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ABSTRACT

Bilevel optimization has witnessed a resurgence of interest, driven by its critical
role in trustworthy and efficient AI applications. Recent focus has been on finding
efficient methods with provable convergence guarantees. However, while many
prior works have established convergence to stationary points or local minima,
obtaining the global optimum of bilevel optimization remains an important yet open
problem. The difficulty lies in the fact that unlike many prior non-convex single-
level problems, bilevel problems often do not admit a “benign" landscape, and may
indeed have multiple spurious local solutions. Nevertheless, attaining the global
optimality is indispensable for ensuring reliability, safety, and cost-effectiveness,
particularly in high-stakes engineering applications that rely on bilevel optimization.
In this paper, we first explore the challenges of establishing a global convergence
theory for bilevel optimization, and present two sufficient conditions for global
convergence. We provide algorithm-dependent proofs to rigorously substantiate
these sufficient conditions on two specific bilevel learning scenarios: representation
learning and data hypercleaning (a.k.a. reweighting). Experiments corroborate the
theoretical findings, demonstrating convergence to global minimum in both cases.

1 INTRODUCTION

Bilevel optimization aims to handle two interconnected problems, where one problem is nested within
another (Bracken & McGill, 1973). Recently, bilevel optimization has gained significant attention
due to their relevance in various machine learning, signal processing and wireless communication
applications, including hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2017;
2018; Pedregosa, 2016), meta-learning (Finn et al., 2017), representation learning (Arora et al.,
2020), reinforcement learning with human feedback (Stadie et al., 2020; Shen et al., 2024), continual
learning (Pham et al., 2021; Borsos et al., 2020; Hao et al., 2023), adversarial learning (Zhang et al.,
2022; Robey et al., 2024) and neural architecture search (Liu et al., 2019); see recent survey (Liu et al.,
2021a; Sinha et al., 2017). In this paper, we focus on the optimistic bilevel optimization problem as

min
u,v∈S(u)

f(u, v), s.t. S(u) = argmin
v

g(u, v) (1)

where both the upper-level objective function f : Rd1 × Rd2 → R and the lower-level objective
function g : Rd1 × Rd2 → R are continuously differentiable.

To tackle the above bilevel problems, various efficient algorithms have been proposed with rigorous
guarantees on iteration and sample complexity, but most of them are only guaranteed to converge
to the stationary points (Ji et al., 2021; Chen et al., 2021; Hong et al., 2023; Dagréou et al., 2022;
Ghadimi & Wang, 2018; Kwon et al., 2023) or locally optimal solution (Huang et al., 2022; Dempe,
2019; Chen et al., 2023a) instead of the global optima. However, identifying the global optimal
solution for bilevel optimization is vital in various real-world applications where the quality of
solutions can have significant impacts. For instance, in policy-making (Dempe et al., 2019), energy
systems (Wu et al., 2019; Razmara et al., 2016), resource allocation (Gao et al., 2020; Huang et al.,
2019; Shi & Luo, 2017) and network design (Gao et al., 2005), globally optimal solutions can lead to
more cost-efficient and sustainable outcomes than local solutions. Furthermore, in high-stakes fields
like healthcare, law, and robotics, attaining global optima ensures that the AI models are aligned with
human values with minimal risks of harmful generation (Modares et al., 2015; Bıyık et al., 2022).
Thus, the goal of this paper is to study the global convergence (in contrast to convergence to local
optima) of bilevel optimization for certain (not all) machine learning applications.
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1.1 OUR MAIN RESULTS

We summarize our main results to tackle the global optimality of bilevel optimization.

C1) The penalty reformulation of bilevel optimization has a more benign landscape.

Recent advances in bilevel optimization algorithms can be generally classified into two categories.

Nested approaches solve the problem (1) from its nested formulation F(u) := minv∈S(u) f(u, v)
by optimizing first over one variable v and then over the order u; see e.g., (Ghadimi & Wang, 2018;
Ji et al., 2021; Hong et al., 2023; Chen et al., 2021).

Constrained approaches incorporate the optimality condition of the lower-level problem in (1) as a
constraint in the upper-level problem and then optimize over u and v jointly; see e.g., (Sow et al.,
2022a; Liu et al., 2022; Kwon et al., 2023; 2024; Chen et al., 2023a; Shen et al., 2023).

In this paper, we first investigate the loss landscape of the bilevel problem (1) through the lens of
nested and constrained bilevel reformulations, demonstrating that the constrained formulation is
easier to yield a benign landscape.

C2) Benign properties of the penalty reformulation ensure convergence to global optimum.

We analyze the landscape of the penalty reformulation of the constrained version of (1), and derive two
sufficient conditions that ensure a favorable landscape for bilevel problems. These conditions, inspired
by practical applications, provide a stepping stone for global convergence of bilevel algorithms.

Specifically, we define the penalized objective as Lγ(u, v) := f(u, v) + γ(g(u, v)− g∗(u)), where
g∗(u) := minv g(u, v) is the value function and γ > 0 is a penalty constant, and generalize the
definition of the standard Polyak-Lojasiewicz (PL) condition to the two-variable case below.
Definition 1 (Joint and blockwise PL condition). Lγ(u, v) satisfies joint PL with µl = O(γ) if

∥∇Lγ(u, v)∥2 ≥ 2µl

(
Lγ(u, v)−min

u,v
Lγ(u, v)

)
. (2)

In addition, Lγ(u, v) is said to be blockwise PL with µu, µv = O(γ) if both of the followings hold

∥∇uLγ(u, v)∥2 ≥ 2µu

(
Lγ(u, v)−min

u
Lγ(u, v)

)
(3a)

∥∇vLγ(u, v)∥2 ≥ 2µv

(
Lγ(u, v)−min

v
Lγ(u, v)

)
. (3b)

We use the term ‘benign landscape’ to represent penalty function Lγ(u, v) satisfying either of the
above conditions, or nested objective F(u) = minv∈S(u) f(u, v) satisfying PL condition over u.

From benign landscape to global convergence. Under either of the above conditions, we establish
that the penalized bilevel gradient descent (PBGD) algorithm (Kwon et al., 2023; Shen et al., 2023;
Kwon et al., 2024; Chen et al., 2023a), a fully first-order method, globally converges to the optimal
solutions of (1). Under the joint PL condition, updating (u, v) in a Jacobi manner (c.f. (7b)–(7c)) will
ensure the global convergence. Under the blockwise PL condition, updating u and v in a Gauss-Seidel
manner (c.f. (7d)–(7e)) ensures the global convergence.

C3) Two representative bilevel learning problems guarantee benign properties.

The joint and blockwise PL condition in Definition 1 are not assumptions, but the properties of
the penalty reformulation of the bilevel problem for certain problems. We validate the joint and
blockwise PL conditions respectively through two representative bilevel applications: representation
learning and data hyper-cleaning (a.k.a. reweighting) with a least squares loss. We rigorously
prove that the loss surfaces reached by PBGD, when employing a Jacobi update and a Gauss-Seidel
update, respectively, adhere to the joint PL condition and the blockwise PL condition throughout the
optimization trajectory for these two problems. As a result, we prove for the first time that PBGD is
guaranteed to converge to the global optimum for both of these two problems.

Choice of problems and models. The particular choice of two bilevel applications exemplify two
different types of bilevel interactions between the upper and lower-level problems, are suited to
different update dynamics of PBGD. Compared with the landscape analysis of single-level problems,
the uniqueness of the bilevel landscape lies in the intricate coupling structures between the upper-level
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and lower-level problems. Recognizing this, it is evident that even analyzing the linear models can
capture the essence of the problem structure and exclude other confounding factors which might be
less relevant to the bilevel landscape analysis. Moreover, as a challenging yet important problem,
the global convergence analysis for single-level optimization also starts with linear models to gain
insights such as in matrix completion (Sun & Luo, 2016; Ye & Du, 2021), phrase retrieval (Ma et al.,
2018), and linear neural networks (Xu et al., 2023; Zou et al., 2020). Therefore, our efforts will be
put into understanding how coupling structure affects the bilevel landscpe with a linear model.

1.2 RELATED WORKS

To put our work in context, we review prior contributions for bilevel optimization in two categories.

Stationary point and local convergence. The recent interest in developing efficient gradient-based
bilevel methods with nonasymptotic convergence guarantees has been stimulated by (Ghadimi &
Wang, 2018; Ji et al., 2021; Hong et al., 2023; Chen et al., 2021). Based on different Hessian
inversion approximation techniques, these algorithms can be categorized into iterative differentiation
(Franceschi et al., 2017; 2018; Grazzi et al., 2020) and implicit differentiation-based approaches (Chen
et al., 2021; Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Pedregosa, 2016). Recent
works have reformulated the bilevel optimization problem as a single-level constrained problem,
and solved it via the penalty-based gradient method (Shen et al., 2023); see also (Liu et al., 2022;
Kwon et al., 2023; 2024; Chen et al., 2023a; Lu & Mei, 2023). While the nonasymptotic analysis
of stationary convergence has been extensively studied in bilevel optimization recently, finite-time
convergence guarantee for local minimum remains under-explored. Recently, (Huang et al., 2022)
and (Chen et al., 2023a) have found the benefit of adding noise to gradient-based bilevel methods,
which helps them to efficiently escape from saddle points and converge to local minima. However,
none of them analyze the landscape and the convergence to global optimal solutions.

Global optimum convergence. In general, finding the global optimal solution for bilevel opti-
mization is NP-hard (Vicente et al., 1994). Historically, globally convergent algorithms for bilevel
optimization (Gümüş & Floudas, 2001; Muu & Quy, 2003) were built upon the branch and bound
method, a globally convergent single-level algorithm. Despite its theoretical soundness, the branch
and bound method is generally inefficient due to its exhaustive search nature. Another line of research
focused on the bilevel problems with specific structures. A semi-definite relaxation method has been
introduced in (Jeyakumar et al., 2016) for polynomial bilevel problems, and a dual reformulation
has been developed in (Wang et al., 2007) for quadratic bilevel problems with a linear lower-level.
More recent efforts by (Wang et al., 2021; 2022) solved Stackelberg prediction games with quadratic
regularized least squares problems at the lower level by applying semi-definite relaxation and spheri-
cal constraints. However, these methods are problem-specific and are not suitable for more complex
machine-learning scenarios, particularly where the lower-level problem presents multiple solutions.

1.3 NOVELTY AND TECHNICAL CHALLENGES

We highlight the novelty and technical challenges for the analysis in our work as follows.

T1) We carefully examine the challenges posed by the complex landscape of nested optimization
and the general non-additivity of PL functions (see Examples 1–5), underscoring the impor-
tance of analyzing the landscape of the penalized problem and the additivity properties of
specific PL functions. Even for the special case highlighted in Observation 2, the additivity
remains non-trivial due to differences in the strongly convex and matrix mappings.

T2) Global convergence under the generic benign landscape conditions in Definition 1 is still
insufficient for the two applications, even in the linear model case. This is because only local
PL and smoothness conditions are satisfied, with constants that vary along the optimization
trajectory of PBGD. By leveraging an induction-based proof and the advanced acute matrix
perturbation theory, we establish the boundedness of the local PL and smoothness constants
throughout the trajectory of PBGD, and thus this leads to the global convergence results
over the penalized objective Lγ(u, v).

T3) To bridge the gap in achieving global convergence to the optimal solution of the original
bilevel problem for these two applications, we establish application-specific approximate
equivalence between the penalized problem and the original problem, relying solely on
local PL and local smoothness conditions, which has not yet been explored in the existing
literature. The conditions are also validated along the optimization trajectory of PBGD.
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(a) g(u, v) for Example 1 (b) f(u, v) for Example 1 (c) F(u) for Example 1

Figure 1: Visualization of g(u, v), f(u, v) and F(u) in Example 1. In (c), saddle points of F(u) are
identified within the red region, suggesting that F(u) in Example 1 does not fulfill the PL condition.

Notation. Let R,R≥0,R>0,Z be the sets of real, nonnegative real, positive real and integer numbers.
For a given matrix A ∈ Rp×q, let λi(A) and σi(A) be the i-th eigenvalue and singular value in
descending order, respectively. Denote σmax(A) = σ1(A), σmin(A) = σmin{p,q}(A) and σ∗(A) =
σmax{i|σi(A)>0} as the maximal, minimal, and minimal nonzero singular values. Let Aij represent
the entry at the i-th row and j-th column of A. Let ∥A∥ and ∥A∥2 be the Frobenius and spectral
norms of A. Let θ>0 be θ if θ > 0 and infinity otherwise. Let 1(·) denote the indicator function.

2 CHALLENGES AND TARGET OF CONVERGENCE

In this section, we will reveal the complicated landscape of the nested objective F(u) and then state
the target of global convergence.

2.1 CHALLENGES IN THE NESTED FORMULATION OF BILEVEL OPTIMIZATION

Establishing the global convergence for bilevel optimization algorithms is fundamentally challenging
because the nested bilevel objective F(u) exhibits different properties compared to the upper- and
lower-level objectives f(u, v) and g(u, v). This is primarily due to the distortion induced by S(u). To
gain some intuition on this distortion, consider the case where both upper and lower-level objectives
satisfy the PL condition jointly over (u, v): there exists µf , µg > 0 such that

∥∇f(u, v)∥2 ≥ 2µf (f(u, v)−min
u,v

f(u, v)) and ∥∇g(u, v)∥2 ≥ 2µg(g(u, v)−min
u,v

g(u, v)). (4)

The following example shows that the PL condition on both levels is not sufficient to guarantee the
PL condition over the bilevel objective F(u), even if the lower-level solution mapping S(u) is linear.
Example 1. With u ∈ R and v ∈ R, consider the following upper and lower-level objectives

f(u, v) =
1

2
(u− sin(v))

2 and g(u, v) =
1

2
(u− v)2.

We can verify that both f(u, v) and g(u, v) satisfy the joint PL condition in (4) and the lower-level
problem parameterized by u yields the unique solution S(u) = u. However, the overall bilevel
function F(u) = f(u,S(u)) = 1

2 (u− sin(u))2 violates the PL condition over u. The graph of F(u)
is shown in Figure 1 and the formal proof is deferred to Appendix C.1.

Similarly, joint convexity of both levels can not ensure the convexity of the bilevel objective F(u)
even if the lower-level solution is unique; see the Example 3 in Appendix C.3.

These suggest that the landscape of the nested bilevel objective F(u) can be easily distorted by the
lower-level solution mapping S(u), which we do not have the direct access to control.

2.2 SEEKING GLOBAL OPTIMUM VIA PENALTY REFORMULATION

To avoid directly dealing with S(u), some of recent works have focused on solving the bilevel
optimization (1) from the perspective of constrained optimization, where the lower-level problem
is treated as a constraint of the upper-level problem; see e.g., (Kwon et al., 2023; Shen et al.,
2023; Liu et al., 2022; Mehra & Hamm, 2021; Kwon et al., 2024) . Defining the value function as
g∗(u) = minv g(u, v), the bilevel problem in (1) can be equivalently reformulated as

min
u,v

f(u, v), s.t. g(u, v)− g∗(u) ≤ 0. (5)

An (ϵ1, ϵ2) optimal solution of the bilevel problem (1) can then be defined as follows.
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Definition 2 (An (ϵ1, ϵ2) solution of bilevel problem). Given u∗ ∈ Rd1 , v∗ ∈ Rd2 , we say point
(u∗, v∗) is an (ϵ1, ϵ2) global solution to bilevel problem (1) if g(u∗, v∗)− g∗(u∗) ≤ ϵ2 and for any
u ∈ Rd1 , v ∈ Rd2 satisfying g(u, v)− g∗(u) ≤ ϵ2, we have f(u∗, v∗) ≤ f(u, v) + ϵ1.

To find an (ϵ1, ϵ2) solution of (5), one can resort to optimize its penalized problem (Shen et al., 2023)

min
u,v

Lγ(u, v) := f(u, v) + γ(g(u, v)− g∗(u)). (6)

It was shown in (Shen et al., 2023) that, the ϵ-solution for (6) with a penalty parameter γ = O(ϵ−0.5)
is the (ϵ,O(ϵ)) solution for bilevel problem in Definition 2. Therefore, analyzing the landscape of
the penalized objective Lγ(u, v) also leads to the global convergence to an (ϵ, ϵ) solution of (5).

Benefits of investigating Lγ(u, v) instead of F(u). Analyzing Lγ(u, v) bypasses the need to study
the PL-preserving property under composition in Section 2.1, making it easier to establish a benign
landscape property. Besides, the continuity and differentiablity of g∗(u) is generally easier to
be satisfied than that of S(u); see e.g., (Dontchev & Rockafellar, 2014, Example 3B.6). This
makes Lγ(u, v) more likely to be differentiable than F(u). On the other hand, as minv Lγ(u, v) is
an equivalent-dimensional proxy of F(u) (Kwon et al., 2024), Lγ(u, v) offers a high dimensional
approximation of F(u), smoothing out the ravine of F(u) in high-dimensional space; see Figure 2.

3 GLOBAL CONVERGENCE CONDITION IN BILEVEL OPTIMIZATION

In this section, we will propose counterparts to the global convergence condition from single-level
optimization for bilevel optimization based on the penalized constrained formulation (6).

3.1 BENIGN LANDSCAPE CONDITIONS

To characterize the global convergence in bilevel optimization, we generalize the PL condition
(Karimi et al., 2016), and define the joint PL and blockwise PL conditions of Lγ(u, v) in Definition 1.

Two "bilevel PL" conditions. The joint PL condition in (2) extends the standard PL condition to a
two-variable setting by treating (u, v) as a new single variable, while the blockwise PL condition in
(3) reflects the hierarchical structure of bilevel problems by treating the optimization over u and v as
separate blocks. For simplicity, we define condition (3a) for the whole space, but it is also sufficient
for global convergence if the condition (3a) holds only for v ∈ argminv Lγ(u, v). It is also important
to note that the joint PL condition and the blockwise PL condition can not imply each other.

Rationale of two PL conditions. The two PL conditions correspond to bilevel problems with
isomorphic and heterogeneous levels, respectively. Specifically, in representation learning (Section
4), the upper-level and lower-level variables are model weights from different layers, maintaining
a similar nature; and in data hyper-cleaning (Section 5), the lower-level variables are still model
weights, but the upper-level variables are the classification parameters for each sample, which is a
distinct type of variable from the model weights.

Following (Shen et al., 2023; Kwon et al., 2024), if we choose γ = O(ϵ−0.5), the ϵ-global convergence
to the penalized problem (6) implies the convergence to (ϵ,O(ϵ)) global solution of the bilevel
problem in Definition 2. Therefore, we can then focus on developing a globally convergent gradient-
based algorithm for the penalized problem Lγ(u, v) under the joint or blockwise PL condition.

3.2 A GLOBALLY CONVERGENT ALGORITHM: PENALTY-BASED BILEVEL GRADIENT DESCENT

We revisit the penalty-based bilevel gradient descent (PBGD) algorithm (Shen et al., 2023; Kwon
et al., 2023; 2024; Chen et al., 2023a), a fully first-order method with provable stationary convergence.
We will demonstrate that PBGD reaches the global optimum when the benign conditions are satisfied.

As the name implies, PBGD employs gradient descent on the penalized objective (6). Thanks to the
Danskin type theorem (Nouiehed et al., 2019), ∇Lγ(u, v) can be calculated by

∇uLγ(u, v) = ∇uf(u, v) + γ(∇ug(u, v)−∇ug(u,w)), ∇vLγ(u, v) = ∇vf(u, v) + γ∇vg(u, v)

where w ∈ S(u) is an auxiliary variable used for estimating ∇g∗(u). Therefore, at iteration k, PBGD
first updates wk to track S(uk) by Tk step gradient descent on g(uk, ·) initialized by wk,0 = 0

wk,t+1 = wk,t − β∇vg(u
k, wk,t) (7a)
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and update wk+1 = wk,Tk . Then we update uk and vk via the gradient descent update on Lγ(u, v)
simultaneously that we term the Jacobi version if Lγ(u, v) is jointly PL; that is

uk+1 = uk − α
(
∇uf(u

k, vk) + γ
(
∇ug(u

k, vk)−∇ug(u
k, wk+1)

))
(7b)

vk+1 = vk − α(∇vf(u
k, vk) + γ∇vg(u

k, vk)) (7c)

or alternatingly that we term the Gauss-Seidel version if Lγ(u, v) is blockwise PL (with vk,0 = v0

as the initialization and vk+1 = vk,Tk as the output); that is

vk,t+1 = vk,t − β̃(∇vf(u
k, vk,t) + γ∇vg(u

k, vk,t)), t = 1, 2, · · · , Tk (7d)

uk+1 = uk − α
(
∇uf(u

k, vk+1) + γ
(
∇ug(u

k, vk+1)−∇ug(u
k, wk+1)

))
. (7e)

The Jacobi and Gauss-Seidel versions of PBGD are summarized in Algorithm 1 and 2, respectively.

Algorithm 1 PBGD in Jacobi fashion

1: Initialization {u0, v0, w0}, stepsizes {α, β},
penalty constants γ

2: for k = 0 to K − 1 do
3: initialize wk,0 = w0

4: for t = 0 to Tk − 1 do
5: update wk,t+1 by (7a)
6: end for
7: set wk+1 = wk,Tk

8: update uk+1 by (7b)
9: update vk+1 by (7c)

10: end for

Algorithm 2 PBGD in Gauss-Seidel fashion

1: Initialization {u0, v0, w0}, stepsizes {α, β, β̃},
penalty constants γ

2: for k = 0 to K − 1 do
3: for t = 0 to T − 1 do
4: update wk,t+1 by (7a)
5: end for
6: for t = 0 to T − 1 do
7: update vk,t+1 by (7d)
8: end for
9: update uk+1 by (7e)

10: end for

To prove the convergence, we make the following assumptions; see also in (Shen et al., 2023; Kwon
et al., 2024; Ghadimi & Wang, 2018; Hong et al., 2023; Chen et al., 2021; Ji et al., 2021).
Assumption 1. Assume f(u, v) and g(u, v) are ℓf - and ℓg-smooth over (u, v), f(u, ·) is ℓf,0-
Lipschitz continuous over v, and g(u, ·) is µg-PL over v.

The following theorem shows that PBGD is globally convergent to the bilevel problem with almost
linear convergence rate when the penalized problem has a benign landscape.
Theorem 1 (Global convergence of PBGD). Suppose Assumption 1 holds, then g∗(u) is smooth with
Lg := ℓg(1 + ℓg/2µg). Given a target accuracy ϵ, we set γ = O(ϵ−0.5), stepsizes β ≤ 1

ℓg
, inner

loop Tk = O
(
log
(
γ2ϵ−1

))
. Then if Lγ(u, v) satisfies the joint PL condition (2) with µl > 0 and we

choose α ≤ 1
ℓf+γ(ℓg+Lg)

, there exists ϵγ = O(ϵ) s.t. the iterates of PBGD in Algorithm 1 satisfies

f(uK , vK)− f(u, v) ≤ O((1− αµl)
K) +O(ϵ) and g(uK , vK)−min

v
g(uK , v) ≤ ϵγ = O(ϵ)

for any (u, v) with g(u, v)− g∗(u) ≤ ϵγ = O(ϵ).

Alternatively, if Lγ(u, v) satisfies the blockwise PL condition (3) with µu, µv > 0, argminv Lγ(u, v)

is independent of u and we choose the stepsizes β̃ ≤ 1
ℓf+γℓg

, α ≤ 1
Lγ

where Lγ := (ℓf + γℓg)(1 +

(ℓf + γℓg)/2µv) + Lg , then the iterates of PBGD in Algorithm 2 satisfies

f(uK , vK+1)− f(u, v) ≤ O((1− αµu)
K) +O(ϵ) and g(uK , vK+1)−min

v
g(uK , v) ≤ ϵγ

for any (u, v) with g(u, v)− g∗(u) ≤ ϵγ = O(ϵ).

