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Model
Preferred

a person walks backward and jumps.

a man walks forward and picks up a box.

a person walked and turned right.

Figure 1: Within the field of text-to-motion generation numerous contemporary models report achieving exceptionally high
quantitative metrics. Some models even claim performance exceeding ground truth benchmarks. However a notable disparity
often exists between these reported scores and the practical outcomes. The actual generated motions frequently exhibit poor
quality and do not align well with human preferences or perceptual expectations.

Abstract

A reliable evaluation metric is essential for guiding positive devel-
opments within a research field. In the domain of text-to-motion
generation, the traditional evaluation metrics such as Fréchet In-
ception Distance (FID) and R-Precision suffer from inherent limita-
tions. Specifically, FID is biased by its Gaussian assumption, while
R-Precision lacks global awareness. Current work often overempha-
sizes improvements on these unreliable metrics to indicate model
superiority. To address these challenges, we propose two novel
evaluation metrics: Optimal Transport Matching Score (OTMS)
and MoCLIP-based Maximum Mean Discrepancy (MMMD). OTMS
formulates text-motion matching as an optimal transport process,
enabling a global perspective. MMMD leverages our enhanced Mo-
CLIP encoder and Gaussian-RBF-based Maximum Mean Discrep-
ancy, providing an unbiased evaluation without restrictive distribu-
tion assumptions. Extensive experiments and analysis demonstrate
that our proposed metrics align closely with human perceptual
judgments and provide efficient, comprehensive, and reliable eval-
uations for text-driven motion generation tasks. The code can be
found on the anonymous website.
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1 Introduction

"The measure of intelligence is the ability to change. — Albert
Einstein

Text-to-motion synthesis has witnessed rapid progress, fueled by
innovations in autoregressive/non-autoregressive (AR/NAR) mod-
els [4, 20, 25, 34] and diffusion frameworks [5, 18, 30, 35, 36]. Current
methods, exemplified by StableMofusion [18] and Momask [11],
can generate highly realistic motions closely matching input text
prompts. Despite these advancements, a critical evaluation issue
persists: standard quantitative metrics often yield scores near or
exceeding ground truth (GT) levels [3, 11, 18]. But do these high
scores truly reflect a generation quality surpassing the origi-
nal ground truth? Figure 1 presents the generation visualizations
of several models that outperform the ground truth (GT). It is evi-
dent that, compared to real motion capture data, current models
still lack fine-grained detail and often fail to faithfully align with
the intended semantics. This growing disconnect highlights the
inadequacy of current evaluation practices. Reliance on metrics
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like FID [17] and R-Precision [12] is insufficient as they may not
effectively capture motion complexities within feature embeddings.
However, much contemporary research [11, 18, 30, 34] continues
to prioritize optimizing these potentially flawed indicators. This
focus risks steering the text-to-motion field towards optimizing
surrogate objectives rather than genuine perceptual quality, thereby
hindering substantive progress. The development of reliable, effi-
cient, and perceptually grounded evaluation metrics is therefore
not just desirable but imperative for the healthy advancement of
this domain.

Evaluating synthesized motion presents unique challenges due
to its high-dimensional, temporal, and continuous characteristics
[13]. Unlike image generation [33], where attribute-focused and
human preference metrics are prevalent, motion evaluation can-
not easily adopt similar paradigms. Attempts to circumvent this
complexity by decomposing motion into discrete or linguistic units
[11, 34] have shown limited generalization across diverse datasets.
Consequently, the field predominantly relies on metrics calculated
from features extracted by a foundational text-motion encoder
[12, 14]. However, the representational power of this encoder is
increasingly strained by the sophistication of modern synthesis
models [21, 32, 37]. This limitation directly impacts the utility of
the most common metrics: FID compares distributions of motion
embeddings and R-Precision measures semantic alignment. Both
metrics are limited by the shortcomings of the text-motion encoder,
hindering their reliability and effectiveness in assessing the quality
and fidelity of state-of-the-art text-to-motion synthesis.

R-Precision exhibits two significant drawbacks in evaluating
text-to-motion generation. Firstly, as mentioned above, its effec-
tiveness is hampered by the limitations of underlying motion-text
embedding models. This is evident in the low ground-truth per-
formance, exemplified by a mere 0.511 Top-1 accuracy [14] on the
HumanML3D dataset [12]. To address this specific embedding limi-
tation, we introduce MoCLIP. Fine-tuned via a two-stage strategy
on diverse motion datasets, MoCLIP achieves a substantially higher
Top-1 accuracy of 0.679. Secondly, R-Precision is undermined by its
handling of highly similar text descriptions prevalent in datasets
(e.g., "A person walks forward" vs. "A person is walking forward"),
which challenge robust encoder differentiation. The metric’s re-
liance on simple ranking within a local subset (like a batch) focuses
primarily on whether any correct-seeming text achieves a high rank.
If multiple near-duplicates exist, R-Precision can significantly mis-
judge the results even if the exact ground truth text ranks slightly
lower (e.g., 4th) among its close variants. This local "high-score
seeking" behavior inflates the results, as models only need to gen-
erate diverse motions that are favored by the embedding model
to obtain high scores. This mechanism can inadvertently penalize
GT slightly while over-rewarding generated samples that fit the
encoder’s learned preferences, highlighting the need for a more
globally comprehensive assessment beyond local top ranks [18].

