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Abstract

The problem of finding the unique low dimensional decomposition of a
givenmatrix has been a fundamental and recurrent problem inmany areas.
In this paper, we study the problem of seeking a unique decomposition of a
low rankmatrixY ∈ R

p×n that admits a sparse representation. Specifically,
we consider Y = AX ∈ R

p×n where the matrixA ∈ R
p×r has full column

rank, with r < min{n, p}, and the matrixX ∈ R
r×n is element-wise sparse.

We prove that this sparse decomposition ofY can be uniquely identified by
recovering ground-truthA column by column, up to some intrinsic signed
permutation. Our approach relies on solving a nonconvex optimization
problem constrained over the unit sphere. Our geometric analysis for the
nonconvex optimization landscape shows that any strict local solution is
close to the ground truth solution, and can be recovered by a simple data-
driven initialization followed with any second order descent algorithm. At
last, we corroborate these theoretical results with numerical experiments.

1 Introduction

The problem of matrix decomposition has been a popular and fundamental topic under
extensive investigations across several disciplines, including signal processing, machine
learning, natural language processing [10, 11, 31, 46, 32, 8]. From the decomposition, one
can construct efficient representation of the original data matrix. However, for any matrix
Y ∈ R

p×n that can be factorized as a product of two matrices A ∈ R
p×r and X ∈ R

r×n,
there exist infinitely many decompositions, simply because one can use any r× r invertible
matrix Q to construct A′ = AQ and X ′ = Q−1X such that Y = AX = A′X ′, while
A′ 6= A andX ′ 6= X . Thus, in various applications, additional structures and priors are be-
ing exploited to find a preferred representation [22, 15]. For example, principal component
analysis (PCA) aims to find orthogonal representations which retain as much variations in
Y as possible [17, 23], whereas independent component analysis (ICA) targets the repre-
sentations of statistically independent non-Gaussian signals [26].

In this paper, we are interested in finding a unique sparse low-dimensional representation
of Y . To this end, we study the decomposition of a low rank matrix Y ∈ R

p×n that satisfies

Y = AX, (1.1)

where A ∈ R
p×r is an unknown deterministic matrix, with r < min{n, p}, and X ∈ R

r×n

is an unknown sparse matrix.

Formulation (1.1) is an important model problem in many applications. As columns of
Y are viewed as linear combinations of columns of A with X being the sparse coefficient,
(1.1) can be used to form overlapping clusters of the n columns of Y via the support of
X with columns of A being viewed as r cluster centers [12, 7]. When we form a p × r
low-dimensional representation of Y via sparse combinations, this greatly enhance the in-
terpretability of the resulting representations [28, 21, 4], in the same spirit as the sparse
PCA, but (1.1) generalizes to the factorization of non-orthogonal matrices.
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To motivate our approach, we first consider the simple case that A has orthonormal
columns, namely, ATA = Ir

1. Then it is easy to see that the sparse coefficient matrix X is
recovered by multiplying Y on the left byAT ,

ATY = ATAX = X. (1.2)

The problem of finding such orthonormal matrix A boils down to successively finding a
unit-norm direction q that renders qTY as sparse as possible [34, 39, 35],

min
q

∥

∥qTY
∥

∥

sparsity
s. t. ‖q‖2 = 1. (1.3)

However, the natural choice of sparsity penalty, either ℓ0 or ℓ1, leads to trivial and meaning-
less solutions, as there always exists q in the null space ofAT such that qTY = 0.

To avoid the null space ofAT , we instead choose to find the unit direction q that maximizes
the ℓ4 norm of qTY as

max
q

∥

∥qTY
∥

∥

4
s. t. ‖q‖2 = 1. (1.4)

The above formulation is based on the key observation that the objective value ismaximized
when q coincideswith one column ofA (see, Section 2, for details) while the objective value
is zero when q lies in the null space of AT . The ℓ4 norm objective function and its variants
have been adopted as a sparsity regularizer in a line of recent works [30, 44, 43, 35, 42].
However, even with this new objective function, the null space ofAT persists as a challenge
for solving the optimization problem: they form a flat region of saddle points.

