

1 Towards Better Evaluation Metrics for Text-to-Motion Generation

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Anonymous Author(s)

Model Preferred

a person walks backward and jumps. a man walks forward and picks up a box. a person walked and turned right.

Human Preferred

Figure 1: Within the field of text-to-motion generation numerous contemporary models report achieving exceptionally high quantitative metrics. Some models even claim performance exceeding ground truth benchmarks. However a notable disparity often exists between these reported scores and the practical outcomes. The actual generated motions frequently exhibit poor quality and do not align well with human preferences or perceptual expectations.

Abstract

A reliable evaluation metric is essential for guiding positive developments within a research field. In the domain of text-to-motion generation, the traditional evaluation metrics such as Fréchet Inception Distance (FID) and R-Precision suffer from inherent limitations. Specifically, FID is biased by its Gaussian assumption, while R-Precision lacks global awareness. Current work often overemphasizes improvements on these unreliable metrics to indicate model superiority. To address these challenges, we propose two novel evaluation metrics: Optimal Transport Matching Score (OTMS) and MoCLIP-based Maximum Mean Discrepancy (MMMD). OTMS formulates text-motion matching as an optimal transport process, enabling a global perspective. MMMD leverages our enhanced MoCLIP encoder and Gaussian-RBF-based Maximum Mean Discrepancy, providing an unbiased evaluation without restrictive distribution assumptions. Extensive experiments and analysis demonstrate that our proposed metrics align closely with human perceptual judgments and provide efficient, comprehensive, and reliable evaluations for text-driven motion generation tasks. The code can be found on the [anonymous website](#).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym 'XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

<https://doi.org/XXXXXX.XXXXXXX>

CCS Concepts

- Computing methodologies → Computer vision.

Keywords

Text-to-Motion Generation, Optimal Transport, Evaluation Metrics

ACM Reference Format:

Anonymous Author(s). 2018. Towards Better Evaluation Metrics for Text-to-Motion Generation. In *Proceedings of Make sure to enter the correct conference title from your rights confirmation email (Conference acronym 'XX)*. ACM, New York, NY, USA, 11 pages. <https://doi.org/XXXXXX.XXXXXXX>

1 Introduction

"The measure of intelligence is the ability to change." – Albert Einstein

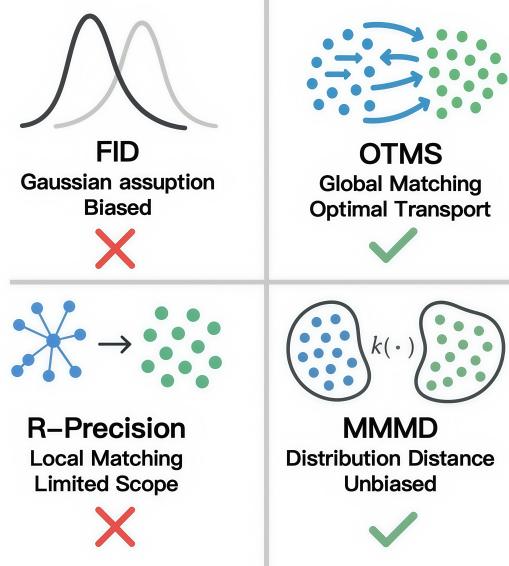
Text-to-motion synthesis has witnessed rapid progress, fueled by innovations in autoregressive/non-autoregressive (AR/NAR) models [4, 20, 25, 34] and diffusion frameworks [5, 18, 30, 35, 36]. Current methods, exemplified by StableMofusion [18] and Momask [11], can generate highly realistic motions closely matching input text prompts. Despite these advancements, a critical evaluation issue persists: standard quantitative metrics often yield scores near or exceeding ground truth (GT) levels [3, 11, 18]. **But do these high scores truly reflect a generation quality surpassing the original ground truth?** Figure 1 presents the generation visualizations of several models that outperform the ground truth (GT). It is evident that, compared to real motion capture data, current models still lack fine-grained detail and often fail to faithfully align with the intended semantics. This growing disconnect highlights the inadequacy of current evaluation practices. Reliance on metrics

117 like FID [17] and R-Precision [12] is insufficient as they may not
 118 effectively capture motion complexities within feature embeddings.
 119 However, much contemporary research [11, 18, 30, 34] continues
 120 to prioritize optimizing these potentially flawed indicators. This
 121 focus risks steering the text-to-motion field towards optimizing
 122 surrogate objectives rather than genuine perceptual quality, thereby
 123 hindering substantive progress. The development of reliable, effi-
 124 cient, and perceptually grounded evaluation metrics is therefore
 125 not just desirable but imperative for the healthy advancement of
 126 this domain.

127 Evaluating synthesized motion presents unique challenges due
 128 to its high-dimensional, temporal, and continuous characteristics
 129 [13]. Unlike image generation [33], where attribute-focused and
 130 human preference metrics are prevalent, motion evaluation can-
 131 not easily adopt similar paradigms. Attempts to circumvent this
 132 complexity by decomposing motion into discrete or linguistic units
 133 [11, 34] have shown limited generalization across diverse datasets.
 134 Consequently, the field predominantly relies on metrics calculated
 135 from features extracted by a foundational text-motion encoder
 136 [12, 14]. However, the representational power of this encoder is
 137 increasingly strained by the sophistication of modern synthesis
 138 models [21, 32, 37]. This limitation directly impacts the utility of
 139 the most common metrics: FID compares distributions of motion
 140 embeddings and R-Precision measures semantic alignment. Both
 141 metrics are limited by the shortcomings of the text-motion encoder,
 142 hindering their reliability and effectiveness in assessing the quality
 143 and fidelity of state-of-the-art text-to-motion synthesis.

144 R-Precision exhibits two significant drawbacks in evaluating
 145 text-to-motion generation. Firstly, as mentioned above, its effec-
 146 tiveness is hampered by the limitations of underlying motion-text
 147 embedding models. This is evident in the low ground-truth per-
 148 formance, exemplified by a mere 0.511 Top-1 accuracy [14] on the
 149 HumanML3D dataset [12]. To address this specific embedding limi-
 150 tation, we introduce MoCLIP. Fine-tuned via a two-stage strategy
 151 on diverse motion datasets, MoCLIP achieves a substantially higher
 152 Top-1 accuracy of 0.679. Secondly, R-Precision is undermined by its
 153 handling of highly similar text descriptions prevalent in datasets
 154 (e.g., "A person walks forward" vs. "A person is walking forward"),
 155 which challenge robust encoder differentiation. The metric's re-
 156 liance on simple ranking within a local subset (like a batch) focuses
 157 primarily on whether any correct-seeming text achieves a high rank.
 158 If multiple near-duplicates exist, R-Precision can significantly mis-
 159 judge the results even if the exact ground truth text ranks slightly
 160 lower (e.g., 4th) among its close variants. This local "high-score
 161 seeking" behavior inflates the results, as models only need to gen-
 162 erate diverse motions that are favored by the embedding model
 163 to obtain high scores. This mechanism can inadvertently penalize
 164 GT slightly while over-rewarding generated samples that fit the
 165 encoder's learned preferences, highlighting the need for a more
 166 globally comprehensive assessment beyond local top ranks [18].

167 The Fréchet Inception Distance (FID) [17] is fundamentally con-
 168 strained by its Gaussian distribution assumption for both real and
 169 generated data. This assumption fails to hold for motion datasets
 170 (Figure 4) [19]. Furthermore, FID's estimation process, which relies
 171 on finite samples to compute moments and utilizes potentially lim-
 172 ited feature representations, introduces bias. This bias contributes



175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231

Figure 2: Conceptual Differences in Evaluation Metrics. Current text-to-motion evaluation often relies on FID, which assumes Gaussian distributions and is biased, or R-Precision, based on limited local matching. These limitations motivate the exploration of alternative metrics like OTMS, which employs global optimal transport, and MMMD, offering an unbiased distribution distance, to achieve more reliable assessments.

significantly to the divergence between FID scores and human per-
 207 ceptual assessments of motion realism [19]. FID is also known for
 208 its inefficiency and instability, displaying considerable sensitivity
 209 to evaluation sample size [5]. The biggest concern lies in its po-
 210 tential for paradoxical evaluation: FID scores might decrease as
 211 motion quality improves initially but can subsequently increase
 212 once quality surpasses an indeterminate point, rendering the met-
 213 ristic unreliable. Such unreliability becomes especially acute when
 214 evaluating high-performing modern models achieving very low
 215 FID scores, precisely where the metric's biased nature has the most
 216 severe consequences.

