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ABSTRACT

We propose to use the family of Matérn kernels for runable implicit surface recon-
struction, building upon the recent success of kernel methods for 3D reconstruc-
tion of oriented point clouds. As we show, both, from a theoretical and practical
perspective, Matérn kernels have some appealing properties which make them
particularly well suited for surface reconstruction—outperforming state-of-the-art
methods based on the arc-cosine kernel while being significantly easier to im-
plement, faster to compute, and scalable. Being stationary, we demonstrate that
the Matérn kernels’ spectrum can be tuned in the same fashion as Fourier feature
mappings help coordinate-based MLPs to overcome spectral bias. Moreover, we
theoretically analyze Matérn kernel’s connection to SIREN networks as well as
its relation to previously employed arc-cosine kernels. Finally, based on recently
introduced Neural Kernel Fields, we present data-dependent Matérn kernels and
conclude that especially the Laplace kernel (being part of the Matérn family) is
extremely competitive, performing almost on par with state-of-the-art methods in
the noise-free case while having a more than five times shorter training timeP_-]

1 INTRODUCTION

Recovering the shape of objects from sparse or only partial observations is a challenging task. For-
mally, let @ € R% and X = {x1,22,...,2Z,n} C  be a set of m points in d dimensions which
forms, together with associated per-point normals, a dataset D = X x {ny,na,...,n,} C Q x R%.
The goal of surface reconstruction is to recover the objects’ shape from D. The shape of objects
may be represented as dense point clouds, polygonal meshes, manifold atlases, voxel grids, or (as
the zero-level set of) implicit functions, which is the representation we chose to focus on in this
work. Specifically, if f : R? — R denotes an implicit function, such as a signed distance function
(SDF), then, from a practical perspective, implicit surface reconstruction aims at finding an optimal

solution f to the following kernel ridge regression (KRR) problem:

f = argmin {Z (@) P+ IV f () — nal> + Allfl?q} ; (1
fed iz
where the function space H := H () is usually taken to be a reproducing kernel Hilbert space
(RKHS) with associated reproducing kernel & : 02 — R, and A > 0. Once f at hand, the

reconstructed object’s surface is implicitly given as S = {2 : f(z) = 0}  R? and can be extracted
using Marching Cubes (Lorensen & Clinel [1987). It is quite easy to observe that, as A — 0, the
optimization problem in Eq. turns into the following constrained minimization problem

mi?iEIII}iZQHfHH st. f(z;))=0 and Vf(z;)=n, Vie{l,2,...,m} (2)

which makes it easier to see how f (thus the estimated surface S), behaves away from the input
points, X. Clearly, while S should interpolate the given points X exactly, the behavior in be-
tween and away from those points is solely determined by the induced norm || f||z of the func-
tion space, H, over which we are optimizing. The properties of || f||iz in H are uniquely de-
termined by the reproducing kernel, k; this is a direct consequence of the Representer Theo-
rem (Kimeldorf & Wahbal, [1970; [Scholkopf et all [2001) which states that solutions to Eq. @)

!'Code available at: Will be published after acceptance.
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Figure 1: Matérn kernels with associated spectral densities. We propose to use the family of
Matérn kernels for tunable implicit surface reconstruction, parametrized by a smoothness parameter,
v > 0, that controls the differentiability of the kernel, and a bandwidth parameter 4 > 0. Both
parameters allow explicit manipulation of the kernel and its spectrum. Importantly, Matérn kernels
recover the Laplace kernel for v = 1/2 and the Gaussian kernel as v — oco.

are of the form f(z) = Y.I*, a;k(z,x;), yielding ||f[|3, = a'Ka. Here, « € R™ and
K = (K);j; = k(z;,z;) € R™™. This shows that the behavior of the norm in Eq. and
hence, of estimated surfaces S, can be explicitly controlled by choosing different kernel functions,
effectively allowing us to inject certain inductive biases (such as smoothness assumptions) into the
surface reconstruction problem. Even further, if the chosen kernel has adjustable parameters, they
can be used to adaptively (on a shape-by-shape basis) manipulate the inductive bias.