This paper characterizes the nonconvex optimization landscape of (1.4) and proposes a
guaranteed procedure that avoids the flat region and provably recovers the global solution
to (1.4), which corresponds to one column of A. More specifically, we demonstrate that,
despite the non-convexity, (1.4) still possesses benign geometric property in the sense that
any strict local solution with large objective value is globally optimal and recovers one col-
umn ofA, up to its sign. See, Theorem 3.1 in Section 3.1 for the population level result and
Theorem 3.4 for the finite sample result.

We further extend these results to the general case when A only has full column rank in
Theorem 3.6 of Section 3.2. To recover a general A with full column rank, our procedure
first resorts to a preconditioning procedure of Y proposed in Section 2.3 and then solves
a optimization problem similar to (1.4). From our analysis of the optimization landscape,
the intriguing problem boils down to developing algorithms to recover the nontrivial local
solutions by avoiding regions with small objective values. We thus propose a simple initial-
ization scheme in Section 4.1 and prove in Theorem 4.3 that such initialization, proceeded
with any second order descent algorithm [20, 27], suffices to find the global solution, up to
some statistical error. Our theoretical analysis provides the explicit convergence rate of the
statistical error and characterizes its dependence on various dimensions, such as p, r and n,
as well as the sparsity of X .

Numerical simulation results are provided in Section 5. Due to the space limitation, we
defer all the proof along with our conclusions and discussion of several future directions of
our work to Appendix.

Notations Throughout this paper, we use bold lowercase letters, like a, to represent vec-
tors and bold uppercase letters, like A, to represent matrices. For matrix X , Xij denotes
the entry at the i-th row and j-th column ofX , withXi· andX·j denoting the i-th row and
j-th column ofX , respectively. Oftentimes, we writeX·j = Xj for simplicity. We use grad
and Hess to represent the Riemannian gradient and Hessian. For any vector v ∈ R

d, we use
‖v‖q to denote its ℓq norm, for 1 ≤ q ≤ ∞. The notation v◦q stands for {vq

i }i. For matrices,
we use ‖·‖F and ‖·‖op to denote the Frobenius norm and the operator norm, respectively.
For any positive integer d, wewrite [d] = {1, 2, . . . , d}. The unit sphere in d-dimensional real
space R

d is written as Sd−1. For two sequences an and bn, we write an À bn if there exists
some constant C > 0 such that an ≤ Cbn for all n. Both uppercase C and lowercase c are
reserved to represent numerical constants, whose values may vary line by line.

1
Ir is the identity matrix of size r × r.
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1.1 Related work

Finding the unique factorization of a matrix is an ill-posed problem in general due to in-
finitely many solutions. There exist several strands of studies from different contexts on
finding the unique decomposition of Y by imposing additional structures onA andX . We
start by reviewing the literature which targets the sparse decomposition of Y .

Dictionary learning The problems of dictionary learning (DL) [2, 38, 19, 39] and sparse
blind deconvolution or convolutional dictionary learning [13, 29] study the unique decom-
position of Y = AX whereX is sparse andA has full row rank. In this case, the row space
of Y lies in the row space ofX , suggesting to recover the sparse rows ofX via solving the
following problem,

min
q

∥

∥qTY
∥

∥

1
s. t. q 6= 0. (1.5)

Under certain scaling and incoherence conditions onA, the objective achieves theminimum
value when q is equal to one column ofA, at the same time qTY recovers one sparse row of
X . This idea has been studied andmodified in a strand of papers whenA has full row rank
[38, 39, 45, 30, 44, 35, 42, 37, 47]. In our context, the major difference rises in the matrix A,
which has full column rank rather than row rank, therefore minimizing

∥

∥qTY
∥

∥

1
as before

only leads to some vector in the null space of AT , yielding the trivial zero objective value.