The Fréchet Inception Distance (FID) [17] is fundamentally con-
strained by its Gaussian distribution assumption for both real and
generated data. This assumption fails to hold for motion datasets
(Figure 4) [19]. Furthermore, FID’s estimation process, which relies
on finite samples to compute moments and utilizes potentially lim-
ited feature representations, introduces bias. This bias contributes
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Figure 2: Conceptual Differences in Evaluation Metrics. Cur-
rent text-to-motion evaluation often relies on FID, which
assumes Gaussian distributions and is biased, or R-Precision,
based on limited local matching. These limitations moti-
vate the exploration of alternative metrics like OTMS, which
employs global optimal transport, and MMMD, offering an
unbiased distribution distance, to achieve more reliable as-
sessments.

significantly to the divergence between FID scores and human per-
ceptual assessments of motion realism [19]. FID is also known for
its inefficiency and instability, displaying considerable sensitivity
to evaluation sample size [5]. The biggest concern lies in its po-
tential for paradoxical evaluation: FID scores might decrease as
motion quality improves initially but can subsequently increase
once quality surpasses an indeterminate point, rendering the met-
ric unreliable. Such unreliability becomes especially acute when
evaluating high-performing modern models achieving very low
FID scores, precisely where the metric’s biased nature has the most
severe consequences.

Inspired by Optimal Transport [24] we redefine the R-Precision
ranking problem as a matching problem and introduce OTMS (Op-
timal Transport Matching Score), a global evaluation metric specif-
ically tailored to address existing method limitations. Building on
MoCLIP embeddings for both textual and motion data, we first
construct a cost matrix from their cosine similarities and then ap-
ply a regularized optimal transport algorithm (i.e., the Sinkhorn
method [8]) to derive a single cost value that reflects the overall
alignment quality between texts and motions. An intuitive way to
understand optimal transport is through the classic “moving sand”
analogy: each batch of text embeddings can be viewed as piles of
sand, and each batch of motion embeddings as the holes that need
to be filled. The optimal transport plan determines how best to glob-
ally “distribute” the sand (i.e., text representation) into holes (i.e.,
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motion representation) with minimal total cost—thereby transcend-
ing simpler, local matching strategies like direct cosine similarity.
Empirically, we observe that this global perspective yields a more
faithful reflection of text-to-motion correspondence compared to
conventional retrieval-based metrics.

Concurrently, prior work [19] demonstrated that the CLIP Em-
beddings Maximum Mean Discrepancy Distance (CMMD) serves
as a superior alternative to FID. Inspired by this finding, we adapt
this methodology to the text-to-motion (T2M) domain, introducing
the MoCLIP Embeddings Maximum Mean Discrepancy Distance
(MMMD) metric. MMMD encodes motions with MoCLIP, computes
an unbiased distributional divergence using a characteristic kernel,
and crucially avoids any Gaussian assumptions often required by
the Fréchet distance. Our experiments confirm that MMMD is more
robust to variations in sample size and supports efficient, paralleliz-
able computation, making it especially well-suited for real-world
scenarios where computational overhead is a concern.

In this paper, we rigorously validate the proposed Optimal Trans-
port Matching Score (OTMS) and MoCLIP-based Maximum Mean
Discrepancy (MMMD) metrics. Through extensive experiments and
human evaluations, we demonstrate their effectiveness in overcom-
ing the limitations of traditional approaches. Our results confirm
that OTMS and MMMD provide assessments that align more closely
with human perceptual judgments, offering a more reliable, efficient,
and comprehensive evaluation framework. This work establishes a
more robust foundation for measuring and guiding future advance-
ments in text-to-motion synthesis. We summarize our contributions
as follows:

(1) We are the first to systematically highlight the limitations
of current evaluation metrics in text-to-motion generation,
analyzing their shortcomings from multiple perspectives.

(2) We propose two new, more reliable metrics—OTSM and
MMMD which are built upon MoCLIP, a motion-text em-
bedding model with stronger encoding precision and se-
mantic representation capability, enabling more robust and
faithful evaluation of text-to-motion generation.

(3) Extensive experiments demonstrate that OTSM and MMMD
better reflect model performance and align more consis-
tently with human perception compared to existing metrics.

2 RELATED WORK

Text-to-Motion Generation. The field of text-to-motion (T2M)
generation has significantly advanced, largely spurred by the cre-
ation of large-scale datasets such as HumanML3D [12], KIT-ML [28],
and CombatMotion [32]. Initial research efforts explored founda-
tional techniques, including sequence-to-sequence models [1] and
early vector-quantization frameworks [15]. While these methods
provided valuable insights into mapping language to motion, they
often struggled to capture the intricate complexities and diversity in-
herent in human movement. Subsequent research introduced more
sophisticated architectures to enhance generation quality. Diffusion
models [6, 10, 29, 31, 35, 36] leveraged iterative denoising for high-
fidelity and varied outputs. Variational Autoencoder (VAE) based ap-
proaches like TEMOS [23] and TEACH [2] improved the modeling
of complex motion distributions. Furthermore, Transformer-based
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models such as MotionGPT [20] and T2M-GPT [34] have demon-
strated strong capabilities in capturing long-range dependencies
and contextual understanding.

Recent advancements have pushed the boundaries of T2M, focus-
ing on semantic consistency, stylization, and controllability. State-
of-the-art models, including MoMask [11], StableMoFusion [18],
and MotionCLR [3], now achieve remarkable performance using ad-
vanced latent representations and refinement techniques. Notably,
their performance on established evaluation metrics primarily R-
Precision, Frechet Inception Distance (FID), and Diversity metrics
[12] is exceptionally high, occasionally even surpassing the ground
truth recordings according to these scores. However, this success
highlights a growing limitation: the inadequacy of current evalua-
tion metrics. These standard metrics often fail to capture critical
nuances, such as the fine-grained accuracy of semantic alignment
between text and motion, subtle physical plausibility details, or
the potential for user interaction. Recognizing this gap, our work
introduces two novel evaluation metrics designed to address these
shortcomings. We aim to provide a more comprehensive and inter-
pretable assessment framework, contributing to the development
of truly robust and high-quality T2M synthesis systems.