Although already used in the mid-90s and early 2000s (Savchenko et al., 1995} |Carr et al., [1997;
2001), only recently, kernel-based methods for 3D implicit surface reconstruction became extremely
competitive, with Neural Kernel Surface Reconstruction (NKSR; [Huang et al.| (2023)) eventually
evolving as the new state-of-the-art. While early works mostly focused on (polyharmonic) ra-
dial basis functions such as thin-plate splines, recent work (Williams et al., 2021} [2022)) employ
the first-order arc-cosine kernel. Introduced by |Cho & Saul| (2009), arc-cosine kernels have been
shown to mimic the computation of (two-layer) fully-connected ReLU networks; indeed, if the
layer-width tends to infinity, the first-order arc-cosine kernel is identified with the Neural Tangent
Kernel (NTK;Jacot et al.| (2018))) of the network. One important aspect of this kernel is that it does
not have adjustable parameters. While this can be advantageous in some situations, it also prevents
users from funing their reconstructions. Clearly, if the arc-cosine kernel fails to accurately recover a
surface, then there is no possibility (except for using more observations) to improve the result.

In this work, we suggest using a different family of kernels (with parameters v, h > 0) for im-

plicit surface reconstruction: Matérn kernels (Matérn, [1986; [Stein, (1999)), see Figures |I| and Q

Contrary to arc-cosine kernels, Matérn kernels are

stationary (hence rotation and translation invariant), \\ \\ \\

lqcally supporped (thus .leading to sparse Gram ma- S = - = oy "N

trices), and unify a variety of popular kernel func- N ~— ~—

tions, including the Laplace and Gaussian kernel.

As we will show, Matérn kernels have some appeal- B B B

. . . . . B! B 1

ing properties, making them the ideal candidate for ‘” ‘ -
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the NTK of two-layer SIREN (fully-connected MLPs with sine activation function; [Sitzmann et al.
(2020)) networks—together with Fourier feature mappings the two arguably most influential meth-
ods to overcome spectral bias in coordinate-based MLPs. Lastly, we establish a connection between
arc-cosine and Matérn kernels by showing that the Laplace kernel (a Matérn kernel with v = 1/2)
and the arc-cosine kernel are equal up to an affine transformation when restricted to the hypersphere
S9!, In summary, our key contributions are:

* We propose to use Matérn kernels instead of the arc-cosine kernel for funable implicit
surface reconstruction.

* We theoretically analyze Matérn kernels, relating them to Fourier feature mappings, SIREN
networks, and the arc-cosine kernel. Moreover, we derive practical insights into how to
choose the tunable bandwidth parameter, based on a new bound of the reconstruction error.

* We propose data-dependent (i.e., learnable) Matérn kernels by leveraging the Neural Kernel
Fields (NKFs) framework (Williams et al., [2022).

Our experimental evaluation reveals that Matérn 1/2 and 3/2 are extremely competitive, outperform-
ing the arc-cosine kernel while being significantly easier to implement (essentially two lines of stan-
dard PyTorch code), faster to compute, and scalable. In addition to geometry, we show that Matérn
kernels surpass the arc-cosine kernel in reconstructing other high-frequency scene attributes, such
as texture. Finally, we demonstrate that learnable Matérn kernels (1) outperform the data-dependent
arc-cosine kernel (as implemented in the original NKF framework) while being more than four times
faster to train, and (2) perform almost on par with highly sophisticated and well-engineered NKSR
in the noise-free case while having a more than five times shorter training time.

2 RELATED WORK

We briefly review some relevant literature about 3D implicit surface reconstruction from oriented
point clouds, focusing on kernel-based methods. For a more in-depth overview, including neural-
network-based reconstruction methods, see surveys by Berger et al.|(2017); Huang et al.| (2022b).

Early approaches for kernel-based 3D surface reconstruction mostly employ radial basis functions
(RBFs) such as thin-plate splines (Savchenko et al., [1995)), biharmonic RBFs (Carr et al., |[1997;
2001), or Gaussian kernels (Scholkopf et al., |2005). Nowadays, the probably most widely used
surface reconstruction technique is Screened Poisson Surface Reconstruction (SPSR; (Kazhdan &
Hoppe, 2013))) which, however, can itself be viewed as kernel method as shown in [Williams et al.
(2021). Only recently, Neural Splines (NS; [Williams et al.| (2021)) proposed to use the so-called
(first-order) arc-cosine kernel,