We would love to note that [35] uses the same objective function in (1.4) to study the prob-
lem of overcomplete dictionary learning (where A has full row rank), however the opti-
mization landscape when A has full column rank is significantly different from that in the
overcomplete setting. The more complicated optimization landscape in our setting brings
additional difficulty of the analysis and requires a proper initialization in our proposed
algorithm. We refer to Appendix B for detailed technical comparison with [35].

Sparse PCA Sparse principal component analysis (SPCA) is a popular method that recov-
ers a unique decomposition of a low-rank matrix Y by utilizing the sparsity of its singular
vectors. However, as being said, under Y = AX , SPCA is only applicable when X coin-
cides with the right singular vectors of Y . Indeed, one formulation of SPCA is to solve

max
U∈Rn×r

tr
`
UTY TY U

˘
− λ‖U‖1, s. t. UTU = Ir, (1.6)

which is promising only if X corresponds to the right singular vectors of Y . It is worth
mentioning that among the various approaches of SPCA, the following one might be used
to recover one sparse row of X ,

min
u,v

∥

∥Y − uvT
∥

∥

2

2
+ λ‖v‖1 s. t. ‖u‖2= 1. (1.7)

This procedure was originally proposed by [49] and [36] together with an efficient algo-
rithm by alternating the minimization between u and v. However, there is no guarantee
that the resulting solution recovers the ground truth.

Factor analysis Factor analysis is a popular statistical tool for constructing low-rank rep-
resentations of Y by postulating Y = AX + E where A ∈ R

p×r is the so-called loading
matrix with r = rank(A) < min{n, p},X ∈ R

r×n contains n realizations of a r-dimensional
factor and E is some additive noise. Here only Y is observable. Factor analysis is mainly
used to recover the low-dimension column space ofA or the row space ofX , rather than to
identify and recover the unique decomposition. Recently, [7] studied the unique decompo-
sition of Y when the columns of X are i.i.d. realizations of a r-dimensional latent random
factor. The unique decomposition is further used for (overlapping) clustering the rows of
Y via the assignment matrix A. To uniquely identify A, [7] assumes that A contains at
least one r × r identity matrix, coupled with other scaling conditions onA (we refer to [7]
for detailed discussions of other existing conditions in the literature of factor models that
ensure the unique decomposition of Y but require strong prior information on either A
or X). By contrast, we rely on the sparsity of X instead of A which is more general than
requiring the existence of a r × r identity matrix.

NMF and topic models Such existence condition of identity matrix in either A or X has
a variant in non-negative matrix factorization (NMF) [14] and topic models [3, 8, 9], also
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see the references therein, where Y , A and X have non-negative entries. Since all Y , A
andX from model (1.1) are allowed to have arbitrary signs in our context, the approaches
designed for NMF and topic models are inapplicable.

2 Formulation and Assumptions

The decomposition of Y = AX is not unique without further assumptions. To ensure the
uniqueness of such decomposition, we rely on two assumptions on the matrices A and X ,
stated in the following Section 2.1.

Our goal is to uniquely recoverA fromY , up to a some signed permutation. More precisely,
we aim to recover columns of AP for some signed permutation matrix P ∈ R

r×r. To
facilitate the understanding and motivate our approach, in Section 2.2 we first state our
procedure for the unique recovery of A when A has orthonormal columns. Its theoretical
analysis is presented in Section 3. Later in Section 2.3, we discuss how to extend our results
to the case when A is a more general full column rank matrix under Assumption 2.2.

For now, we only focus on the recovery of one column ofA as the remaining columns can be
recovered via the same procedure after projecting Y onto the complement space spanned
by the recovered columns of A (see Section D for detailed discussion).

2.1 Assumptions

We first resort to the matrix X ∈ R
r×n being element-wise sparse. The sparsity of X is

modeled via the Bernoulli-Gaussian distribution, stated in the following assumption.