3 Preliminaries

In this part, we introduce the fundamental concepts of optimal
transport (OT) (3.1) and maximum mean discrepancy (MMD) (3.2) in
the context of comparing probability distributions. These form the
theoretical underpinnings of our proposed evaluation framework.

3.1 Optimal Transport

Consider two discrete probability distributions over a metric space,
denoted by

M N
p= pidz and v=q;dy, 1)
i=1 j=1

where 6, and Jy ,; are Dirac delta functions at locations z; and y;,
respectively. Let p = (p1,...,pm) " and q = (q1,...,qn) " be the
corresponding probability vectors, satisfying Z{\i 1pi= Z?Iz 19 =
1. Let C € RMXN denote the pairwise cost matrix, with Cj; =
¢(zi,yj), which quantifies the “distance” or “cost” of matching z;
with y j

To measure the dissimilarity between p and v, the classical OT
problem seeks an optimal transport plan P* € RM*N that mini-
mizes the total matching cost:

M N
P* = arg min Z Z P,'j Cij, (2)

Pel(pq) j=1 j=1
subject to the marginal constraints P1y = p and PT 1) = q,
where I'(p, q) is the set of all feasible transport plans (matrices
P > 0 satisfying the marginal constraints). In practice, entropy
regularization [8] is frequently applied to improve stability and
computational efficiency. The regularized problem is formulated as

P* = argmin ) P;jCyj — AH(P), (3)
Pel(pq)
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Figure 3: Illustration of the OTMS and MoCLIP framework. On the left, OTMS utilizes optimal transport to align motion
and text embeddings, with the transport plan minimizing the cost (cosine similarity) between the two distributions. On the
right, MoCLIP incorporates a transformer-based architecture to align motion and text representations, utilizing CLIP for text
encoding and MoCLIP embeddings for semantic alignment, with evaluation metrics such as FID (traditional) and MMMD

(proposed) applied using these representations.

where 1 is the regularization coefficient, and H(P) = — }; ; Pi; log P;;
is the Shannon entropy of P. This relaxed objective can be solved ef-
ficiently via the Sinkhorn-Knopp algorithm [9]. Optimal transport,
particularly in its entropy-regularized form, has gained prominence
for robustly comparing complex distributions by aligning them
according to both local and global structures.

3.2 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [19] provides a non-parametric,
kernel-based approach to quantify distributional discrepancies with-
out assuming any specific parametric form. Let X = {x1,...,xn}
and Y = {y1, ..., yp} be samples drawn ii.d. from distributions P
and Q, respectively. MMD is defined with respect to a reproduc-
ing kernel Hilbert space (RKHS) H endowed with a characteristic
kernel «.
Formally, the squared MMD between P and Q is:

MMD2 (P, Q) = Ex,x’~P [K(X, X/)] + Ey,y’~Q [K(y’ y/)] (4)
— 2Bep, yoolr(x,y)],

where x,x’ € X,y,y’ €Y.
For discrete samples, an unbiased empirical estimator of MMD?
is

mz(x, Y) = m Z K (xi, xj)
i*)

1
) ; k(i yj) )
, N M
- NI Z Zx(xi,yj).

Il
Il
—-

=1

A commonly used kernel for MMD is the Gaussian Radial Ba-
sis Function (RBF) kernel, x(u,v) = exp(~|lu — v||?/(25?)), with
o being a bandwidth parameter. Crucially, if k is characteristic,
MMD?(P,Q) = 0 if and only if P = Q. Hence, MMD effectively
captures both mean and higher-order discrepancies between distri-
butions, making it suitable for complex, high-dimensional datasets.

Optimal transport and MMD thus offer complementary perspec-
tives on comparing probability distributions. OT aligns sample
points explicitly through a transport plan, while MMD leverages
kernel embeddings to compare distributions in a Hilbert space. In
the subsequent sections, we will utilize both approaches to rigor-
ously assess the semantic alignment of motion data within text-to-
motion generation tasks.

4 Evaluation Metric

In this section we analyze the limitations of traditional evaluation
metrics such as FID and Top-K and address these shortcomings by
introducing two novel metrics: OTMS based on Optimal Transport
and MMD based on Maximum Mean Discrepancy.

4.1 Limitations of Traditional Evaluation

Metrics

The conventional use of Fréchet Inception Distance (FID) in motion
evaluation inherits intrinsic limitations from its image analysis
origins while introducing additional motion-specific vulnerabili-
ties. Initial implementations employed motion encoders, such as
the autoencoder proposed by Guo et al. [14], which demonstrated
constrained representational power, achieving only 0.797 in top-3
action recognition accuracy on the HumanML3D dataset [12]. De-
spite improvements in motion encoders, fundamental issues persist
due to the intrinsic formulation of the FID metric:

FID(P, Q) = llup — pioll3 +Tr (3p + 30 - 2(3p%0) 2. ©)
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Figure 4: The left panel displays simulation results
of the standard normal distribution, while the right
panel visualizes the motion embedding distribution
generated via t-SNE dimensionality reduction. Notably,
the low-dimensional manifold of motion embeddings
deviates significantly from Gaussian characteristics, in-
dicating the presence of complex nonlinear structures
inherent in the original high-dimensional motion fea-
ture space, which fundamentally contradicts Gaussian
assumptions.

FID inherently relies on two problematic assumptions in the
context of motion analysis. Firstly, it presupposes multivariate nor-
mality, directly conflicting with the hierarchical, spatiotemporal
complexity of human motion. In figure 4, empirical evidence from
t-SNE visualizations of 10,000 samples from the HumanML3D test
dataset [12] clearly reveals distinct, multi-modal clusters corre-
sponding to action semantics, such as periodic locomotion versus
discrete gestures. Moreover, Mardia’s multivariate normality test
emphatically rejects Gaussianity, yielding extreme skewness (y? =
1.86 x 1012, df = 22,500,864) and kurtosis statistics (z = 11,848.6),
both with p-values lower than 107324 (d = 512, n = 29,184).