217 Inspired by Optimal Transport [24] we redefine the R-Precision
 218 ranking problem as a matching problem and introduce OTMS (Opti-
 219 mal Transport Matching Score), a global evaluation metric specif-
 220 ically tailored to address existing method limitations. Building on
 221 MoCLIP embeddings for both textual and motion data, we first
 222 construct a cost matrix from their cosine similarities and then ap-
 223 ply a regularized optimal transport algorithm (i.e., the Sinkhorn
 224 method [8]) to derive a single cost value that reflects the overall
 225 alignment quality between texts and motions. An intuitive way to
 226 understand optimal transport is through the classic "moving sand"
 227 analogy: each batch of text embeddings can be viewed as piles of
 228 sand, and each batch of motion embeddings as the holes that need
 229 to be filled. The optimal transport plan determines how best to glob-
 230 ally "distribute" the sand (i.e., text representation) into holes (i.e.,

motion representation) with minimal total cost—thereby transcending simpler, local matching strategies like direct cosine similarity. Empirically, we observe that this global perspective yields a more faithful reflection of text-to-motion correspondence compared to conventional retrieval-based metrics.

Concurrently, prior work [19] demonstrated that the CLIP Embeddings Maximum Mean Discrepancy Distance (CMMMD) serves as a superior alternative to FID. Inspired by this finding, we adapt this methodology to the text-to-motion (T2M) domain, introducing the MoCLIP Embeddings Maximum Mean Discrepancy Distance (MMMD) metric. MMMD encodes motions with MoCLIP, computes an unbiased distributional divergence using a characteristic kernel, and crucially avoids any Gaussian assumptions often required by the Fréchet distance. Our experiments confirm that MMMD is more robust to variations in sample size and supports efficient, parallelizable computation, making it especially well-suited for real-world scenarios where computational overhead is a concern.

In this paper, we rigorously validate the proposed Optimal Transport Matching Score (OTMS) and MoCLIP-based Maximum Mean Discrepancy (MMMD) metrics. Through extensive experiments and human evaluations, we demonstrate their effectiveness in overcoming the limitations of traditional approaches. Our results confirm that OTMS and MMMD provide assessments that align more closely with human perceptual judgments, offering a more reliable, efficient, and comprehensive evaluation framework. This work establishes a more robust foundation for measuring and guiding future advancements in text-to-motion synthesis. We summarize our contributions as follows:

- (1) We are the first to systematically highlight the limitations of current evaluation metrics in text-to-motion generation, analyzing their shortcomings from multiple perspectives.
- (2) We propose two new, more reliable metrics—OTSM and MMMD which are built upon MoCLIP, a motion-text embedding model with stronger encoding precision and semantic representation capability, enabling more robust and faithful evaluation of text-to-motion generation.
- (3) Extensive experiments demonstrate that OTSM and MMMD better reflect model performance and align more consistently with human perception compared to existing metrics.

2 RELATED WORK

Text-to-Motion Generation. The field of text-to-motion (T2M) generation has significantly advanced, largely spurred by the creation of large-scale datasets such as HumanML3D [12], KIT-ML [28], and CombatMotion [32]. Initial research efforts explored foundational techniques, including sequence-to-sequence models [1] and early vector-quantization frameworks [15]. While these methods provided valuable insights into mapping language to motion, they often struggled to capture the intricate complexities and diversity inherent in human movement. Subsequent research introduced more sophisticated architectures to enhance generation quality. Diffusion models [6, 10, 29, 31, 35, 36] leveraged iterative denoising for high-fidelity and varied outputs. Variational Autoencoder (VAE) based approaches like TEMOS [23] and TEACH [2] improved the modeling of complex motion distributions. Furthermore, Transformer-based

models such as MotionGPT [20] and T2M-GPT [34] have demonstrated strong capabilities in capturing long-range dependencies and contextual understanding.

Recent advancements have pushed the boundaries of T2M, focusing on semantic consistency, stylization, and controllability. State-of-the-art models, including MoMask [11], StableMoFusion [18], and MotionCLR [3], now achieve remarkable performance using advanced latent representations and refinement techniques. Notably, their performance on established evaluation metrics primarily R-Precision, Frechet Inception Distance (FID), and Diversity metrics [12] is exceptionally high, occasionally even surpassing the ground truth recordings according to these scores. However, this success highlights a growing limitation: the inadequacy of current evaluation metrics. These standard metrics often fail to capture critical nuances, such as the fine-grained accuracy of semantic alignment between text and motion, subtle physical plausibility details, or the potential for user interaction. Recognizing this gap, our work introduces two novel evaluation metrics designed to address these shortcomings. We aim to provide a more comprehensive and interpretable assessment framework, contributing to the development of truly robust and high-quality T2M synthesis systems.

3 Preliminaries

In this part, we introduce the fundamental concepts of optimal transport (OT) (3.1) and maximum mean discrepancy (MMD) (3.2) in the context of comparing probability distributions. These form the theoretical underpinnings of our proposed evaluation framework.

3.1 Optimal Transport

Consider two discrete probability distributions over a metric space, denoted by

$$\mu = \sum_{i=1}^M p_i \delta_{z_i} \quad \text{and} \quad \nu = \sum_{j=1}^N q_j \delta_{y_j}, \quad (1)$$

where δ_{z_i} and δ_{y_j} are Dirac delta functions at locations z_i and y_j , respectively. Let $\mathbf{p} = (p_1, \dots, p_M)^\top$ and $\mathbf{q} = (q_1, \dots, q_N)^\top$ be the corresponding probability vectors, satisfying $\sum_{i=1}^M p_i = \sum_{j=1}^N q_j = 1$. Let $C \in \mathbb{R}^{M \times N}$ denote the pairwise cost matrix, with $C_{ij} = c(z_i, y_j)$, which quantifies the “distance” or “cost” of matching z_i with y_j .

To measure the dissimilarity between μ and ν , the classical OT problem seeks an optimal transport plan $\mathbf{P}^* \in \mathbb{R}^{M \times N}$ that minimizes the total matching cost:

$$\mathbf{P}^* = \arg \min_{\mathbf{P} \in \Gamma(\mathbf{p}, \mathbf{q})} \sum_{i=1}^M \sum_{j=1}^N P_{ij} C_{ij}, \quad (2)$$

subject to the marginal constraints $\mathbf{P} \mathbf{1}_N = \mathbf{p}$ and $\mathbf{P}^\top \mathbf{1}_M = \mathbf{q}$, where $\Gamma(\mathbf{p}, \mathbf{q})$ is the set of all feasible transport plans (matrices $\mathbf{P} \geq 0$ satisfying the marginal constraints). In practice, entropy regularization [8] is frequently applied to improve stability and computational efficiency. The regularized problem is formulated as

$$\mathbf{P}^* = \arg \min_{\mathbf{P} \in \Gamma(\mathbf{p}, \mathbf{q})} \sum_{i,j} P_{ij} C_{ij} - \lambda H(\mathbf{P}), \quad (3)$$

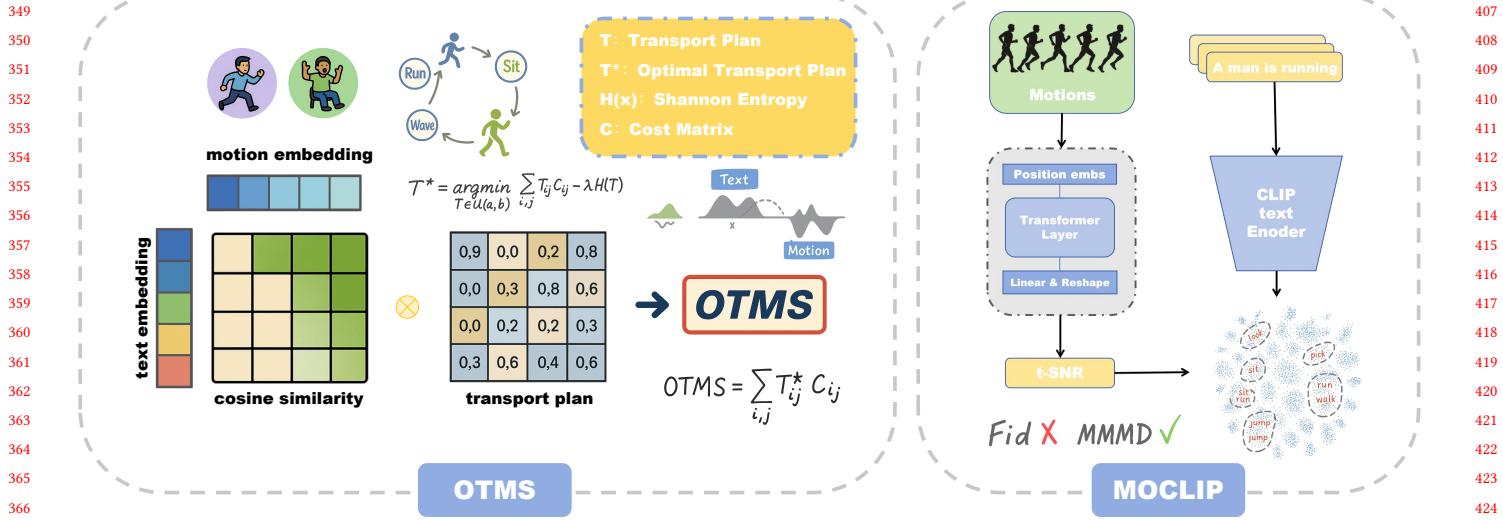


Figure 3: Illustration of the OTMS and MoCLIP framework. On the left, OTMS utilizes optimal transport to align motion and text embeddings, with the transport plan minimizing the cost (cosine similarity) between the two distributions. On the right, MoCLIP incorporates a transformer-based architecture to align motion and text representations, utilizing CLIP for text encoding and MoCLIP embeddings for semantic alignment, with evaluation metrics such as FID (traditional) and MMMD (proposed) applied using these representations.