Theorem 1 shows that, with properly selected stepsizes, PBGD employing either the Jacobi update
under the joint PL condition or the Gauss-Seidel update under the blockwise PL condition, converges
to an (O(ϵ),O(ϵ)) solution for the bilevel problem within O(KmaxTk) = O(log(ϵ−1)2) iterations.
The proof of Theorem 1 is provided in Appendix D.
Remark 1 (Other choices of algorithms). It is worth mentioning that other first-order bilevel
algorithms based on the penalty formulation (6), such as F2SA (Kwon et al., 2023; 2024; Chen et al.,
2023a) and BOME (Liu et al., 2022), could also have global convergence. We provided the global
convergence based on the PBGD algorithm (Shen et al., 2023) here as an example.
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3.3 ENSURING GLOBAL CONVERGENCE CONDITIONS

In this section, we will provide some key observations to help us establish the global convergence
conditions in Section 3.1. Let us first revisit the definition of the penalized objective

Lγ(u, v) =

Additivity of PL functions holds? Observation 2︷ ︸︸ ︷
f(u, v)

↑
joint PL & blockwise PL

+ γ(g(u, v)− g∗(u)).︸ ︷︷ ︸
Observation 1: joint PL & blockwise PL over v

We have the first observation on the landscape of g(u, v)− g∗(u) over (u, v) and that over v.
Observation 1. Under Assumption 1, g(u, v)−g∗(u) is joint PL over (u, v) and blockwise PL over v.

Therefore, if the upper-level objective additionally satisfies joint PL or blockwise PL condition, then
whether Lγ(u, v) satisfies joint PL or blockwise PL condition over v depends on the additivity of PL
functions. In general, the sum of two joint/blockwise PL functions is not necessarily a joint/blockwise
PL function. For example, in Example 1, joint PL in both levels leads to non-joint PL penalized
objective. For the proof and the counterexamples in blockwise PL condition, see Appendix C.2.

The lack of the additivity of PL functions in general impedes the development of a unified global
convergence theory for bilevel problems. However, we highlight another key observation to establish
the PL condition of Lγ(u, v) for a special class of problem. This observation implies that a strongly
convex function composite with a linear mapping preserves the PL condition under additivity.
Observation 2. Let h1 : Rm → R and h2 : Rn → R be strongly convex functions with constant
µ1 and µ2, respectively. Given any matrix A ∈ Rm×d, B ∈ Rn×d, h1(Az) and h2(Bz) satisfy the
PL condition over z ∈ Rd with constant µ1σ∗(A) and µ2σ∗(B), respectively. Moreover, h1(Az) +
h2(Bz) satisfies the PL condition with constant min{µ1σ

2
∗(A), µ2σ

2
∗(B)}.

This observation is particularly valuable for analyzing global convergence in bilevel optimization
problems involving linear neural networks with strongly convex loss functions, such as the least
squares loss or cross-entropy loss within a bounded region.

Dealing with problem-specific challenges. In Sections 4 and 5, we will show how to use our bilevel
global convergence framework in two problems: representation learning and data hyper-cleaning. In
these two applications, we choose linear or bilinear models with least-squares losses. Although these
models are relatively simple, only local (non-uniform) versions of the joint PL and blockwise PL
conditions are satisfied due to the coupling within the linear network, and the local constants vary
with the algorithm’s iterations. Nevertheless, we will judiciously verify the joint PL condition and
blockwise PL condition along the optimization trajectory of PBGD by carefully bounding these
constants and establish the optimality equivalence of (1) and (6) at the limit point of PBGD.

4 GLOBAL CONVERGENCE IN REPRESENTATION LEARNING

In representation learning, we are given a training dataset {xi, yi}Ni=1 and a validation dataset
{x̃i, ỹi}N

′

i=1 with data sample xi, x̃i ∈ Rm and label yi, ỹi ∈ Rn. We aim to train a model capable of
excelling with unseen data by adjusting only the top layer’s weights W1 while keeping the backbone
model W2 fixed. For simplicity, we consider the two-layer linear neural network and the mean square
loss in this paper, so the resultant bilevel problem can be formulated as

min
W1,W2∈S(W1)

1

2
∥Yval −XvalW1W2∥2 , s.t. S(W1) = argmin

W2

1

2
∥Ytrn −XtrnW1W2∥2 (8)

where Xtrn = [x1, · · · , xN ]
⊤ ∈ RN×m, Xval = [x̃1, · · · , x̃N ′ ]

⊤ ∈ RN ′×m are the training and
validation data matrix, Ytrn = [y1, · · · , yN ]

⊤ ∈ RN×n, Yval = [ỹ1, · · · , ỹN ′ ]
⊤ ∈ RN ′×n are the

training and validation label matrix and W1 ∈ Rm×h,W2 ∈ Rh×n are the weight matrix. We
consider the overparameterized case with m ≥ max{N,N ′} so that S(W1) has multiple solutions.
We also assume the neural network is wide h ≥ max{m,n} and Xtrn, Xval are of full row rank 1.

Let us denote Ltrn(W1,W2) =
1
2 ∥Ytrn −XtrnW1W2∥2, Lval(W1,W2) =

1
2 ∥Yval −XvalW1W2∥2

as the loss of two-layer linear neural network. We are interested in the scenario where the backbone
1Our theory also works for rank-deficient case by changing σmin(Xtrn), σmin(Xtrn) to σ∗(Xtrn), σ∗(Xtrn).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: The landscape of F(W1) and Lγ(W1,W2) with different penalty constant γ = 0.1, 1, 50
in representation learning. The orange terrain is F(W1), while the blue surface is Lγ(W1,W2). The
black line is the trajectory of PBGD which converges to the global optimum of bilevel loss.

model, when learned from the validation dataset, also achieves a good fit on the training dataset.
This ensures that there are hidden patterns applicable across training and validation datasets so that
a generalizable backbone model exists. Note that although we employ a two-layer neural network
structure to model both the backbone and adaptation layer for representation learning, our analysis is
adaptable to multi-layer neural networks as well. To this end, we make the following assumption.
Assumption 2. For any ϵ1, ϵ2 ∈ R≥0, there exists (W ∗

1 ,W
∗
2 ) being the (ϵ1, ϵ2) solution to the bilevel

representation learning problem (8) such that Ltrn(W ∗
1 ,W

∗
2 )−minW1,W2

Ltrn(W1,W2) ≤ ϵ2.

Assumption 2 ensures that the bilevel problem has at least one full-rank solution W ∗
1 so that is not

degenerate. We present some sufficient conditions for it in Appendix F.1.

To solve (8), we resort to its penalized function as stated (6) with the upper-level function f(u, v) =
Lval(W1,W2), and the lower-level objective g(u, v) = Ltrn(W1,W2), which is defined as

Lγ(W1,W2) := Lval(W1,W2) + γ(Ltrn(W1,W2)− L∗trn(W1)) (9)

where L∗trn(W1) = minW2
Ltrn(W1,W2). Then we can run PBGD 1 with (u, v, w) = (W1,W2,W3)

where W3 ∈ Rh×n is an axillary variable used to estimate the gradient of the value function.

To verify the global convergence condition (2), we first observe that both Lval(W1,W2) and
Ltrn(W1,W2) are in the form of a quadratic function composite with a linear mapping. More-
over, we find that L∗trn(W1) = 0 if W1 is of full row rank and W k

1 will maintain full row rank
on the trajectory generated by PBGD, so that Ltrn(W1,W2) − L∗trn(W1) will be in the form of a
quadratic function composite with a linear mapping along the optimization trajectory. Therefore,
Observation 2 implies that Lγ(W1,W2) is a PL function. Figure 2 shows the landscape comparison
of F(W1) := minW2∈S(W1) Lval(W1,W2) and Lγ(W1,W2) in representation learning. From Figure
2, it can be seen that the nested bilevel function F(W1) is nonconvex and discontinuous, while the
penalized loss Lγ(W1,W2) has a smoother landscape, effectively steering the weight matrix updated
by PBGD towards the global optimal solution. Formally, we have the following lemma.
Lemma 1 (Joint PL condition and descent lemma over trajectory). Let Xγ = [Xval;

√
γXtrn] be the

concatenated data matrix. Then under Assumption 2, if σ2
min(W

k
1 ) > 0, σ2

min(W
k
2 ) > 0, the joint PL

inequality holds with µk = (σ2
min(W

k
1 ) + σ2

min(W
k
2 ))σ

2
∗(Xγ), that is

∥∇Lγ(W
k
1 ,W

k
2 )∥2 ≥ 2µk(Lγ(W

k
1 ,W

k
2 )− min

W1,W2

Lγ(W1,W2)).

The descent lemma holds with Lk defined in (51) and ∥δk∥ being the estimation error of ∇L∗γ(W
k
1 )

Lγ(W
k+1
1 ,W k+1

2 ) ≤ Lγ(W
k
1 ,W

k
2 )−

(α
2
− α2Lk

)
∥∇Lγ(W

k
1 ,W

k
2 )∥2 +

(α
2
+ α2Lk

)
∥δk∥2.

To this end, using the joint PL condition together with the standard descent lemma leads to one-step
contraction in the optimality gap of the penalized objective. Through induction, we can then establish
the lower bounds of σ2

min(W
k
1 ) and σ2

min(W
k
2 ), as well as the upper bounds of σ2

max(W
k
1 ) and

σ2
max(W

k
2 ). Consequently, these yield k-independent lower and upper bounds for µk and Lk, which

enable us to demonstrate the almost linear convergence of PBGD.
Theorem 2 (Global convergence of PBGD for representation learning). Under Assumption 2 and
choose γ = O(ϵ−0.5), Tk = O(log(ϵ−1)), there exists µ = O(γ), L = O(γ), α = O(γ−1), such
that µk ≥ µ,Lk ≤ L, and the iteration complexity of PBGD in Algorithm 1 to achieve (ϵ, ϵ) global
optimal point of the bilevel representation learning problem (8) is O(log2(ϵ−1)).
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5 GLOBAL CONVERGENCE IN DATA HYPER-CLEANING

Data hyper-cleaning aims to leverage a small, clean validation dataset to enhance the quality of
a larger training dataset, which may be hindered by some noisy or unreliable data points. This
process is widely used when the access to clean data is costly but the noisy data is not like in
recommendation systems (Wang et al., 2023; Chen et al., 2022). To do so, we are given a training
dataset {xi, yi}Ni=1 with data sample xi ∈ Rm and label yi ∈ Rn, where each label may be corrupted.
We are also given the clean validation data {x̃i, ỹi}N

′

i=1 to guide the training. Let u ∈ RN be the
classification vector trained to label the noisy data and W ∈ Rm×n be the model weight, the bilevel
problem of data hyper-cleaning is given by minu∈U,W∈S(u)

1
2

∑N ′

i=1(ỹi − x̃⊤i W )2, s.t. S(u) =
argminW

1
2

∑N
i=1 ψ(ui)(y

⊤
i − x⊤i W )2 where U = [−ū, ū]N is used to avoid trivial solution

ui = −∞ and ψ(·) is the sigmoid function.

Let Xtrn = [x1, · · · , xN ]
⊤ ∈ RN×m, Xval = [x̃1, · · · , x̃N ′ ]

⊤ ∈ RN ′×m, Ytrn = [y1, · · · , yN ]
⊤ ∈

RN×n, Yval = [ỹ1, · · · , ỹN ′ ]
⊤ ∈ RN ′×n be the training and validation data and label matrix, ψN (·)

denotes the diagnal matrix of element wise sigmoid function and
√
· denote the elementwise square

root operator. We can formulate the data hyper-cleaning problem as the following bilevel problem

min
u∈U, W∈S(u)

1

2
∥Yval −XvalW∥2 , s.t. S(u) = argmin

W

1

2

∥∥∥√ψN (u) (Ytrn −XtrnW )
∥∥∥2. (10)

Note that for data hyper-cleaning, where the primary concern involves the interaction between the
classification parameter u and the model weight W , we adopt a one-layer neural network structure for
simplicity in notations. Nonetheless, our results can also be extended to multi-layer linear networks.

We consider the overparameterized case with m ≥ max{N,N ′}. To model a corrupted training
setting, we assume the concatenate data matrix [Xval;Xtrn] is rank-deficient so that the training and
validation objectives do not share a common weight minimizer, but there exists a parameter u∗ ∈ U
such that the selected concatenated matrix [Xval;

√
ψN (u∗)Xtrn] is nearly full rank by neglecting the

rows with small ψ(ui), meaning that rank([Xval;
√
ψN (u∗)Xtrn]) = N +N ′ −

∣∣{i : ψ(u∗i ) < ψ̃}
∣∣,

where ψ̃ > 0 is a threshold close to 0 and
∣∣ · ∣∣ denotes the cardinality of the set {i : ψ(u∗i ) < ψ̃}.

Let us denote ℓtrn(u,W ) = 1
2∥
√
ψN (u)(Ytrn − XtrnW )∥2 and the value function in data hyper-

cleaning as ℓ∗trn(u) = minW ℓtrn(u,W ). To solve (10), we resort to its penalized reformulation

ℓγ(u,W ) := ℓval(W ) + γ(ℓtrn(u,W )− ℓ∗trn(u)). (11)

Then we can run PBGD 2 with (u, v, w) = (u,W,Z) where Z ∈ Rm×n is an axillary variable used
to estimate ∇ℓ∗trn(u). Since both ℓval(W ) and ℓtrn(u,W ) are in the form of strongly convex functions
composite with a linear mapping, ℓγ(u,W ) is blockwise PL with respect to W from Observation 2.
To prove the blockwise PL condition over u, we first show that S(u) is independent of u and obtain
the form of ℓ∗trn(u) by plugging in the closed form of S(u), for which we defer the details in Lemma
23 in Appendix G.1. As a result, the penalized objective has the closed-form expression as

ℓγ(u,W ) = ℓval(W ) +
γ

2

N∑
i=1

ψ(ui)
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
. (12)

Thus the landscape of ℓγ(u,W ) over u is fully characterized by the sigmoid function, which is PL on
u ∈ U . Consequently, ℓγ(u,W ) is blockwise PL. We formalize our findings in the next lemma.

Lemma 2 (Blockwise PL condition). If XtrnX
†
trn is a diagonal matrix, then for any u ∈ U and

W , there exists Lγw, µ
γ
w = O(γ) such that ℓγ(u,W ) is Lγw-smooth and µγw-PL over W . Moreover,

ℓγ(u,W ) is γℓtrn(W ) smooth and γc(W )ψ(ū)(1−ψ(ū))2
4 -PL over u ∈ U , where

c(W ) = min
i

{
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

}
>0

is defined as the lower bound of the positive mismatch in the training loss.

Although the blockwise PL constant of ℓγ(u,W ) depends on W , we can derive a uniform positive
lower bound of µu := minu∈U c(W

∗
γ (u)) based on the acute matrix perturbation theory, and thus, we

can obtain the global convergence results for PBGD (Algorithm 2) on data hyper-cleaning problem.

9
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(a) Lval(W1,W2)− L∗
val (b) Ltrn(W1,W2)− L∗

trn(W1) (c) ℓval(W )− ℓ∗val (d) ℓtrn(u,W )− ℓ∗trn(u)

Figure 3: Relative errors at upper-level and lower-level in log scale of PBGD versus iteration K
under different γ, where L∗val = minW1,W2∈S(W1) Lval(W1,W2) and ℓ∗val = minu,W∈S(u) ℓval(W ).
(a)–(b) are for PBGD 1 in representation learning, and (c)-(d) are for PBGD 2 in data hyper-cleaning.

Figure 4: Relative errors in log scale of different methods under different stepsizes in representation
learning. (a)–(b) are ablation study for stepsizes α, β in PBGD, and (c)-(d) are for different methods.

Theorem 3 (Global convergence for data hyper-cleaning). Suppose [Xtrn;Xval][Xtrn;Xval]
† is a

diagonal matrix. If the stepsizes in Algorithm 2 satisfy α ≤ 1
Lu

= O(1/γ), β ≤ 1
Lw
, β̃ ≤ 1

Lγ
w
, Tk =

O(log(ϵ−1)), and ū ≥ 1, then the iteration complexity of PBGD in Algorithm 2 to achieve (ϵ, ϵ)
global optimal point of the data hyper-cleaning problem (10) is O(log(ϵ−1)2).

6 NUMERICAL EXPERIMENTS AND CONCLUSIONS

We verify the global convergence property of PBGD for representation learning and data hyper-
cleaning with different penalty constant γ; see results in Figure 3 and the detailed setup in Appendix
H. We also conduct ablation studies of stepsizes α, β for PBGD and test the performance of other
state-of-the-art fully first order bilevel methods (F2SA (Kwon et al., 2023), BOME (Liu et al., 2022)).
The results are shown in Figure 4. We summarized empirical findings below.

Almost linear onvergence of PBGD. PBGD with proper stepsizes converges almost linearly to
the optimum of bilevel representation learning and data hyper-cleaning, which is aligned with the
convergence rate we obtained from Theorem 1–3.

Impact of γ on optimality gap. Enlarging the penalty constant γ reduces the target optimality gap ϵ,
consistent with Theorems 1–3, which establish that γ is inversely propotional to the target error ϵ.

Stepsize sensitivity. Stepsizes α, β of PBGD should be carefully chosen. Excessively large step sizes
may cause divergence, while small step sizes result in slow convergence. Theoretically, Theorems
1–3 provide an upper bound for α, β to guarantee the convergence of PBGD.

Convergence of penalty-based first-order bilevel methods. All tested first-order bilevel methods
(PBGD, F2SA, BOME) successfully converge to the global optimum in representation learning task
in an almost linear rate. This observation suggests that our local PL-based analysis can be extended
to other penalty reformulation-based algorithms.

Conclusion. In this paper, we proposed two benign landscape conditions for bilevel problems, tailored
to isomorphic and heterogeneous bilevel learning problems. We proved that PBGD, in either Jacobi
or Gauss-Seidel fashions, converges to the global optimal solution at an almost linear rate under these
conditions respectively. These global conditions were rigorously verified in representation learning
and data hyper-cleaning along the optimization trajectory of PBGD by local non-uniform analysis.
The global convergence property of PBGD over two applications is thus guaranteed. Numerical
results validate our theory and confirm that PBGD is globally convergent.
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A ADDITIONAL RELATED WORKS

Stationary point convergence. The recent interest in developing efficient gradient-based bilevel
methods and analyzing their nonasymptotic convergence rate has been stimulated by (Ghadimi &
Wang, 2018; Ji et al., 2021; Hong et al., 2023; Chen et al., 2021). Based on different Hessian
inversion approximation techniques, these algorithms can be categorized into iterative differentiation
(Franceschi et al., 2017; 2018; Grazzi et al., 2020) and approximate implicit differentiation-based
approaches (Chen et al., 2021; Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Pedregosa,
2016). Later on, the research has been extended to variance reduction and momentum based methods
(Khanduri et al., 2021; Yang et al., 2021; Dagréou et al., 2022); warm-started algorithms (Arbel
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& Mairal, 2022; Li et al., 2022; Liu et al., 2023); distributed approaches (Tarzanagh et al., 2022;
Lu et al., 2022; Yang et al., 2022); and methods that are able to tackle with constrained (Xiao
et al., 2023b; Khanduri et al., 2023; Xu & Zhu, 2023) or non-strongly-convex lower-level problem
(Xiao et al., 2023a; Liu et al., 2021b;a; Chen et al., 2023b; Sow et al., 2022b). Recent works have
reformulated the bilevel optimization problem as a single-level constrained problem, and solved it via
the penalty-based gradient method (Shen et al., 2023); see also (Liu et al., 2022; Kwon et al., 2023;
2024; Chen et al., 2023a; Lu & Mei, 2023). This method not only further enhanced the computational
efficiency by using only first-order information, but also broadened the applicability of the bilevel
framework to a wider class of problems. Nevertheless, none of these attempts the issue of global
optimum convergence.

B AUXILIARY LEMMAS

Additional Notations. Let matrix A ∈ Rm×n. The range space of A is denoted as Ran(A) =
{Ay : y ∈ Rn}, while the null space of A is given by Ker(A) = {y ∈ Rn : Ay = 0}. Let Aij
represent the element located at the i-th row and j-th column of matrix A. Let ∥A∥ and ∥A∥2 be
the Frobenius norm and spectral norm of A, respectively. B(A, r) := {A′ ∈ Rp×q | ∥A′ −A∥ ≤ a}
denotes the closed ball with center A and radius a. Let θ ∈ Rd be a point and S ⊂ Rd be a set,
we define the distance of θ to S as d(θ, S) = inf{∥θ − a∥ | a ∈ S}. Let us denote ℓtrn(W ) =
1
2 ∥Ytrn −XtrnW∥2 , ℓval(W ) = 1

2 ∥Yval −XvalW∥2 as the square loss.
Lemma 3 (Matrix Inequality).

⟨A,B⟩ ≤ ∥A∥ · ∥B∥, (13)

2∥AB∥ ≤ ∥A∥2 + ∥B∥2, (14)

∥AB + CD∥2 ≤
[
σ2
max(A) + σ2

max(C)
]2 · [∥B∥2 + ∥D∥2

]
, (15)

∥A∥2 + ∥B∥2 ≤ 2∥A+B∥2, (16)
σmax(AB) ≤ σmax(A)σmax(B). (17)

Moreover, if A has full column rank and B ̸= 0 or if A ̸= 0 and B has full row rank, it holds that

σmin(AB) ≥ σmin(A)σmin(B) (18)

Lemma 4 ((Zou et al., 2020, Lemma B.3)). Let A ∈ Rp×s be a rank-s matrix. Then for any
B ∈ Rs×q , we have

σmin(A)∥B∥ ⩽ ∥AB∥ ⩽ σmax(A)∥B∥.
Lemma 5. In representation learning, we consider the overparameterized wide neural network case
with m ≥ max{N,N ′}, h ≥ max{m,n} and Xtrn, Xval are in full row rank. Therefore, we have,

min
W

ℓtrn(W ) = 0, min
W1,W2

Ltrn(W1,W2) = 0, min
W

ℓval(W ) = 0, min
W1,W2

Lval(W1,W2) = 0

min
W

(ℓtrn + γℓval)(W ) = min
W1,W2

(Ltrn + γLtrn)(W1,W2)

holds for any γ. Moreover, for W1 with σmin(W1) > 0, it holds that L∗trn(W1) =
minW2

Ltrn(W1,W2) = 0.

Lemma 6 ((Karimi et al., 2016, Theorem 2)). We say a function h(θ) is µh PL if it satisfies

∥∇h(θ)∥2 ≥ 2µh(h(θ)− h∗)

where h∗ = minh(θ). If h(θ) is Lh-Lipschitz smooth and PL in θ with µh, then it satisfies the error
bound condition with µh, i.e.

∥∇h(θ)∥ ≥ µhd(θ,S). (19)

where S = argminh(θ). Moreover, it also satisfies the quadratic growth condition with µh, i.e.

h(θ)− h∗ ≥ µh
2
d(θ,S)2. (20)

where h∗ = minh(θ). Conversely, if h(θ) is Lh-Lipschitz smooth and satisfies the error bound
condition with µh, then it is PL in θ with µh/Lh.
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Lemma 7 ((Oymak & Soltanolkotabi, 2019, Theorem 5.2)). Suppose that h(θ) is Lh Lipschitz
smooth and µh PL over θ. If we execute T -step gradient descent following θt+1 = θt − β∇h(θt)
with β ≤ 1

Lh
, the output satisfies

h(θT )−minh(θ) ≤ (1− βµh)
T (
h(θ0)−minh(θ)

)
Moreover, the iterates generated by gradient descent is bounded, i.e.

∥θT − θ0∥ ≤
∞∑
t=0

∥θt+1 − θt∥ℓ2 ≤

√
8(h(θ0)−minh(θ0))

µh

The following lemma gives the gradient of the value function.
Lemma 8 ((Nouiehed et al., 2019, Lemma A.5)). Suppose g(u, v) is µg PL over v and is ℓg,1-
Lipschitz smooth, then g∗(u) is differentiable with the gradient

∇g∗(u) = ∇ug(u, v), ∀v ∈ S(u).
Moreover, g∗(u) is Lg-smooth with Lg := ℓg(1 + ℓg/2µg).

Lemma 9. If ∥δk∥ ≤ δ and σmin(W
k
1 ) > 0, σmin(W

k
2 ) > 0, then the following inequalities hold

2
∥∥(∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )
∥∥

≤ ∥∇Lγ(W
k
1 ,W

k
2 ) + δk∥2 + ∥∇Lγ(W

k
1 ,W

k
2 )∥2 (21)∥∥(∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )
∥∥

≤ 2σ2
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ) + δσmax(W

k
1 )
√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

(22)∥∥(∇W1Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2Lγ(W

k
1 ,W

k
2 )
∥∥

≤
(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ) + δσmax(W

k
2 ) (23)

Proof: (21) holds from (14) by letting A = ∇W1
Lγ(W

k
1 ,W

k
2 ) + δk and B = ∇W2

Lγ(W
k
1 ,W

k
2 ).