Secondly, and crucially, FID is a biased estimator of the true
Fréchet distance. This bias arises due to the nonlinear operation
involved in estimating covariance matrices from finite samples,
specifically the matrix square root term (2,29)1/ 2, Under limited
sample conditions, this nonlinearity systematically results in un-
derestimation of this term, consequently causing an overestimation
of the FID score. Such theoretical deficiencies persist irrespective of
the encoder’s quality, further evidenced by controlled experiments
where state-of-the-art motion generators paradoxically improved
FID scores despite qualitative degradation observed in human stud-
ies.

These limitations underscore the necessity for distribution-free
evaluation metrics that more reliably reflect semantic coherence in
generated motions, thus motivating our proposed metrics detailed
in Section 4.2.

Top-k metrics, notably R-Precision, are widely used for text-to-
motion evaluation due to their intuitive interpretation and ease of
computation. These metrics assess the capability of retrieving cor-
rect motions from a predefined candidate set, typically containing
32 items. Despite their popularity, Top-k metrics primarily evaluate
local retrieval accuracy and fail to comprehensively capture the
semantic alignment between motion and textual embeddings.

A critical drawback arises from the limited retrieval accuracy
observed even with ground-truth motions. Empirical human evalu-
ations indicate that ground-truth retrieval performance exhibits a
natural ceiling (approximately 0.9 for Top-3 accuracy), highlighting
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Transport Matrix with Cost Cantours

TSNE with OT Flow

Figure 5: The left figure shows the distribution matching
situation after the MoCLIP encodings of 128 motions and
texts are reduced in dimension using t-SNE. The right figure
is the heatmap of the transport plan.

inherent dataset misalignments. Consequently, relying exclusively
on Top-k metrics risks misrepresenting the true semantic align-
ment capability of state-of-the-art models, making performance
improvements difficult to interpret accurately.

Additionally, recent models surpassing ground-truth Top-k scores
exacerbate interpretability concerns. Improvements in retrieval
metrics may result from biases in the embedding space or optimiza-
tion procedures, rather than genuine advancements in semantic
understanding. Moreover, Top-k metrics neglect the broader dis-
tributional structure within embedding spaces, failing to capture
continuous semantic alignment comprehensively. These limitations
necessitate a more robust and holistic evaluation framework beyond
local retrieval accuracies.

4.2 Proposed Evaluation Metrics

To overcome the aforementioned limitations associated with tradi-
tional metrics, we introduce MoCLIP, accompanied by two novel
evaluation metrics specifically designed for text-to-motion tasks:
Optimal Transport Matching Score (OTMS) and MoCLIP-based Maxi-
mum Mean Discrepancy (MMMD). Inspired by recent advancements
in text-to-image evaluations [19], these metrics leverage MoCLIP’s
enhanced semantic alignment capabilities.

4.2.1 Optimal Transport Matching Score (OTMS). We define the Op-
timal Transport Motion Semantic (OTMS) metric, which is showed
in figure 5, based on normalized embeddings of motions {mi}?il
and texts {t; };V: , extracted by MoCLIP. In contrast to traditional
retrieval-based metrics, OTMS leverages the global semantic align-
ment between text and motion distributions through an optimal
transport formulation.

Specifically, we first construct a cost matrix C €
cosine similarity to quantify pairwise semantic distances:

Cij = 1= (m;, tj). (7)

RMXN ytilizing

We then define discrete uniform probability distributions, repre-
sented by vectorsa = ﬁ 1pandb = ﬁ 1,7, over the motion and text
embeddings, respectively, and employ the Sinkhorn algorithm [? ]

to obtain the optimal transport plan T*:

M N
T = i T;iCii — AH(T), 8
al‘gTEr}?gfb);; ijCij ( ) ()
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where H(-) denotes the entropy regularization term, A is the corre-
sponding regularization coefficient, and I'(a, b) is the set of trans-
port plans matching the uniform marginals a and b. Finally, the
OTMS metric is computed as:

N
OTMS = > 3 TGy, ©)

j=1

Mz

i

Il
—
~.

which is essentially the Sinkhorn distance between the two em-
bedding distributions. Lower OTMS values indicate stronger global
semantic alignment.

4.2.2  MoCLIP-Based Maximum Mean Discrepancy (MMMD). To
measure distributional divergence without assuming Gaussian-
ity, we propose the MoCLIP-based Maximum Mean Discrepancy
(MMMD). Let P denote the distribution of MoCLIP embeddings
from ground-truth motions {m;} and Q denote the distribution
from generated sequences {r;}. The squared MMD employs a
characteristic kernel k, such as the Gaussian RBF, and is defined
via expectations:

MMD?(P, Q) = Emm~p [k(m, m)] + By s~ [k (1h, 1)

= 2Bm~p s~ [k (m, m)],
where expectations are taken over independent samples drawn
from P and Q.

In practice, given finite sets of MoCLIP embeddings X = {my;, ..

drawn from P and Y = {mhy, ..., mys} drawn from Q, we compute
the unbiased empirical estimate of MMD? (P, Q) as:

(10)

NMD’ (X, Y) = N(N 1)ZZK(ml,mJ)

i= 1]¢t
sz(mz,mﬂ (1)
M(M i=1 j#i
2
ZK(mbm])
i=1 j=1

and define MMMD as:

MMMD = o/ MMD” (X, Y), (12)

with scaling factor = 1000 to improve readability.