Assumption 2.1 Assume Xij = BijZij for i ∈ [r] and j ∈ [n], where

Bij
i.i.d.
∼ Ber(θ), Zij

i.i.d.
∼ N (0, σ2). (2.1)

The Bernoulli-Gaussian distribution is popular for modeling sparse random matrices [38,
2, 1, 39]. The overall sparsity level of X is controlled by θ, the parameter of the Bernoulli
distribution. We remark that the Gaussianity is assumed only to simplify the proof and to
obtain more transparent deviation inequalities between quantities related withX and their
population counterparts. Both our approach and analysis can be generalized to cases where
Zij are centered i.i.d. sub-Gaussian random variables.

We also need another condition on the matrix A. To see this, note that even when A were
known, recovering X from Y = AX requires A to have full column rank. We state this in
the following assumption.

Assumption 2.2 Assume the matrixA ∈ R
p×r has rank(A) = r with ‖A‖op= 1.

The unit operator normofA is assumedwithout loss of generality as one can always re-scale
σ2, the variance of X , by ‖A‖op.

2.2 Recovery of the orthonormal columns of A

In this section, we consider the recovery of one column of A when A is a semi-orthogonal
matrix satisfying the following assumption.

Assumption 2.3 Assume ATA = Ir.

Our approach recovers columns of A one at a time by adopting the ℓ4 maximization to
penalize the sparsity of rows of matrix X . Its rationale is based on the following lemma,
assuming the orthogonality among columns of A.

Lemma 2.4 Under Assumption 2.3, solving the following problem

max
q

∥

∥ATq
∥

∥

4

4
s. t. ‖q‖2 = 1 (2.2)

recovers one column of A, up to its sign.

Intuitively, under Assumption 2.3, we have ‖ATq‖2≤ 1 for any unit vector q. Therefore,
criterion (2.2) seeks a vector ATq within the unit ball to maximize its ℓ4 norm. When q
corresponds to one column of A, that is, q = ai for any i ∈ [r], we have the largest objec-
tive ‖ATai‖

4
4= 1. This ℓ4 norm maximization approach has been used in several related

literature, for instance, sparse blind deconvolution [44, 30], complete and over-complete
dictionary learning [43, 42, 35], independent component analysis [25, 24] and tensor de-
composition [18].
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The appealing property of maximizing the ℓ4 norm is its benign geometry landscape under
the unit sphere constraint. Indeed, despite of the non-convexity of (2.2), our result in The-
orem 3.1 implies that any strict location solution to (2.2) is globally optimal. This enables
us to use any second order gradient ascent method to solve (2.2).
Motivated by Lemma 2.4, since we only have access to Y ∈ R

p×n, we propose to solve the
following problem to recover one column of A,

min
q

F (q)
.
= −

1

12θσ4n

∥

∥Y Tq
∥

∥

4

4
s. t. ‖q‖2 = 1. (2.3)

The scalar (12θσ4n)−1 is a normalization constant. The following lemma justifies the usage
of (2.3) and also highlights the role of the sparsity of X .

Lemma 2.5 Under model (1.1) and Assumption 2.1, we have

E rF (q)s = −
1

4

”
(1− θ)

∥

∥ATq
∥

∥

4

4
+ θ

∥

∥ATq
∥

∥

4

2

ı
(2.4)

where the expectation is taken over the randomness of X .

Remark 2.6 (Role of the sparsity parameter θ) Lemma 2.5 implies that, for large n, solving
(2.3) approximately finds the solution to

min
q

f pqq .
= −

1

4

”
(1− θ)

∥

∥ATq
∥

∥

4

4
+ θ

∥

∥ATq
∥

∥

4

2

ı
s. t. ‖q‖2 = 1 (2.5)

The objective function is a convex combination of ‖ATq‖44 and ‖A
Tq‖22 with coefficients depending

on the magnitude of θ. In view of Lemma 2.4, it is easy to see that solving (2.5) recovers one column
of A, up to the sign, as long as θ < 1. However, the magnitude of θ controls the benignness of the
geometry landscape of (2.5). When θ is small, orX is sufficiently sparse, we essentially solve (2.2)
which has the most benign landscape. On the other hand, when θ → 1, the landscape of (2.5) is
mostly determined by the eigenvalue problem2 which maximizes ‖ATq‖2 subject to ‖q‖2= 1. We
will demonstrate that when X is sufficiently sparse, second order descent algorithm with a simple
initialization finds the globally optimal solution to (2.3) in Section 3.