where λ is the regularization coefficient, and $H(P) = -\sum_{i,j} P_{ij} \log P_{ij}$ is the Shannon entropy of P . This relaxed objective can be solved efficiently via the Sinkhorn-Knopp algorithm [9]. Optimal transport, particularly in its entropy-regularized form, has gained prominence for robustly comparing complex distributions by aligning them according to both local and global structures.

3.2 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [19] provides a non-parametric, kernel-based approach to quantify distributional discrepancies without assuming any specific parametric form. Let $\mathbf{X} = \{x_1, \dots, x_N\}$ and $\mathbf{Y} = \{y_1, \dots, y_M\}$ be samples drawn i.i.d. from distributions P and Q , respectively. MMD is defined with respect to a reproducing kernel Hilbert space (RKHS) \mathcal{H} endowed with a characteristic kernel κ .

Formally, the squared MMD between P and Q is:

$$\text{MMD}^2(P, Q) = \mathbb{E}_{x, x' \sim P} [\kappa(x, x')] + \mathbb{E}_{y, y' \sim Q} [\kappa(y, y')] - 2 \mathbb{E}_{x \sim P, y \sim Q} [\kappa(x, y)], \quad (4)$$

where $x, x' \in \mathbf{X}, y, y' \in \mathbf{Y}$.

For discrete samples, an unbiased empirical estimator of MMD² is

$$\begin{aligned} \widehat{\text{MMD}}^2(\mathbf{X}, \mathbf{Y}) &= \frac{1}{N(N-1)} \sum_{i \neq j} \kappa(x_i, x_j) \\ &\quad + \frac{1}{M(M-1)} \sum_{i \neq j} \kappa(y_i, y_j) \\ &\quad - \frac{2}{NM} \sum_{i=1}^N \sum_{j=1}^M \kappa(x_i, y_j). \end{aligned} \quad (5)$$

A commonly used kernel for MMD is the Gaussian Radial Basis Function (RBF) kernel, $\kappa(u, v) = \exp(-\|u - v\|^2/(2\sigma^2))$, with σ being a bandwidth parameter. Crucially, if κ is characteristic, $\text{MMD}^2(P, Q) = 0$ if and only if $P = Q$. Hence, MMD effectively captures both mean and higher-order discrepancies between distributions, making it suitable for complex, high-dimensional datasets.

Optimal transport and MMD thus offer complementary perspectives on comparing probability distributions. OT aligns sample points explicitly through a transport plan, while MMD leverages kernel embeddings to compare distributions in a Hilbert space. In the subsequent sections, we will utilize both approaches to rigorously assess the semantic alignment of motion data within text-to-motion generation tasks.

4 Evaluation Metric

In this section we analyze the limitations of traditional evaluation metrics such as FID and Top-K and address these shortcomings by introducing two novel metrics: OTMS based on Optimal Transport and MMD based on Maximum Mean Discrepancy.

4.1 Limitations of Traditional Evaluation Metrics

The conventional use of Fréchet Inception Distance (FID) in motion evaluation inherits intrinsic limitations from its image analysis origins while introducing additional motion-specific vulnerabilities. Initial implementations employed motion encoders, such as the autoencoder proposed by Guo et al. [14], which demonstrated constrained representational power, achieving only 0.797 in top-3 action recognition accuracy on the HumanML3D dataset [12]. Despite improvements in motion encoders, fundamental issues persist due to the intrinsic formulation of the FID metric:

$$\text{FID}(P, Q) = \|\mu_P - \mu_Q\|_2^2 + \text{Tr}(\Sigma_P + \Sigma_Q - 2(\Sigma_P \Sigma_Q)^{1/2}). \quad (6)$$

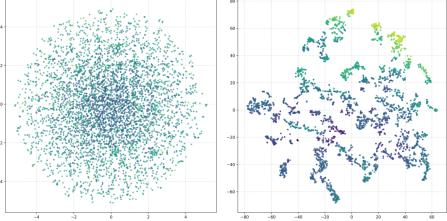


Figure 4: The left panel displays simulation results of the standard normal distribution, while the right panel visualizes the motion embedding distribution generated via t-SNE dimensionality reduction. Notably, the low-dimensional manifold of motion embeddings deviates significantly from Gaussian characteristics, indicating the presence of complex nonlinear structures inherent in the original high-dimensional motion feature space, which fundamentally contradicts Gaussian assumptions.

FID inherently relies on two problematic assumptions in the context of motion analysis. Firstly, it presupposes multivariate normality, directly conflicting with the hierarchical, spatiotemporal complexity of human motion. In figure 4, empirical evidence from t-SNE visualizations of 10,000 samples from the HumanML3D test dataset [12] clearly reveals distinct, multi-modal clusters corresponding to action semantics, such as periodic locomotion versus discrete gestures. Moreover, Mardia's multivariate normality test emphatically rejects Gaussianity, yielding extreme skewness ($\chi^2 = 1.86 \times 10^{12}$, $df = 22,500,864$) and kurtosis statistics ($z = 11,848.6$), both with p -values lower than 10^{-324} ($d = 512$, $n = 29,184$).

Secondly, and crucially, FID is a **biased estimator** of the true Fréchet distance. This bias arises due to the nonlinear operation involved in estimating covariance matrices from finite samples, specifically the matrix square root term $(\Sigma_r \Sigma_g)^{1/2}$. Under limited sample conditions, this nonlinearity systematically results in underestimation of this term, consequently causing an *overestimation* of the FID score. Such theoretical deficiencies persist irrespective of the encoder's quality, further evidenced by controlled experiments where state-of-the-art motion generators paradoxically improved FID scores despite qualitative degradation observed in human studies.

These limitations underscore the necessity for distribution-free evaluation metrics that more reliably reflect semantic coherence in generated motions, thus motivating our proposed metrics detailed in Section 4.2.

Top- k metrics, notably R-Precision, are widely used for text-to-motion evaluation due to their intuitive interpretation and ease of computation. These metrics assess the capability of retrieving correct motions from a predefined candidate set, typically containing 32 items. Despite their popularity, Top- k metrics primarily evaluate local retrieval accuracy and fail to comprehensively capture the semantic alignment between motion and textual embeddings.

A critical drawback arises from the limited retrieval accuracy observed even with ground-truth motions. Empirical human evaluations indicate that ground-truth retrieval performance exhibits a natural ceiling (approximately 0.9 for Top-3 accuracy), highlighting

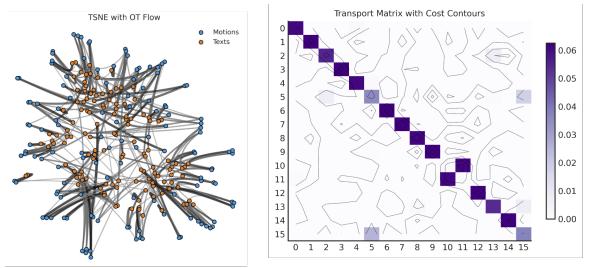


Figure 5: The left figure shows the distribution matching situation after the MoCLIP encodings of 128 motions and texts are reduced in dimension using t-SNE. The right figure is the heatmap of the transport plan.

inherent dataset misalignments. Consequently, relying exclusively on Top- k metrics risks misrepresenting the true semantic alignment capability of state-of-the-art models, making performance improvements difficult to interpret accurately.