Unlike FID, the nonparametric formulation of MMMD offers
an unbiased estimator of distributional discrepancy, inherently ac-
commodating the complex, non-Gaussian, and high-dimensional
nature of motion data. By directly comparing empirical distribu-
tions without relying on parametric assumptions, MMMD yields
a semantically coherent measure that correlates strongly with hu-
man perceptual judgments, offering a more principled and reliable
evaluation of generative quality.

5 Experiments

Our experimental evaluation utilizes the HumanML3D [12] and
KIT-ML [28] datasets. The HumanML3D dataset contains 14,616
motions sourced from AMASS [22] and HumanAct12 [16]. Each
motion is paired with three textual descriptions, resulting in 44,970

L, my}

Anon.

descriptions total. This dataset encompasses diverse actions, includ-
ing walking, exercising, and dancing. The KIT-ML dataset provides
3,911 motions and 6,278 corresponding text descriptions. We assess
model performance using our proposed evaluation metrics: Optimal
Transport Matching Score (OTMS) and MoCLIP-based Maximum
Mean Discrepancy (MMMD).

5.1 Experiment Setting

We compare several state-of-the-art text-to-motion generation mod-

els, including StableMoFusion, MDM, T2MT, MoMask, MMM, BAMM,

T2M-GPT, and Discord. For evaluation, the proposed metrics OTMS,
MMMD, and MoCLIP-based R-Precision were computed using em-
beddings extracted from a pretrained MoCLIP encoder, which pro-
vides a shared semantic space across modalities. In contrast, the
metrics FID and the original R-Precision were calculated using em-
beddings from their respective original encoders. All experiments
were conducted on an NVIDIA RTX 4090 GPU. Reported metrics
represent the average over 20 independent runs, presented with
95% confidence intervals for robust evaluation.

5.2 Effectiveness of New Metrics

Table 1 and Table 2 present the quantitative results obtained from
evaluating multiple state-of-the-art models on the HumanML3D
and KIT-ML datasets, respectively. For ensuring the reliability of
comparisons, each experiment was conducted 20 times, with re-
sults reported along with 95% confidence intervals. Our experiments
involved a variety of models ranging from earlier proposed frame-
works, such as T2MT, to more recent models like StableMoFusion.
Results demonstrate that earlier models consistently exhibit poorer
performance on our metrics (OTMS and MDM), while newer ap-
proaches generally perform better. This trend indicates that our
metrics effectively distinguish between higher- and lower-quality
models. Additionally, OTMS addresses the common problem ob-
served in prior metrics, where some models incorrectly outperform
ground-truth (GT) data. Nevertheless, to further validate the ro-
bustness and accuracy of our proposed metrics, human evaluation
studies are conducted, as detailed in the next subsection.

5.3 Human Evaluation

To assess whether our metrics align with human intuition, we con-
ducted a human evaluation study employing 16 evaluators. Each
participant assessed a total of 4000 samples, consisting of 1000
samples each from MDM, StableMoFusion, MoMask, and ground
truth (GT). Evaluations were performed across four core dimen-
sions: motion completeness, directional and angular accuracy, ap-
propriate utilization of body parts, and physical plausibility. These
dimensions were chosen to comprehensively capture the fidelity
of motion-to-text matching, with each dimension independently
assessed yet collectively contributing to the overall evaluation.
Results from the human evaluation closely align with our pro-
posed metrics, specifically OTMS and MMD, highlighting their
strong correlation with human judgment. Notably, we observed
that in cases where the FID score is exceptionally low, our MMD
metric more accurately reflects human preferences. Leveraging
these insights, we constructed a new human-preference dataset
that can serve as a robust benchmark for future evaluations of
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Method FID | MoCLIP R-Precision T R-Precision T OTMS | MMMD |
TOP1 TOP2 TOP3 TOP1 TOP2  TOP3
GT 0.002%0-000  ( ¢79%0.002  ( 83¢+0.003  § 89g+0.002  (j 511+0.003 (5 773+0.003  ( 7g7+0.002 0.481%0-003 0.003%0-001
MoMask [1 1] 0.045%0-002  ( 79%0.002 (5 83¢+0.003 89g+0.002 () 597+0.002 (5 713+0.002 (5 g(7+0.002 0.495+0-001 0.190%0-001
Discord [7] 0.032%0-002 () gg7£0.002 g4940.002 (5 99+0.002  (y 594+0.003 () 715£0.003 § g49*0.002 (4 489+0.0010  (y 178+0.002
MMM [27] 0.080%0-003  § ¢51%0.002 gt0.002 () 870+0.002 (5 5)4+0.003 () (9g*0.003 ( 794%0.002  ( 48g+0.003 0.055%0-001
BAMM [26] 0.055%0-002 () g2%0.002  ( 899+0.002 ( ggg+0.002 () 5o5+0.002 () 79)+0.003 (4 g14+0.003 (4 49g*0.0001 (4 99(+0.003
T2M-GPT [34] 0.492%0-003 (4 £3*0.003 791£0.003  § g¢1£0.002 () 499+0.003 () (79+0.002  ( 775+0.002 0.487+0-001 0.033%0-013
StableMofusion [18] = 0.098*0-003  (.735+0.-003 ¢ g7¢+0.002  930-002 553£0.003  ( 74g+0.002 () g47£0.002 () 478+0.006 ¢ 5+0.002
MDM [30] 0.544%0-044 () ¢11%0.006  ( 781%0.004 ( g55+0.004 455+0.006  (§ 465+0.007 () 749%0.006 55t0.001 (5 555+0.0012
T2MT [15] 1.501%0-017 () 509+0.002 0.6790-002 0.764%0-000 (5 494+0.003  (§ (18%0.003  ( 799%0.002 (5 594+0.003 0.592%0-001

Table 1: Quantitative comparison of various text-to-motion generation methods on the HumanML3D dataset using multiple
evaluation metrics. We report FID (Fréchet Inception Distance; lower is better), MoCLIP-based R-Precision (Top-1/2/3; higher is
better), traditional CLIP-based R-Precision, OTMS (Optimal Transport Matching Score; lower is better), and MMMD (MoCLIP-
based Maximum Mean Discrepancy; lower is better). The results demonstrate the effectiveness of MoCLIP-based metrics
in better distinguishing semantic alignment and distribution consistency. GT denotes ground truth motion. All metrics are

averaged 20 runs with 95% confidence intervals.