2.3 Recovery of the non-orthogonal columns of A

In this section, we discuss how to extend our procedure to recoverA from Y = AX when
A is a general full column rank matrix satisfying Assumption 2.2. The main idea is to first
resort to a preconditioning procedure of Y such that the preconditioned Y has the decom-
position ĀX̄ , up to some small perturbation, where Ā satisfies Assumption 2.3 and X̄ sat-
isfies Assumption 2.1 with σ2 = 1. Then we apply our procedure in Section 2.2 to recover
Ā. The recovered Ā is further used to recover the original A.

To precondition Y , we propose to left multiply Y by the following matrix

D
.
=

”`
Y Y T

˘+ı1/2
∈ R

p×p (2.6)

where M+ denotes the Moore-Penrose inverse of any matrix M . The resulting precondi-
tioned Y satisfies

Ȳ
.
= DY = ĀX̄ +E (2.7)

with Ā satisfying Assumption 2.3, X̄ = X/
?
θnσ2 andE being a perturbation matrix with

small entries. We refer to Proposition 3.5 below for its precise statements.

Analogous to (2.3), we propose to recover one column of Ā by solving the following prob-
lem

min
‖q‖

2
=1

Fg(q)
.
= −

θn

12

∥

∥Ȳ Tq
∥

∥

4

4
(2.8)

Theoretical guarantees of this procedure are provided in Section 3.2. After recovering one
column of Ā, the remaining columns of Ā can be successively recovered via the procedure
in Section D. In the end,A can be recovered by first inverting the preconditioning matrixD
as D−1Ā and then re-scaling its largest singular value to 1.

2When A is orthonormal, this eigenvalue problem processes the worst landscape as there are in-
finitely many solutions obtaining the same eigenvalue.
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3 Theoretical Guarantees

We provide theoretical guarantees for our procedure (2.3) in Section 3.1 when A has or-
thonormal columns. The theoretical guarantees of (2.8) for recovering a general full column
rank A are stated in Section 3.2.

3.1 Theoretical guarantees for semi-orthonormal A

In this section, we provide guarantees for our procedure by characterizing the solution to
(2.3) when A satisfies Assumption 2.3.

As the objective function F (q) in (2.3) concentrates around f(q) in (2.5), it is informative
to first analyze the solution to (2.5). Although (2.5) is a nonconvex problem and has mul-
tiple local solutions, Theorem 3.1 below guarantees that any strict local solution to (2.5) is
globally optimal, in the sense that, it recovers one column ofA, up to its sign. We introduce
the null region R0 of our objective in (2.5),

R0 =
{

q ∈ S
p−1 : ‖ATq‖∞= 0

}

. (3.1)

Theorem 3.1 (Population case) Under Assumption 2.3, assume θ ≤ 1/6. Any local solution q̄
to (2.5), that is not in R0, satisfies

ā = APe1 (3.2)

for some signed permutation matrix P ∈ R
r×r.

The detailed proof of Theorem 3.1 is deferred to Appendix F.3. We only offer an outline of
our analysis below.

The proof of Theorem 3.1 relies on analysis of the optimization landscape of (2.5) on disjoint
partitions of Sp−1 = {q ∈ R

p : ‖q‖2= 1}3, defined as

R1
.
= R1(C⋆) =

{

q ∈ S
p−1 : ‖ATq‖2∞≥ C⋆

}

, (3.3)

R2 = S
p−1 \ pR0 ∪R1q .

HereC⋆ is any fixed constant between 0 and 1. The upper bound follows from the inequality
that ‖ATq‖∞= maxk|a

T
k q|≤ ‖ak‖2‖q‖2= 1 for any q ∈ S

p−1. The region R0 can be easily
avoided by choosing the initialization such that the objective function f(q) is not equal
to zero. For R1 and R2, we are able to show the following results. Let Hess f(q) be the
Riemannian Hessian matrix of (2.5) at any point q ∈ S

p−1.