Additionally, recent models surpassing ground-truth Top- k scores exacerbate interpretability concerns. Improvements in retrieval metrics may result from biases in the embedding space or optimization procedures, rather than genuine advancements in semantic understanding. Moreover, Top- k metrics neglect the broader distributional structure within embedding spaces, failing to capture continuous semantic alignment comprehensively. These limitations necessitate a more robust and holistic evaluation framework beyond local retrieval accuracies.

4.2 Proposed Evaluation Metrics

To overcome the aforementioned limitations associated with traditional metrics, we introduce *MoCLIP*, accompanied by two novel evaluation metrics specifically designed for text-to-motion tasks: *Optimal Transport Matching Score (OTMS)* and *MoCLIP-based Maximum Mean Discrepancy (MMD)*. Inspired by recent advancements in text-to-image evaluations [19], these metrics leverage MoCLIP's enhanced semantic alignment capabilities.

4.2.1 Optimal Transport Matching Score (OTMS). We define the Optimal Transport Motion Semantic (OTMS) metric, which is showed in figure 5, based on normalized embeddings of motions $\{\mathbf{m}_i\}_{i=1}^M$ and texts $\{\mathbf{t}_j\}_{j=1}^N$ extracted by MoCLIP. In contrast to traditional retrieval-based metrics, OTMS leverages the global semantic alignment between text and motion distributions through an optimal transport formulation.

Specifically, we first construct a cost matrix $\mathbf{C} \in \mathbb{R}^{M \times N}$ utilizing cosine similarity to quantify pairwise semantic distances:

$$C_{ij} = 1 - \langle \mathbf{m}_i, \mathbf{t}_j \rangle. \quad (7)$$

We then define discrete uniform probability distributions, represented by vectors $\mathbf{a} = \frac{1}{M} \mathbf{1}_M$ and $\mathbf{b} = \frac{1}{N} \mathbf{1}_N$, over the motion and text embeddings, respectively, and employ the Sinkhorn algorithm [?] to obtain the optimal transport plan \mathbf{T}^* :

$$\mathbf{T}^* = \arg \min_{\mathbf{T} \in \Gamma(\mathbf{a}, \mathbf{b})} \sum_{i=1}^M \sum_{j=1}^N T_{ij} C_{ij} - \lambda H(\mathbf{T}), \quad (8)$$

581 where $H(\cdot)$ denotes the entropy regularization term, λ is the corresponding regularization coefficient, and $\Gamma(\mathbf{a}, \mathbf{b})$ is the set of transport plans matching the uniform marginals \mathbf{a} and \mathbf{b} . Finally, the 582 OTMS metric is computed as:

$$583 \text{OTMS} = \sum_{i=1}^M \sum_{j=1}^N T_{ij}^* C_{ij}, \quad (9)$$

588 which is essentially the Sinkhorn distance between the two embedding 589 distributions. Lower OTMS values indicate stronger global 590 semantic alignment.

592 **4.2.2 MoCLIP-Based Maximum Mean Discrepancy (MMMD).** To 593 measure distributional divergence without assuming Gaussianity, we 594 propose the MoCLIP-based Maximum Mean Discrepancy (MMMD). Let P 595 denote the distribution of MoCLIP embeddings from ground-truth motions 596 $\{\mathbf{m}_i\}$ and Q denote the distribution from generated sequences $\{\hat{\mathbf{m}}_j\}$. The 597 squared MMD employs a characteristic kernel κ , such as the Gaussian RBF, and is 598 defined via expectations:

$$601 \text{MMD}^2(P, Q) = \mathbb{E}_{\mathbf{m}, \mathbf{m}' \sim P} [\kappa(\mathbf{m}, \mathbf{m}')] + \mathbb{E}_{\hat{\mathbf{m}}, \hat{\mathbf{m}}' \sim Q} [\kappa(\hat{\mathbf{m}}, \hat{\mathbf{m}}')] \\ 602 - 2\mathbb{E}_{\mathbf{m} \sim P, \hat{\mathbf{m}} \sim Q} [\kappa(\mathbf{m}, \hat{\mathbf{m}})], \quad (10)$$

604 where expectations are taken over independent samples drawn 605 from P and Q .

606 In practice, given finite sets of MoCLIP embeddings $\mathbf{X} = \{\mathbf{m}_1, \dots, \mathbf{m}_N\}$ 607 drawn from P and $\mathbf{Y} = \{\hat{\mathbf{m}}_1, \dots, \hat{\mathbf{m}}_M\}$ drawn from Q , we compute 608 the unbiased empirical estimate of $\text{MMD}^2(P, Q)$ as:

$$610 \widehat{\text{MMD}}^2(\mathbf{X}, \mathbf{Y}) = \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j \neq i} \kappa(\mathbf{m}_i, \mathbf{m}_j) \\ 611 + \frac{1}{M(M-1)} \sum_{i=1}^M \sum_{j \neq i} \kappa(\hat{\mathbf{m}}_i, \hat{\mathbf{m}}_j) \\ 612 - \frac{2}{NM} \sum_{i=1}^N \sum_{j=1}^M \kappa(\mathbf{m}_i, \hat{\mathbf{m}}_j). \quad (11)$$

618 and define MMMD as:

$$620 \text{MMMD} = \alpha \sqrt{\widehat{\text{MMD}}^2(\mathbf{X}, \mathbf{Y})}, \quad (12)$$

622 with scaling factor $\alpha = 1000$ to improve readability.

623 Unlike FID, the nonparametric formulation of MMMD offers 624 an unbiased estimator of distributional discrepancy, inherently 625 accommodating the complex, non-Gaussian, and high-dimensional 626 nature of motion data. By directly comparing empirical distributions 627 without relying on parametric assumptions, MMMD yields 628 a semantically coherent measure that correlates strongly with 629 human perceptual judgments, offering a more principled and reliable 630 evaluation of generative quality.

633 5 Experiments

634 Our experimental evaluation utilizes the HumanML3D [12] and 635 KIT-ML [28] datasets. The HumanML3D dataset contains 14,616 636 motions sourced from AMASS [22] and HumanAct12 [16]. Each 637 motion is paired with three textual descriptions, resulting in 44,970 638

639 descriptions total. This dataset encompasses diverse actions, including 640 walking, exercising, and dancing. The KIT-ML dataset provides 641 3,911 motions and 6,278 corresponding text descriptions. We assess 642 model performance using our proposed evaluation metrics: Optimal 643 Transport Matching Score (OTMS) and MoCLIP-based Maximum 644 Mean Discrepancy (MMMD).

646 5.1 Experiment Setting

647 We compare several state-of-the-art text-to-motion generation 648 models, including StableMoFusion, MDM, T2MT, MoMask, MMM, BAMM, 649 T2M-GPT, and Discord. For evaluation, the proposed metrics OTMS, 650 MMMD, and MoCLIP-based R-Precision were computed using 651 embeddings extracted from a pretrained MoCLIP encoder, which 652 provides a shared semantic space across modalities. In contrast, the 653 metrics FID and the original R-Precision were calculated using 654 embeddings from their respective original encoders. All experiments 655 were conducted on an NVIDIA RTX 4090 GPU. Reported metrics 656 represent the average over 20 independent runs, presented with 657 95% confidence intervals for robust evaluation.

659 5.2 Effectiveness of New Metrics

660 Table 1 and Table 2 present the quantitative results obtained from 661 evaluating multiple state-of-the-art models on the HumanML3D 662 and KIT-ML datasets, respectively. For ensuring the reliability of 663 comparisons, each experiment was conducted 20 times, with 664 results reported along with 95% confidence intervals. Our experiments 665 involved a variety of models ranging from earlier proposed 666 frameworks, such as T2MT, to more recent models like StableMoFusion. 667 Results demonstrate that earlier models consistently exhibit poorer 668 performance on our metrics (OTMS and MDM), while newer 669 approaches generally perform better. This trend indicates that our 670 metrics effectively distinguish between higher- and lower-quality 671 models. Additionally, OTMS addresses the common problem 672 observed in prior metrics, where some models incorrectly outperform 673 ground-truth (GT) data. Nevertheless, to further validate the 674 robustness and accuracy of our proposed metrics, human evaluation 675 studies are conducted, as detailed in the next subsection.

677 5.3 Human Evaluation

678 To assess whether our metrics align with human intuition, we 679 conducted a human evaluation study employing 16 evaluators. Each 680 participant assessed a total of 4000 samples, consisting of 1000 681 samples each from MDM, StableMoFusion, MoMask, and ground 682 truth (GT). Evaluations were performed across four core dimensions: 683 motion completeness, directional and angular accuracy, appropriate 684 utilization of body parts, and physical plausibility. These 685 dimensions were chosen to comprehensively capture the fidelity 686 of motion-to-text matching, with each dimension independently 687 assessed yet collectively contributing to the overall evaluation.