Method FID | MoCLIP R-Precision T R-Precision T OTMS CMMD
TOP1 TOP2 TOP3 TOP1 TOP2 TOP3

GT 0_031i0.004 0_55610.005 0_759i0.006 0_860r0.005 0_424i0.005 0_649r0.006 0_779i0.006 0_681r0.001 —0.0161'0-000
Momask [11] 0'2041-0.110 0.39910.007 0'59710.005 0.714t0.005 0'43310.007 0.656t0'005 0.78110'005 0.71510.000 2.6271'0'033
T2M-GPT [34] 0‘5143:0.029 0.36710'008 0.566i0'009 0.680i0'009 O.416i0'060 0.627i0'006 0_74510.006 0.730i0'002 0‘1753:0.000
StableMofusion [18] 0.258%0:029  .336%0:005 (9 518%0.006  ( 636+0.005 () 445+0.006  ( 660*0-005 ( 782%0.004  763%£0.001 904+0.001
MDM [30] 0_547i0.069 0_30310.004 0_613i0.005 0_487r0.000 0_404i0.019 0_615r0.013 0_737i0.005 0.782i0'001 0_793i0.000
T2MT [15] 0.36010'153 0.22310.003 0.35810'005 0.449t0.006 0.28010'005 0.463t0'006 0.58710'005 0.803t0'001 0.78610'016

Table 2: Quantitative comparison of various text-to-motion generation methods on the KIT-ML dataset using multiple evaluation
metrics. We report FID (Fréchet Inception Distance; lower is better), MoCLIP-based R-Precision (Top-1/2/3; higher is better),
traditional CLIP-based R-Precision, OTMS (Optimal Transport Matching Score; lower is better), and MMMD (MoCLIP-based
Maximum Mean Discrepancy; lower is better). The results demonstrate the effectiveness of MoCLIP-based metrics in better
distinguishing semantic alignment and distribution consistency. GT denotes ground truth motion. All metrics are averaged 20

runs with 95% confidence intervals.

motion-text alignment methods. The human evaluation results are
presented in Table 3. We also calculated the correlation between
human scores and metrics such as FID, OTMS, MMD, and TOPK,
as shown in Figure 6. Our proposed metrics rank first and second
in this analysis. This indicates that our metrics align better with
human preferences.

model ScoreT FID| Top3 OTMS| MMMD |
GT 19.68 0.002  0.836 0.481 0.003
MDM 18.22 0.544 0.749 0.506 0.555
StableMofusion 18.93 0.098  0.841 0.478 0.025
Momask 18.58 0.045 0.807 0.495 0.190

Table 3: Human Evaluation Results: A comparison of GT,
MDM, stablemofusion, and Momask was conducted on 1000
test set samples. Human evaluation scores were given, with
a maximum possible score of 20 points.

5.4 Disscussion

5.4.1 Influence of A on OTMS.. The regularization parameter A in
the entropy-regularized Sinkhorn algorithm directly impacts com-
putational efficiency and convergence stability. Specifically, smaller
Avalues (e.g., A < 0.01) result in sharply peaked transport plans, po-
tentially enhancing local alignment sensitivity but simultaneously
increasing the risk of numerical instability and slower convergence.
Conversely, larger values of A produce smoother transport plans
that may diminish the metric’s ability to discriminate fine-grained
semantic differences. After systematically evaluating a range of
values A € {0.01,0.02,0.03,0.04, 0.05, 0.06,0.07,0.08,0.09, 1.00} ,we
found that when computed with a batch size of 32, 1 = 0.02 can
achieve the largest ot based Top-k A.4 value on the test set data
and also has good efficiency.

5.4.2  Causal Analysis of the Model’s Higher R-Precision Scores over
GT. Our experimental results show that the model-generated mo-
tions frequently achieve higher R-Precision and CLIP scores com-
pared to the ground truth (GT), indicating better embedding-level
alignment with textual descriptions. However, human evaluations

761

764

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Comprehensive Model Evaluation Analysis
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Figure 6: The first figure presents the correlation matrix be-
tween our proposed metrics, FID Top-K, and human eval-
uation scores. The second figure illustrates the correlation
analysis between our metrics, FID Top-K, and human evalua-
tion.

consistently suggest that the generated motions are inferior in
actual quality compared to GT. We attribute this discrepancy pri-
marily to embedding biases introduced during the training of the
motion and text encoders. Specifically, both encoders are trained on
a relatively limited dataset, causing them to favor motion patterns
similar to those observed during training, thus artificially inflating
embedding-based metrics.

To validate this hypothesis, we conducted experiments on the
training set itself and found that the GT’s top-3 R-Precision score
(0.876) outperformed that of StableMofusion (0.843). This indi-
cates that when evaluated within the original data distribution,
embedding-based metrics correctly rank GT higher, whereas the
same encoders struggle to accurately rank novel motions on lim-
ited datasets. This underscores the critical issue of embedding bias

Anon.