(1) Optimization landscape for R1:

Lemma 3.2 Assume θ < 1. Any local solution q̄ ∈ R1(C⋆) to (2.5) with C⋆ > 1
2

b
θ

1−θ

recovers one column of A, that is, for some signed permutation matrix P

q̄ = AP·1.

Lemma 3.2 shows that any critical point q ∈ R1 is either a strict saddle point that
there exists a direction along which the Hessian is negative, or the desired local
solution q̄ that satisfies the second order optimality condition and is equal to one
column of A, up to its sign.

(2) Optimization landscape for R2:

Lemma 3.3 Assume θ < 1/3. For any point q ∈ R2(C⋆) with C⋆ ≤ 1−3θ
2 , there exists v

such that

vT Hess f pqqv < 0. (3.4)

Lemma 3.3 implies that any critical point inR2 is a saddle point that can be escaped
by negative curvature. Hence there is no local solution to (2.5) in the region R2.

3Visualization of the partitions in S
2 is available in section A.
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Theorem 3.1 thus follows from Lemma 3.2 and Lemma 3.3, provided that
c

θ

1− θ
< 1− 3θ. (3.5)

Condition (3.5) puts restrictions on the upper bound of θ. It is easy to see that (3.5) holds
for any θ ≤ 1/6. As discussed in Remark 2.6, a smaller θ leads to amore benign optimization
landscape.
In light of Theorem 3.1, we now provide guarantees for the solution to the finite sample
problem (2.3) in the following theorem. Define the sample analogue of the null region R0

in (3.1) as
R′

0(c⋆)
.
=

{

q ∈ S
p−1 : ‖ATq‖2∞ ≤ c⋆

}

(3.6)

for any given value c⋆ ∈ [0, 1).
Theorem 3.4 (Finite sample case) Under Assumptions 2.1 and 2.3, assume θ ∈ (0, 1/9] and

n ≥ Cmax

{

r2

c⋆
, log2 n

}

r log n

θc⋆
(3.7)

for some sufficiently large constant C > 0 and any c⋆ ∈ (0, 1/4]. Then with probability at least

1− cn−c′ , any local solution q̄ to (2.3) that is not in R′
0(c⋆) satisfies

‖q̄ −AP·1‖
2
2 À

c
r2 log n

θn
+

ˆ
θr2 +

log2 n

θ

˙
r log n

n
(3.8)

for some signed permutation matrix P .
Here we defer our discussion of technical details and full proof in section C.
3.2 Theoretical guarantees for general full column rank A

In this section, we provide theoretical guarantees for our procedure of recovering a general
full column rank matrix A under Assumption 2.2.

Recall from Section 2.3 that our approach first preconditions Y by usingD from (2.6). The
following proposition provides guarantees for the preconditioned Y , denoted as Ȳ = DY .
The proof is deferred to Appendix F.5. Write the SVD of A = UADAV

T
A with UA ∈ R

p×r

and VA ∈ R
r×r being, respectively, the left and right singular vectors.

Proposition 3.5 Under Assumptions 2.1 and 2.2, assume n ≥ Cr/θ2 for some sufficiently large

constant C > 0. With probability greater than 1− 2e−c′r, one has

Ȳ = ĀX̄ +E (3.9)

where Ā = UAV
T
A , X̄ = X/

?
θnσ2 and E = Ā∆X̄ with

‖∆‖op ≤ c′′
1

θ

c
r

n
. (3.10)

Here c′ and c′′ are positive constants.
Proposition 3.5 implies that, when n ≥ Cr/θ2, the preconditioned Y satisfies

Ȳ = Ā(Ir +∆)X̄ ≈ ĀX̄ (3.11)

with ĀT Ā = Ir. This naturally leads us to apply our procedure in Section 2.2 to recover
columns of Ā via (2.8). We formally show in Theorem 3.6 below that any local solution to
(2.8) approximately recover one column of Ā up to a signed permutation matrix. Similar
to (3.6), define

