ± 0.01	0.82 ± 0.04																																																				
3B	Linear	$\alpha=0.5$	0.39 ± 0.01	0.38 ± 0.02	0.24 ± 0.01	0.39 ± 0.00	1.01 ± 0.04																																																				
3B	Linear	$\alpha=1.0$	0.70 ± 0.01	0.68 ± 0.02	0.52 ± 0.01	0.73 ± 0.02	1.00 ± 0.04																																																				
3B	Linear	$\alpha=1.1$	0.76 ± 0.01	0.70 ± 0.02	0.54 ± 0.02	0.89 ± 0.03	1.00 ± 0.04																																																				
3B	Linear	$\alpha=1.2$	0.79 ± 0.02	0.72 ± 0.02	0.56 ± 0.02	0.97 ± 0.02	1.00 ± 0.04																																																				
3B	Linear	$\alpha=1.3$	0.78 ± 0.02	0.73 ± 0.02	0.58 ± 0.02	0.88 ± 0.02	1.00 ± 0.05																																																				
3B	Linear	$\alpha=1.4$	0.76 ± 0.01	0.75 ± 0.02	0.60 ± 0.02	0.80 ± 0.02	1.00 ± 0.05																																																				
3B	Linear	$\alpha=1.5$	0.76 ± 0.01	0.76 ± 0.02	0.62 ± 0.02	0.75 ± 0.02	0.99 ± 0.04																																																				
3B	Linear	$\alpha=2.0$	0.76 ± 0.01	0.82 ± 0.02	0.70 ± 0.02	0.66 ± 0.01	0.97 ± 0.04																																																				
3B	Linear	$\alpha=2.5$	0.76 ± 0.01	0.84 ± 0.02	0.76 ± 0.02	0.64 ± 0.01	0.94 ± 0.04																																																				
3B	Linear	$\alpha=2.6$	0.76 ± 0.01	0.85 ± 0.02	0.77 ± 0.02	0.64 ± 0.01	0.94 ± 0.04																																																				
3B	Linear	$\alpha=2.7$	0.77 ± 0.01	0.85 ± 0.02	0.78 ± 0.02	0.64 ± 0.01	0.94 ± 0.04																																																				
3B	Linear	$\alpha=2.8$	0.77 ± 0.01	0.86 ± 0.02	0.79 ± 0.02	0.63 ± 0.01	0.93 ± 0.04																																																				
3B	Linear	$\alpha=2.9$	0.77 ± 0.01	0.86 ± 0.02	0.80 ± 0.02	0.63 ± 0.01	0.92 ± 0.04																																																				
3B	Linear	$\alpha=3.0$	0.77 ± 0.01	0.86 ± 0.02	0.81 ± 0.02	0.63 ± 0.01	0.91 ± 0.04																																																				
3B	Linear	$\alpha=3.1$	0.76 ± 0.01	0.86 ± 0.02	0.82 ± 0.02	0.63 ± 0.01	0.90 ± 0.04																																																				
3B	Linear	$\alpha=3.2$	0.76 ± 0.01	0.85 ± 0.02	0.83 ± 0.02	0.63 ± 0.01	0.88 ± 0.04																																																				
3B	Linear	$\alpha=3.5$	0.76 ± 0.01	0.85 ± 0.02	0.85 ± 0.01	0.63 ± 0.01	0.85 ± 0.04																																																				
3B	Linear	$\alpha=4.0$	0.74 ± 0.01	0.82 ± 0.02	0.87 ± 0.01	0.62 ± 0.01	0.77 ± 0.03																																																				
1B	Rank	$k=1$	0.58 ± 0.01	0.77 ± 0.02	0.64 ± 0.02	0.38 ± 0.00	0.98 ± 0.04																																																				
1B	Rank	$k=5$	0.73 ± 0.01	0.85 ± 0.02	0.74 ± 0.01	0.57 ± 0.02	0.98 ± 0.04																																																				
1B	Rank	$k=20$	0.85 ± 0.02	0.87 ± 0.02	0.80 ± 0.01	0.81 ± 0.02	0.95 ± 0.05																																																				
1B	Rank	$k=50$	0.75 ± 0.01	0.75 ± 0.02	0.63 ± 0.02	0.75 ± 0.02	0.92 ± 0.04																																																				
1B	Rank	$k=100$	0.81 ± 0.02	0.86 ± 0.02	0.85 ± 0.01	0.73 ± 0.01	0.87 ± 0.05																																																				
1B	Rank	$k=200$	0.75 ± 0.01	0.76 ± 0.02	0.67 ± 0.02	0.72 ± 0.01	0.88 ± 0.04																																																				
1B	Rank	$k=500$	0.74 ± 0.01	0.75 ± 0.02	0.72 ± 0.02	0.72 ± 0.01	0.79 ± 0.04																																																				
1B	Rank	$k=1000$	0.72 ± 0.02	0.73 ± 0.02	0.75 ± 0.02	0.72 ± 0.01	0.71 ± 0.04																																																				
3B	Rank	$k=1$	0.60 ± 0.01	0.84 ± 0.02	0.72 ± 0.02	0.38 ± 0.00	0.99 ± 0.04																																																				
3B	Rank	$k=5$	0.81 ± 0.01	0.89 ± 0.02	0.82 ± 0.01	0.69 ± 0.02	0.97 ± 0.04																																																				
3B	Rank	$k=20$	0.85 ± 0.01	0.89 ± 0.02	0.86 ± 0.01	0.77 ± 0.02	0.93 ± 0.04																																																				
3B	Rank	$k=50$	0.76 ± 0.01	0.77 ± 0.02	0.67 ± 0.02	0.74 ± 0.01	0.90 ± 0.04																																																				
3B	Rank	$k=100$	0.81 ± 0.02	0.85 ± 0.03	0.89 ± 0.01	0.73 ± 0.01	0.82 ± 0.06																																																				
3B	Rank	$k=200$	0.76 ± 0.01	0.78 ± 0.02	0.73 ± 0.02	0.73 ± 0.01	0.84 ± 0.04																																																				
3B	Rank	$k=500$	0.76 ± 0.01	0.77 ± 0.02	0.77 ± 0.02	0.72 ± 0.01	0.78 ± 0.04																																																				
3B	Rank	$k=1000$	0.74 ± 0.02	0.74 ± 0.02	0.78 ± 0.02	0.72 ± 0.01	0.70 ± 0.04																																																				