A Topl Top2 Top3 Time (s)
0.01 0.782 0.900 0.940 11.58
0.02 0.810 0.930 0.960 9.50

0.03 0.790 0.914 0.953 11.58
0.04 0.793 0914 0.951 9.90
0.05 0.781 0913 0.955 7.22
0.06 0.789 0.905 0.942 3.33
0.07 0.772 0.898 0.944 1.77
0.08 0.776 0.899 0.939 1.58
0.09 0.778 0.899 0.941 1.11
1.00 0.775 0.898 0.942 1.05

Table 4: Effect of regularization parameter 1 on OT-based
Top-k and inference time. The batch size is set to 32. The best
performance is observed at A = 0.02.

resulting from insufficient data diversity and scale, highlighting the
necessity of larger and more diverse datasets for reliable embedding-
based evaluations.

6 Conclusion

Traditional text-to-motion metrics like FID and R-Precision often
fail evaluations. They misalign with human perception exhibit
Gaussian bias focus locally and depend heavily on encoders. We
proposed two novel metrics Optimal Transport Matching Score
(OTMS) and MoCLIP-based Maximum Mean Discrepancy (MMMD)
to address these shortcomings. OTMS leverages optimal transport
for global semantic alignment surpassing R-Precision’s local match-
ing limitations. MMMD utilizes an enhanced MoCLIP encoder and
MMD with RBF kernels providing an unbiased distributional com-
parison free from FID’s Gaussian assumptions and inefficiency.
Extensive experiments demonstrate OTMS and MMMD better dis-
tinguish model performance correlate strongly with human judg-
ment and avoid the overestimation issues plaguing older metrics.
Our work offers a robust efficient and perceptually faithful evalua-
tion framework grounded in global alignment and distribution-free
statistics. It highlights existing metric deficiencies and establishes
a foundation for reliable assessment crucial for advancing genuine
motion quality and semantic fidelity in text-to-motion generation.

In the future significant progress in text-to-motion synthesis re-
quires moving beyond improved evaluation metrics. While crucial
our proposed OTMS and MMMD address assessment limitations yet
fundamental data and representation challenges persist hindering
substantial breakthroughs. Current datasets such as HumanML3D
and KIT-ML are insufficient necessitating the creation of much
larger high idelity datasets. These next generation datasets should
feature diverse fine grained textual descriptions suitable perhaps
for pretraining scale models. Simultaneously research must explore
more expressive motion representations potentially focusing on
controllable attributes beyond raw kinematics. Developing meth-
ods to learn and rigorously evaluate these attribute based motion
models constitutes another crucial research avenue. Addressing
interconnected challenges of diverse data, innovative representa-
tions and effective evaluation is crucial for achieving high quality
semantically faithful text to motion generation.
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A APPENDIX

A.1 MoCLIP

Inspired by CLIP’s image-text alighment success MoCLIP extends
this concept to human motion. It learns a shared embedding space
mapping textual descriptions to corresponding motion sequences
enabling cross-modal retrieval and understanding.

A.1.1  Architecture. MoCLIP employs a dual-encoder structure adapt-
ing the pretrained CLIP architecture. The text pathway uses a fine-
tuned CLIP text encoder generating semantic embeddings e; € RY,
The motion pathway features a dedicated MotionEncoder process-
ing sequences M € RT*P_ This encoder applies linear projection
W), adds sinusoidal positional encoding P passes the result through
L transformer layers handling variable lengths via mask M,
performs temporal average pooling and finally projects features
via W, to obtain motion embeddings e, € R%. The core operation
within the transformer layers is multi-head self-attention:

(13)

Contrastive learning in the shared d-dimensional space aligns these
embeddings scaled by temperature 7.

h; = TransformerLayer(h;_1, My, 45k)-

A.1.2  Loss Function. MoCLIP utilizes a symmetric contrastive loss
to align modalities:

1
Lcontrastive = 5 (-[fmotion-to-text + Ltext—to—motion) . (14)

This loss averages the motion-to-text and text-to-motion cross-
entropy terms. These terms are computed using cosine similarity
between L2-normalized motion and text embeddings promoting
high similarity for matched pairs and low similarity for mismatched
pairs.

A.1.3  Training Strategy. Training follows a two-stage strategy for
progressive alignment. Stage 1: Motion Encoder Pretraining.
The CLIP text encoder is frozen. Only the MotionEncoder com-
ponents are trained optimizing the contrastive loss (Eq. 14). This
initially aligns motion features to the fixed text embedding space.
Stage 2: Joint Fine-Tuning. The final layers of the CLIP text en-
coder are unfrozen. The entire model is then fine-tuned jointly with
a lower learning rate. This allows mutual refinement of both mo-
tion and text representations enhancing the joint embedding space.
This approach facilitates stable learning and effective cross-modal
integration.

A.2 Performance of MoCLIP

We evaluated MoCLIP’s core text-motion alignment capability on
the HumanML3D KIT and CMP datasets. Performance was mea-
sured using standard Top-k retrieval accuracy (Top-1 Top-2 Top-3).
Table 5 shows MoCLIP significantly outperforms the baseline across
all datasets. Notably on HumanML3D MoCLIP achieves 0.705 Top-1
accuracy versus the baseline’s 0.511. On CMP the improvement is
also substantial reaching 0.748 Top-1 accuracy compared to 0.335.
Consistent gains are observed on the KIT dataset. These results
validate MoCLIP’s effectiveness in learning accurate text-motion
semantic mappings.
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Dataset Top-1 Top-2 Top-3
Baseline Humanml3d 0.511 0.703  0.797
MoCLIP Humanml3d 0.705 0.856 0.913
Baseline KIT 0.424 0.649 0.779
MoCLIP KIT 0.469 0.676 0.788
Baseline CMP 0.335 0.513 0.628
MoCLIP CMP 0.748  0.891 0.942

Table 5: Top-k retrieval accuracy comparison between the
baseline and MoCLIP on HumanML3D, KIT, and CMP
datasets.