R
′′

0 (c⋆)
.
=

{

q ∈ S
p−1 :

∥

∥ĀTq
∥

∥

2

∞
≤ c⋆

}

(3.12)

for some given value c⋆ ∈ [0, 1).
Theorem 3.6 Under Assumption 2.1 and 2.2, assume θ ∈ p0, 1/9s and

n ≥ C
r

c⋆θ
max

{

log3 n,
log n

c⋆θ
?
θ
,
log2 n

c⋆θ
,

r

c⋆
?
θ
,
r2 log n

c⋆

}

. (3.13)

Then with probability at least 1 − cn−c′ − 4e−c′′r, any solution q̄ to (2.8) that is not in Region

R
′′

0 pc⋆q satisfies
∥

∥q̄ − ĀP·1

∥

∥

2

2
À

c
r log n

θ2n
+

c
r2 log n

θn
+

ˆ
θr2 +

log2 n

θ

˙
r log n

n
(3.14)

for some signed permutation matrix P .
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The proof of Theorem 3.6 can be found in Appendix F.6. Due to the preconditioning step,
the requirement of the sample size in (3.13) is slightly stronger than (3.7), whereas the

estimation error of q̄ only has an additional
a
r log n/(θ2n) term comparing to (3.8).

Theorem 3.6 requires to avoid the null region R′′
0 (c⋆) in (3.12). We provide a simple ini-

tialization in the next section that provably avoids R
′′

0 . Furthermore, every iterate of any

descent algorithm based on such initialization is provably not in R
′′

0 either.

4 Complete Algorithm and Provable Recovery
In this section, we present a complete pipeline for recovering A from Y . So far we have
established that every local solution to (2.8), that is not in R′′

0 (c⋆), approximately recovers
one column of Ā = UAV

T
A . To our end, we will discuss: (1) a data-driven initialization in

Section 4.1 which, together with Theorem 3.6, provably recovers one column of Ā; (2) a de-
flation procedure [38, 39, 35] in Section D that sequentially recovers all remaining columns
of Ā. Due to the limitation of space we defer our discussion of deflation procedure in ap-
pendix.

4.1 Initialization

Our goal is to provide a simple initialization such that solving (2.8) via any second order
descent algorithm provably recovers one column of Ā. According to Theorem 3.6, such an
initialization needs to guarantee the following conditions.

• Condition I: The initial point q(0) does not fall into region R
′′

0 (c⋆) for some c⋆ sat-
isfying (3.13) in Theorem 3.6.

• Condition II: The updated iterates q(k), for all k ≥ 1, stay away from R′′
0 (c⋆) as

well.
We propose the following initialization

q(0) =
Ȳ 1n

‖Ȳ 1n‖2
∈ S

p−1. (4.1)

The following two lemmas guarantee that both Condition I and Condition II are met for
this choice. Their proofs can be found in Appendices F.7 and F.8.

Lemma 4.1 Under Assumption 2.1 and 2.2, assume θ ∈ p0, 1/9s and

n ≥ C
r2

θ
max

{

log3 n,
r log n

θ
?
θ

,
r log2 n

θ
,

r2?
θ
, r3 log n

}

. (4.2)

holds, then, with probability at least 1−2e−cr, the initialization q(0) in (4.1) is not in regionR
′′

0 (c⋆)
with c⋆ = 1/(2r).

Lemma 4.2 Let q(k), for k ≥ 1, be any updated iterate from solving (2.3) by using any monotonic
decreasing algorithm with the initial point q(0) chosen as (4.1). If

n ≥ C
r2

θ
max

{

log3 n,
r log n

θ
?
θ

,
r2?
θ
, θ2r2 log n

}

(4.3)

holds, then, with probability at least 1− cn−c′ − 2e−c′′r, one has

q(k) /∈ R′′
0 (c⋆), for all k ≥ 1,

with c⋆ = 1/(2r).