688 Results from the human evaluation closely align with our proposed 689 metrics, specifically OTMS and MMD, highlighting their 690 strong correlation with human judgment. Notably, we observed 691 that in cases where the FID score is exceptionally low, our MMD 692 metric more accurately reflects human preferences. Leveraging 693 these insights, we constructed a new human-preference dataset 694 that can serve as a robust benchmark for future evaluations of 695

Method	FID ↓	MoCLIP R-Precision ↑			R-Precision ↑			OTMS ↓	MMMD ↓
		TOP1	TOP2	TOP3	TOP1	TOP2	TOP3		
GT	0.002 \pm 0.000	0.679 \pm 0.002	0.836 \pm 0.003	0.896 \pm 0.002	0.511 \pm 0.003	0.703 \pm 0.003	0.797 \pm 0.002	0.481 \pm 0.003	0.003 \pm 0.001
MoMask [11]	0.045 \pm 0.002	0.679 \pm 0.002	0.836 \pm 0.003	0.896 \pm 0.002	0.521 \pm 0.002	0.713 \pm 0.002	0.807 \pm 0.002	0.495 \pm 0.001	0.190 \pm 0.001
Discord [7]	0.032 \pm 0.002	0.687 \pm 0.002	0.842 \pm 0.002	0.902 \pm 0.002	0.524 \pm 0.003	0.715 \pm 0.003	0.809 \pm 0.002	0.489 \pm 0.0010	0.178 \pm 0.002
MMM [27]	0.080 \pm 0.003	0.651 \pm 0.002	0.806 \pm 0.002	0.870 \pm 0.002	0.504 \pm 0.003	0.696 \pm 0.003	0.794 \pm 0.002	0.488 \pm 0.003	0.055 \pm 0.001
BAMM [26]	0.055 \pm 0.002	0.662 \pm 0.002	0.822 \pm 0.002	0.888 \pm 0.002	0.525 \pm 0.002	0.720 \pm 0.003	0.814 \pm 0.003	0.499 \pm 0.0001	0.220 \pm 0.003
T2M-GPT [34]	0.492 \pm 0.003	0.630 \pm 0.003	0.791 \pm 0.003	0.861 \pm 0.002	0.492 \pm 0.003	0.679 \pm 0.002	0.775 \pm 0.002	0.487 \pm 0.001	0.033 \pm 0.013
StableMofusion [18]	0.098 \pm 0.003	0.735 \pm 0.003	0.876 \pm 0.002	0.926 \pm 0.002	0.553 \pm 0.003	0.748 \pm 0.002	0.841 \pm 0.002	0.478 \pm 0.006	0.025 \pm 0.002
MDM [30]	0.544 \pm 0.044	0.611 \pm 0.006	0.781 \pm 0.004	0.855 \pm 0.004	0.455 \pm 0.006	0.465 \pm 0.007	0.749 \pm 0.006	0.506 \pm 0.001	0.555 \pm 0.0012
T2MT [15]	1.501 \pm 0.017	0.509 \pm 0.002	0.679 \pm 0.002	0.764 \pm 0.000	0.424 \pm 0.003	0.618 \pm 0.003	0.729 \pm 0.002	0.524 \pm 0.003	0.592 \pm 0.001

Table 1: Quantitative comparison of various text-to-motion generation methods on the HumanML3D dataset using multiple evaluation metrics. We report FID (Fréchet Inception Distance; lower is better), MoCLIP-based R-Precision (Top-1/2/3; higher is better), traditional CLIP-based R-Precision, OTMS (Optimal Transport Matching Score; lower is better), and MMMD (MoCLIP-based Maximum Mean Discrepancy; lower is better). The results demonstrate the effectiveness of MoCLIP-based metrics in better distinguishing semantic alignment and distribution consistency. GT denotes ground truth motion. All metrics are averaged 20 runs with 95% confidence intervals.

Method	FID ↓	MoCLIP R-Precision ↑			R-Precision ↑			OTMS	CMMMD
		TOP1	TOP2	TOP3	TOP1	TOP2	TOP3		
GT	0.031 \pm 0.004	0.556 \pm 0.005	0.759 \pm 0.006	0.860 \pm 0.005	0.424 \pm 0.005	0.649 \pm 0.006	0.779 \pm 0.006	0.681 \pm 0.001	-0.016 \pm 0.000
MoMask [11]	0.204 \pm 0.110	0.399 \pm 0.007	0.597 \pm 0.005	0.714 \pm 0.005	0.433 \pm 0.007	0.656 \pm 0.005	0.781 \pm 0.005	0.715 \pm 0.000	2.627 \pm 0.033
T2M-GPT [34]	0.514 \pm 0.029	0.367 \pm 0.008	0.566 \pm 0.009	0.680 \pm 0.009	0.416 \pm 0.060	0.627 \pm 0.006	0.745 \pm 0.006	0.730 \pm 0.002	0.175 \pm 0.000
StableMofusion [18]	0.258 \pm 0.029	0.336 \pm 0.005	0.518 \pm 0.006	0.636 \pm 0.005	0.445 \pm 0.006	0.660 \pm 0.005	0.782 \pm 0.004	0.763 \pm 0.001	0.204 \pm 0.001
MDM [30]	0.547 \pm 0.069	0.303 \pm 0.004	0.613 \pm 0.005	0.487 \pm 0.000	0.404 \pm 0.019	0.615 \pm 0.013	0.737 \pm 0.005	0.782 \pm 0.001	0.793 \pm 0.000
T2MT [15]	0.360 \pm 0.153	0.223 \pm 0.003	0.358 \pm 0.005	0.449 \pm 0.006	0.280 \pm 0.005	0.463 \pm 0.006	0.587 \pm 0.005	0.803 \pm 0.001	0.786 \pm 0.016

Table 2: Quantitative comparison of various text-to-motion generation methods on the KIT-ML dataset using multiple evaluation metrics. We report FID (Fréchet Inception Distance; lower is better), MoCLIP-based R-Precision (Top-1/2/3; higher is better), traditional CLIP-based R-Precision, OTMS (Optimal Transport Matching Score; lower is better), and MMMD (MoCLIP-based Maximum Mean Discrepancy; lower is better). The results demonstrate the effectiveness of MoCLIP-based metrics in better distinguishing semantic alignment and distribution consistency. GT denotes ground truth motion. All metrics are averaged 20 runs with 95% confidence intervals.

motion-text alignment methods. The human evaluation results are presented in Table 3. We also calculated the correlation between human scores and metrics such as FID, OTMS, MMD, and TOPK, as shown in Figure 6. Our proposed metrics rank first and second in this analysis. This indicates that our metrics align better with human preferences.

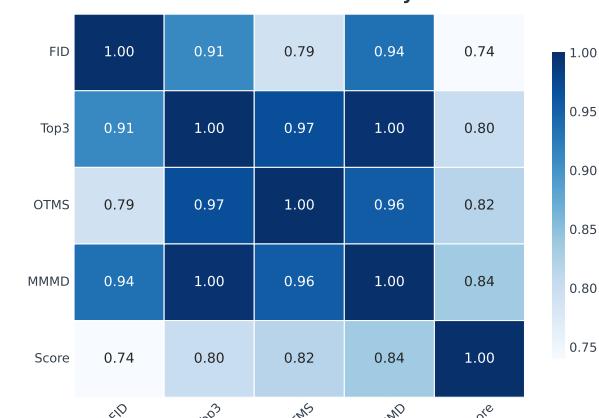
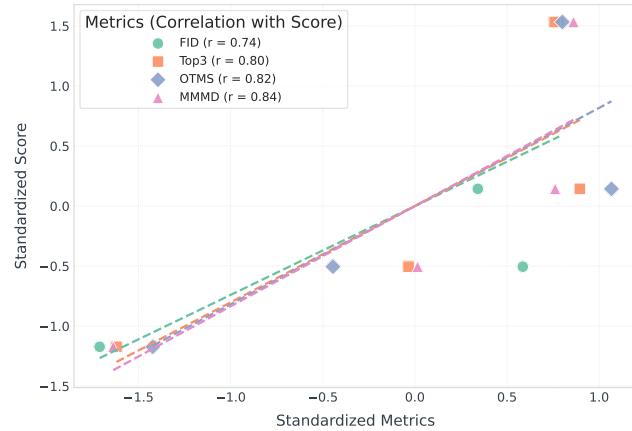
model	Score ↑	FID ↓	Top3	OTMS ↓	MMMD ↓
GT	19.68	0.002	0.836	0.481	0.003
MDM	18.22	0.544	0.749	0.506	0.555
StableMofusion	18.93	0.098	0.841	0.478	0.025
MoMask	18.58	0.045	0.807	0.495	0.190

Table 3: Human Evaluation Results: A comparison of GT, MDM, stablemofusion, and MoMask was conducted on 1000 test set samples. Human evaluation scores were given, with a maximum possible score of 20 points.