Note that when σmin(W
k
1 ) > 0, σmin(W

k
2 ) > 0, we have Lγ(W

k
1 ,W

k
2 ) = L̃γ(W

k
1 ,W

k
2 ) = ℓγ(W

k)
where ℓγ = ℓval + γℓtrn. Thus (22) can be derived from∥∥(∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥

≤
∥∥∇W1Lγ(W

k
1 ,W

k
2 )∇W2Lγ(W

k
1 ,W

k
2 )
∥∥+ δ

∥∥∇W2Lγ(W
k
1 ,W

k
2 )
∥∥

≤ ∥∇ℓγ(W k)(W k
2 )

⊤(W k
1 )

⊤∇ℓγ(W k)∥+ δ
∥∥∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥

≤ ∥∇ℓγ(W k)W k,⊤∇ℓγ(W k)∥+ δ
∥∥(W k

1 )
⊤∇ℓγ(W k)

∥∥
≤ σmax(W

k)∥∇ℓγ(W k)∥2 + δσmax(W
k
1 )∥∇ℓγ(W k)∥

(a)

≤ 2σ2
max(Xγ)(Lγ(W

k
1 ,W

k
2 )− L∗γ) + δσmax(W

k
1 )
√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

where W k =W k
1W

k
2 and (a) holds because ℓγ is σ2

max(Xγ)- smooth so that

∥∇ℓγ(W k)∥2 ≤ 2σ2
max(Xγ)(ℓγ(W

k)− ℓ∗γ)
(41),(44)
≤ 2σ2

max(Xγ)(Lγ(W
k
1 ,W

k
2 )− L∗γ). (24)

Likewise, we can derive (23) similarly by∥∥(∇W1
Lγ(W

k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥

≤
∥∥∇W1

Lγ(W
k
1 ,W

k
2 )W

k
2

∥∥+ δσmax(W
k
2 ) + ∥W k

1 ∇W2
Lγ(W

k
1 ,W

k
2 )∥

≤
∥∥∇ℓγ(W k)(W k

2 )
⊤W k

2

∥∥+ δσmax(W
k
2 ) + ∥W k

1 (W
k
1 )

⊤∇ℓγ(W k)∥
≤
(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)
∥∇ℓγ(W k)∥+ δσmax(W

k
2 )

(24)
≤
(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ) + δσmax(W

k
2 ).
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Lemma 10 (Pseudoinverse of matrix product). For two real matrix M1 ∈ Rm×m and M2 ∈ Rm×n,
if M1 is a diagonal matrix and is invertible and M2M

†
2 is diagonal, then we have (M1M2)

† =

M†
2M

−1
1 .

Proof: According to (Greville, 1966, Theorem 2), (M1M2)
† = M†

2M
†
1 = M†

2M
−1
1 holds if and

only if bothM†
1M1M2M

⊤
2 andM⊤

1 M1M2M
†
2 are Hermitian matrix. AsM1 andM2 are real matrix,

it remains to prove that both M†
1M1M2M

⊤
2 and M⊤

1 M1M2M
†
2 are symmetric. By the invertiability

of M1,

M†
1M1M2M

⊤
2 =M−1

1 M1M2M
⊤
2 =M2M

⊤
2

so M†
1M1M2M

⊤
2 is symmetric.

For M⊤
1 M1M2M

†
2 , the starting point is a fact that diagonal matrix is commutative with diagonal

matrix. This is because for diagonal matrix Λ1 and diagonal matrix Λ2, it holds that

Λ1Λ2 = (Λ⊤
2 Λ

⊤
1 )

⊤ = (Λ2Λ1)
⊤ = Λ2Λ1

where the last equation is due to the symmetricity of Λ2Λ1.

Since both M⊤
1 M1 and M2M

†
2 are diagonal matrix, we then have

M⊤
1 M1M2M

†
2 =M2M

†
2M

⊤
1 M1 = (M⊤

1 M1M2M
†
2 )

⊤

so that M⊤
1 M1M2M

†
2 is also symmetric, which completes the proof.

Definition 3 ((Stewart, 1977, Acute matrix)). Let PA = AA†, PB = BB† be the orthogonal
projection matrix onto the range space Ran(A) and Ran(B). We say matrix A ∈ Rm×n and
B ∈ Rm×n are acute if ∥PA − PB∥ < 1. Moreover, a class of parameterized matrix family
{A(u)}, u ∈ U , is said to be acute if for any u1, u2 ∈ U , A(u1) and A(u2) are acute.

Proposition 1 ((Stewart, 1977)). If A ∈ Rm×n and B ∈ Rm×n are acute, then Ran(A) = Ran(B).

Lemma 11 ((Stewart, 1977, Theorem 2.5)). Matrix A ∈ Rm×n and B ∈ Rm×n are acute if and
only if

rank(A) = rank(B) = rank(PABRA)

where PA = AA†, RA = A†A are the orthogonal projection matrix onto the column space Ran(A)
and the row space Ran(A⊤).

Lemma 12 (Rank equations (Gardner)). For A ∈ Rm×n, B ∈ Rv×p, C ∈ Rp×q , if A is full column
rank, and C is full row rank, then it holds that

rank(AB) = rank(B), rank(BC) = rank(B).

Moreover, for any D ∈ Rm×n, rank(D⊤D) = rank(D).

C PROOF FOR EXAMPLES 1 AND 2

C.1 PROOF FOR EXAMPLE 1

The gradients of the two objectives in Example 1 can be computed as

∇f(u, v) =

[
u− sin(v)

− (u− sin(v)) cos(v)

]
and ∇g(u, v) =

[
u− v

−(u− v)

]
.

Besides, also using the fact that minu,v f(u, v) = minu,v g(u, v) = 0, we have

∥∇f(u, v)∥2 = (u− sin(v))
2 ×

(
1 + cos(v)2

)
≥ 2× 1

2
(u− sin(v))

2
= 2×

(
f(u, v)−min

u,v
f(u, v)

)
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(a) g(u, v) for Example 3 (b) f(u, v) for Example 3 (c) F(u) for Example 3

Figure 5: Visualization of g(u, v), f(u, v) and F(u) in Example 3.

∥∇g(u, v)∥2 = 2(u− v)2 ≥ 4× 1

2
(u− v)

2
= 4×

(
g(u, v)−min

u,v
g(u, v)

)
which suggests f(u, v) is 2-PL and g(u, v) is 1-PL. The lower-level solution set is earned by setting
u = v. In this way, the overall objective is F(u) = f(u,S(u)) = 1

2 (u− sin(u))2 and it is minimized
when u = 0. By calculating its gradient ∇F (u) = (u− sin(u))(1− cos(u)), we have

∥∇F (u)∥2 = (u− sin(u))2(1− cos(u))2.

Since (1− cos(u))2 = 0 when u = 2kπ, k ∈ Z. Therefore, there does not exist a positive µ such that

∥∇F (u)∥2 = (u− sin(u))2(1− cos(u))2 ≥ 2µ(F (u)−minF (u)) = µ(u− sin(u))2

holds for any u. This means F(u) is not PL in u.

(a) γ = 0.5, Example 1 (b) γ = 1, Example 1 (c) γ = 0.5, Example 2 (d) γ = 1, Example 2

Figure 6: Visualization of Lγ(u, v) in Example 1 and 2. Saddle points exist for Lγ(u, v) in Example
1 and Example 2, suggesting that penalized objective does not satisfy the PL condition.

C.2 PL FUNCTIONS DO NOT PRESERVE PL CONDITION UNDER ADDITIVITY IN GENERAL

The following lemma shows that joint PL upper- and lower-level objectives can lead to non-joint PL
penalized objectives.
Lemma 13. In Example 1, the joint PL condition on both levels does not guarantee the joint PL
condition of Lγ(u, v); see also the landscape of the penalized function shown in Figure 6.

Proof: For Example 1, as g∗(u) = 0 for any u, the gradient of Lγ(u, v) can be computed as

∇Lγ(u, v) =

[
u− sin(v) + γ(u− v)

− (u− sin(v)) cos(v)− γ(u− v)

]
.

On the other hand, Lγ(u, v) is minimized when u = v = 0 with the minimal value 0. For any γ,
there exists (ū, v̄) with ū = 2γπ

1+γ , v̄ = 2π such that

∇Lγ(ū, v̄) =

[
ū− sin(v̄) + γ(ū− v̄)

− (ū− sin(v̄)) cos(v̄)− γ(ū− v̄)

]
=

[
ū+ γ(ū− 2π)

−ū− γ(ū− 2π)

]
=

[
0

0

]
.

However, Lγ(ū, v̄) = 1
2 (ū− sin(v̄))2 + γ

2 (ū− v̄)2 > 0 = minu,v L(ū, v̄). This means that saddle
points (ū, v̄) exist for any γ so that Lγ(ū, v̄) does not satisfy the joint PL condition.
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Similarly, the following example shows that blockwise PL conditions on upper and lower-level
objectives are also not sufficient to ensure the blockwise PL condition of Lγ(u, v).

Example 2. With u ∈ R and v = [v1, v2] ∈ R2, consider the bilevel problem with the following
blockwise PL upper-level objective f(u, v) and the blockwise PL lower-level objective g(u, v), i.e.,

f(u, v) =
1

2

(u
2
+ v1 − sin(v2)

)2
and g(u, v) =

1

2
(u+ v1 + sin(v2))

2

where g∗(u) = 0. However, the penalized loss function Lγ(u, v) is not blockwise PL. The landscape
of Lγ(u, v) when v1 = 2 is shown in Figure 6.

Proof: The gradients of two objectives in Example 2 can be computed as

∇f(u, v) =

 1
2

(
u
2 + v1 − sin(v2)

)(
u
2 + v1 − sin(v2)

)
−
(
u
2 + v1 − sin(v2)

)
cos(v2)

 and ∇g(u, v) =

 (u+ v1 + sin(v2))

(u+ v1 + sin(v2))

(u+ v1 + sin(v2)) cos(v2)

 .
We first verify that both f(u, v) and g(u, v) are blockwise PL. As u, v1−sin(v2), v1+cos(v2) spread
out in R, then both u

2 +v1− sin(v2) = 0 and u+v1+sin(v2) = 0 always have a solution. Therefore,
we have minu f(u, v) = minv f(u, v) = minu g(u, v) = minv g(u, v) = 0. On the other hand,

∥∇uf(u, v)∥2 =
1

4

(u
2
+ v1 − sin(v2)

)2
≥ 1

2
×
(
f(u, v)−min

u
f(u, v)

)
∥∇vf(u, v)∥2 =

(u
2
+ v1 − sin(v2)

)2
× (1 + cos2(v2)) ≥ 2×

(
f(u, v)−min

v
f(u, v)

)
∥∇ug(u, v)∥2 = (u+ v1 + sin(v2))

2
= 2×

(
g(u, v)−min

u
g(u, v)

)
∥∇vg(u, v)∥2 = (u+ v1 + sin(v2))

2 × (1 + cos2(v2)) ≥ 2×
(
f(u, v)−min

v
f(u, v)

)
which suggests both f(u, v) and g(u, v) are blockwise PL.

For any γ, since g∗(u) = 0, ∇uLγ(u, v) = 0 gives the equation(
γ +

1

4

)
u+

(
γ +

1

2

)
v1 +

(
γ − 1

2

)
sin(v2) = 0. (25)

It can be verified that both u = v1 = v2 = 0 and u = − 4+8γ
4γ+1 , v1 = 2, v2 = 0 are solutions to (25),

which yields two different objective values Lγ(u, v) = 0 and Lγ(u, v) =
8γ2+2
(4γ+1)2 . This means there

exists saddle points for Lγ(u, v) so that Lγ(u, v) is not blockwise PL over u. Same phenomenon
happens for v, suggesting that Lγ(u, v) is also not blockwise PL over u.

C.3 NONCONVEXITY OF F(u)

Example 3. With u ∈ R and v ∈ R, consider the following upper and lower-level objectives

f(u, v) = v and g(u, v) = ev + (u+ v)4.

It is obvious that both f(u, v) and g(u, v) are jointly convex with regard to (u, v) and minimizing the
lower-level problem parameterized by u yields the unique solution S(u) = {v | 4(u+ v)3 +ev = 0}.
However, the overall bilevel loss function F(u) = f(u,S(u)) = S(u) is not convex over u. A
visualization of F(u) = S(u) is shown in Figure 5.

Proof: Let us calculate the gradient and Hessian of f(u, v) and g(u, v) in Example 3 by

∇f(u, v) =

[
0

1

]
and ∇g(u, v) =

[
4(u+ v)3

4(u+ v)3 + ev

]

∇2f(u, v) =

[
0 0

0 0

]
and ∇2g(u, v) =

[
12(u+ v)2 12(u+ v)2

12(u+ v)2 12(u+ v)2 + ev

]
.
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From the Hessian, both f(u, v) and g(u, v) are convex because the determinants of all k×k submatrix
are nonnegative. Besides, the lower-level optimal solution set is obtained by letting 4(u+v)3+ev = 0.
Since when fixing u, 4(u + v)3 + ev is strictly increasing with respect to v and spread out over
(−∞,∞), the solution set S(u) = {v | 4(u+ v)3 + ev = 0} is unique and nonempty.

We will then prove F(u) is not convex by contradiction. We choose u = 3

√
− 1

4 and ũ = 3
√

− e
4 − 1,

then S(u) = {v | 4(u+ v)3 + ev = 0} = 0 and S(ũ) = {v | 4(ũ+ v)3 + ev = 0} = 1, so that

F(u) = f(
3

√
−1

4
, 0) = 0 and F (ũ) = f( 3

√
− e

4
− 1, 1) = 1.

Assume that F(u) is convex, and thus the function value F(ū) at the medium point ū = u+ũ
2 =

3
√

− 1
4+

3
√

− e
4−1

2 satisfies F(ū) ≤ F (u)+F (ũ)
2 = 1

2 , which means there exists v ≤ 1
2 such that

4(ū+ v)3 + ev = 0. However, 4(ū+ v)3 + ev is strictly increasing and

4(ū+ v)3 + ev |v=1/2 = 4

 3

√
− 1

4 + 3
√

− e
4 − 1

2
+

1

2

3

+ e
1
2 ≈ −0.07 < 0.

So for any v ≤ 1
2 , 4(ū+ v)3 + ev < 0, which yields a contradiction, and thus, F(u) is not convex.

D PROOF OF THEOREM 1

Lemma 14 (Gradient bias). Under Assumption 1, denoting dku = (uk+1 − uk)/α, we have

∥dku −∇uLγ(u
k, vk)∥2 ≤

2γ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk)). (26)

Proof: First, according to Lemma 8, ∇g∗(u) = ∇ug(u, v), ∀v ∈ S(u). By the update rule, the bias
comes from the inexactness of the value function’s gradient, i.e.

∥dku −∇uLγ(u
k, vk)∥ = γ∥∇g∗(uk)−∇g(uk, wk+1)∥ ≤ γℓgd(w

k+1,S(uk)). (27)

According to Lemma 7 and Lemma 6, we have

d(wk+1,S(uk))2 ≤ 2

µg
(1− βµg)

Tk(g(uk, w0)− g∗(uk))

from which plugging into (27) yields the conclusion.

D.1 PROOF UNDER THE JOINT PL CONDITION

From Lemma 8, we have the smoothness of g∗(u) and thus Lγ(u, v). Therefore, by defining
dku = (uk+1 − uk)/α and by Taylor expansion, we have

Lγ(u
k+1, vk+1) ≤ Lγ(u

k, vk) + ⟨∇uLγ(u
k, vk), uk+1 − uk⟩+ ⟨∇vLγ(u

k, vk), vk+1 − vk⟩

+
ℓf + γ(ℓg + Lg)

2
∥uk+1 − uk∥2 + ℓf + γ(ℓg + Lg)

2
∥vk+1 − vk∥2

≤ Lγ(u
k, vk)− α⟨∇uLγ(u

k, vk), dku⟩ −
(
α− (ℓf + γ(ℓg + Lg))α

2

2

)
∥∇vLγ(u

k, vk)∥2

+
(ℓf + γ(ℓg + Lg))α

2

2
∥dku∥2

= Lγ(u
k, vk)− α

2
∥∇uLγ(u

k, vk)∥2 −
(
α

2
− (ℓf + γ(ℓg + Lg))α

2

2

)
∥dku∥2

−
(
α− (ℓf + γ(ℓg + Lg))α

2

2

)
∥∇vLγ(u

k, vk)∥2 + α

2
∥dku −∇uLγ(u

k, vk∥2
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(a)

≤ Lγ(u
k, vk)− α

2
∥∇uLγ(u

k, vk)∥2 − α

2
∥∇vLγ(u

k, vk)∥2

+
αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk))

= Lγ(u
k, vk)− α

2
∥∇Lγ(u

k, vk)∥2 +
αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk))

(b)

≤ Lγ(u
k, vk)− αµl(Lγ(u

k, vk)−min
u,v

Lγ(u, v)) +
αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk))

where (a) is because α ≤ 1
ℓf+γ(ℓg+Lg)

and Lemma 14, and (b) is because of the joint PL condition.
Subtracting both sides by minu,v Lγ(u, v) yields

Lγ(u
k+1, vk+1)−min

u,v
Lγ(u, v) ≤ (1− αµl)(Lγ(u

k, vk)−min
u,v

Lγ(u, v))

+
αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk)).

Letting Tk = log
(
γ2(g(uk,w0)−g∗(uk))

ϵ

)
and telescoping the above inequality yields

Lγ(u
K , vK)−min

u,v
Lγ(u, v) ≤ (1− αµl)

K(Lγ(u
0, v0)−min

u,v
Lγ(u, v)) +

K−1∑
k=1

(1− αµl)
κO(αϵ)

≤ (1− αµl)
K(Lγ(u

0, v0)−min
u,v

Lγ(u, v)) +O(ϵ).

On the other hand, according to (Shen et al., 2023, Theorem 1) and denoting ϵγ := g(uK , vK) −
g∗(uK), we have for any ϵ1 and γ ≥ 2γ∗ =

ℓ2f,0µg

4 ϵ−1
1 , the following

ϵγ ≤ ϵ+ ϵ1
γ − γ∗

≤ 8ϵ1(ϵ+ ϵ1)

ℓ2f,0µg
and f(uK , vK)− f(u, v) ≤ (1− αµl)

K(Lγ(u
0, v0)−min

u,v
Lγ(u, v)) +O(ϵ)

holds for any (u, v) satisfying g(u, v) − g∗(u) ≤ ϵγ . The choice of ϵ1 = O(
√
ϵ) gives ϵγ = O(ϵ)

and γ = O(ϵ−0.5), which completes the proof.

D.2 PROOF UNDER THE BLOCKWISE PL CONDITION

Define L∗γ(u) = minv Lγ(u, v) and Sγ(u) = argminv Lγ(u, v). According to Lemma 8, ∇g∗(u) =
∇ug(u, v),∀v ∈ S(u). Since Lγ(u, v) is (ℓf + γℓg) smooth over v, then according to Lemma 8,
we also have ∇L∗γ(u) = ∇uLγ(u, v),∀v ∈ Sγ(u). Moreover, L∗γ(u) is Lγ smooth with Lγ :=
(ℓf + γℓg)(1 + (ℓf + γℓg)/2µv) + Lg . Also L∗γ(u) is PL with µu because Lγ(u, v) is blockwise PL
over u.

If we denote dku = (uk+1 − uk)/α, then by the update rule, the bias comes from the inexactness of
the value function’s gradient, i.e.

∥dku −∇L∗γ(u
k)∥ = ∥∇uf(u

k, vk+1)−∇uf(u
k, vγ)∥+ γ∥∇g(uk, vk+1)−∇g(uk, vγ)∥

+ γ∥∇g(uk, wk+1)−∇g(uk, v)∥
≤ (ℓf + γℓg)d(v

k+1,Sγ(uk)) + γℓgd(w
k+1,S(uk))

where vγ ∈ Sγ(uk), v ∈ S(uk).
According to Lemma 6 and Lemma 7, we have

d(wk+1,S(uk))2 ≤ 2

µg
(1− βµg)

Tk(g(uk, w0)− g∗(uk))

d(vk+1,Sγ(uk))2 ≤ 2

µv
(1− β̃µv)

Tk(Lγ(u
k, w0)− L∗γ(u

k)).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

As a result, the bias of the gradient estimator can be bounded by

∥dku −∇L∗γ(u
k)∥2 ≤ 4(ℓf + γℓg)

2

µv
(1− β̃µv)

Tk(Lγ(u
k, w0)− L∗γ(u

k))

+
4γ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk)). (28)

Therefore, by Taylor expansion and the smoothness of L∗γ(u), we have

L∗γ(u
k+1) ≤ L∗γ(u

k) + ⟨∇L∗γ(u
k), uk+1 − uk⟩+ Lγ

2
∥uk+1 − uk∥2

≤ L∗γ(u
k)− α⟨∇L∗γ(u

k), dku⟩+
Lγα

2

2
∥dku∥2

= L∗γ(u
k)− α

2
∥∇L∗γ(u

k)∥2 − α

2
∥dku∥2 +

α

2
∥∇L∗γ(u

k)− dku∥2 +
Lγα

2

2
∥dku∥2

(a)

≤ L∗γ(u
k)− α

2
∥∇L∗γ(u

k)∥2 + 2α(ℓf + γℓg)
2

µv
(1− β̃µv)

Tk(Lγ(u
k, w0)− L∗γ(u

k))

+
2αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk))

(b)

≤ L∗γ(u
k)− αµu(L

∗
γ(u)−min

u,v
Lγ(u, v)) +

2α(ℓf + γℓg)
2

µv
(1− β̃µv)

Tk(Lγ(u
k, w0)− L∗γ(u

k))

+
2αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk))

where (a) is because α ≤ 1
Lγ

and Lemma 14, and (b) is because of the PL condition of L∗γ(u).
Subtracting both sides by minu,v Lγ(u, v) yields

L∗γ(u
k+1)−min

u,v
Lγ(u, v) ≤ (1− αµu)(L

∗
γ(u

k)−min
u,v

Lγ(u, v))

+
2α(ℓf + γℓg)

2

µv
(1− β̃µv)

Tk(Lγ(u
k, w0)− L∗γ(u

k))

+
2αγ2ℓ2g
µg

(1− βµg)
Tk(g(uk, w0)− g∗(uk)).

When µv = O(γ), the last term is dominating over the second term. Letting Tk =

log
(
γ2(g(uk,w0)−g∗(uk))

ϵ

)
and telescoping the above inequality yields

L∗γ(u
k+1)−min

u,v
Lγ(u, v) ≤ (1− αµu)

k(L∗γ(u
k)−min

u,v
Lγ(u, v)) +O(ϵ)

Combining with the results of

Lγ(u
k, vk+1)− L∗γ(u

k) ≤ O(ϵ) and Lγ(u
k+1, vk+2)− L∗γ(u

k+1) ≤ O(ϵ)

we know that

Lγ(u
K , vK+1)−min

u,v
Lγ(u, v) ≤ (1− αµu)

K(Lγ(u
0, v1)−min

u,v
Lγ(u, v)) +O(ϵ)

On the other hand, according to (Shen et al., 2023, Theorem 1) and denoting ϵγ := g(uK , vK) −
g∗(uK), we have for any ϵ1 and γ ≥ 2γ∗ =

ℓ2f,0µg

4 ϵ−1
1 , the following

ϵγ ≤ ϵ+ ϵ1
γ − γ∗

≤ 8ϵ1(ϵ+ ϵ1)

ℓ2f,0µg
and f(uK , vK)− f(u, v) ≤ (1− αµl)

K(Lγ(u
0, v0)−min

u,v
Lγ(u, v)) +O(ϵ)

holds for any (u, v) satisfying g(u, v) − g∗(u) ≤ ϵγ . The choice of ϵ1 = O(
√
ϵ) gives ϵγ = O(ϵ)

and γ = O(ϵ−0.5), which completes the proof.
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E PROOF OF OBSERVATIONS 1-2

E.1 PROOF OF OBSERVATION 1

Proof: The blockwise PL condition of γ(g(u, v) − g∗(u)) over v is obvious under Assumption
1 because g∗(u) is independent of v. On the other hand, with Assumption 1, the gradient of
γ(g(u, v)− g∗(u)) can be lower bounded by

∥∇γ(g(u, v)− g∗(u))∥2 = γ2∥∇ug(u, v)−∇ug
∗(u)∥2 + γ2∥∇vg(u, v)∥2

≥ γ2∥∇vg(u, v)∥2

(a)

≥ γµg(γ(g(u, v)− g∗(u)))

(b)
= γµg(γ(g(u, v)− g∗(u))−min

u,v
γ(g(u, v)− g∗(u)))

where (a) is because g(u, v) is µg PL in v and (b) is due to minu,v γ(g(u, v)− g∗(u)) = 0.