1026 D APPLICATION TO IMAGE GENERATION

1028 In this section we detail the experimental setup used to assess the quality of generated images and
 1029 additionally present (i) distributional statistics of image quality generated using our divergence de-
 1030 coding setup and (ii) a random sample of generated images for qualitative analysis.

1032 D.1 EXPERIMENTAL SETUP

1034 Each image in our sample is generated using class conditional generation using the default genera-
 1035 tion parameters of (Esser et al., 2021) for their ImageNet checkpoint. We fine-tune the parameters of
 1036 auto-regressive transformer in this model to arrive at checkpoints for p and q using a peak learning
 1037 rate of 10% of that used in (Esser et al., 2021) training for 10 epochs each over the retain and forget
 1038 sets. We then generate image samples following Eq. 3 where the adjustment from p and q is based
 1039 solely on the output from the auto-regressive transformer.

1040 D.2 MEASURING IMAGE CONTENT AND QUALITY

1042 Image content is measured using VQAScore (Lin et al., 2024). This approach requires access to
 1043 the log probabilities of the multi-modal LLM (MLLM) used to assess quality, therefore these as-
 1044 sessments rely on the GPT-4o-mini rather than newer models such as GPT-5-nano for which the log
 1045 probabilities are not exposed. When measuring perceptual quality, we use a MLLM-as-a-judge in
 1046 a pairwise comparison configuration (Chen et al., 2024). Since this setup does not require access
 1047 to the log probabilities, we leverage several state of the art small MLLMs for this task: Gemini 2.5
 1048 Flash-Lite, GPT-5-nano, and Qwen3-VL 8B.

1049 D.3 DISTRIBUTIONAL PROPERTIES OF GENERATED IMAGES

1051 Ideally, samples from the model would no longer exhibit image semantics associated with the data in
 1052 the forget set F , while retaining high perceptual quality relative to the retain set R . Following prior
 1053 work (e.g., Heusel et al., 2017), we measure the quality of the generated images using the Fréchet
 1054 Inception Distance (FID).

1056 We assess performance by computing the FID between three pairs of data: (i) baseline images from
 1057 the retain set and generated images using classes from the retain set ($\text{FID}(B_R, G_R)$), (ii) baseline
 1058 images from the forget set and generated images using classes from the forget set ($\text{FID}(B_F, G_F)$),
 1059 and (iii) baseline images from the retain set and generated images using classes from the forget set
 1060 ($\text{FID}(B_R, G_F)$).

1061 Efficacy in this setting preserves perceptual quality relative to the retain set, i.e., low $\text{FID}(B_R, G_R)$
 1062 and low $\text{FID}(B_R, G_F)$, while increasing the distance between the forget set and images generated
 1063 based on those classes, i.e., high $\text{FID}(B_F, G_F)$. In Table 8, we present FID statistics for a variety of
 1064 decoding setups. For the linear setup, an $\alpha = 1$ seems to work well, e.g., a roughly 33% increase in
 1065 $\text{FID}(B_F, G_F)$ with only a 5% increase in $\text{FID}(B_R, G_R)$ relative to the baseline. In contrast, the topk
 1066 based methods appear to require much larger values of k to be effective.

1067 Table 8: Content analysis of images generated using various divergence decoding setups.

Method	Config	$\text{FID}(B_R, G_R) \downarrow$	$\text{FID}(B_F, G_F) \uparrow$	$\text{FID}(B_R, G_F) \downarrow$
Baseline	—	18.2	18.0	30.1
Linear	$\alpha = 1$	19.2	24.1	27.3
Linear	$\alpha = 2$	20.5	28.7	26.8
Linear	$\alpha = 5$	22.8	31.6	25.8
Linear	$\alpha = 10$	22.6	31.4	25.3
Rank	topk=20	19.1	20.0	29.2
Rank	topk=100	20.1	22.1	28.7
Rank	topk=250	21.1	28.1	26.0

1080
1081

D.4 IMAGE GENERATION SAMPLES

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100