5.4 Discussion

5.4.1 *Influence of λ on OTMS.* The regularization parameter λ in the entropy-regularized Sinkhorn algorithm directly impacts computational efficiency and convergence stability. Specifically, smaller λ values (e.g., $\lambda < 0.01$) result in sharply peaked transport plans, potentially enhancing local alignment sensitivity but simultaneously increasing the risk of numerical instability and slower convergence. Conversely, larger values of λ produce smoother transport plans that may diminish the metric's ability to discriminate fine-grained semantic differences. After systematically evaluating a range of values $\lambda \in \{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 1.00\}$, we found that when computed with a batch size of 32, $\lambda = 0.02$ can achieve the largest based Top-k A.4 value on the test set data and also has good efficiency.

5.4.2 *Causal Analysis of the Model's Higher R-Precision Scores over GT.* Our experimental results show that the model-generated motions frequently achieve higher R-Precision and CLIP scores compared to the ground truth (GT), indicating better embedding-level alignment with textual descriptions. However, human evaluations

813 **Comprehensive Model Evaluation Analysis**814 **Metric Correlation Analysis**815 **Metric-Score Relationships (Standardized)**

849 **Figure 6: The first figure presents the correlation matrix be-**
 850 **tween our proposed metrics, FID Top-K, and human eval-**
 851 **uation scores. The second figure illustrates the correlation**
 852 **analysis between our metrics, FID Top-K, and human eval-**
 853 **uation.**

854 consistently suggest that the generated motions are inferior in
 855 actual quality compared to GT. We attribute this discrepancy pri-
 856 marily to embedding biases introduced during the training of the
 857 motion and text encoders. Specifically, both encoders are trained on
 858 a relatively limited dataset, causing them to favor motion patterns
 859 similar to those observed during training, thus artificially inflating
 860 embedding-based metrics.

861 To validate this hypothesis, we conducted experiments on the
 862 training set itself and found that the GT's top-3 R-Precision score
 863 (0.876) outperformed that of StableMofusion (0.843). This indi-
 864 cates that when evaluated within the original data distribution,
 865 embedding-based metrics correctly rank GT higher, whereas the
 866 same encoders struggle to accurately rank novel motions on lim-
 867 ited datasets. This underscores the critical issue of embedding bias

λ	Top1	Top2	Top3	Time (s)
0.01	0.782	0.900	0.940	11.58
0.02	0.810	0.930	0.960	9.50
0.03	0.790	0.914	0.953	11.58
0.04	0.793	0.914	0.951	9.90
0.05	0.781	0.913	0.955	7.22
0.06	0.789	0.905	0.942	3.33
0.07	0.772	0.898	0.944	1.77
0.08	0.776	0.899	0.939	1.58
0.09	0.778	0.899	0.941	1.11
1.00	0.775	0.898	0.942	1.05

816 **Table 4: Effect of regularization parameter λ on OT-based**
 817 **Top-k and inference time. The batch size is set to 32. The best**
 818 **performance is observed at $\lambda = 0.02$.**

819 resulting from insufficient data diversity and scale, highlighting the
 820 necessity of larger and more diverse datasets for reliable embedding-
 821 based evaluations.

6 Conclusion

822 Traditional text-to-motion metrics like FID and R-Precision often
 823 fail evaluations. They misalign with human perception exhibit
 824 Gaussian bias focus locally and depend heavily on encoders. We
 825 proposed two novel metrics Optimal Transport Matching Score
 826 (OTMS) and MoCLIP-based Maximum Mean Discrepancy (MMMD)
 827 to address these shortcomings. OTMS leverages optimal transport
 828 for global semantic alignment surpassing R-Precision's local match-
 829 ing limitations. MMMD utilizes an enhanced MoCLIP encoder and
 830 MMD with RBF kernels providing an unbiased distributional com-
 831 parison free from FID's Gaussian assumptions and inefficiency.
 832 Extensive experiments demonstrate OTMS and MMMD better dis-
 833 tinguish model performance correlate strongly with human judg-
 834 ment and avoid the overestimation issues plaguing older metrics.
 835 Our work offers a robust efficient and perceptually faithful evalua-
 836 tion framework grounded in global alignment and distribution-free
 837 statistics. It highlights existing metric deficiencies and establishes
 838 a foundation for reliable assessment crucial for advancing genuine
 839 motion quality and semantic fidelity in text-to-motion generation.

840 **In the future** significant progress in text-to-motion synthesis re-
 841 quires moving beyond improved evaluation metrics. While crucial
 842 our proposed OTMS and MMMD address assessment limitations yet
 843 fundamental data and representation challenges persist hindering
 844 substantial breakthroughs. Current datasets such as HumanML3D
 845 and KIT-ML are insufficient necessitating the creation of much
 846 larger high fidelity datasets. These next generation datasets should
 847 feature diverse fine grained textual descriptions suitable perhaps
 848 for pretraining scale models. Simultaneously research must explore
 849 more expressive motion representations potentially focusing on
 850 controllable attributes beyond raw kinematics. Developing meth-
 851 ods to learn and rigorously evaluate these attribute based motion
 852 models constitutes another crucial research avenue. Addressing
 853 interconnected challenges of diverse data, innovative representa-
 854 tions and effective evaluation is crucial for achieving high quality
 855 semantically faithful text to motion generation.

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

References

[1] Chaitanya Ahuja and Louis-Philippe Morency. 2019. Language2Pose: Natural Language Grounded Pose Forecasting. arXiv:1907.01108 [cs.CV] <https://arxiv.org/abs/1907.01108>

[2] Nikos Athanasiou, Mathis Petrovich, Michael J. Black, and Gü̈l Varol. 2022. TEACH: Temporal Action Composition for 3D Humans. arXiv:2209.04066 [cs.CV] <https://arxiv.org/abs/2209.04066>

[3] Ling-Hao Chen, Shunlin Lu, Wenxun Dai, Zhiyang Dou, Xuan Ju, Jingbo Wang, Taku Komura, and Lei Zhang. 2025. Pay Attention and Move Better: Harnessing Attention for Interactive Motion Generation and Training-free Editing. arXiv:2410.18977 [cs.CV] <https://arxiv.org/abs/2410.18977>

[4] Ling-Hao Chen, Shunlin Lu, Ailing Zeng, Hao Zhang, Benyou Wang, Ruimao Zhang, and Lei Zhang. 2024. MotionLLM: Understanding Human Behaviors from Human Motions and Videos. arXiv:2405.20340 [cs.CV] <https://arxiv.org/abs/2405.20340>

[5] Wenshuo Chen, Haozhe Jia, Songning Lai, Keming Wu, Hongru Xiao, Lijie Hu, and Yutao Yue. 2025. Free-T2M: Frequency Enhanced Text-to-Motion Diffusion Model With Consistency Loss. arXiv:2501.18232 [cs.CV] <https://arxiv.org/abs/2501.18232>

[6] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu, and Gang Yu. 2023. Executing your Commands via Motion Diffusion in Latent Space. arXiv:2212.04048 [cs.CV] <https://arxiv.org/abs/2212.04048>

[7] Jungbin Cho, Junwan Kim, Jisoo Kim, Minseo Kim, Mingu Kang, Sungeun Hong, Tae-Hyun Oh, and Youngjae Yu. 2024. DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding. arXiv:2411.19527 [cs.CV] <https://arxiv.org/abs/2411.19527>

[8] Xiao Cui, Yulei Qin, Yuting Gao, Enwei Zhang, Zihan Xu, Tong Wu, Ke Li, Xing Sun, Wengang Zhou, and Houqiang Li. 2024. Sinkhorn Distance Minimization for Knowledge Distillation. arXiv:2402.17110 [cs.LG] <https://arxiv.org/abs/2402.17110>

[9] Marco Cuturi. 2013. Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances. arXiv:1306.0895 [stat.ML] <https://arxiv.org/abs/1306.0895>

[10] Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang. 2024. MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model. arXiv:2404.19759 [cs.CV] <https://arxiv.org/abs/2404.19759>

[11] Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. 2023. MoMask: Generative Masked Modeling of 3D Human Motions. arXiv:2312.00063 [cs.CV] <https://arxiv.org/abs/2312.00063>

[12] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. 2022. Generating Diverse and Natural 3D Human Motions from Text. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5142–5151. doi:10.1109/CVPR52688.2022.00509

[13] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. 2022. Generating diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 5152–5161.