E.2 PROOF OF OBSERVATION 2

The result that h1(Az) and h2(Bz) satisfy the PL condition is well-known; see e.g., (Karimi et al.,
2016, Appendix B). We will show h1(Az) + h2(Bz) satisfies the PL inequality. For arbitrary z1, z2,
we denote u1 = Az1, u2 = Az2, v1 = Bz1, v2 = Bz2. By the strong convexity of h1 and h2, we
have

h1(Az2) ≥ h1(Az1) +∇h1(u1)⊤(Az2 −Az1) +
µ1

2
∥Az1 −Az2∥2

h2(Bz2) ≥ h2(Bz1) +∇h2(v1)⊤(Bz2 −Bz1) +
µ2

2
∥Bz1 −Bz2∥2.

By the fact of ∇h1(Azi) = A⊤∇h1(ui) and ∇h2(Bzi) = B⊤∇h2(vi) for i = 1, 2, we get

h1(Az2) ≥ h1(Az1) +∇h1(Az1)⊤(z2 − z1) +
µ1

2
∥Az1 −Az2∥2 (29a)

h2(Bz2) ≥ h2(Bz1) +∇h2(Bz1)⊤(z2 − z1) +
µ2

2
∥Bz1 −Bz2∥2 (29b)

Letting z2 = ProjZ∗(z1) be the projection of z1 onto the optimal solution set Z∗ =
argminz h1(Az) + h2(Bz). Clearly, z2 is the solution of

min
z

1

2
∥z − z1∥2, s.t. Az = Az∗, Bz = Bz∗ (30)

where z∗ ∈ argminz h1(Az) + h2(Bz) is an arbitrary optimal point. Strong duality holds for (30)
so that KKT conditions must hold at z2, i.e. there exists λ1 ∈ Rm, λ2 ∈ Rn such that

z2 − z1 +A⊤λ1 +B⊤λ2 = 0. (31)

Without loss of generality, we can consider only two cases: i) Ran(A⊤) = Ran(B⊤); and, ii)
Ran(A⊤) ⊥ Ran(B⊤). Otherwise, we can decompose Ran(B⊤) into the direct sum of two
orthogonal subspaces: one parallel and the other orthogonal to Ran(A⊤).

For Case i), it is clear that z2 − z1 ∈ Ran(A⊤) and z2 − z1 ∈ Ran(B⊤) by (31). Therefore, letting
C ′ = µ1σ

2
∗(A) + µ2σ

2
∗(B) and adding (29a) and (29b) up yields

h1(Az2) + h2(Bz2) ≥ h1(Az1) + h2(Bz1) + (∇h1(Az1) +∇h2(Bz1))⊤(z2 − z1) +
C ′

2
∥z1 − z2∥2

≥ h1(Az1) + h2(Bz1) + min
z

[
(∇h1(Az1) +∇h2(Bz1))⊤(z − z1) +

C ′

2
∥z − z1∥2

]
= h1(Az1) + h2(Bz1)−

1

C ′ ∥∇h1(Az1) +∇h2(Bz1)∥2. (32)

For Case ii), since A⊤λ1, B
⊤λ2 ∈ Ran(A⊤) ∪ Ran(B⊤) by (31), we have

z1 − z2 = A⊤λ1 +B⊤λ2 ∈ Span(Ran(A⊤) ∪ Ran(B⊤)).
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By definition, there is a finite number of orthogonal vi ∈ Ran(A⊤) ∪ Ran(B⊤) and of ai ∈ R
so that z1 − z2 = a1v1 + · · · + akvk. As each vi is either in Ran(A⊤) or Ran(B⊤) and they are
orthogonal, we have ∥z1 − z2∥2 =

∑k
i=1 ∥aivi∥2 and we can focus on each of vi independently.

Let C = min{µ1σ
2
∗(A), µ2σ

2
∗(B)}, since vi ∈ Ran(A⊤) ∪ Ran(B⊤), we have that for each vi,

either ∥Aaivi∥2 ≥ C
2 ∥aivi∥

2 or ∥Baivi∥2 ≥ C
2 ∥aivi∥

2. Therefore, adding (29a) and (29b) yields

h1(Az2) + h2(Bz2) ≥ h1(Az1) + h2(Bz1) + (∇h1(Az1) +∇h2(Bz1))⊤(z2 − z1) +
C

2
∥z1 − z2∥2

≥ h1(Az1) + h2(Bz1) + min
z

[
(∇h1(Az1) +∇h2(Bz1))⊤(z − z1) +

C

2
∥z − z1∥2

]
= h1(Az1) + h2(Bz1)−

1

C
∥∇h1(Az1) +∇h2(Bz1)∥2. (33)

According to (32) and (33), as h1(Az2) + h2(Bz2) = minz h1(Az) + h2(Bz) and C ≤ C ′, this
completes the proof.

F PROOF FOR REPRESENTATION LEARNING

In this section, we provide the proof of lemmas and theorems omitted for representation learning.

F.1 SUFFICIENT CONDITIONS FOR ASSUMPTION 2

Assumption 2 ensures that the bilevel problem has at least one full-rank solution W ∗
1 . Note that the

full rank solution W ∗
1 always exists for the single training or validation problem because the objective

value is solely dependent on the product W1W2. For any solution pair (W1,W2), it is possible to
transform W1 into a full rank matrix W ∗

1 by altering its kernel space components and simultaneously,
one can identify a corresponding matrix W ∗

2 that mirrors W2 within the range space of W1 and is
nullified within the kernel space of W1, such that W1W2 = W ∗

1W
∗
2 . In this sense, Assumption

2 quantifies the singularity of solving two non-singular problems together. To get more sense of
Assumption 2, we present some sufficient conditions for it.

Lemma 15. Assumption 2 holds if one of the following conditions holds.

(a) ∃(W ∗
1 ,W

∗
2 ) ∈ argminW1,W2

Lval(W1,W2) s.t. (W ∗
1 ,W

∗
2 ) ∈ argminW1,W2

Ltrn(W1,W2).

(b) The concatenated data matrix [Xval;Xtrn] is of full row rank.

Proof: The condition in (a) indicates that (W ∗
1 ,W

∗
2 ) is a minimizer of the validation loss. Therefore,

for any W1,W2, we have Lval(W
∗
1 ,W

∗
2 ) ≤ Lval(W1,W2). Furthermore, we are given any ϵ1, ϵ2.

Then for anyW2 in the ϵ2 lower-level optimal set, Lval(W ∗
1 ,W

∗
2 ) ≤ Lval(W1,W2) ≤ Lval(W1,W2)+

ϵ1 holds. Together with the ϵ2 feasibility of (W ∗
1 ,W

∗
2 ) to the bilevel problem, it means (W ∗

1 ,W
∗
2 )

is an (ϵ1, ϵ2) solution to the bilevel problem. Moreover, since (W ∗
1 ,W

∗
2 ) is also a minimizer of the

training loss, we have

L∗trn(W
∗
1 ) = Ltrn(W

∗
1 ,W

∗
2 ) = min

W1,W2

Ltrn(W1,W2)
Lemma 5
== 0 ≤ ϵ2

which verifies Assumption 2.

For the condition in (b), it implies there exists

(W ∗
1 ,W

∗
2 ) ∈ argmin

W1,W2

(Lval(W1,W2) + Ltrn(W1,W2))

such that Lval(W ∗
1 ,W

∗
2 ) + Ltrn(W

∗
1 ,W

∗
2 ) = 0. Due to the nonnegativeness of both validation and

training loss, it must hold that Lval(W ∗
1 ,W

∗
2 ) = Ltrn(W

∗
1 ,W

∗
2 ) = 0. This suggests (W ∗

1 ,W
∗
2 )

is the joint minimizer of both training and validation loss, which satisfies condition (b), and thus,
Assumption 2 is verified.

Remark 2. Condition (a) says that the training and validation problem share at least a global
solution, situating us within the interpolating regime between training and validation. This means
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that minimizing the combined objective leads to a solution that simultaneously minimizes both
problems (Fan et al., 2023). In this case, the model trained from representation learning matches the
performance attained by optimizing both layers of model directly based on validation loss. Condition
(b) is a sufficient condition of Condition (a) and Condition (b) itself means there are no redundant
information contained in the training and validation set.

F.2 LANDSCAPE OF NESTED BILEVEL OBJECTIVE F(W1)

According to the loss definition and the knowledge in linear algebra, we can derive the explicit form
of the bilevel objective in representation learning as shown in the following lemma.

Lemma 16 (Analytical form of F(W1) and its nonconvexity). The bilevel objective for two layer
linear neural network representation learning in (8) can be explicitly written as

F (W1) =
1

2

∥∥A− (XvalW1)
(
I − (XtrnW1)

†(XtrnW1)
)
b
∥∥2 (34)

with A = Yval − XvalW1(XtrnW1)
†Ytrn and b =

[
(XvalW1)

(
I − (XtrnW1)

†(XtrnW1)
)]†

A.
Moreover, F(W1) is nonconvex even when Xtrn = Xval = Ytrn = Yval = I .

When Xtrn = Xval = Ytrn = Yval = I , it is obvious that any invertible matrix W1 and its inverse
W2 =W−1

1 are the solutions to the bilevel problem (1) as both upper and lower-level objective are
the same. In this sense, the above lemma indicates that the landscape of the bilevel objective is not
convex even in the trivial case. A possible explanation to this phenomenon is the discontinuity and
nonconvexity of the inverse operator W †

1 at the rank-deficient point.

Proof: First, according to (Barata & Hussein, 2012, Theorem 6.1), the lower-level solution set of (8)
can be represented by

S(W1) =
{
(XtrnW1)

†Ytrn +
(
I − (XtrnW1)

†(XtrnW1)
)
b, ∀b

}
= (XtrnW1)

†Ytrn +Ker(XtrnW1).
(35)

Then ∀W1, we aim to solve the following problem

min
b

1

2

∥∥A− (XvalW1)
(
I − (XtrnW1)

†(XtrnW1)
)
b
∥∥2 (36)

where A = Yval −XvalW1(XtrnW1)
†Ytrn is fixed when W1 is given. Applying (Barata & Hussein,

2012, Theorem 6.1) to (36) again, we know (36) achieves minimal when

b =
[
(XvalW1)

(
I − (XtrnW1)

†(XtrnW1)
)]†

A.

When Xtrn = Xval = Ytrn = Yval = I , we have

b =
[
W1

(
I −W †

1W1

)]†
A = 0, and A = Yval −XvalW1(XtrnW1)

†Ytrn = I −W1W
†
1

Therefore, the bilevel objective has the form of F(W1) =
1
2∥A∥

2 = 1
2∥I −W1W

†
1 ∥2. Without loose

of generality, we consider W1 ∈ R2×2 and the objective value at two point

F

((
0 0

0 1

))
=

1

2
, F

((
2 0

0 − 1

))
= 0

However, the function value at the median point does not satisfy the convexity condition, i.e.

F

(
1

2
×

(
0 0

0 1

)
+

1

2
×

(
2 0

0 − 1

))
= F

((
1 0

0 0

))
=

1

2
>

1

2
× 1

2
+

1

2
× 0 =

1

4
.

As a result, F(W1) is not convex.
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F.3 PRELIMINARIES OF PENALTY REFORMULATION

Ideally, we want to solve the penalized problem (9) instead of the original bilevel representation
learning problem (8). However, the following lemma shows that Ltrn(W1, ·) is not Lipschitz smooth
and PL over W2 uniformly for all W1 ∈ Rm×h. Therefore, the equivalence of the penalized problem
to the bilevel problem and the differentiability of lower-level value function L∗trn(W1) cannot be
established directly from (Shen et al., 2023). In this section, we provide the complete proof of them.

Lemma 17 (Non-uniform smoothness and PL). The lower-level function Ltrn(W1, ·) is smooth with
σ2
max(Xtrn)σ

2
max(W1) and PL with σ2

∗(XtrnW1). Moreover, if σmin(W1) > 0, then Ltrn(W1, ·) is
PL with σ2

min(Xtrn)σ
2
min(W1).

Proof: First, we know that h(W̃ ) = 1
2∥Ytrn − W̃∥2 is 1-strongly convex and 1-Lipschitz

smooth. Given matrix W1, then according to (Karimi et al., 2016, Appendix B), Ltrn(W1,W2) =
h(XtrnW1W2) is in the form of strongly convex composite with a linear mapping so that it is
σ2
∗(XtrnW1)-PL over W2. Also, Ltrn(W1,W2) = h(XtrnW1W2) is σ2

max(XtrnW1)-Lipschitz
smooth over W2. Therefore, the Lipschitz smoothness constant of Ltrn(W1, ·) can be upper bounded
by

σ2
max(XtrnW1)

(a)

≤ σ2
max(Xtrn)σ

2
max(W1)

where (a) comes from (17). If W1 and Xtrn are full row rank, the PL constant is lower bounded by

σ2
∗(XtrnW1) = σ2

min(XtrnW1)
(b)

≥ σ2
min(Xtrn)σ

2
min(W1)

where (b) is derived from (18), Xtrn ̸= 0 and W1 is full row rank which is inferred from W1 is a fat
matrix with σmin(W1) > 0.

Definition 4 (ϵ- solution of penalized problem). We say (W ∗
1 ,W

∗
2 ) is an ϵ- global solution to

penalized problem (9) if for any (W1,W2), it holds that

Lγ(W
∗
1 ,W

∗
2 ) ≤ Lγ(W1,W2) + ϵ.

Theorem 4 (Relations of global solutions). Suppose Assumption 2 holds. Any ϵ2 solution to the
penalized problem with γ is an (ϵ2, ϵγ) solution to the bilevel problem (8) for some ϵγ = O(ϵ22).
Conversely, for any ϵ1, there exists γ∗ = O(ϵ−1

1 ) such that for any γ > γ∗, the global optimal
solution of bilevel problem (8) must be an ϵ1 optimal solution of penalized problem with γ.

The above theorem shows that to ensure the penalized problem (9) is an (ϵ, ϵ) approximate solution
to the bilevel problem (8), i.e. ϵγ = O(ϵ), one need to choose ϵ2 = O(

√
ϵ) and γ = O(ϵ−0.5).

Proof: We will prove the relations through four steps.

Step 1: First, we prove that under Assumption 2, there exists an (ϵ1, ϵ2) solution to the bilevel
representation learning problem (8) with full rank W1.

Choose any (ϵ1, ϵ2) solution (W ∗
1 ,W

∗
2 ) to the bilevel representation learning problem (8) that

satisfies Assumption 2. If W ∗
1 is not full rank, then we can find full rank W1 and W2 such that

W1W2 = W ∗
1W

∗
2 by the following process. By singular value decomposition, we can decompose

W ∗
1 = UΣV ⊤ with Σ =

[
Σ1 0

0 0

]
∈ Rm×h, and orthogonal matrix U = [U1 U2] ∈ Rm×m and

V = [V1 V2] ∈ Rh×h. Also, by assuming Rank(A) = r, we know that U1 ∈ Rm×r, V1 ∈ Rh×r and
Σ1 ∈ Rr×r are full rank submatrix. Therefore, W ∗

1 can be decomposed by

W ∗
1 = [U1 U2]

[
Σ1 0

0 0

][
V ⊤
1

V ⊤
2

]
= [U1Σ1 0]

[
V ⊤
1

V ⊤
2

]
= U1Σ1V

⊤
1

and V2 is the orthogonal basis of Ker(W ∗
1 ). Furthermore, we can decompose V2 = [V3 V4] ∈

Rh×(h−r) with V3 ∈ Rh×(m−r). In this way, we can construct W1 and W2 as

W1 =W ∗
1 + U2V

⊤
2 = U1Σ1V

⊤
1 + U2V

⊤
3 and W2 = V1V

⊤
1 W

∗
2
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where W1 is of full row rank m. By Lemma 5, L∗trn(W1) = 0. On the other hand, as the training and
validation losses only depend on the value of W1W2 and W1W2 =W ∗

1W
∗
2 , we have

Lval(W1,W2) = Lval(W
∗
1 ,W

∗
2 ), Ltrn(W1,W2) = Ltrn(W

∗
1 ,W

∗
2 ).

Since (W ∗
1 ,W

∗
2 ) satisfies Assumption 2 and L∗trn(W1) = 0, we have

Ltrn(W1,W2)− L∗trn(W1) = Ltrn(W1,W2) = Ltrn(W
∗
1 ,W

∗
2 ) ≤ ϵ2.

With the fact that Lval(W1,W2) = Lval(W
∗
1 ,W

∗
2 ), we know (W1,W2) is also an (ϵ1, ϵ2) solution of

the bilevel representation learning problem and W1 is full row rank by the construction.

Step 2: Next, we will prove that any ϵ2 solution to the penalized problem with γ is an (ϵ2, ϵγ)
solution to the bilevel problem for some ϵγ . For any ϵ2 solution of the penalized problem (W γ

1 ,W
γ
2 ),

we can find W2 ∈ argminW ′
2∈S(Wγ

1 ) ∥W ′
2 −W γ

2 ∥ and

σmax(W2) = σmax(ProjS(Wγ
1 )(W

γ
2 )) ≤ σmax(W

γ
2 ).

Then we can derive the Lipschitz continuity of Lval(W
γ
1 , ·) by

Lval(W
γ
1 ,W

γ
2 )− Lval(W

γ
1 ,W2) =

1

2
∥Yval −XvalW

γ
1 W

γ
2 ∥2 −

1

2
∥Yval −XvalW

γ
1 W2∥2

=
1

2
⟨2Yval −XvalW

γ
1 (W

γ
2 +W2),−XvalW

γ
1 (W

γ
2 −W2)⟩

≤ L(γ)∥W γ
2 −W ∗

2 ∥
where L(γ) = (σmax(Yval) + σmax(Xval)σmax(W

γ
1 )σmax(W

γ
2 ))σmax(Xval)σmax(W

γ
1 ). So it fol-

lows

Lval(W
γ
1 ,W

γ
2 ) + γ(Ltrn(W

γ
1 ,W

γ
2 )− Ltrn(W

γ
1 ))

≤ Lval(W
γ
1 ,W2) + ϵ2

≤ Lval(W
γ
1 ,W

γ
2 ) + L(γ)∥W γ

2 −W2∥+ ϵ2

≤ Lval(W
γ
1 ,W

γ
2 ) +

√
2

σ∗(XtrnW
γ
1 )
L(γ)

√
Ltrn(W

γ
1 ,W

γ
2 )− Ltrn(W

γ
1 ) + ϵ2 (37)

where the first inequality comes from the definition of ϵ2 solution of penalized problem and
Ltrn(W

γ
1 ,W2)−Ltrn(W

γ
1 ) = 0, and the last inequality is derived from the PL condition of Ltrn(W

γ
1 )

and Lemma 6. According to (37), we have either

Ltrn(W
γ
1 ,W

γ
2 )− Ltrn(W

γ
1 ) ≤

2ϵ2
γ

(38)

or ϵ2 < γ
2 (Ltrn(W

γ
1 ,W

γ
2 )− Ltrn(W

γ
1 )) and thus

γ

2
(Ltrn(W

γ
1 ,W

γ
2 )− Ltrn(W

γ
1 )) ≤

√
2

σ∗(XtrnW
γ
1 )
L(γ)

√
Ltrn(W

γ
1 ,W

γ
2 )− Ltrn(W

γ
1 )

which yields

Ltrn(W
γ
1 ,W

γ
2 )− Ltrn(W

γ
1 ) ≤

8

σ∗(XtrnW
γ
1 )

(
L(γ)

γ

)2

. (39)

By choosing γ = O(ϵ−1
2 ) and noting that {L(γ), σ∗(XtrnW

γ
1 )} = O(1), (38) and (39) indicate that

ϵγ := Ltrn(W
γ
1 ,W

γ
2 )− L∗trn(W

γ
1 ) ≤ max

{
2ϵ2
γ
,

8

σ∗(XtrnW
γ
1 )

(
L(γ)

γ

)2
}

= O
(
ϵ2
γ

)
= O

(
ϵ22
)
.

Moreover, for any (W̃1, W̃2) satisfying Ltrn(W̃1, W̃2)− L∗trn(W̃1) ≤ ϵγ , it holds that

Lval(W
γ
1 ,W

γ
2 ) + γ(Ltrn(W

γ
1 ,W

γ
2 )− L∗trn(W

γ
1 )) ≤ Lval(W̃1, W̃2) + γ(Ltrn(W̃1, W̃2)− L∗trn(W̃1)) + ϵ2

and thus

Lval(W
γ
1 ,W

γ
2 )− Lval(W̃1, W̃2) ≤ γ(Ltrn(W̃1, W̃2)− L∗trn(W̃1)− ϵγ) + ϵ2 ≤ ϵ2

which indicates (W γ
1 ,W

γ
2 ) is (ϵ2, ϵγ) optimal solution of the bilevel problem. This concludes that

any ϵ2 solution to the penalized problem is an (ϵ2, ϵγ) solution to the bilevel problem.
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Step 3: To prove the converse part, we first claim that for any ϵ2, there exists an ϵ2 solution to
the penalized problem with full rank W1, which is built on the previous two steps. Take the ϵ2
solution (W γ

1 ,W
γ
2 ) of the penalized problem in the second step, it is an (ϵ2, ϵγ) optimal solution

of the bilevel problem. From the first step, we know there exists an (ϵ2, ϵγ) optimal solution of the
bilevel problem (W ϵ

1 ,W
ϵ
2 ) with full rank W ϵ

1 . Therefore, we have Lval(W
γ
1 ,W

γ
2 ) = Lval(W

ϵ
1 ,W

ϵ
2 )

and the feasibility

Ltrn(W
ϵ
1 ,W

ϵ
2 )− L∗trn(W

ϵ
1 ) ≤ ϵγ = Ltrn(W

γ
1 ,W

γ
2 )− L∗trn(W

γ
1 ).

Adding these two inequalities together, we have Lγ(W
ϵ
1 ,W

ϵ
2 ) ≤ Lγ(W

γ
1 ,W

γ
2 ), which suggests that

(W ϵ
1 ,W

ϵ
2 ) is also an ϵ2 solution to the penalized problem. As W ϵ

1 is full rank, we prove the claim.

Step 4: We will then prove the converse part, i.e. for any ϵ1, there exists γ∗ such that any global
solution of bilevel problem is an ϵ1 solution to the penalized problem for any γ ≥ γ∗. Take any
global solution of bilevel problem and denote it as (W̃1, W̃2). According to the first step, we know
that there exists a global solution to the bilevel problem (W ∗

1 ,W
∗
2 ) with full rank W ∗

1 . Also there
exists an ϵ1 solution to the penalized problem (W γ

1 ,W
γ
2 ) with full rank W γ

1 . Therefore, we can
restrict the bilevel and penalized problem on the following constrained sets

W1 = {W1 : r1 ≤ σmin(W1) ≤ σmax(W1) ≤ R1}, and W2 = {W2 : σmax(W2) ≤ R2}

where r1 < min{σmin(W
∗
1 ), σmin(W

γ
1 )}, Ri > max{σmax(W

∗
i ), σmax(W

γ
i )}, i = 1, 2. In this

way, W2 is a convex closed set while W1 is a closed but nonconvex set, and

min
W1∈W1,W2∈W2

Lγ(W1,W2) = min
W1,W2

Lγ(W1,W2)

because the constrained sets include the minimizer of penalized problem. Also, Lval(W1, ·) is
uniformly Lipschitz continuous on W1 and W2, and Ltrn(W1, ·) is uniformly smooth and PL on W1

and W2. Adapted from (Shen et al., 2023, Theorem 1), there exists γ∗ = O(ϵ−1
1 ) s.t. for any γ > γ∗,

we have 2

Lγ(W
∗
1 ,W

∗
2 ) ≤ min

W1∈W1,W2∈W2

Lγ(W1,W2) + ϵ1

= min
W1,W2

Lγ(W1,W2) + ϵ1

Since Lγ(W̃1, W̃2) = Lval(W̃1, W̃2) = Lval(W
∗
1 ,W

∗
2 ) = Lγ(W

∗
1 ,W

∗
2 ), we know (W̃1, W̃2) is an ϵ1

optimal point of the penalized problem, which concludes the proof.