Method FID | R-Precision T
top1 top2 top3

MDM baseline 0.544%0-04% 4550006 () 465+0.007 ) 749+0.006
MDM MoCLIP 0.527%0-034 (5140003 ( 719+0.001 ¢ g90+0.001
Momask baseline 0.045%0-002 52120002 713+0.002  ( g7+0.002
Momask MoCLIP 0.065%0-002 0 529 £0.002  ( 794+0.002 g7g+0.002
StableMofusion baseline  0.098%0-003 5530003 ¢ 74g+0.002  ( g47+0.002
StableMofusion MoCLIP ~ 0.074%0-003  ,557%0.002 ¢ 753+0.001 ¢ g46+0.002

Table 6: Evaluation results of MoCLIP integration with dif-
ferent models. The table shows the FID (lower is better) and
R-Precision (higher is better) at top1, top2, and top3 for MDM,
MoMask, and StableMoFusion models with and without Mo-
CLIP. The results demonstrate the positive impact of MoCLIP
on improving both FID and R-Precision scores in motion gen-
eration tasks.

A.3 Integrating MoCLIP for Enhanced
Generation

To evaluate the practical benefit of MoCLIP’s learned representa-
tions we integrated its fine-tuned text encoder 7yjocrIp into existing
generation frameworks. Specifically we replaced the native text
encoders of StableMoFusion MDM and MoMask with 7yocrip- This
modification supplies these generators with motion-aligned text
embeddings eI,V[OCLIP leveraging the shared semantic space detailed
in Section A.1. The resulting performance improvements detailed
in Table 6 demonstrate the efficacy of this approach. Using TyocLip
consistently enhances generation quality across the tested mod-
els. This confirms that the MoCLIP encoder effectively extracts
motion-relevant semantics transforming text descriptions into rep-
resentations more conducive to high-fidelity motion synthesis.

A.4 Top-k Retrieval via Optimal Transport

To measure retrieval performance with Optimal Transport (OT),
we first construct a cost matrix C € R™ " by

(15)

where x; and y; are the normalized embeddings of motion and text,
respectively. Let a and b be uniform source and target distributions.
Given a regularization parameter A > 0, we obtain the transport

Cij =1 - cos(xi,yj),
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Matching Accuracy: 42.97% Matching Accuracy: 33.59%

OT Transport Network Top-k Matching Network (Cosine Similarity)
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Motion Space. Text Space Wotion Space. et Space

Figure 7: Comparison of Top-k retrieval using traditional
cosine similarity and Optimal Transport (OT) in motion-
text alignment. The figure shows the differences between
OT-based Top-k retrieval and the traditional Top-k retrieval
method. The OT-based method demonstrates higher match-
ing accuracy by allowing more flexible alignments between
motion and text pairs. The accuracy values for each method
are indicated above the respective plots.

plan T by solving

T = Sinkhorn(a, b, C, ). (16)

For Top-k retrieval, each motion sample i ranks text samples based
on the row T;; those columns j with the largest T;; are deemed
the best-aligned text candidates (and vice versa for text-to-motion).
This OT-based ranking reflects more flexible matchings than direct
cosine similarity alone.

Notably, the OT-based Top-k retrieval method achieves supe-
rior matching accuracy compared to traditional Top-k retrieval,
as shown in figure 7. This improvement arises because Optimal
Transport (OT) allows for a more flexible and nuanced alignment
between motion and text embeddings, taking into account the en-
tire distribution of pairwise similarities rather than relying solely
on the highest similarity score. The result is a better matching of
relevant motion-text pairs, particularly in cases where traditional
cosine similarity may fail to capture subtle semantic relationships.

However, different choices of A influence how “peaky” or diffuse
T becomes. A higher A encourages smoother transport, thereby
yielding a broader and more distributed alignment, whereas a lower
A concentrates on the most salient matches, focusing on sharper
alignments between motion and text. In practice, we select the A that
maximizes Top-k recall on ground-truth pairs, thereby balancing
the trade-off between overly broad and overly rigid alignments.
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B Details of Human Evaluation

For our human evaluation, we selected 1000 motion samples each
from MoMask, StableMoFusion, MDM, and the Ground Truth (GT)
dataset. We developed custom software specifically designed to
facilitate the scoring process by human evaluators. The evaluation
focused on assessing the semantic alignment between the generated
motion and the input text prompt, using the following questions
and scoring scale (detailed below):

Human Evaluation Questions & Scoring

[Question 1: Action Completeness]

How well does the generated motion include all key action
steps described in the text prompt?

Score Options: 5 (Complete), 3 (Minor Omission), 0 (Major
Omission)

[Question 2: Direction/Angle Accuracy]

How accurately do the directions and angles in the motion
match the text description?

Score Options: 5 (Highly Accurate), 3 (Correct Direction, Mod-
erate Angle Deviation), 0 (Incorrect/Severe Error)

[Question 3: Body Part Usage]

Does the motion utilize the correct body parts as specified in
the text, and are they used appropriately?

Score Options: 5 (Correct Usage), 3 (Minor Error), 0 (Major
Error)

[Question 4: Physical Plausibility]

How physically plausible and realistic is the generated mo-
tion according to physics and human kinematics?

Score Options: 5 (Highly Plausible), 3 (Minor Issues), 0 (Severe
Issues)

. J

These questions collectively assess the core aspects of text-to-
motion generation quality: faithfulness to the prompt’s actions
(Completeness), spatial precision (Direction/Angle), correct anatom-
ical execution (Body Part Usage), and physical realism (Plausibility).
This multi-dimensional approach ensures a comprehensive evalua-
tion of semantic understanding and motion quality.

Below are the detailed scoring guidelines provided to the human
evaluators for each question, based on a 3-point scale (5, 3, 0).
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