[14] Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. 2022. Tm2t: Stochastic and tokenized modeling for the reciprocal generation of 3d human motions and texts. In *European Conference on Computer Vision*. Springer, 580–597.

[15] Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. 2022. TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of 3D Human Motions and Texts. arXiv:2207.01696 [cs.CV] <https://arxiv.org/abs/2207.01696>

[16] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and Li Cheng. 2020. Action2motion: Conditioned generation of 3d human motions. In *Proceedings of the 28th ACM International Conference on Multimedia*. 2021–2029.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2018. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. arXiv:1706.08500 [cs.LG] <https://arxiv.org/abs/1706.08500>

[18] Yiheng Huang, Hui Yang, Chuanchen Luo, Yuxi Wang, Shibiao Xu, Zhaoxiang Zhang, Man Zhang, and Junran Peng. 2024. StableMoFusion: Towards Robust and Efficient Diffusion-based Motion Generation Framework. arXiv:2405.05691 [cs.CV] <https://arxiv.org/abs/2405.05691>

[19] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and Sanjiv Kumar. 2024. Rethinking FID: Towards a Better Evaluation Metric for Image Generation. arXiv:2401.09603 [cs.CV] <https://arxiv.org/abs/2401.09603>

[20] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. 2023. MotionGPT: Human Motion as a Foreign Language. arXiv:2306.14795 [cs.CV] <https://arxiv.org/abs/2306.14795>

[21] Jing Lin, Ailing Zeng, Shunlin Lu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, and Lei Zhang. 2023. Motion-X: A Large-scale 3D Expressive Whole-body Human Motion Dataset. *Advances in Neural Information Processing Systems* (2023).

[22] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. 2019. AMASS: Archive of Motion Capture As Surface Shapes. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*.

[23] Mathis Petrovich, Michael J. Black, and Gü̈l Varol. 2022. TEMOS: Generating diverse human motions from textual descriptions. arXiv:2204.14109 [cs.CV] <https://arxiv.org/abs/2204.14109>

[24] Gabriel Peyré and Marco Cuturi. 2020. Computational Optimal Transport. arXiv:1803.00567 [stat.ML] <https://arxiv.org/abs/1803.00567>

[25] Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Korrawe Karunratnakul, Pu Wang, Hongfei Xue, Chen Chen, Chuan Guo, Junli Cao, Jian Ren, and Sergey Tulyakov. 2024. ControlMM: Controllable Masked Motion Generation. arXiv:2410.10780 [cs.CV] <https://arxiv.org/abs/2410.10780>

[26] Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Pu Wang, Minwoo Lee, Srijan Das, and Chen Chen. 2024. BAMM: Bidirectional Autoregressive Motion Model. arXiv:2403.19435 [cs.CV] <https://arxiv.org/abs/2403.19435>

[27] Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen Chen. 2024. MMM: Generative Masked Motion Model. arXiv:2312.03596 [cs.CV] <https://arxiv.org/abs/2312.03596>

[28] Matthias Plappert, Christian Mandery, and Tamim Asfour. 2016. The KIT Motion-Language Dataset. *Big Data* 4, 4 (Dec. 2016), 236–252. doi:10.1089/big.2016.0028

[29] Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano, and Daniel Cohen-Or. 2022. MotionCLIP: Exposing Human Motion Generation to CLIP Space. arXiv:2203.08063 [cs.CV] <https://arxiv.org/abs/2203.08063>

[30] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. 2022. Human motion diffusion model. *arXiv preprint arXiv:2209.14916* (2022).

[31] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H. Bermano. 2022. Human Motion Diffusion Model. arXiv:2209.14916 [cs.CV] <https://arxiv.org/abs/2209.14916>

[32] Ziming Cheng Jiangfeiyang Wang Yihao Liao, Yiyu Fu. 2024. AnimationGPT: An AIGC tool for generating game combat motion assets. <https://github.com/fyyakaxy/AnimationGPT>.

[33] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, In So Kweon, and Junmo Kim. 2024. Text-to-image Diffusion Models in Generative AI: A Survey. arXiv:2303.07909 [cs.CV] <https://arxiv.org/abs/2303.07909>

[34] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi Shen. 2023. T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations. arXiv:2301.06052 [cs.CV] <https://arxiv.org/abs/2301.06052>

[35] Mingyuan Zhang, Zhonghang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu. 2024. Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE transactions on pattern analysis and machine intelligence* 46, 6 (2024), 4115–4128.

[36] Mingyuan Zhang, Xinying Guo, Liang Pan, Zhonghang Cai, Fangzhou Hong, Huirong Li, Lei Yang, and Ziwei Liu. 2023. Remodiffuse: Retrieval-augmented motion diffusion model. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 364–373.

[37] Yuhong Zhang, Jing Lin, Ailing Zeng, Guanlin Wu, Shunlin Lu, Yurong Fu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, and Lei Zhang. 2025. Motion-X++: A Large-Scale Multimodal 3D Whole-body Human Motion Dataset. *arXiv preprint arXiv:2501.05098* (2025).

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

1045 A APPENDIX

1046 A.1 MoCLIP

1048 Inspired by CLIP’s image-text alignment success MoCLIP extends
 1049 this concept to human motion. It learns a shared embedding space
 1050 mapping textual descriptions to corresponding motion sequences
 1051 enabling cross-modal retrieval and understanding.

1053 *Architecture.* MoCLIP employs a dual-encoder structure adapting
 1054 the pretrained CLIP architecture. The text pathway uses a fine-
 1055 tuned CLIP text encoder generating semantic embeddings $\mathbf{e}_t \in \mathbb{R}^d$.
 1056 The motion pathway features a dedicated MotionEncoder process-
 1057 ing sequences $\mathbf{M} \in \mathbb{R}^{T \times D}$. This encoder applies linear projection
 1058 \mathbf{W}_p adds sinusoidal positional encoding \mathbf{P} passes the result through
 1059 L transformer layers handling variable lengths via mask \mathbf{M}_{mask}
 1060 performs temporal average pooling and finally projects features
 1061 via \mathbf{W}_o to obtain motion embeddings $\mathbf{e}_m \in \mathbb{R}^d$. The core operation
 1062 within the transformer layers is multi-head self-attention:

$$1063 \quad \mathbf{h}_l = \text{TransformerLayer}(\mathbf{h}_{l-1}, \mathbf{M}_{mask}). \quad (13)$$

1065 Contrastive learning in the shared d -dimensional space aligns these
 1066 embeddings scaled by temperature τ .

1068 *A.1.2 Loss Function.* MoCLIP utilizes a symmetric contrastive loss
 1069 to align modalities:

$$1070 \quad \mathcal{L}_{\text{contrastive}} = \frac{1}{2} (\mathcal{L}_{\text{motion-to-text}} + \mathcal{L}_{\text{text-to-motion}}). \quad (14)$$

1072 This loss averages the motion-to-text and text-to-motion cross-
 1073 entropy terms. These terms are computed using cosine similarity
 1074 between L2-normalized motion and text embeddings promoting
 1075 high similarity for matched pairs and low similarity for mismatched
 1076 pairs.

1078 *A.1.3 Training Strategy.* Training follows a two-stage strategy for
 1079 progressive alignment. **Stage 1: Motion Encoder Pretraining.**
 1080 The CLIP text encoder is frozen. Only the MotionEncoder compo-
 1081 nents are trained optimizing the contrastive loss (Eq. 14). This
 1082 initially aligns motion features to the fixed text embedding space.
 1083 **Stage 2: Joint Fine-Tuning.** The final layers of the CLIP text en-
 1084 coder are unfrozen. The entire model is then fine-tuned jointly with
 1085 a lower learning rate. This allows mutual refinement of both motion
 1086 and text representations enhancing the joint embedding space.
 1087 This approach facilitates stable learning and effective cross-modal
 1088 integration.

1090 A.2 Performance of MoCLIP

1092 We evaluated MoCLIP’s core text-motion alignment capability on
 1093 the HumanML3D KIT and CMP datasets. Performance was mea-
 1094 sured using standard Top- k retrieval accuracy (*Top-1 Top-2 Top-3*).
 1095 Table 5 shows MoCLIP significantly outperforms the baseline across
 1096 all datasets. Notably on HumanML3D MoCLIP achieves 0.705 Top-1
 1097 accuracy versus the baseline’s 0.511. On CMP the improvement is
 1098 also substantial reaching 0.748 Top-1 accuracy compared to 0.335.
 1099 Consistent gains are observed on the KIT dataset. These results
 1100 validate MoCLIP’s effectiveness in learning accurate text-motion
 1101 semantic mappings.