The following lemma shows that L∗(W1) is not differentiable at the whole space, but it is differentiable
for W1 with lower and upper bounded singular value.
Lemma 18 (Danskin type theorem). Assume there exists r,R ∈ R>0 such that for all W1 ∈ W1,
0 < r ≤ σmin(W1) ≤ σmax(W1) ≤ R. Then L∗trn(W1) is differentiable on W1 with the gradient

∇L∗trn(W1) = ∇W1
Ltrn(W1,W

∗
2 ), ∀W ∗

2 ∈ S(W1) with finite norm.

Moreover, ∇L∗trn(W1) = 0 on W1.

Proof: First, ∀W1 ∈ W1, without loss of generality, we can set W ∗
2 = (XtrnW1)

†Ytrn ∈ S(W1)
with finite ℓ2 norm

σmax(W
∗
2 ) = σmax((XtrnW1)

†Ytrn)
(a)

≤ σmax((XtrnW1)
†)σmax(Ytrn)

=
σmax(Ytrn)

σmin(XtrnW1)
≤ σmax(Ytrn)

σmin(Xtrn)σmin(W1)
≤ σmax(Ytrn)

σmin(Xtrn)r

where (a) comes from σmax(A
†) = 1/σmin(A

†) if σmin(A
†) > 0. The benefit of choosing W ∗

2 in
this way is to ensure ∇W2Ltrn(W1,W

∗
2 ) is Lipschitz continuous over W1, which can be proved by

∥∇W2Ltrn(W1,W
∗
2 )−∇W2Ltrn(W

′
1,W

∗
2 )∥2

= ∥ − (XtrnW1)
⊤(Ytrn −XtrnW1W

∗
2 ) + (XtrnW

′
1)

⊤(Ytrn −XtrnW
′
1W

∗
2 )∥2

2(Shen et al., 2023, Theorem 1) only requires the convexity of W2
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≤ ∥(XtrnW1)
⊤Xtrn(W1 −W ′

1)W
∗
2 ∥2 + ∥(W1 −W ′

1)
⊤X⊤

trn(Ytrn −XtrnW
′
1W

∗
2 )∥2

≤ σ2
max(Xtrn)σmax(W1)σmax(W

∗
2 )∥W1 −W ′

1∥
+ σmax(Xtrn)[σmax(Ytrn) + σmax(Xtrn)σmax(W

′
1)σmax(W

∗
2 )]∥W1 −W ′

1∥

≤
[
σ2
max(Xtrn)σmax(Ytrn)R

σmin(Xtrn)r
+ σmax(Xtrn)σmax(Ytrn)

(
1 +

σmax(Xtrn)R

σmin(Xtrn)r

)]
∥W1 −W ′

1∥

where W1,W
′
1 ∈ W1.

On the other hand, for any W1 ∈ W1, as long as it does not belong to the boundary, we can find
ā > 0 such that for any a ≤ ā, W1 + ad ∈ W1 holds for any unit direction d ∈ Rm×h. Even for W1

at the boundary of W1, one can slightly enlarge W1 by adjusting r and R correspondingly to ensure
the singular value of any W1 ∈ B(W1, ā) is uniformly lower and upper bounded. Then based on the
Lipschitz continuity of ∇W2

Ltrn(W1,W
∗
2 ) over W1 and W2 and the PL property of Ltrn(W1, ·), and

according to (Nouiehed et al., 2019, Lemma A.3), there exist L > 0, for any 0 < a ≤ ā and any unit
direction d ∈ Rm×h, one can choose W ∗

2 (a) ∈ S(W1 + ad) such that ∥W ∗
2 (a)−W ∗

2 ∥ ≤ La. By
the Taylor expansion,
L∗trn(W1 + ad)− L∗trn(W1) = Ltrn(W1 + ad,W ∗

2 (a))− Ltrn(W1,W
∗
2 )

= a∇⊤
W1

Ltrn(W1,W
∗
2 )d+∇⊤

W2
Ltrn(W1,W

∗
2 )(W

∗
2 (a)−W ∗

2 ) +O(a2)

= a∇⊤
W1

Ltrn(W1,W
∗
2 )d+O(a2)

By the definition of directional derivative, we know

L∗,′trn(W1; d) = lim
r→0+

L∗trn(W1 + ad)− L∗trn(W1)

a
= ∇⊤

W1
Ltrn(W1,W

∗
2 )d

Since the above relationship holds for any direction d, then we get ∇L∗trn(W1) = ∇W1
Ltrn(W1,W

∗
2 ).

In addition, the above discussion holds for any bounded W ∗
2 , which yields the first part of the

conclusion. Moreover, as ∇W1Ltrn(W1,W
∗
2 ) = ∇ℓtrn(W1W

∗
2 )W

∗,⊤
2 = X⊤

trnℓtrn(W1W
∗
2 )W

∗,⊤
2

and ℓtrn(W1W
∗
2 ) = minW2

Ltrn(W1,W2) = 0 according to Lemma 5, we get ∇L∗trn(W1) =
∇W1

Ltrn(W1,W
∗
2 ) = ∇W1

Ltrn(W1,W
∗
2 ) = 0.

Lemma 19. Under Assumption 2, for any ϵ > 0, there exists an ϵ-solution to the penalized problem
(W ϵ

1 ,W
ϵ
2 ) with L∗trn(W

ϵ
1 ) = 0.

Lemma 19 is pivotal in ensuring that the penalized problem is well-posed. Otherwise, we encounter
the situation where the optimal weight (W ∗

1 ,W
∗
2 ) learned from the penalized method

L∗trn(W
∗
1 ) ̸= min

W1,W2

Ltrn(W1,W2) = 0.

This implies that the learned bottom layer weight fails to fit well on the training dataset – a scenario
we want to avoid. Without making assumption on the penalized problem, the well-poseness of it is
derived from the singularity assumption of the bilevel problem and their approximated equivalence.

Proof: Lemma 19 is a side product of Theorem 4. According to Step 2-1 in the proof of Theorem
4, we know that for any ϵ, there exists an ϵ-solution to the penalized problem with full rank W1.
Together with Lemma 5, we arrive at the conclusion.

F.4 PROOF OF THEOREM 1

We restate Theorem 1 and the descent lemma in the following theorem.
Theorem 5 (Local joint PL and smoothness). Suppose Assumption 2 holds, assume σ2

min(W
k
1 ) > 0,

σ2
min(W

k
2 ) > 0 and denote Xγ = [Xval;

√
γXtrn]. Then the descent lemma holds with Lk defined in

(51) and the local joint PL inequality holds with µk = (σ2
min(W

k
1 ) + σ2

min(W
k
2 ))σ

2
∗(Xγ), i.e.

∥∇Lγ(W
k
1 ,W

k
2 )∥2 ≥ 2µk(Lγ(W

k
1 ,W

k
2 )− L∗γ)

Lγ(Z
k+1) ≤ Lγ(Z

k)−
(α
2
− α2Lk

)
∥∇Lγ(Z

k)∥2 +
(α
2
+ α2Lk

)
∥δk∥2.

where Z = (W1,W2), Z
k = (W k

1 ,W
k
2 ), α and L∗γ = minZ Lγ(Z). Moreover, one has

Lγ(Z
k+1)− L∗γ ≤

(
1− αµk + 2α2Lkµk

) (
Lγ(Z

k)− L∗γ
)
+
(α
2
+ α2Lk

)
∥δk∥2.

Proof: We first prove the local PL inequality by four steps.
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Step 1-1: Local PL inequality for Ltrn(W1,W2) and Lval(W1,W2). First, we know that h(W̃ ) =
1
2∥Ytrn − W̃∥2 is 1-strongly convex and 1-Lipschitz smooth. Given matrix W , then according
to (Karimi et al., 2016, Appendix B), ℓtrn(W ) = h(XtrnW ) is in the form of strongly convex
composite with a linear mapping so that it is σ2

∗(Xtrn)-PL over W . As Xtrn is full rank, we have
σ2
∗(Xtrn) = σ2

min(Xtrn) and ℓtrn(W ) = h(XtrnW ) is σ2
min(Xtrn)-PL over W . On the other hand,

we also have

min
W

ℓtrn(W ) = min
W1,W2

Ltrn(W1,W2) (40)

because

min
W

ℓtrn(W ) ≤ ℓtrn(W
∗
1W

∗
2 ) = min

W1,W2

Ltrn(W1,W2) (41)

where W ∗
1 ,W

∗
2 = argminW1,W2

Ltrn(W1,W2). The reverse direction of (41) holds true because for
any W ∗ ∈ argminW ℓtrn(W ), it can be decomposed to

W ∗ =
[
W ∗ 0n×(h−m)

] [ Im×m

0(h−m)×m

]
.

Based on the above facts and denoting W =W1W2, we can prove the local PL property of Ltrn over
(W1,W2) by

∥∇Ltrn(W1,W2)∥2 = ∥∇ℓtrn(W )W⊤
2 ∥2 + ∥W⊤

1 ∇ℓtrn(W )∥2

= ∥W2∇ℓtrn(W )⊤∥2 + ∥W⊤
1 ∇ℓtrn(W )∥2

(a)

≥ σ2
min(W2)∥∇ℓtrn(W )∥2 + σ2

min(W1)∥∇ℓtrn(W )∥2

= (σ2
min(W1) + σ2

min(W2))∥∇ℓtrn(W )∥2

(b)

≥ 2(σ2
min(W1) + σ2

min(W2))σ
2
min(Xtrn)(ℓtrn(W )−min

W
ℓtrn(W ))

(c)

≥ 2(σ2
min(W1) + σ2

min(W2))σ
2
min(Xtrn)(Ltrn(W1,W2)− min

W1,W2

Ltrn(W1,W2))

(42)

where (a) comes from Lemma 4, (b) is derived from ℓtrn(W ) is σ2
min(Xtrn)-PL, and (c) is because

minW ℓtrn(W ) = minW1,W2 Ltrn(W1,W2). Similarly, for the validation loss, it holds that

∥∇Lval(W
k
1 ,W

k
2 )∥2 ≥ 2(σ2

min(W1) + σ2
min(W2))σ

2
min(Xval)(Lval(W1,W2)− min

W1,W2

Lval(W1,W2)).

Step 1-2: Local PL inequality for L̃γ(W1,W2) =: Lval(W1,W2) + γLtrn(W1,W2).
By noticing the fact that (ℓval + γℓtrn)(W ) = 1

2∥Yγ − XγW∥2 with Yγ = [Yval;
√
γYtrn] and

Xγ = [Xval;
√
γXtrn], we have

∥∇L̃γ(W1,W2)∥2 = ∥∇(ℓval + γℓtrn)(W )W⊤
2 ∥2 + ∥W⊤

1 ∇(ℓval + γℓtrn)(W )∥2

(a)

≥ 2(σ2
min(W1) + σ2

min(W2))σ
2
∗(Xγ)(L̃γ(W1,W2)− min

W1,W2

L̃γ(W1,W2))

(43)

where (a) is derived similarly from the derivation of (42).

Step 1-3: We then prove the relation of Lγ(W1,W2) and L̃γ(W1,W2) that

min
W1,W2

Lγ(W1,W2) = min
W1,W2

L̃γ(W1,W2). (44)

Since Ltrn(W1,W2) ≥ 0, we know L∗trn(W1) = minW2
Ltrn(W1,W2) ≥ 0, and thus

Lγ(W1,W2) = Lval(W1,W2) + γLtrn(W1,W2)− γL∗trn(W1) ≤ Lval(W1,W2) + γLtrn(W1,W2).
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Taking the minimization over both sides yields

min
W1,W2

Lγ(W1,W2) ≤ min
W1,W2

(Lval(W1,W2) + γLtrn(W1,W2)) = min
W1,W2

L̃γ(W1,W2). (45)

By Lemma 19, for any ϵ > 0, ∃(W ϵ
1 ,W

ϵ
2 ) is an ϵ-solution of Lγ(W1,W2) with L∗trn(W

∗
1 ) = 0, so

ϵ+ min
W1,W2

Lγ(W1,W2) ≥ Lγ(W
ϵ
1 ,W

ϵ
2 ) = Lval(W

ϵ
1 ,W

ϵ
2 ) + γLtrn(W

ϵ
1 ,W

ϵ
2 )

≥ min
W1,W2

(Lval(W1,W2) + γLtrn(W1,W2)) = min
W1,W2

L̃γ(W1,W2)

holds for any ϵ. Letting ϵ→ 0, we get

min
W1,W2

Lγ(W1,W2) ≥ min
W1,W2

L̃γ(W1,W2)

Together with (45), (44) must hold true.

Step 1-4: Local PL property of Lγ(W1,W2).

∥∇Lγ(W1,W2)∥2 = ∥∇ℓval(W )W⊤
2 + γ∇ℓtrn(W )W⊤

2 − γ∇L∗trn(W1)∥2

+ ∥W⊤
1 ∇ℓval(W ) + γW⊤

1 ∇ℓtrn(W )∥2

(a)
= ∥∇ℓval(W )W⊤

2 + γ∇ℓtrn(W )W⊤
2 ∥2 + ∥W⊤

1 ∇ℓval(W ) + γW⊤
1 ∇ℓtrn(W )∥2

= ∥∇(ℓval + γℓtrn)(W )W⊤
2 ∥2 + ∥W⊤

1 ∇(ℓval + γℓtrn)(W )∥2

(b)

≥ 2(σ2
min(W1) + σ2

min(W2))σ
2
∗(Xγ)

(
L̃γ(W1,W2)− min

W1,W2

L̃γ(W1,W2)

)
(c)
= 2(σ2

min(W1) + σ2
min(W2))σ

2
∗(Xγ)(Lγ(W1,W2)− min

W1,W2

Lγ(W1,W2))

= 2µk(Lγ(W1,W2)− min
W1,W2

Lγ(W1,W2))

where (a) comes from Lemma 18 and (b) is derived from (43), and (c) holds because of (44) and
L∗trn(W1) = 0 when σmin(W1) > 0.

Next, we will prove the descent lemma. Denoting Zk = (W k
1 ,W

k
2 ), the update of PBGD can be

formulated as

Zk+1 = Zk − α(∇Lγ(Z
k) + δk) (46)

where δk = γ(∇L∗trn(W
k
1 )−∇W1

Ltrn(W
k
1 ,W

k+1
3 )). Let us denote

H(κ) = ∇2L̃γ
(
(1− κ)W k

1 + κW k+1
1 , (1− κ)W k

2 + κW k+1
2

)
= ∇2L̃γ

(
W k

1 − ακ(∇W1Lγ(Z
k) + δk),W

k
2 − ακ∇W2Lγ(Z

k)
)

= ∇2L̃γ
(
W k

1 − ακ(∇W1
L̃γ(Z

k) + δk),W
k
2 − ακ∇W2

L̃γ(Z
k)
)

= ∇2L̃γ
(
Zk − ακ(∇L̃γ(Z

k) + δk)
)

(47)

then by second order Taylor expansion, we have

Lγ(Z
k+1) ≤ L̃γ(Z

k+1)

= L̃γ(Z
k) + ⟨∇L̃γ(Z

k), Zk+1 − Zk⟩+
∫ 1

0

(1− κ)
〈
Zt+1 − Zt, H(κ)(Zk+1 − Zk)

〉
dκ

(a)
= Lγ(Z

k)− α⟨∇Lγ(Z
k),∇Lγ(Z

k) + δk⟩+
∫ 1

0

(1− κ)
〈
Zt+1 − Zt, H(κ)(Zk+1 − Zk)

〉
dκ

(b)

≤ Lγ(Z
k)− α∥∇Lγ(Z

k)∥2

2
+
α∥δk∥2

2
+ α2

∫ 1

0

(1− κ)
〈
∇Lγ(Z

k) + δk, H(κ)(∇Lγ(Z
k) + δk)

〉
dκ
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(c)
= Lγ(Z

k)− α∥∇Lγ(Z
k)∥2

2
+
α∥δk∥2

2
+ α2∥∇Lγ(Z

k) + δk∥2
∫ 1

0

(1− κ) ⟨gk, H(κ)gk⟩ dκ

(d)

≤ Lγ(Z
k)− α∥∇Lγ(Z

k)∥2

2
+
α∥δk∥2

2
+ 2α2

(
∥∇Lγ(Z

k)∥2 + ∥δk∥2
) ∫ 1

0

(1− κ)Lkdκ

= Lγ(Z
k)−

(α
2
− α2Lk

)
∥∇Lγ(Z

k)∥2 +
(α
2
+ α2Lk

)
∥δk∥2 (48)

where (a) is derived from (46), σmin(W
k
1 ) > 0, Lemma 5 and Lemma 18, (b) holds because

⟨a, b⟩ = ∥a∥2

2
+

∥b∥2

2
− ∥a− b∥2

2
≥ ∥a∥2

2
− ∥a− b∥2

2

gk in (c) is defined as ∇Lγ(Z
k)+δk

∥∇Lγ(Zk)+δk∥ , and (d) is earned by Lemma 22.

Finally, according to (48) and the local PL property of Lγ(W1,W2), we have

Lγ(Z
k+1) ≤ Lγ(Z

k)−
(α
2
− α2Lk

)
∥∇Lγ(Z

k)∥2 +
(α
2
+ α2Lk

)
∥δk∥2

≤ Lγ(Z
k)−

(
α− 2α2Lk

)
µk(Lγ(Z

k)− L∗γ) +
(α
2
+ α2Lk

)
∥δk∥2.

Subtracting both sides by L∗γ yields

Lγ(Z
k+1)− L∗γ ≤

(
1− αµk + 2α2Lkµk

) (
Lγ(Z

k)− L∗γ
)
+
(α
2
+ α2Lk

)
∥δk∥2.

We give the characteristic of Lk, the bound of ⟨gk, H(κ)gk⟩, by showing ⟨gk, H(0)gk⟩ and
|⟨gk, (H(κ) −H(0))gk⟩| are bounded subsequently. The upper bound of ⟨gk, H(0)gk⟩ is adapted
from (Xu et al., 2024, Lemma D.1) as it is independent on the update direction, as long as gk is
normalized.

Lemma 20 ((Xu et al., 2024, Lemma D.1)). Let gk =
∇Lγ(Z

k)+δk
∥∇Lγ(Zk)+δk∥ and H(κ) defined in (47), then

it holds that

⟨gk, H(0)gk⟩

=
1

α2∥∇Lγ(W k
1 ,W

k
2 ) + δk∥2

· d
2

ds2
M(s)

∣∣∣
s=0

≤ 1

α2∥∇Lγ(W k
1 ,W

k
2 ) + δk∥2

(
⟨∇ℓγ(A(s)),

d2

ds2
A(s)⟩

∣∣∣
s=0

+ σ2
max(Xγ)∥

d

ds
A(s+ κ)∥2

∣∣∣
s=0

)
≤ σ2

max(Xγ)(σ
2
max(W

k
1 ) + σ2

max(W
k
2 )) +

√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ). (49)

To show the boundedness of |⟨gk, (H(κ)−H(0))gk⟩|, we define the loss at the intermediate point
and the product of W k

1 − sα(∇W1
Lγ(W

k
1 ,W

k
2 ) + δk) and W k

2 − sα∇W2
Lγ(W

k
1 ,W

k
2 ) as follows.

M(s) = Lγ
(
W k

1 − sα
(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
,W k

2 − sα∇W2
Lγ(W

k
1 ,W

k
2 )
)

A(s) =W k − sα
((
∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
)

+ s2α2
(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )

where W k =W k
1W

k
2 and ℓγ = ℓval + γℓtrn. In this way, we have

M(0) = Lγ(W
k
1 ,W

k
2 ), M(1) = Lγ(W

k+1
1 ,W k+1

2 ), and M(s) = ℓγ(A(s)).

Then establishing the bound of ∥H(κ)−H(0)∥ depends on the amount of ∥A(κ)−A(0)∥ because
H(κ) = ∇2L̃γ(M(κ)) = ∇2L̃γ(ℓγ(A(κ))).

Lemma 21. For any κ ∈ [0, 1), if ∥δk∥ ≤ δ and σmin(W
k
1 ) > 0, σmin(W

k
2 ) > 0, then it holds that

∥A(κ)−A(0)∥ ≤ α
(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ αδσmax(W
k
2 ) + 2α2σ2

max(Xγ)σmax(W
k)(Lγ(W

k
1 ,W

k
2 )− L∗γ)

+ α2δσmax(W
k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ). (50)
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Proof: According to the definition, we have

∥A(κ)−A(0)∥ =
∥∥−κα ((∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
)

+κ2α2
(
∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )
∥∥

≤ κα
∥∥(∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥

+ κ2α2
∥∥(∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )
∥∥

(22)&(23)
≤ κα

(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ καδσmax(W
k
2 ) + 2κ2α2σ2

max(Xγ)σmax(W
k)(Lγ(W

k
1 ,W

k
2 )− L∗γ)

+ κ2α2δσmax(W
k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ).

Letting κ < 1, we get the conclusion.
Lemma 22. For any κ ∈ [0, 1), let δ := ∥δk∥, then it holds that

⟨gk, H(κ)gk⟩ ≤ σ2
max(Xγ)(σ

2
max(W

k
1 ) + σ2

max(W
k
2 )) + 3αδσ2

max(Xγ)σmax(W
k
2 )

+
(
1 + 3ασ2

max(Xγ)(σ
2
max(W

k
1 ) + σ2

max(W
k
2 ))
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ 3α2σ2
max(Xγ)δσmax(W

k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 6α2σ4
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ) =: Lk (51)

Proof: First, we observe that ⟨gk, H(κ)gk⟩ is the second-order directional derivative of Lγ with
respect to the update direction, i.e.

⟨gk, H(κ)gk⟩ =
1

α2∥∇Lγ(W k
1 ,W

k
2 ) + δk∥2

· d
2

ds2
M(s+ κ)

∣∣∣
s=0

(52)

For the directional derivative, we have
d2

ds2
M(s+ κ)

∣∣∣
s=0

=
d2

ds2
ℓγ(A(s+ κ))

∣∣∣
s=0

=
d

ds
⟨∇ℓγ(A(s+ κ)),

d

ds
A(s+ κ)⟩

∣∣∣
s=0

= ⟨∇ℓγ(A(s+ κ)),
d2

ds2
A(s+ κ)⟩

∣∣∣
s=0

+ ⟨ d
ds
A(s+ κ),∇2ℓγ(A(s+ κ))

d

ds
A(s+ κ)⟩

∣∣∣
s=0

(a)

≤ ⟨∇ℓγ(A(s+ κ)),
d2

ds2
A(s+ κ)⟩

∣∣∣
s=0

+ σ2
max(Xγ)∥

d

ds
A(s+ κ)∥2

∣∣∣
s=0

(53)

where (a) uses the fact that ℓγ is σ2
max(Xγ) smooth. Then we bound ⟨∇ℓγ(A(s + κ)), d

2

ds2A(s +

κ)⟩
∣∣∣
s=0

and ∥ d
dsA(s+ κ)∥2

∣∣∣
s=0

as follows.