Combining Lemmas 4.1 and 4.2 together with Theorem 3.6 readily yields the following
theorem.
Theorem 4.3 Under Assumptions 2.1 and 2.2, assume θ ∈ (0, 1/9] and (4.2) holds. Let q̄ be any
local solution to (2.8) from any monotonic decreasing second order algorithms with the initial point

chosen as (4.1). With probability at least 1− cn−c′ − 4e−c′′r, one has

‖q̄ − ĀP·1‖
2
2 À

c
r log n

θ2n
+

c
r2 log n

θn
+

r log3 n

θn
for some signed permutation matrix P .

Theorem 4.3 provides the guarantees for using any monotonic decreasing second order al-
gorithms [33, 5] to solve (2.8) with the initialization chosen in (4.1).
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5 Experiments

In this section we verify the empirical performance of our proposed procedure for recov-
ering A under model (1.1) in different scenarios. Due to the space limit, we defer more
experiments to the Appendix of this paper.

Experiment setup

To generate the data Y = AX , we generate the columns of A by using the normalized

left singular vectors of R ∈ R
p×r where Rij

i.i.d.
∼ N (0, 1). The sparse coefficient matrix

X ∈ R
r×n are generated as Xij

i.i.d.
∼ BG(θ). To evaluate the success of recovering one

column vector of A for any estimate q ∈ S
p−1, we use the following criterion,

Err pqq = min
1≤i≤r

p1− |〈q,ai〉 |q (5.1)

If Err pqq ≤ ρe, we say the vector q recovers the ground-truth column vector of A. We
choose ρe = 1 × 10−2 in our simulation settings. To evaluate the recovery of the whole
matrixA, we use the following normalized Frobenius norm between any estimateAest and
the true A:

min
P

1?
r
‖Aest −AP ‖F s.t. P is a signed permutation matrix. (5.2)

Wefirst evaluate the probability of successfully recovering one columnofA in two scenarios.
In the first case, we vary simultaneously θ and r while in the second case we change n
and r. We then evaluate the performance of our procedure, Algorithm 1 in Section D, for
recovering the full matrix A.

Recovery probability with varying θ and r

We fix p = 100 and n = 5×103 while vary θ ∈ {0.01, 0.04, . . . , 0.58} and r ∈ {10, 30, . . . , 70}.
For each pair of pθ, rq, we repeatedly generate 200 data sets and apply our procedure in
(2.8). The averaged recovery probability of our procedure over the 200 replicates is shown
in Figure 1a. The recovery probability gets larger as r decreases, in line with Theorem 3.6.
We also note that the recovery increases for smaller θ. This is because smaller θ renders
a nicer geometric landscape of the proposed non-convex problem, as detailed in Remark
2.6. On the other hand, the recovery probability decreases when θ is approaching to 0. As
suggested by Theorem 3.4, the statistical error of estimating A gets inflated as θ gets too
small.

Recovery probability with varying n and r

Here we fix p = 100 and the sparsity parameter θ = 0.1. We vary r ∈ {10, 30, . . . , 70}
and n ∈ {2000, 3000, . . . , 12000}. Figure 1b shows the averaged recovery probability of our
procedure over 200 replicates in each setting. Our procedure performs increasingly better
as n increases, as expected from Theorem 3.4.

6 Conclusion and Future Work

In this paper, we have studied the unique decomposition of a low rank matrix Y that ad-
mits a sparse low-dimensional representation. Under model Y = AX where X has i.i.d.
Bernoulli-Gaussian entries and A has full column rank, we propose a nonconvex proce-
dure that provably recovers A, a quantity that can be further used to recover X . We pro-
vide a complete analysis for recovering one column of A, up to the sign, by showing that
any second order descent algorithm provably attains the global solution with a simple and
data-driven initialization, despite the nonconvex nature of the proposed procedure.

There are several directions that are certainly worth further pursuing. For instance, a com-
plete analysis of the deflation procedure for recovering the full matrixA is certainly of great
interest. It is also worth studying this decomposition problem in presence of some additive
errors, that is, Y = AX+E. Our current procedure only toleratesE that has small entries.
How to modify our procedure to accommodate a moderate / large E is an interesting and
challenging problem that we leave to future research.
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