		Dataset	Top-1	Top-2	Top-3
1103	Baseline	Humanml3d	0.511	0.703	0.797
1104	MoCLIP	Humanml3d	0.705	0.856	0.913
1105	Baseline	KIT	0.424	0.649	0.779
1106	MoCLIP	KIT	0.469	0.676	0.788
1107	Baseline	CMP	0.335	0.513	0.628
1108	MoCLIP	CMP	0.748	0.891	0.942

1109 **Table 5: Top- k retrieval accuracy comparison between the**
 1110 **baseline and MoCLIP on HumanML3D, KIT, and CMP**
 1111 **datasets.**

Method	FID ↓	R-Precision ↑		
		top1	top2	top3
MDM baseline	0.544 \pm 0.044	0.455 \pm 0.006	0.465 \pm 0.007	0.749 \pm 0.006
MDM MoCLIP	0.527 \pm 0.034	0.514 \pm 0.003	0.719 \pm 0.001	0.820 \pm 0.001
Momask baseline	0.045 \pm 0.002	0.521 \pm 0.002	0.713 \pm 0.002	0.807 \pm 0.002
Momask MoCLIP	0.065 \pm 0.002	0.529 \pm 0.002	0.724 \pm 0.002	0.818 \pm 0.002
StableMoFusion baseline	0.098 \pm 0.003	0.553 \pm 0.003	0.748 \pm 0.002	0.841 \pm 0.002
StableMoFusion MoCLIP	0.074 \pm 0.003	0.557 \pm 0.002	0.753 \pm 0.001	0.846 \pm 0.002

1118 **Table 6: Evaluation results of MoCLIP integration with dif-**
 1119 **ferent models.** The table shows the FID (lower is better) and
 1120 **R-Precision (higher is better) at top1, top2, and top3 for MDM,**
 1121 **MoMask, and StableMoFusion models with and without Mo-**
 1122 **CLIP. The results demonstrate the positive impact of MoCLIP**
 1123 **on improving both FID and R-Precision scores in motion gen-**
 1124 **eration tasks.**

1125 A.3 Integrating MoCLIP for Enhanced 1126 Generation

1128 To evaluate the practical benefit of MoCLIP’s learned representa-
 1129 tions we integrated its fine-tuned text encoder $\mathcal{T}_{\text{MoCLIP}}$ into existing
 1130 generation frameworks. Specifically we replaced the native text
 1131 encoders of StableMoFusion MDM and MoMask with $\mathcal{T}_{\text{MoCLIP}}$. This
 1132 modification supplies these generators with motion-aligned text
 1133 embeddings $\mathbf{e}_t^{\text{MoCLIP}}$ leveraging the shared semantic space detailed
 1134 in Section A.1. The resulting performance improvements detailed
 1135 in Table 6 demonstrate the efficacy of this approach. Using $\mathcal{T}_{\text{MoCLIP}}$
 1136 consistently enhances generation quality across the tested mod-
 1137 els. This confirms that the MoCLIP encoder effectively extracts
 1138 motion-relevant semantics transforming text descriptions into rep-
 1139 resentations more conducive to high-fidelity motion synthesis.

1140 A.4 Top- k Retrieval via Optimal Transport

1142 To measure retrieval performance with Optimal Transport (OT),
 1143 we first construct a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ by

$$1144 \quad C_{ij} = 1 - \cos(\mathbf{x}_i, \mathbf{y}_j), \quad (15)$$

1145 where \mathbf{x}_i and \mathbf{y}_j are the normalized embeddings of motion and text,
 1146 respectively. Let \mathbf{a} and \mathbf{b} be uniform source and target distributions.
 1147 Given a regularization parameter $\lambda > 0$, we obtain the transport

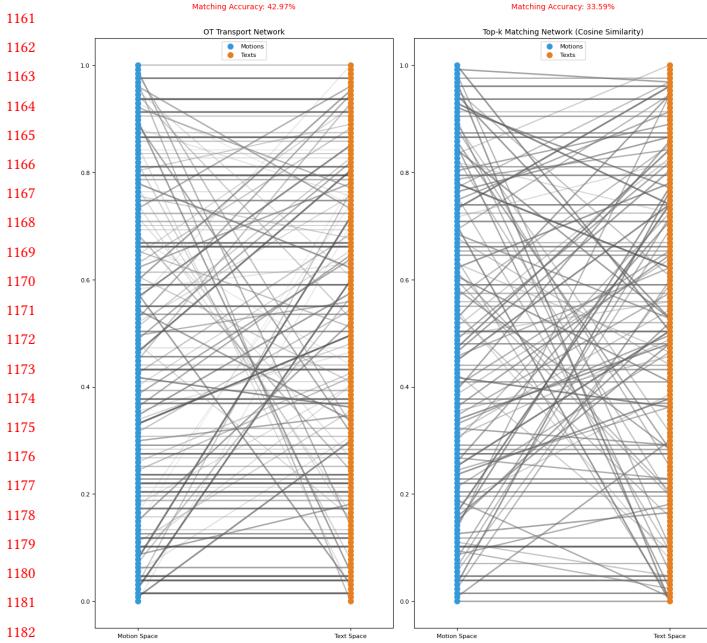


Figure 7: Comparison of Top- k retrieval using traditional cosine similarity and Optimal Transport (OT) in motion-text alignment. The figure shows the differences between OT-based Top- k retrieval and the traditional Top- k retrieval method. The OT-based method demonstrates higher matching accuracy by allowing more flexible alignments between motion and text pairs. The accuracy values for each method are indicated above the respective plots.

plan T by solving

$$T = \text{Sinkhorn}(a, b, C, \lambda). \quad (16)$$

For Top- k retrieval, each motion sample i ranks text samples based on the row $T_{i,:}$; those columns j with the largest T_{ij} are deemed the best-aligned text candidates (and vice versa for text-to-motion). This OT-based ranking reflects more flexible matchings than direct cosine similarity alone.

Notably, the OT-based Top- k retrieval method achieves superior matching accuracy compared to traditional Top- k retrieval, as shown in figure 7. This improvement arises because Optimal Transport (OT) allows for a more flexible and nuanced alignment between motion and text embeddings, taking into account the entire distribution of pairwise similarities rather than relying solely on the highest similarity score. The result is a better matching of relevant motion-text pairs, particularly in cases where traditional cosine similarity may fail to capture subtle semantic relationships.

However, different choices of λ influence how “peaky” or diffuse T becomes. A higher λ encourages smoother transport, thereby yielding a broader and more distributed alignment, whereas a lower λ concentrates on the most salient matches, focusing on sharper alignments between motion and text. In practice, we select the λ that maximizes Top- k recall on ground-truth pairs, thereby balancing the trade-off between overly broad and overly rigid alignments.

a4paper, margin=1in

B Details of Human Evaluation

For our human evaluation, we selected 1000 motion samples each from MoMask, StableMoFusion, MDM, and the Ground Truth (GT) dataset. We developed custom software specifically designed to facilitate the scoring process by human evaluators. The evaluation focused on assessing the semantic alignment between the generated motion and the input text prompt, using the following questions and scoring scale (detailed below):

Human Evaluation Questions & Scoring

[Question 1: Action Completeness]

How well does the generated motion include all key action steps described in the text prompt?

Score Options: 5 (Complete), 3 (Minor Omission), 0 (Major Omission)

[Question 2: Direction/Angle Accuracy]

How accurately do the directions and angles in the motion match the text description?

Score Options: 5 (Highly Accurate), 3 (Correct Direction, Moderate Angle Deviation), 0 (Incorrect/Severe Error)

[Question 3: Body Part Usage]

Does the motion utilize the correct body parts as specified in the text, and are they used appropriately?

Score Options: 5 (Correct Usage), 3 (Minor Error), 0 (Major Error)

[Question 4: Physical Plausibility]

How physically plausible and realistic is the generated motion according to physics and human kinematics?

Score Options: 5 (Highly Plausible), 3 (Minor Issues), 0 (Severe Issues)

These questions collectively assess the core aspects of text-to-motion generation quality: faithfulness to the prompt’s actions (Completeness), spatial precision (Direction/Angle), correct anatomical execution (Body Part Usage), and physical realism (Plausibility). This multi-dimensional approach ensures a comprehensive evaluation of semantic understanding and motion quality.

Below are the detailed scoring guidelines provided to the human evaluators for each question, based on a 3-point scale (5, 3, 0).