⟨∇ℓγ(A(s+ κ)),
d2

ds2
A(s+ κ)⟩

∣∣∣
s=0

= 2⟨∇ℓγ(A(κ)), α2
(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )⟩

= 2⟨∇ℓγ(A(κ))−∇ℓγ(A(0)), α2
(
∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )⟩

+ 2⟨∇ℓγ(A(0)), α2
(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )⟩

≤ 2α2σ2
max(Xγ)∥A(κ)−A(0)∥∥(∇W1Lγ(W

k
1 ,W

k
2 ) + δk)∇W2Lγ(W

k
1 ,W

k
2 )∥

+ ⟨∇ℓγ(A(s)),
d2

ds2
A(s)⟩

∣∣∣
s=0

(54)

On the other hand,

∥ d
ds
A(s+ κ)∥2

∣∣∣
s=0
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=
∥∥α (∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 + αW k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )

−2κα2
(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥2

= α2
∥∥(∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥2

+ 4κ2α4
∥∥(∇W1Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2Lγ(W

k
1 ,W

k
2 )
∥∥2

− 4κα3
〈(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 ),(

∇W1Lγ(W
k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
〉

≤ ∥ d
ds
A(s)∥2

∣∣∣
s=0

+ 4κ2α4
∥∥(∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥2

− 4κα3
〈(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 ),(

∇W1
Lγ(W

k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
〉

(55)

Plugging (54) and (55) into (53), we get

d2

ds2
M(s+ κ)

∣∣∣
s=0

≤ 2α2σ2
max(Xγ)∥A(κ)−A(0)∥∥(∇W1

Lγ(W
k
1 ,W

k
2 ) + δk)∇W2

Lγ(W
k
1 ,W

k
2 )∥

+ ⟨∇ℓγ(A(s)),
d2

ds2
A(s)⟩

∣∣∣
s=0

+ σ2
max(Xγ)∥

d

ds
A(s)∥2

∣∣∣
s=0

+ 4κ2α4σ2
max(Xγ)

∥∥(∇W1
Lγ(W

k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 )
∥∥2

− 4κα3σ2
max(Xγ)

〈(
∇W1

Lγ(W
k
1 ,W

k
2 ) + δk

)
∇W2

Lγ(W
k
1 ,W

k
2 ),(

∇W1
Lγ(W

k
1 ,W

k
2 ) + δk

)
W k

2 +W k
1 ∇W2

Lγ(W
k
1 ,W

k
2 )
〉

≤ α2σ2
max(Xγ)∥A(κ)−A(0)∥∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

+

[
σ2
max(Xγ)(σ

2
max(W

k
1 ) + σ2

max(W
k
2 )) +

√
2σ2

max(Xγ)(L̃γ(W k
1 ,W

k
2 )− L∗γ)

]
α2∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

+ 4κ2α4σ4
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ)∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

+ 2κ2α4σ2
max(Xγ)δσmax(W

k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

+ 2κα3σ2
max(Xγ)

(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

+ 2κα3σ2
max(Xγ)δσmax(W

k
2 )∥∇Lγ(W

k
1 ,W

k
2 ) + δk∥2

where the last inequality follows from Lemma 9 and (49). Plugging the above bound and the bound
of ∥A(κ)−A(0)∥ in (50) into (52) and note that κ ≤ 1, we obtain that

⟨gk, H(κ)gk⟩ =
1

α2∥∇Lγ(W k
1 ,W

k
2 ) + δk∥2

· d
2

ds2
M(s+ κ)

∣∣∣
s=0

≤ ασ2
max(Xγ)

(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ αδσ2
max(Xγ)σmax(W

k
2 ) + 2α2σ4

max(Xγ)σmax(W
k)(Lγ(W

k
1 ,W

k
2 )− L∗γ)

+ α2δσ2
max(Xγ)σmax(W

k
1 )
√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ σ2
max(Xγ)(σ

2
max(W

k
1 ) + σ2

max(W
k
2 )) +

√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 4α2σ4
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ)

+ 2α2σ2
max(Xγ)δσmax(W

k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 2ασ2
max(Xγ)

(
σ2
max(W

k
1 ) + σ2

max(W
k
2 )
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ 2ασ2
max(Xγ)δσmax(W

k
2 )

= σ2
max(Xγ)(σ

2
max(W

k
1 ) + σ2

max(W
k
2 )) + 3αδσ2

max(Xγ)σmax(W
k
2 )
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+
(
1 + 3ασ2

max(Xγ)(σ
2
max(W

k
1 ) + σ2

max(W
k
2 ))
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ 3α2σ2
max(Xγ)δσmax(W

k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 6α2σ4
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ)

which completes the proof.

F.5 PROOF OF THEOREM 2

We restate Theorem 2 in a formal way as follows.
Theorem 6 (Almost linear convergence rate). Suppose that Assumption 2 holds, letting α1 be the
smallest positive solution of the following equation of α

5ασ2
max(Xγ)(Lγ(W

0
1 ,W

0
2 )− L∗γ) = (1− exp(−

√
α))(c1 + c2(2− exp(

√
α)))σ2

∗(Xγ). (56)

If the above equation does not have a positive solution, set α1 = ∞. Similarly, let α2 be the positive
solution of αL = 1 with L defined in (64). Moreover, let α3 < (log(2 + c1

c2
))2. Then for any

0 < α < min{α1, α2, α3} and 0 < β ≤ α2, there exists T = O(log γ + log ϵ−1 +K) such that

δ ≤ min

{√
αµ2(Lγ(W 0

1 ,W
0
2 )−L∗

γ)

3 ,O(ϵ1/4)

}
and(

2αδ
√
c12 exp(

√
α) + 2α2δ2 +

3α2δ2c2 exp(
√
α)σ2

max(Xγ)

µ

)
K

≤ αc2 exp(
√
α)σ2

max(Xγ)

µ

(
Lγ(W

0
1 ,W

0
2 )− L∗γ

)
. (57)

Therefore, when γ = O(ϵ−0.5), µ = O(γ), L = O(γ), α = O(γ−1), we have αµ = O(1)
and to achieve the (ϵ, ϵ) stationary point, i.e. Lval(W k

1 ,W
k
2 ) −minW1,W2

Lval(W1,W2) ≤ ϵ and
Ltrn(W

k
1 ,W

k
2 )−minW2

Ltrn(W1,W2) ≤ ϵ, one need KT = O(log(ϵ−1)2) iterations.

Proof: Denote W k =W k
1W

k
2 and Dk = (W k

1 )
⊤W k

1 − (W k
2 )

⊤W k
2 as the imbalanced matrix. We

will prove this theorem by induction. Define the following properties as

• P1(k): Lγ(W k+1
1 ,W k+1

2 )− L∗γ ≤
(
1− αµ

2

) (
Lγ(W

k
1 ,W

k
2 )− L∗γ

)
+ 3αδ2

4

• P2(k): w1 ≤ σmin(W
k+1) ≤ σmax(W

k+1) ≤ w2

• P3(k): ∥Dk+1 −D0∥ ≤ 5αc2 exp(
√
α)σ2

max(Xγ)

(c1+2c2(1−exp(
√
α)))σ2

∗(Xγ)

(
Lγ(W

0
1 ,W

0
2 )− L∗γ

)
• P4(k): ci1+2ci2(1− exp(

√
α)) ≤ σ2

min(W
k+1
i ) ≤ σ2

max(W
k+1
i ) ≤ ci2 exp(

√
α), i = 1, 2

where c1 = c11 + c21, c2 = c12 + c22. Suppose that the above properties hold at iteration 0, · · · , k − 1,
we aim to prove that P1(k),P2(k),P3(k),P4(k) hold recursively.

Step 1: P1(k) holds. If we can prove the following uniform bounds of the local PL, smoothness
constants and the lower-level error

µk ≥ µ, Lk ≤ L, ∥δk∥ ≤ δ (58)

then it holds that

1− αµk + 2α2Lkµk = 1− µk(α− 2α2Lk) and
(α
2
+ α2Lk

)
∥δk∥2 ≤

(α
2
+ α2L

)
δ2

(a)

≤ 1− µ(α− 2α2Lk)
(b)

≤ 3αδ2

4
(c)

≤ 1− αµ

2
(59)

where (a) comes from α ≤ 1
L ≤ 1

Lk
, (b) and (c) are due to α ≤ 1

4L and Lk ≤ L. Then according to
Theorem 1, we get the conclusion.
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Next, we start to prove (58). According to P4(k − 1), the lower bound of µk is earned by

µk = (σ2
min(W

k
1 ) + σ2

min(W
k
2 ))σ

2
∗(Xγ) ≥

(
c1 + c2(2− exp(

√
α))
)
σ2
∗(Xγ) =: µ (60)

where c1 = c11 + c21 and c2 = c12 + c22. We then prove the upper bound of ∥δk∥. By definition,

∥δk∥ = γ2∥∇W1Ltrn(W
k
1 ,W

k+1
3 )−∇W1Ltrn(W

k
1 )∥

≤ γ2σ2
max(Xtrn)σ

2
max(W

k
1 ) dist(W

k+1
3 ,S(W k

1 ))

≤ 2γ2σ4
max(Xtrn)σ

4
max(W

k
1 )

(
1− σ2

min(Xtrn)σ
2
min(W

k
1 )

σ2
max(Xtrn)σ2

max(W
k
1 )

)T (
Ltrn(W

k
1 ,W

0
3 )− L∗trn(W

k
1 )
)

≤ 2γ2σ4
max(Xtrn)σ

4
max(W

k
1 )

(
1− σ2

min(Xtrn)σ
2
min(W

k
1 )

σ2
max(Xtrn)σ2

max(W
k
1 )

)T
Ltrn(W

k
1 ,W

0
3 )

where the first inequality is due to the Lipschitz continuity of Ltrn(W k
1 , ·), the second inequality

comes from Lemma 7 and Lemma 17. According to P4(k − 1), σmax(W
k
1 ), σmin(W

k
1 ) is upper and

lower bounded, so the upper bound of ∥δk∥ ≤ δ exists and it exponentially decreases with T .

Finally, we prove the upper bound of Lk. As Lγ(W k
1 ,W

k
2 ) = L̃γ(W

k
1 ,W

k
2 ) when σmin(W

k
i ) > 0,

according to the definition, it holds that

Lk
(51)
== σ2

max(Xγ)(σ
2
max(W

k
1 ) + σ2

max(W
k
2 )) + 3αδσ2

max(Xγ)σmax(W
k
2 )

+
(
1 + 3ασ2

max(Xγ)(σ
2
max(W

k
1 ) + σ2

max(W
k
2 ))
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ 3α2σ2
max(Xγ)δσmax(W

k
1 )
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 6α2σ4
max(Xγ)σmax(W

k)(Lγ(W
k
1 ,W

k
2 )− L∗γ). (61)

Therefore, to prove the upper bound of Lk, we need the following upper bounds

σ2
max(W

k
1 ) + σ2

max(W
k
2 )

P4(k−1)

≤ c2 exp(
√
α)

Lγ(W
k
1 ,W

k
2 )− L∗γ

P1(k−1)

≤ (1− αµ

2
)k(Lγ(W

0
1 ,W

0
2 )− L∗γ) +

3αδ2

4

k−1∑
κ=0

(1− αµ

2
)κ

≤
(
1− αµ

2

)k
(Lγ(W

0
1 ,W

0
2 )− L∗γ) +

3δ2

2µ
1k≥1 (62)

(a)

≤ Lγ(W
0
1 ,W

0
2 )− L∗γ (63)

σ2
max(W

k
i )

P4(k−1)

≤ ci2 exp(
√
α), σmax(W

k)
P2(k−1)

≤ w2, ∥δk∥ ≤ δ.

where (a) comes from δ ≤
√

αµ2(Lγ(W 0
1 ,W

0
2 )−L∗

γ)

3 . Plugging the above upper bounds to (61), we get

Lk ≤ σ2
max(Xγ)c2 exp(

√
α) + 3αδσ2

max(Xγ)

√
c2 exp(

√
α)

+
(
1 + 3ασ2

max(Xγ)c2 exp(
√
α)
)√

2σ2
max(Xγ)(Lγ(W k

1 ,W
k
2 )− L∗γ)

+ 3α2σ2
max(Xγ)δ

√
c2 exp(

√
α)
√
2σ2

max(Xγ)(Lγ(W k
1 ,W

k
2 )− L∗γ)

+ 6α2σ4
max(Xγ)w2(Lγ(W

k
1 ,W

k
2 )− L∗γ) =: L. (64)

After obtaining the bounds for µk, ∥δk∥, Lk, P1(k) holds because of Theorem 1 and (59).

Step 2: P2(k) holds. Since (ℓval + γℓtrn)(W ) is σ2
max(Xγ)-Lipschitz smooth, we have

(ℓval + γℓtrn)(W
k+1) ≤ (ℓval + γℓtrn)(W ) + ⟨∇(ℓval + γℓtrn)(W ),W k+1 −W ⟩+ σ2

max(Xγ)

2
∥W k+1 −W∥2.
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Setting W =W ∗ ∈ argminW (ℓval + γℓtrn)(W ) yields

(ℓval + γℓtrn)(W
k+1) ≤ min

W
(ℓval + γℓtrn)(W ) +

σ2
max(Xγ)

2
∥W k+1 −W ∗∥2.

and thus

σ2
∗
2
(Xγ)∥W k+1 −W ∗∥2 ≤ (ℓval + γℓtrn)(W

k+1)−min
W

(ℓval + γℓtrn)(W )

= L̃γ(W
k+1
1 ,W k+1

2 )− min
W1,W2

L̃γ(W1,W2)

= Lγ(W
k+1
1 ,W k+1

2 )− L∗γ .

Also, (ℓval + γℓtrn)(W ) is σ2
∗(Xγ)-PL, so the quadratic growth condition with holds by Lemma 6

2σ2
∗(Xγ)∥W k+1 −W ∗∥2 ≤ (ℓval + γℓtrn)(W

k+1)−min
W

(ℓval + γℓtrn)(W ) = Lγ(W
k+1
1 ,W k+1

2 )− L∗γ

where W ∗ = argminW∈argminW (ℓval+γℓtrn)(W ) ∥W k+1 −W∥2. As a result, we have

σmax(W
k+1) = σmax

(
W k+1 −W ∗ +W ∗)

≤ σmax (W
∗) + ∥W k+1 −W ∗∥2

≤ σmax (W
∗) + ∥W k+1 −W ∗∥

≤ σmax (W
∗) +

√
1

2σ2
∗(Xγ)

(Lγ(W
k+1
1 ,W k+1

2 )− L∗γ)

(63)
≤ σmax (W

∗) +

√
1

2σ2
∗(Xγ)

(Lγ(W 0
1 ,W

0
2 )− L∗γ) =: w2

where the first inequality is derived from the Weyl’s inequality. Similarly, the lower bound of singular
value is achieved by the Weyl’s inequality

σmin(W
k+1) = σmin

(
W k+1 −W ∗ +W ∗)

≥ σmin (W
∗)− ∥W k+1 −W ∗∥2

≥ σmin (W
∗)− ∥W k+1 −W ∗∥

≥ σmin (W
∗)−

√
1

2σ2
∗(Xγ)

(Lγ(W 0
1 ,W

0
2 )− L∗γ).

As the singular value is always nonnegative, we can define a lower bound

w1 :=

[
σmin (W

∗)−

√
1

2σ2
∗(Xγ)

(Lγ(W 0
1 ,W

0
2 )− L∗γ)

]
+

(65)

which is strict positive when initializing W 0
1 ,W

0
2 close to the optimal.

Step 3: P3(k) holds. Denoting W k =W k
1W

k
2 , ℓγ = ℓval + γℓtrn and utilizing the PBGD update

W k+1
1 =W k

1 − α(∇ℓγ(W k)(W k
2 )

⊤ + δk) and W k+1
2 =W k

2 − α(W k
1 )

⊤∇ℓγ(W k) (66)

we can expand the difference of imbalance matrix as follows

Dk+1 −Dk =W k+1,⊤
1 W k+1

1 −W k+1,⊤
2 W k+1

2 − (W k
1 )

⊤W k
1 + (W k

2 )
⊤W k

2

=
(
W k

1 − α(∇ℓγ(W k)(W k
2 )

⊤ + δk)
)⊤ (

W k
1 − α(∇ℓγ(W k)(W k

2 )
⊤ + δk)

)
−
(
W k

2 − α(W k
1 )

⊤∇ℓγ(W k)
)⊤ (

W k
2 − α(W k

1 )
⊤∇ℓγ(W k)

)
− (W k

1 )
⊤W k

1 + (W k
2 )

⊤W k
2

= −2α(W k
1 )

⊤(∇ℓγ(W k)(W k
2 )

⊤ + δk) + α2(∇ℓγ(W k)(W k
2 )

⊤ + δk)
⊤(∇ℓγ(W k)(W k

2 )
⊤ + δk)

+ 2α
(
(W k

1 )
⊤∇ℓγ(W k)

)⊤
W k

2 − α2
(
(W k

1 )
⊤∇ℓγ(W k)

)⊤ (
(W k

1 )
⊤∇ℓγ(W k)

)
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= −2α(W k
1 )

⊤δk + α2(∇ℓγ(W k)(W k
2 )

⊤ + δk)
⊤(∇ℓγ(W k)(W k

2 )
⊤ + δk)

− α2
(
(W k

1 )
⊤∇ℓγ(W k)

)⊤ (
(W k

1 )
⊤∇ℓγ(W k)

)
Taking the norm of both sides yields

∥Dk+1 −Dk∥ ≤ 2αδσmax(W
k
1 ) + α2∥∇ℓγ(W k)(W k

2 )
⊤ + δk∥2 + α2∥(W k

1 )
⊤∇ℓγ(W k)∥2

≤ 2αδσmax(W
k
1 ) + 2α2(σ2

max(W
k
2 )∥∇ℓγ(W k)∥2 + δ2) + α2σ2

max(W
k
1 )∥∇ℓγ(W k)∥2

= 2αδσmax(W
k
1 ) + 2α2δ2 + α2(2σ2

max(W
k
2 ) + σ2

max(W
k
1 ))∥∇ℓγ(W k)∥2

≤ 2αδ
√
c12 exp(

√
α) + 2α2δ2 + 2α2c2 exp(

√
α)σ2

max(Xγ)(Lγ(W
k
1 ,W

k
2 )− L∗γ)

(62)
≤ 2αδ

√
c12 exp(

√
α) + 2α2δ2

+ 2α2c2 exp(
√
α)σ2

max(Xγ)

((
1− αµ

2

)k
(Lγ(W

0
1 ,W

0
2 )− L∗γ) +

3δ2

2µ

)
(67)

where the third inequality is due to P4(k − 1) and ℓγ is σ2
max(Xγ) Lipschitz smooth.

As a result, it follows

∥Dk+1 −D0∥ ≤
k∑
κ=0

∥Dκ+1 −Dκ∥

(67)
≤

k∑
κ=0

2αδ
√
c12 exp(

√
α) + 2α2δ2

+

k∑
κ=0

2α2c2 exp(
√
α)σ2

max(Xγ)

((
1− αµ

2

)k
(Lγ(W

0
1 ,W

0
2 )− L∗γ) +

3δ2

2µ

)
≤
(
2αδ

√
c12 exp(

√
α) + 2α2δ2 +

3α2δ2c2 exp(
√
α)σ2

max(Xγ)

µ

)
K

+
4αc2 exp(

√
α)σ2

max(Xγ)

µ

(
Lγ(W

0
1 ,W

0
2 )− L∗γ

)
≤ 5αc2 exp(

√
α)σ2

max(Xγ)

(c1 + c2(2− exp(
√
α)))σ2

∗(Xγ)

(
Lγ(W

0
1 ,W

0
2 )− L∗γ

)
where the last inequality holds by (57) and (60).

Step 4: P4(k) holds. According to (Xu et al., 2023, Appendix C), the initial weights can be
bounded by

c11 ≤ σmin(W
0
1 ) ≤ σmax(W

0
1 ) ≤ c12

c21 ≤ σmin(W
0
2 ) ≤ σmax(W

0
2 ) ≤ c22

and the singular values of weight matrix can be bounded by the imbalance matrix

b1l = c11 − 2∥Dk+1 −D0∥ ≤ σmin(W
k+1
1 ) ≤ σmax(W

k+1
1 ) ≤ c12 + ∥Dk+1 −D0∥ = b1u

b2l = c21 − 2∥Dk+1 −D0∥ ≤ σmin(W
k+1
2 ) ≤ σmax(W

k+1
2 ) ≤ c22 + ∥Dk+1 −D0∥ = b2u.

Moreover, we have

biu = ci2 + ∥Dk+1 −D0∥

≤ ci2 +
5αc2 exp(

√
α)σ2

max(Xγ)

(c1 + 2c2(1− exp(
√
α)))σ2

∗(Xγ)

(
Lγ(W

0
1 ,W

0
2 )− L∗γ

)
≤ ci2 + (1− exp(−

√
α))

(
c1 + c2(2− exp(

√
α))
)
σ2
∗(Xγ)×

c2 exp(
√
α)

(c1 + c2(2− exp(
√
α)))σ2

∗(Xγ)

≤ exp(
√
α)ci2
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where the first inequality holds due to P3(k), and the second inequality holds because of the condition
(56). Since bil + 2biu = ci1 + 2c12 and biu ≤ exp(

√
α)ci2, P4(k) holds because

ci1 + 2ci2(1− exp(
√
α)) ≤ b1l ≤ σmin(W

k+1
i ) ≤ σmax(W

k+1
i ) ≤ biu ≤ exp(

√
α)ci2.

Therefore, the iterates of PBGD satisfy

Lγ(W
k
1 ,W

k
2 )− L∗γ ≤

(
1− αµ

2

)k
(Lγ(W

0
1 ,W

0
2 )− L∗γ) +O

(
ϵ0.5

µ

)
.

Together with Theorem 1 and Theorem 4, we arrive at the conclusion.

G PROOF FOR DATA HYPER-CLEANING

We provide the omitted proof of lemmas and theorems for data hyper-cleaning.

G.1 INDEPENDENCE OF THE LOWER-LEVEL SOLUTION SET S(u)

Lemma 23. If XtrnX
†
trn is a diagonal matrix, then for any u, S(u) that is independent of u and thus

ℓ∗trn(u) =
1

2

∥∥∥√ψN (u)
(
I −XtrnX

†
trn

)
Ytrn

∥∥∥2 =
1

2

N∑
i=1

ψ(ui)∥yi∥21
(
[XtrnX

†
trn]ii ̸= 1

)
. (68)

Proof: According to (Barata & Hussein, 2012, Theorem 6.1), one of the lower-level solutions W ∗

of (10) should satisfy

W ∗ = (
√
ψN (u)Xtrn)

†
√
ψN (u)Ytrn

(a)
= X†

trn

√
ψN (u)

−1√
ψN (u)Ytrn

= (Xtrn)
†Ytrn (69)

where (a) holds because
√
ψN (u) is invertiable for any u ∈ U and Lemma 10. Therefore,

L∗trn(u) =
1

2

∥∥∥√ψN (u)
(
I −XtrnX

†
trn

)
Ytrn

∥∥∥2 =
1

2

N∑
i=1

ψ(ui)∥yi∥21([XtrnX
†
trn]ii ̸= 1)

where [XtrnX
†
trn]ii denotes the element of matrix [XtrnX

†
trn] at the position (i, i).

Remark 3. Lemma 23 suggests that the (ϵ, 0) solution to the bilevel problem is meaningless since
the static lower-level solution set makes the bilevel objective in (10) independent of u. This is also
aligned with the observation that the model achieved by data reweighting is independent of data
weight when the training dataset is linear independent (Zhai et al., 2023, Theorem 1). However, the
ϵ-lower-level solution relies on u (the rationale is detailed below). This could also explain the reason
why solving bilevel problem by nested approach to the (ϵ, 0) stationary point has accuracy drop over
the (ϵ, ϵ) stationary point attained by penalized method in the data hyper-cleaning task (Xiao et al.,
2023b).

Explanation of Remark 3. The gradient of lower-level objective can be computed as

∇W ℓtrn(u,W ) = −1

2
(
√
ψN (u)Xtrn)

⊤
√
ψN (u)(Ytrn −XtrnW )

= −1

2
X⊤

trnψN (u)(Ytrn −XtrnW )

=
1

2

N∑
i=1

ψ(ui)xi(x
⊤
i W − y⊤i ). (70)

When the weight of i-th sample ψ(ui) is close to 0, i-th sample minimally influences the lower-level
optimization. Ideally, the optimal response weight which fits the dataset excluding the i-th sample,
will also perform approximately well on the weighted objective.
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To see it, let ui = (ū, · · · , ū,−ū, ū, · · · , ū) with −ū at the i-th position and ū elsewhere. We
can then choose the minimal norm solution W (ui) ∈ argminW

1
2

∑
j ̸=i ∥x⊤j W − y⊤j ∥2 such that∑

j ̸=i xj(x
⊤
j W − y⊤j ) = 0. According to Lemma 23, W (ui) ∈ argminW

1
2

∑
j ̸=i ∥x⊤j W − y⊤j ∥ is

also solution to 1
2

∑
j ̸=i ψ(uj)∥x⊤j W − y⊤j ∥2 so that

∑
j ̸=i ψ(uj)xj(x

⊤
j W − y⊤j ) = 0. By (70),

∇W ℓtrn(u
i,W (ui)) =

ψ(−ū)
2

xi(x
⊤
i W (ui)− y⊤i )

holds for any i. Taking the norm yields

∥∇W ℓtrn(u
i,W (ui))∥ =

ψ(−ū)
2

∥xi(x⊤i W (ui)− y⊤i )∥

which is very small because ψ(−ū) is close to 0 and ∥xi(x⊤i W (ui)− y⊤i )∥ is bounded. According
to the PL property of the training loss, we know the function value gap ℓtrn(ui,W (ui))− ℓ∗trn(u

i) is
also small enough, suggesting that W (ui) is an ϵ-solution of lower-level for some ϵ.
Lemma 24. If [Xtrn;Xval][Xtrn;Xval]

† is a diagonal matrix, then for any u and γ,
argminW ℓγ(u,W ) is independent of u.

Proof: The proof follows that of Lemma 23 by replacing Xtrn with [Xtrn;Xval].

G.2 PROOF OF LEMMA 2: LOCAL BLOCKWISE PL AND SMOOTHNESS

We first restate Lemma 2 in a formal way as follows.

Lemma 25 (Local blockwise PL and smoothness of ℓγ(u,W )). If XtrnX
†
trn is a diagonal matrix,

then for any u ∈ U and any W , the penalized objective ℓγ(u,W ) is Lγw-smooth and µγw-PL over W ,
where the constants are defined as

µγw := σ2
∗
(
X⊤

valXval + γ(1− ψ(ū))X⊤
trnXtrn

)
, Lγw := σ2

max

(
X⊤

valXval + γψ(ū)X⊤
trnXtrn

)
.

Similarly, the lower-level objective ℓtrn(u,W ) is Lw-smooth and µw-PL over W , with the constants

µw := σ2
∗
(
(1− ψ(ū))X⊤

trnXtrn

)
, Lw := σ2

max

(
(1− ψ(ū))X⊤

trnXtrn

)
.

Moreover, ℓγ(u,W ) is γℓtrn(W ) smooth and γc(W )ψ(ū)(1−ψ(ū))2
4 -PL over u ∈ U , where we define

c(W ) = min
i

{
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

}
>0

as the lower bound of the positive mismatch in the training loss. If there is no positive mismatch, we
can set c(W ) to any positive number.

Proof: We first show that Sigmoid function ψ(ui) is ψ(ū)(1 − ψ(ū))2 PL and 1 smooth over ui,
where ui is the i-th element in u. According to the definition, the gradient of the Sigmoid function
can be computed as ∇ψ(ui) = ψ(ui)(1− ψ(ui)), and its Hessian has the form of

∇2ψ(ui) = ψ(ui)(1− ψ(ui))
2 + ψ(ui)(−ψ(ui)(1− ψ(ui)))

= ψ(ui)(1− ψ(ui))
2 − ψ(ui)

2(1− ψ(ui))

= ψ(ui)(1− ψ(ui))(1− 2ψ(ui)) ≤ 1 (71)

which validates the 1 smoothness. On the other hand,

∥∇ψ(ui)∥2 = ψ(ui)
2(1− ψ(ui))

2

≥ { min
−ū≤ui≤ū

ψ(ui)(1− ψ(ui))
2}ψ(ui)

≥ min{ψ(−ū)(1− ψ(−ū))2, ψ(ū)(1− ψ(ū))2}ψ(ui)
≥ min{ψ(ū)2(1− ψ(ū)), ψ(ū)(1− ψ(ū))2}ψ(ui)
≥ ψ(ū)(1− ψ(ū))2ψ(ui) (72)

≥ ψ(ū)(1− ψ(ū))2(ψ(ui)−min
ui

ψ(ui))
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where the third inequality holds since ψ(−ū) = 1− ψ(ū), the fourth inequality comes from ū > 0
so that ψ(ū) > 1 − ψ(ū), and the last inequality follows from minui

ψ(ui) = 0. This proves that
ψ(ui) is ψ(ū)(1− ψ(ū))2 PL when ui ∈ [−ū, ū].
Recall that the penalized objective can be written as

ℓγ(u,W ) = ℓval(W ) +
γ

2

N∑
i=1

ψ(ui)
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
.

Therefore, the gradient of Lγ(u,W ) satisfies

∥∇uℓγ(u,W )∥2 =

N∑
i=1

∥∇ui
ℓγ(u,W )∥2

=

N∑
i=1

∥∥∥γ
2
∇ψ(ui)

[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]∥∥∥2
=
γ2

4

N∑
i=1

∇ψ(ui)2
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]2
(72)
≥ γ2

4

N∑
i=1

ψ(ū)(1− ψ(ū))2ψ(ui)
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]2
≥ γ2c(W )ψ(ū)(1− ψ(ū))2

4

N∑
i=1

ψ(ui)
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
=
γc(W )ψ(ū)(1− ψ(ū))2

2
(ℓγ(u,W )− Lval(W ))

≥ γc(W )ψ(ū)(1− ψ(ū))2

2
(ℓγ(u,W )−min

u
ℓγ(u,W )) (73)

where the last inequality holds from minu Lγ(u,W ) = Lval(W ). This shows ℓγ(u,W ) is
γc(W )ψ(ū)(1−ψ(ū))2

4 PL over u. The Hessian of ℓγ(u,W ) can be calculated by

∥∇2
uℓγ(u,W )∥ =

N∑
i=1

∥∥∥γ
2
∇2ψ(ui)

[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]∥∥∥
≤ γ

2

N∑
i=1

∥∇2ψ(ui)∥∥y⊤i − x⊤i W∥2

≤ γ

2

N∑
i=1

∥y⊤i − x⊤i W∥2 = γℓtrn(W ) (74)

which indicates ℓγ(u,W ) is γℓtrn(W ) smooth over u.

For the property over W , we can use the matrix form of the objective and define

ℓ̃u(W ) :=
1

2
∥Yval −XvalW∥2 + γ

2

∥∥∥√ψN (u) (Ytrn −XtrnW )
∥∥∥2 =

1

2
∥Yγ(u)−Xγ(u)W∥2

where Xγ(u) = [Xval;
√
γψN (u)Xtrn] and Yγ(u) = [Yval;

√
γψN (u)Ytrn].

Then according to (Karimi et al., 2016, Appendix B), ℓ̃u(W ) is σ2
max(Xγ(u)) smooth and σ2

∗(Xγ(u))
PL. Since

ℓγ(u,W ) = ℓ̃u(W )− h(u) with h(u) = −γ
2

N∑
i=1

ψ(ui)∥yi∥21([XtrnX
†
trn]i ̸= 1)

where h(u) is independent of W , we have ℓγ(u,W ) is σ2
max(Xγ(u)) smooth over W and

∥∇W ℓγ(u,W )∥2 = ∥∇ℓ̃u(W )∥2 ≥ 2σ2
∗(Xγ(u))

(
ℓ̃u(W )−min

W
ℓ̃u(W )

)
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(a)
= 2σ2

∗(Xγ(u))
(
ℓγ(u,W )−min

W
ℓγ(u,W )

)
(75)

indicating that ℓγ(u,W ) is σ2
∗(Xγ(u)) PL over W . On the other hand, we have

Xγ(u)
⊤Xγ(u) = [X⊤

val X
⊤
trn

√
γψN (u)]

[
Xval√
γψN (u)Xtrn

]
= X⊤

valXval + γX⊤
trnψN (u)Xtrn.

As σ(·) is strictly increasing and ψ(−u) = 1− ψ(u), we have (1− ψ(ū))I ≼ ψN (u) ≼ ψ(ū)I and

X⊤
valXval + γ(1− ψ(ū))X⊤

trnXtrn ≼ Xγ(u)
⊤Xγ(u) ≼ X⊤

valXval + γψ(ū)X⊤
trnXtrn.

Moreover, the definition of Xγ(u) suggests that it is of constant rank when u ∈ U . In this way, the
singular value of the data matrix will be bounded by

σ2
∗(Xγ(u)) ≥ σ∗

(
X⊤

valXval + γ(1− ψ(ū))X⊤
trnXtrn

)
=: µγw (76)

σ2
max(Xγ(u)) ≤ σmax

(
X⊤

valXval + γψ(ū)X⊤
trnXtrn

)
=: Lγw (77)

which means ℓγ(u,W ) is uniformly smooth over W with Lw and is uniformly PL over W with µw.
Similarly, the lower-level objective ℓtrn(u,W ) is uniformly smooth over W with Lw and PL over W
with µw which are defined as

µw := (1− ψ(ū))σ∗
(
X⊤

trnXtrn

)
, Lw := σmax

(
X⊤

trnXtrn

)
.

G.3 LIPSCHITZ CONTINUITY OF SOLUTION TO THE PENALIZED PROBLEM

Lemma 26. There exists W ∗
γ (u) ∈ argmin ℓγ(u,W ) such that W ∗

γ (u) is L∗
wu Lipschitz continuous

over u where L∗
wu = O(1). Moreover, ∥W ∗

γ (u)∥ ≤ L∗
w = O(1).

Proof: This result can be deduced from a general result under the PL condition and the smoothness
of ℓγ(u, ·), as demonstrated by (Nouiehed et al., 2019, Lemma A.3). Given that ℓγ(u, ·) is a squared
loss composite with a linear mapping —- a specific case of a PL function – we aim to separately
derive the Lipschitz continuity of the solution set for clarity and simplicity.

Let W ∗
γ (u) = Xγ(u)

†Yγ(u) be the minimal norm solution of minW ℓγ(u,W ), where Xγ(u) =

[Xval;
√
γψN (u)Xtrn] and Yγ(u) = [Yval;

√
γψN (u)Ytrn]. According to (76) and (77), we have

∥Xγ(u)
†∥2 ≤ 1

σ∗(Xγ(u))
≤ 1√

µγw
= O(γ−

1
2 )

∥Xγ(u
1)† −Xγ(u

2)†∥
(a)

≤
√
2max

{
∥Xγ(u

1)∥22, ∥Xγ(u
2)∥22

}
∥Xγ(u

1)−Xγ(u
2)∥

≤
√
2

σ∗(Xγ(ū))2
∥Xγ(u

1)−Xγ(u
2)∥

(b)

≤
√
2

µγw

√
γ∥(
√
ψN (u1)−

√
ψN (u2))Xtrn∥

≤
√
2

µγw

√
γ∥
√
ψN (u1)−

√
ψN (u2)∥2∥Xtrn∥

(c)

≤
√
2

2µγw
√

1− ψ(ū)

√
γ∥Xtrn∥∥ψN (u1)− ψN (u2)∥2

(d)

≤
√
2

2µγw
√
1− ψ(ū)

√
γ∥Xtrn∥∥u1 − u2∥ = O(γ−

1
2 )∥u1 − u2∥

where (a) results from (Stewart, 1977, Theorem 3.3), (b) is derived from the definition of Xγ(u), and
(c) is because

√
a−

√
b = a−b√

a+
√
b

and the bound of
√
ψ(u1i ) +

√
ψ(u1i ) ≥ 2

√
1− ψ(ū),∀i and (d)

comes from the 1-Lischitz continuity of the Sigmoid function ψ(·).
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Similarly, we can derive the bound for Yγ(u) as

∥Yγ(u)∥2 = σmax(Yγ(u)) ≤
√
σmax(Y ⊤

valYval + γψ(ū)Y ⊤
trnYtrn) = O(γ

1
2 )

∥Yγ(u1)− Yγ(u
2)∥ (a)

=
√
γ∥(
√
ψN (u1)−

√
ψN (u2))Ytrn∥

(b)

≤
√
γ∥Ytrn∥

2
√

1− ψ(ū)
∥u1 − u2∥ = O(γ

1
2 )∥u1 − u2∥.

where (a) comes from the definition and (b) is derived from the Lipschitz continuity of Sigmoid
function, ∥AB∥ ≤ ∥A∥2∥B∥ and

√
a−

√
b = a−b√

a+
√
b
. As a result, for any u1 and u2, it holds that

∥W ∗
γ (u

1)−W ∗
γ (u

2)∥ ≤ ∥Xγ(u
1)†∥2∥Yγ(u1)− Yγ(u

2)∥+ ∥Yγ(u2)∥2∥Xγ(u
1)† −Xγ(u

2)†∥

≤

 √
γ∥Ytrn∥

2
√
µγw(1− ψ(ū))

+

√
2γσmax(Y ⊤

valYval + γψ(ū)Y ⊤
trnYtrn)

2µγw
√

1− ψ(ū)
∥Xtrn∥

 ∥u1 − u2∥.

Let us denote

L∗
wu :=

√
γ∥Ytrn∥

2
√
µγw(1− ψ(ū))

+

√
2γσmax(Y ⊤

valYval + γψ(ū)Y ⊤
trnYtrn)

2µγw
√
1− ψ(ū)

∥Xtrn∥ = O(1) (78)

then W ∗
γ (u) is L∗

wu Lipschitz continuous on u.

Besides, the boundedness of W ∗
γ (u) can be earned by

∥W ∗
γ (u)∥ ≤ ∥Xγ(u)

†∥2∥Yγ(u)∥ ≤ max{n,N +N ′}∥Xγ(u)
†∥2∥Yγ(u)∥2

≤
max{n,N +N ′}

√
σmax(Y ⊤

valYval + γψ(ū)Y ⊤
trnYtrn)√

µγw
=: L∗

w = O(1).

G.4 GLOBAL SOLUTION RELATIONS IN DATA HYPER-CLEANING

Based on the smoothness and PL of ℓtrn(u,W ) over W , we are expected to analyze the approximate
behavior of the penalized problem (11) to the bilevel hyper-cleaning problem (10). Since upper-level
problem is not Lipschitz continuous globally, the result in (Shen et al., 2023) can not be applied
directly. In light of Remark 3, we only focus on whether ϵ2 solution of the penalized problem can
recover some approximate solution of the bilevel problem in the following lemma.
Theorem 7. For any γ and any ϵ2, suppose that there exists an ϵ2 solution (u,W ) to the γ-penalized
problem (11) which has bounded norm ∥W∥ ≤ R and R is independent of u and γ. For such ϵ2
solution (u,W ), there exists γ∗ = O(ϵ−1

1 ) such that for any γ > γ∗, (u,W ) is also an (ϵ2, ϵγ)
solution to the bilevel problem (10) for some ϵγ ≤ ϵ1+ϵ2

γ−γ∗ .

Similar to the representation learning, to ensure the penalized problem (11) is an ϵ-approximate
solution to the bilevel data hyper-cleaning problem (10), i.e. ϵγ = O(ϵ), one need to choose
ϵ1 = O(

√
ϵ) and set the penalty parameter γ = O(ϵ−0.5). Therefore, if we can verify the iterates

generates by PBGD achieves ϵ-solution of the penalized problem and are bounded with radius
independent of γ and u, then PBGD can converge to some approximate solution of bilevel problem.

Proof: Given γ, we first prove the Lipschitz continuity of the upper-level objective (validation loss)
at the lower-level solution set, i.e. for any ϵ2 solution (u,W ) of γ-penalized problem with ∥W∥ ≤ R,
let Wu = argminW ℓtrn(u,W ), then we have ∥Wu∥ = ∥ProjS(u)(W )∥ ≤ ∥W∥ ≤ R and

ℓval(W )− ℓval(Wu) =
1

2
∥Yval −XvalW∥2 − 1

2
∥Yval −XvalWu∥2

=
1

2
⟨2Yval −Xval(W +Wu), Xval(W −Wu)⟩

≥ − (∥Yval∥+ ∥Xval∥∥W∥) ∥Xval∥∥W −Wu∥
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≥ − (∥Yval∥+ ∥Xval∥R) ∥Xval∥∥W −Wu∥.

Then by choosing γ∗ = (∥Yval∥+∥Xval∥R)2∥Xval∥2

2µwϵ1
, it follows that

ℓval(W ) + γ∗(ℓtrn(u,W )− ℓ∗trn(u))− ℓval(Wu)

≥ − (∥Yval∥+ ∥Xval∥R) ∥Xval∥∥W −Wu∥+ γ∗(ℓtrn(u,W )− ℓ∗trn(u))

≥ − (∥Yval∥+ ∥Xval∥R) ∥Xval∥∥W −Wu∥+
µwγ

∗

2
∥W −Wu∥2

≥ min
z∈R+

− (∥Yval∥+ ∥Xval∥R) ∥Xval∥z +
µwγ

∗

2
z2

= − (∥Yval∥+ ∥Xval∥R)2 ∥Xval∥2

2µwγ∗
= −ϵ1. (79)

According to the definition of ϵ2 stationary point of γ penalized problem, we have

ℓval(W ) + γ(ℓtrn(u,W )− ℓ∗trn(u)) ≤ ℓval(Wu) + γ(ℓtrn(u,Wu)− ℓ∗trn(u)) + ϵ2

≤ ℓval(Wu) + ϵ2
(79)
≤ ℓval(W ) + γ∗(ℓtrn(u,W )− ℓ∗trn(u)) + ϵ1 + ϵ2.

Substracting ℓval(W ) from both sides and rearraging yields

ϵγ := ℓtrn(u,W )− ℓ∗trn(u) ≤
ϵ1 + ϵ2
γ − γ∗

when γ > γ∗. Then for any (u′,W ′) satisfying ℓtrn(u′,W ′)− ℓ∗trn(u
′) ≤ ϵγ , it holds that

ℓval(W ) + γ(ℓtrn(u,W )− ℓ∗trn(u)) ≤ ℓval(W
′) + γ(ℓtrn(u

′,W ′)− ℓ∗trn(u
′)) + ϵ2.

Rearraging terms yields

ℓval(W ) ≤ ℓval(W
′) + γ(ℓtrn(u

′,W ′)− ℓ∗trn(u
′)− ϵγ) + ϵ2 ≤ ℓval(W

′) + ϵ2

which means (u,W ) is an (ϵ2, ϵγ) solution to bilevel problem.

G.5 PARAMETERIZED DATA AND LABEL MATRIX FAMILY ARE ACUTE

Lemma 27. For u ∈ U , data matrix family {Xγ(u), u ∈ U} is acute, and {Yγ(u), u ∈ U} is acute.
Therefore, Ran(Xγ(u)) remains the same for u ∈ U and so does Ran(Yγ(u)).

Proof: For any u, we can write Xγ(u) and Yγ(u) as

Xγ(u) =

[
I √

γσN (u)

][
Xval

Xtrn

]
, Yγ(u) =

[
I √

γσN (u)

][
Yval
Ytrn

]
.

According to Lemma 12, it is obvious that rank(Xγ(u)) = rank([Xval;Xtrn]) and rank(Yγ(u)) =
rank([Yval;Ytrn]), which verifies the constant rank condition in Lemma 11. To show the acute
property, we need to further prove that for any u1 and u2, if we denoteA = Xγ(u

1) andB = Xγ(u
2),

then rank(A) = rank(PABRA) with PA = AA† and RA = A†A.

To do so, we first notice that, there exists a diagonal matrix Λ such that B = ΛA where

Λ =

[
I √

σN (u2)/σN (u1)

]
.

Then we can write

rank(PABRA) = rank(AA†ΛAA†A)
(a)
= rank(AA†ΛA) (80)

where (a) is because AA†A = A. Furthermore, by singular value decomposition, we can decompose

A = UΣV ⊤ with Σ =

[
Σ1 0

0 0

]
∈ R(N+N ′)×m, and orthogonal matrix U = [U1 U2] ∈
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R(N+N ′)×(N+N ′) and V = [V1 V2] ∈ Rm×m. Also, by denoting rank(A) = r, we know that
U1 ∈ R(N+N ′)×r, V1 ∈ Rm×r and Σ1 ∈ Rr×r are full rank. Thus, A can be decomposed by

A = [U1 U2]

[
Σ1 0

0 0

][
V ⊤
1

V ⊤
2

]
= [U1Σ1 0]

[
V ⊤
1

V ⊤
2

]
= U1Σ1V

⊤
1 .

Besides, based on linear algebra knowledge, A† = V1Σ
−1
1 U⊤

1 . In this way, we can further write

rank(PABRA)
(80)
= rank(AA†ΛA) = rank(U1U

⊤
1 ΛU1Σ1V

⊤
1 )

(a)
= rank(U⊤

1 ΛU1)
(b)
= rank((

√
ΛU1)

⊤
√
ΛU1)

(c)
= rank(

√
ΛU1)

(d)
= rank(U1) = r = rank(A) (81)

where (a) is derived from Lemma 12 with full column rank U1 and full row rank V ⊤
1 ,Σ1, (b) is

because Λ is a nonsingular diagonal matrix, (c) and (d) come from Lemma 12. Combining (80) and
(81) with Lemma 11, we know A = Xγ(u

1) and B = Xγ(u
2) are acute. Due to the arbitrary choices

of u1, u2 ∈ U , the family {Xγ(u), u ∈ U} is acute, which also holds for {Yγ(u), u ∈ U}. By the
acute matrices in Proposition 1, the range space remains the same, which completes the proof.

G.6 MONOTONICITY OF LOSS FUNCTIONS

Lemma 28. Given u1, u2 ∈ U and assuming u1 ≤ u2 in the sense that u1i ≤ u2i for any i, then

ψ(u1i )∥y⊤i − x⊤i W
∗
γ (u

1)∥2 ≤ ψ(u2i )∥y⊤i − x⊤i W
∗
γ (u

2)∥2

∥y′⊤i − x′⊤i W
∗
γ (u

1)∥2 ≤ ∥y′⊤i − x′⊤i W
∗
γ (u

2)∥2.

where {xi, yi} are training data samples and {x′i, y′i} are validation data samples. Moreover,

∥yi∥21([XtrnX
†
trn]i ̸= 1) ≤ ∥y⊤i − x⊤i W

∗
γ (u)∥2.

Proof: For a matrix A, we denote Ai as the i-th row of A. For any u ∈ U , we have

∥y⊤i − x⊤i W
∗
γ (u)∥2 = ∥y⊤i − x⊤i W

∗
γ (u)∥2

= ∥y⊤i − x⊤i Xγ(u)
†Yγ(u)∥2

= ∥(Ytrn −XtrnX
†
γ(u)Yγ(u))i∥2

= γ−1ψ(ui)
−1∥(Yγ(u)−Xγ(u)X

†
γ(u)Yγ(u))(N ′+i)∥2

= γ−1ψ(ui)
−1∥((I −Xγ(u)X

†
γ(u))Yγ(u))(N ′+i)∥2

= γ−1ψ(ui)
−1∥ProjRan(Xγ(u))⊥(Yγ(u))(N ′+i)∥2 (82)

Then for u1 ≤ u2, it holds that

∥y⊤i − x⊤i W
∗
γ (u

1)∥2 = γ−1ψ(u1i )
−1∥ProjRan(Xγ(u1))⊥(Yγ(u

1))(N ′+i)∥2

(a)
= γ−1ψ(u1i )

−1∥ProjRan(Xγ(u2))⊥(Yγ(u
1))(N ′+i)∥2

= γ−1ψ(u1i )
−1∥((I −Xγ(u

2)X†
γ(u

2))Yγ(u
1))(N ′+i)∥2

(b)

≤ γ−1ψ(u1i )
−1∥((I −Xγ(u

2)X†
γ(u

2))Yγ(u
2))(N ′+i)∥2

= γ−1ψ(u2i )
−1∥((I −Xγ(u

2)X†
γ(u

2))Yγ(u
2))(N ′+i)∥2 ×

ψ(u2i )

ψ(u1i )

=
ψ(u2i )

ψ(u1i )
∥y⊤i − x⊤i W

∗
γ (u

2)∥2

where (a) is because Ran(Xγ(u
1)) = Ran(Xγ(u

2)) from Lemma 27, (b) is because each element
in Yγ(u1) is no greater than Yγ(u2). For the validation loss, it can be proved similarly, while the only
difference is the fact that

∥y′⊤i − x′⊤i W
∗
γ (u)∥2 = ∥(Yγ(u)−Xγ(u)X

†
γ(u)Yγ(u))i∥2
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without magnitude of γ−1ψ(ui)
−1 because Yγ(u) and Xγ(u) do not have such magnitude on

validation data points.

Finally, as ℓtrn(u,W )− ℓ∗trn(u) ≥ 0 holds for any u ∈ U and W , we have

γ

2

N∑
i=1

ψ(ui)
[
∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
≥ 0

holds for any u ∈ U . Then letting u be the vector which equals to ū at i-th position and equals to −ū
elsewhere and taking ū→ ∞, we know

∥y⊤i − x⊤i W∥2 − ∥yi∥21([XtrnX
†
trn]i ̸= 1) ≥ 0

holds for any i and W . Taking W =W ∗
γ (u) yields the conclusion.

Lemma 29. If [Xtrn;Xval][Xtrn;Xval]
† is diagonal matrix, ℓ∗γ(u) is uniformly PL over u ∈ U with

µu and is uniformly smooth over u ∈ U with Lu, and the constants are defined as

µu :=
γψ(ū)(1− ψ(ū))2 mini ∥yi∥2

4
= O(γ), Lu :=

γ

2

N∑
i=1

∥yi∥2 = O(γ). (83)

Moreover, the gradient of ℓ∗γ(u) is also bounded by Lu, i.e. ∥∇uℓ
∗
γ(u)∥ ≤ Lu.

Proof: Since ℓγ(u, ·) is smooth and PL, according to (Nouiehed et al., 2019, Lemma A.5), we know
ℓ∗γ(u) = minW ℓγ(u,W ) is smooth with the gradient

∇ℓ∗γ(u) = ∇uℓγ(u,W ), ∀W ∈ argmin
W

ℓγ(u,W ) = argmin
W

ℓ̃γ(u,W ).

We write the minimal-norm optimal solution of penalized problem as W ∗
γ (u) ∈ argminW ℓγ(u,W ).

Plugging W ∗
γ (u) into (73), we know

∥∇ℓ∗γ(u)∥2 = ∥∇uℓγ(u,W
∗
γ (u))∥2 ≥

γc(W ∗
γ (u))ψ(ū)(1− ψ(ū))2

2
(ℓγ(u,W

∗
γ (u))−min

u
ℓγ(u,W

∗
γ (u)))

=
γc(W ∗

γ (u))ψ(ū)(1− ψ(ū))2

2
(ℓ∗γ(u)−min

u
ℓ∗γ(u))

which suggests that ∇ℓ∗γ(u) is
γc(W∗

γ (u))ψ(ū)(1−ψ(ū))2

4 PL over u ∈ U . Besides, letting u0 =
[ū, · · · , ū], we have

c(W ∗
γ (u)) = min

i

{
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

}
>0

= min
i

{
γ−1ψ(ui)

−1∥((I −Xγ(u)X
†
γ(u))Yγ(u))(N ′+i)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

}
>0

(a)
= min

i

{
γ−1ψ(ui)

−1∥((I −Xγ(u)X
†
γ(u))Yγ(u))(N ′+i)∥2

}
>0

= min
i

{
γ−1ψ(ui)

−1∥ProjRan(Xγ(u))⊥(Yγ(u))(N ′+i)∥2
}
>0

(b)

≥ ψ(−ū)
ψ(ū)

min
i

{
∥y⊤i − x⊤i W

∗
γ (−u0)∥2

}
>0

= O(1) (84)

where (a) comes from

γ−1ψ(ui)
−1∥((I −Xγ(u)X

†
γ(u))Yγ(u))(N ′+i)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1) > 0

if and only if γ−1ψ(ui)
−1∥((I − Xγ(u)X

†
γ(u))Yγ(u))(N ′+i)∥2 > 0 and [XtrnX

†
trn]i = 1, (b) is

due to Lemma 28. This means ℓ∗γ(u) is uniformly PL over u ∈ U with constant

µu :=
γψ(ū)(1− ψ(ū))2 mini

{
∥y⊤i − x⊤i W

∗
γ (−u0)∥2

}
>0

4
= O(γ). (85)
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Moreover, ∇2
uℓγ(u

′,W ) at W =W ∗
γ (u) can be upper bounded by

∥∇2
uℓγ(u

′,W ∗
γ (u))∥ =

N∑
i=1

∥∥∥γ
2
∇2ψ(u′i)

[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]∥∥∥
≤ γ

2

N∑
i=1

∥∇2ψ(u′i)∥
[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
≤ γ

2

N∑
i=1

[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
≤ γ

2

N∑
i=1

[
∥y⊤i − x⊤i W

∗
γ (u)∥2

]
(a)

≤ γ

2

N∑
i=1

∥y⊤i − x⊤i W
∗
γ (u0)∥2 (86)

where (a) comes from similar derivation as of (84). Similarly, for anyW = aWγ(u
1)+(1−a)Wγ(u

2)
where a ∈ [0, 1], ∇2

uW ℓγ(u
′,W ) can be bounded by

∥∇2
uW ℓγ(u

′,W )∥ =

N∑
i=1

∥∥γ∇ψ(u′i)xi(y⊤i − x⊤i W )
∥∥

≤ γ

N∑
i=1

∥xi(y⊤i − x⊤i W )∥

= γ

N∑
i=1

∥xi(y⊤i − x⊤i (aWγ(u
1) + (1− a)Wγ(u

2))∥

≤ aγ

N∑
i=1

∥xi(y⊤i − x⊤i Wγ(u
1))∥+ (1− a)γ

N∑
i=1

∥xi(y⊤i − x⊤i Wγ(u
2))∥

≤ γ

N∑
i=1

∥xi∥∥y⊤i − x⊤i W
∗
γ (u0)∥ = O(γ). (87)

Together (86) and (87) indicate that ℓ∗γ(u) is smooth because for any u1, u2 ∈ RN , it holds that

∥∇uℓ
∗
γ(u

1)−∇uℓ
∗
γ(u

2)∥
= ∥∇uℓγ(u

1,W ∗
γ (u

1))−∇uℓγ(u
2,W ∗

γ (u
2))∥

≤ ∥∇uℓγ(u
1,W ∗

γ (u
1))−∇uℓγ(u

2,W ∗
γ (u

1))∥+ ∥∇uℓγ(u
2,W ∗

γ (u
1))−∇uℓγ(u

2,W ∗
γ (u

2))∥
(a)

≤ ∥∇2
uℓγ(u

′,W ∗
γ (u

1))∥∥u2 − u1∥+ ∥∇2
uwℓγ(u

2,W ′)∥∥W ∗
γ (u

1)−W ∗
γ (u

2)∥
(b)

≤ γ

2

N∑
i=1

∥y⊤i − x⊤i W
∗
γ (u0)∥2∥u1 − u2∥+ γ

N∑
i=1

∥xi∥∥y⊤i − x⊤i W
∗
γ (u0)∥L∗

wu∥u1 − u2∥

where (a) comes from the mean value theorem with u′ = au1 + (1− a)u2 and W ′ = bW ∗
γ (u

1) +

(1− b)W ∗
γ (u

2) for some a, b ∈ [0, 1], and (b) holds from (86) and (87). Therefore, we can define the
smoothness constant of ℓ∗γ as

Lu :=
γ

2

N∑
i=1

∥y⊤i − x⊤i W
∗
γ (u0)∥2 + γ

N∑
i=1

∥xi∥∥y⊤i − x⊤i W
∗
γ (u0)∥L∗

wu = O(γ). (88)

Besides the bounded Hessian, the gradient of ℓγ(u,W ∗
γ (u)) is also bounded by Lu because

∥∇uℓ
∗
γ(u)∥ = ∥∇uℓγ(u,W

∗
γ (u))∥
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=

N∑
i=1

∥∥∥γ
2
∇ψ(ui)

[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]∥∥∥
≤ γ

2

N∑
i=1

∥∇ψ(ui)∥
[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
≤ γ

2

N∑
i=1

[
∥y⊤i − x⊤i W

∗
γ (u)∥2

] (a)

≤ γ

2

N∑
i=1

∥y⊤i − x⊤i W
∗
γ (u0)∥2 ≤ Lu (89)

where (a) can be obtained by (86).

G.7 GRADIENT ESTIMATION ERROR

Lemma 30. The gradient estimator has the bounded error∥∥∇ℓ∗γ(u)− γ
(
∇uℓtrn(u

k,W k+1)−∇uℓtrn(u
k, Zk+1)

)∥∥
≤ γ

(
C(Z0)

√
2ℓtrn(Z0)

µw
+ C(W 0)

√
2ℓγ(W 0)

µγw

)
(1− βµw)

T/2. (90)

where βµw = min{β1µw, β2µγw}.

Proof: Let Z ′ = ProjS(uk)(Z
k+1), we know ∥Z ′∥ ≤ ∥Zk+1∥ and thus,

∥∇ℓ∗trn(uk)−∇uℓtrn(u
k, Zk+1)∥ (a)

= ∥∇uℓtrn(u
k, Z ′)−∇uℓtrn(u

k, Zk+1)∥

=

∥∥∥∥∥12
N∑
i=1

∇ψ(ui)(∥y⊤i − x⊤i Z
′∥2 − ∥y⊤i − x⊤i Z

k+1∥2)

∥∥∥∥∥
≤ 1

2

N∑
i=1

∥2yi − x⊤i (Z
′ + Zk+1)∥∥x⊤i (Z ′ − Zk+1)∥

≤
N∑
i=1

(∥yi∥+ ∥xi∥∥Zk+1∥)∥xi∥∥Z ′ − Zk+1∥

=

N∑
i=1

(∥yi∥+ ∥xi∥∥Zk+1∥)∥xi∥d(Zk+1,S(uk)) (91)

where (a) results from the Danskin type theorem (Nouiehed et al., 2019, Lemma A.5) that
∇ℓ∗trn(uk) = ∇uℓtrn(u

k, Z), ∀Z ∈ S(uk). Then according to Lemmas 6 and 7, at each itera-
tion k, we have

∥Zk+1∥ ≤ ∥Zk+1 − Z0∥+ ∥Z0∥ ≤ ∥Z0∥+

√
8ℓtrn(uk, Z0)

µw

(a)

≤ ∥Z0∥+

√
8ℓtrn(Z0)

µw
(92)

and

d(Zk+1,S(uk))2 = d(Zk,T ,S(uk))2 ≤ 2

µw

(
ℓtrn(u

k, Zk,T )−min
Z
ℓtrn(u

k, Z)
)

≤ 2(1− βµw)
T

µw

(
ℓtrn(u

k, Zk,0)−min
Z
ℓtrn(u

k, Z)
)

=
2(1− βµw)

T

µw

(
ℓtrn(u

k, Z0)−min
Z
ℓtrn(u

k, Z)
)

(b)

≤ 2(1− βµw)
T ℓtrn(Z

0)

µw
(93)
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where (a) and (b) hold because minZ ℓtrn(u
k, Z) ≥ 0 and ψ(u) ≤ 1. Plugging (92), (93) into (91)

and defining C(Z0) =
∑N
i=1(∥yi∥+ ∥xi∥(∥Z0∥+

√
8ℓtrn(Z0)

µw
))∥xi∥, we obtain that

∥∇ℓ∗trn(uk)−∇ℓtrn(uk, Zk+1)∥ ≤ C(Z0)

√
2ℓtrn(Z0)

µw
(1− β1µw)

T/2. (94)

Similarly, if we define ℓ̃γ(u,W ) = ℓval(W )+γℓtrn(u,W ) and ℓ̃∗γ(u) := minW ℓ̃γ(u,W ), as ℓ̃γ(u, ·)
is also smooth and PL, the gradient estimator of ℓ̃∗γ can be also bounded by

∥∇ℓ̃∗γ(uk)−∇uℓ̃γ(u
k,W k+1)∥ ≤ γC(W 0)

√
2ℓγ(W 0)

µγw
(1− β2µ

γ
w)
T/2. (95)

We then define ℓ∗γ(u) := minW ℓγ(u,W ) and since ℓγ(u,W ) = ℓ̃γ(u,W )− γℓ∗trn(u), we have

ℓ∗γ(u) = min
W

ℓγ(u,W ) = min
W

ℓ̃γ(u,W )− γℓ∗trn(u) = ℓ̃∗γ(u)− γℓ∗trn(u)

and thus ℓ∗γ(u) is differentiable and ∇ℓ∗γ(u) = ∇ℓ̃∗γ(u)− γ∇ℓ∗trn(u).
Therefore, the gradient estimator of the penalized objective ℓ∗γ can be bounded by∥∥∇ℓ∗γ(u)− γ

(
∇uℓtrn(u

k,W k+1)−∇uℓtrn(u
k, Zk+1)

)∥∥
≤ ∥∇ℓ̃∗γ(uk)−∇uℓ̃γ(u

k,W k+1)∥+ γ∥∇ℓ∗trn(uk)−∇ℓtrn(uk, Zk+1)∥

≤ γC(Z0)

√
2ℓtrn(Z0)

µw
(1− β1µw)

T/2 + γC(W 0)

√
2ℓγ(W 0)

µγw
(1− β2µ

γ
w)
T/2

≤ γ

(
C(Z0)

√
2ℓtrn(Z0)

µw
+ C(W 0)

√
2ℓγ(W 0)

µγw

)
(1− βµw)

T/2 (96)

where βµw = min{β1µw, β2µγw}.

G.8 PROOF OF THEOREM 3

Proof: We first prove the error bound condition of ℓ∗γ(u) over the constraint u ∈ U . We denote

ci(u) := ∥y⊤i − x⊤i W
∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1) (97)

so that ℓ∗γ(u) := ℓval(W
∗
γ (u)) +

γ
2

∑N
i=1 ψ(ui)ci(u). Since ℓγ(u, ·) is uniformly PL, so the gradient

of ℓ∗γ(u) can be calculated by the Danskin type theorem as

∇ui
ℓ∗γ(u) =

γ

2
∇ψ(ui)

[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
=
γ

2
ψ(ui)(1− ψ(ui))

[
∥y⊤i − x⊤i W

∗
γ (u)∥2 − ∥yi∥21([XtrnX

†
trn]i ̸= 1)

]
=
γ

2
ψ(ui)(1− ψ(ui))ci(u) ≥ 0

which means ℓ∗γ(u) is non-decreasing and (projected) gradient flow will never fluctuate, i.e. uk+1 ≤
uk holds for any k. In this way, the projection operator is effective at most at the end point. If
ℓ∗γ(u) attains minimum for some u ∈ intU , then ci(u) = 0. In this case, iterates generated by
projected gradient descent converge to minu∈U ℓ

∗
γ(u) = minu ℓ

∗
γ(u) because the projection operator

is ineffective along the trajectory.

If ℓ∗γ(u) attains minimum on the boundary u ∈ U , we will then prove the sequence generated by
projected gradient descent will still converge to minu∈U ℓ

∗
γ(u) by contradiction. It is clear that

limk→∞ ℓ∗γ(u
k) < minu∈U ℓ

∗
γ(u) can not hold because uk ∈ U . Therefore, without loose of general-

ity, we assume that limk→∞ ℓ∗γ(u
k) > minu∈U ℓ

∗
γ(u). Then according to the non-decreasing property

of ℓ∗γ(u), we know limk→∞ uk > −ū so that the projection operator is ineffective at any iteration
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K. By smoothness and denoting ∇̃ℓ∗γ(uk) := γ
(
∇uℓtrn(u

k,W k+1)−∇uℓtrn(u
k, Zk+1)

)
, ℓ∗γ =

min ℓ∗γ(u), for any k ≤ K,

ℓ∗γ(u
k+1) ≤ ℓ∗γ(u

k) + ⟨∇ℓ∗γ(uk),−α∇̃ℓ∗γ(uk)⟩+
α2Lu
2

∥∇̃ℓ∗γ(uk)∥2

≤ ℓ∗γ(u
k)− α∥∇ℓ∗γ(uk)∥2 +

α2Lu
2

∥∇ℓ∗γ(uk)∥2 + α⟨∇ℓ∗γ(uk),−∇̃ℓ∗γ(uk) +∇ℓ∗γ(uk)⟩

+
α2Lu
2

⟨∇̃ℓ∗γ(uk) +∇ℓ∗γ(uk), ∇̃ℓ∗γ(uk)−∇ℓ∗γ(uk)⟩

(a)

≤ ℓ∗γ(u
k)− α∥∇ℓ∗γ(uk)∥2 +

α2Lu
2

∥∇ℓ∗γ(uk)∥2 + αLu(ū+ 2)∥∇ℓ∗γ(uk)− ∇̃ℓ∗γ(uk)∥

(b)

≤ ℓ∗γ(u
k)− αµu(ℓ

∗
γ(u

k)− ℓ∗γ) + αLu(ū+ 2)∥∇ℓ∗γ(uk)− ∇̃ℓ∗γ(uk)∥
(c)

≤ ℓ∗γ(u
k)− αµu(ℓ

∗
γ(u

k)− ℓ∗γ)

+ αLu(ū+ 2)γ

(
C(W 0)

√
2ℓγ(W 0)

µγw
+ C(Z0)

√
2ℓtrn(Z0)

µw

)
(1− βµw)

T/2 (98)

where (a) comes from the Cauchy-Swartz inequality, ∥∇ℓ∗γ(u)∥ ≤ Lu in Lemma 29, αLu ≤ 1 and

α∥∇̃ℓ∗γ(uk)∥ = ∥uk − ProjU

(
uk − α∇̃ℓ∗γ(uk)

)
∥ ≤ 2ū

(b) results from , and (c) is derived from (96). Subtracting ℓ∗γ from the both sides of (98), we get

ℓ∗γ(u
k+1)− ℓ∗γ ≤ (1− αµu)(ℓ

∗
γ(u

k)− ℓ∗γ)

+ αLu(ū+ 2)γ

(
C(W 0)

√
2ℓγ(W 0)

µγw
+ C(Z0)

√
2ℓtrn(Z0)

µw

)
(1− βµw)

T/2.

(99)

Telescoping (99) from k = 1 to K yields

ℓ∗γ(u
K)− ℓ∗γ ≤ (1− αµu)

K(ℓ∗γ(u
k)− ℓ∗γ)

+

Lu(1 + 2ū)γ

(
C(W 0)

√
2ℓγ(W 0)
µγ
w

+ C(Z0)
√

2ℓtrn(Z0)
µw

)
µl

(1− βµw)
T/2. (100)

Taking K → ∞, we know limk→∞ ℓ∗γ(u
k) = min ℓ∗γ(u) ≤ minu∈U ℓ

∗
γ(u) which yields a contradic-

tion to limk→∞ ℓ∗γ(u
k) > minu∈U ℓ

∗
γ(u). In conclusion, choosing γ = O(ϵ0.5), and to achieve the

ϵ-stationary point of the penalized objective, we can set T = O(log ϵ−1) and K = O(log ϵ−1).

Besides, according to Lemma 26, the minimum norm solution W ∗
γ (u) = argminW ℓγ(u,W ) is

bounded by L∗
w = O(1). Moreover, according to (Oymak & Soltanolkotabi, 2019), GD on linear

regression converges to the closest minimizer to the initialization. Therefore, the iterates of PBGD
satisfies

∥W k∥ ≤ ∥W k − ProjW∗
γ (u

k)(W
0)∥+ ∥ProjW∗

γ (u
k)(W

0)∥ ≤ O(1)(1− βµw)
T/2 + L∗

w

where the bound is independent of γ. Then according to Theorem 7, the ϵ-stationary point of the pe-
nalized objective with γ = O(ϵ0.5) recovers an (ϵ, ϵ) optimal point of the bilevel problem. Therefore,
the iteration complexity of PBGD to achieve an (ϵ, ϵ) optimal point is TK = O((log ϵ−1)2).

H NUMERICAL EXPERIMENTS

In this section, we provide numerical results for global convergence of PBGD in representation
learning and data hyper-cleaning.
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H.1 REPRESENTATION LEARNING

Considering the overparameterized and wide neural network case, we chooseN = 30, N ′ = 20,m =

40, n = 10, h = 300. First, we respectively generate data matrix Xtrn ∈ RN×m, Xval ∈ RN ′×m

from Gaussian distribution N (5, 0.01) and N (−3, 0.01) to model different cluster of data. Then we
generate optimal W ∗

1 ∈ Rm×h,W ∗
2 ∈ Rh×n from Gaussian distribution N (0, 0.01) and N (2, 0.01),

respectively. Moroever, we generate the optimal weight under validation dataset W̃ ∗
2 ∈ Rh×n by

W̃ ∗
2 ∼ N (W ∗

2 , 0.001). This ensures that ∥W̃ ∗
2 −W ∗

2 ∥ is not too large with high probability, satisfying
Assumption 2. Finally, we use W ∗

1 ,W
∗
2 , W̃

∗
2 to generate the label matrix. For the bottom layer, we

want both training label and validation clean label finds the shared optimal weight W ∗
1 , However, for

the adaptation layer, they should exhibit distinct behaviors due to the different clusters. Specifically,
the training labels should find the optimal weight W ∗

2 , while the validation label should find the
optimal validation adaptation weight W̃ ∗

2 . Inspired by this, we generate the label matrix by

Ytrn ∼ N (XtrnW
∗
1W

∗
2 , 0.01), Yval ∼ N (XtrnW

∗
1 W̃

∗
2 , 0.01).

We test the PBGD in Algorithm 1 on this synthetic representation learning problem and plot the upper-
level and lower-level relative error versus iteration in Figure 3. We measure upper-level relative error
by Lval(W1,W2)−L∗val where L∗val = minW1,W2∈S(W1) Lval(W1,W2), and lower-level relative error
is measured by Ltrn(W1,W2)−L∗trn(W1). By the closed form of L∗trn(W1) in Lemma 16, lower-level
relative error is accessible. On the other hand, L∗val ≈ Lval(W

∗
1 ,W

∗
2 ) because W ∗

2 ∈ S(W ∗
1 ) is

feasible and ∥W ∗
2 − W̃ ∗

2 ∥ ≤ ϵ so that Lval(W ∗
1 ,W

∗
2 ) is closed to the unconstrained minimal value

Lval(W
∗
1 , W̃

∗
2 ) which is also small. As Lval(W ∗

1 ,W
∗
2 ) is only an estimate of L∗val, there exists cases

where Lval(W1,W2)− Lval(W
∗
1 ,W

∗
2 ) < 0, so in practice, we use |Lval(W1,W2)− Lval(W

∗
1 ,W

∗
2 )|

to estimate the upper-level relative error. Since the convergence of lower-level relative error suggests
W2 →W ∗

2 , the convergence of upper-level relative error will indicate that W1 →W ∗
1 .

We select the best stepsizes α, β and the number of inner loop Tk = T by grid search. It can be
observed from Figure 3 that PBGD converges almost at a linear rate to a certain accuracy, and the
relative error decreases as γ increases. The fluctuation in the upper-level error near convergence
is due to the global convergence result in Theorem 1 not being strictly decreasing because of the
O(ϵ) error at each step. When upper-level and lower-level relative errors are sufficiently small, the
additional O(ϵ) error has larger impact, leading to a slight increase in error. However, the final error
remains small, around 10−5 when K and γ is large enough. This validates Theorem 1 that by setting
γ large enough, PBGD globally converges to a target accuracy determined by γ at almost linear rate.

The fluctuation in the upper-level error near convergence in representation learning is due to the
global convergence result in Theorem 1 not being strictly decreasing because of the O(ϵ) error at
each step. When upper-level and lower-level errors are sufficiently small, the additional O(ϵ) error
has larger impact, leading to a slight increase in error. However, the final error remains small, around
10−5 when K and γ is large as γ = 10, 500. This validates Theorem 1 that by setting γ large enough,
PBGD globally converges to a target accuracy ϵ inversely determined by γ at almost linear rate.

H.2 DATA HYPER-CLEANING

Considering the overparameterized linear regression with a small clean validation dataset and a large
dirty training dataset, we choose N = 100, N ′ = 10,m = 200, n = 10. First, we respectively
generate data matrix Xtrn ∈ RN×m, Xval ∈ RN ′×m from Gaussian distribution N (5, 0.01) and
N (−3, 0.01) to model different cluster of data. Then we generate optimal clean weight W ∗ ∈ Rm×n

from Gaussian distribution N (1, 0.01) and generate the clean label matrix for validation dataset as
Yval ∼ N (XvalW

∗, 0.001). For the training label matrix, we first generate optimal classification
parameters ψ(ui) ∼ Bernoulli(0.2) and then generate the label matrix as

Ytrn ∼ N (XtrnW
∗, 0.01) + ψ(u)⊙N (10, 10)

where ψ(u) = [ψ(u1);ψ(u2); · · · ;ψ(uN )] and ⊙ denotes the Hadamard product. This ensures the
training dataset is polluted with probability 0.2.

We run PBGD in Algorithm 2 on this synthetic data hyper-cleaning problem and plot the upper-level
and lower-level relative errors versus iteration in Figure 3. We measure the lower-level relative
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error by ℓtrn(u,W )− ℓ∗trn(u) with closed form in Lemma 23 and the upper-level relative error by
ℓval(W )−ℓ∗val where ℓ∗val = minu,W∈S(u) ℓval(W ). We estimate ℓ∗val ≈ minW ℓval(W ) = ℓval(W

∗)

because there exists u such that the selected data matrix
√
ψN (u)Xtrn is almost full rank so that

selected training dataset and validation dataset share a joint minimizer W ∗.

We select the best stepsizes α, β, β̃ and the number of inner loop Tk = T by grid search. It can
be observed from Figure 3 that PBGD converges almost at a linear rate to a certain accuracy, and
the relative error, especially at the lower level, decreases as γ increases. The final error remains
small, around 10−5 when K and γ is large enough. This coincides with our Theorem 1 that PBGD
globally converges to a target accuracy inversely determined by γ at almost linear rate. Furthermore,
the lower-level relative error is more sensitive to the choice of γ, as noted in Theorem 1, where the
lower-level relative error ϵγ is inversely related to γ.
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