T
kac(z,y) = I=lliyl (sin@ + (7 — ) cosf), where 6 =cos™! (H> 3)
™ [l |y
for implicit surface reconstruction, achieving state-of-the-art results that outperform classical sur-
face reconstruction techniques as well as non-linear methods based on neural networks by a large
margin. This method laid the cornerstone for the Neural Kernel Field (NKF;|Williams et al.[(2022))
framework which attempts to make arc-cosine kernels learnable by passing input points through a
task-specific neural network before evaluating the kernel function, similar to Deep Kernel Learn-
ing (Wilson et al.,2016). Based on SPSR, NeuralGalerkin (Huang et al., 2022a)) proposed to learn a
set of spatially-varying basis functions inferred by a sparse convolutional network instead of using
a fixed Bézier basis as in SPSR, hence can be seen as kernel method in the broader sense. Neural
Kernel Surface Reconstruction (NKSR; |[Huang et al.[(2023)) built upon NKF and NeuralGalerkin
and proposed an all-purpose surface reconstruction method that is highly scalable and robust against
noise, eventually becoming state-of-the-art.

3 MATERN KERNELS FOR TUNABLE SURFACE RECONSTRUCTION

We propose to use the family of Matérn kernels (Matérn, 1986} [Stein) |1999) for implicit surface
reconstruction, being defined as:

mx,y)@yuxyn)mr)%( i) Ky< i) @




Under review as a conference paper at ICLR 2025

where v > 0 is a smoothness parameter that explicitly controls the differentiability, and h > 0 is
known as the shape parameter (or bandwidth) of the kernel. I" denotes the Gamma function, and K,
is the modified Bessel function of the second kind of order v. Matérn kernels generalize a variety of
other kernel functions; the most popular ones can be written in closed form as:

v=1/2:®1(1) =exp (—%) , 5)
V:3/2:<I>3/2(T):exp (—\/37—> (14-\/5)7) 5 (6)

2
V:5/2:<I>5/2(T):exp (?) (1+\/§r+§;2>, (7)

where @/, is known as the Laplace kernel. In the limiting case of v — oo, Matérn kernels recover
the popular Gaussian kernel:

2
. T

D (1) ;= lim ®,(7) =exp (_2h2> . )

For more information about Matérn kernels, we refer the interested reader to |Porcu et al.| (2023)

for a recent review. Next, we revisit some basic properties of Matérn kernels and place them in the

context of surface reconstruction.

3.1 BASIC PROPERTIES

Differentiable. Matérn kernels allow for controlled smoothness, being exactly [v] — 1 times differ-
entiable (in the mean-square sense); for instance, while Matérn 1/2 is zero times differentiable, the
Gaussian kernel (for v — o0) is infinitely often differentiable. Since functions f in an RKHS H in-
herit the differentiability class of the inducing kernel & due to the reproducing property, the from Eq.
reconstructed surface S enjoys the same smoothness properties as k. In the context of 3D surface
reconstruction, this allows an easy injection of inductive biases into the reconstruction problem; for
instance, if the roughness or noisiness of the objects to be reconstructed is known in advance, one
can adjust the smoothness of the kernel accordingly. This is not possible with the arc-cosine kernel.

Stationary. Matérn kernels are stationary, i.e., they only depend on the difference x —y between two
points x,y € 2. If the distance is Euclidean, Matérn kernels are also isotropic (or homogeneous);
they only depend on ||z — y||. As a result, Matérn kernels are rotation and translation invariant
(because ||(Rz +t) — (Ry +t)|| = | R|||lz — || = ||z — y|| fort € R%, R € SO(d)), hence being
independent of the absolute embedding of points X. Consequently, again based on the reproducing
property, translating input points does not change the reconstructed surface, see Appendix [A] We
note that, while the previously used arc-cosine kernel is also rotation invariant, it is not translation
invariant (additional steps are necessary to address this issue; we refer to Appendix [A]for details).

Compact. As opposed to arc-cosine kernels, Matérn kernels are locally supported (or compact);
that is, they tend to zero as the distance ||« — y|| becomes large. This is a very desirable property,
especially from a computational perspective, as it leads to sparse Gram matrices when multiplied

with the kernel @/, (7) = max{0, (1 — 7/h’ )’/} for suitable v/ and i/, effectively allowing the use
of highly efficient and scalable sparse linear solvers. Please see |(Genton| (2001)) on how to choose
suitable values for v/ and the cut-off distance, h'.

We now derive new theoretical insights into Matérn kernels, ultimately aiming to provide arguments
as to why we believe this family of kernels is particularly well suited for surface reconstruction.

3.2 EIGENVALUE DECAY, SPECTRAL BIAS, AND RECONSTRUCTION ERROR

Eigenvalue decay and spectral bias. We begin by analyzing Matérn kernel’s eigenvalue decay rate
(EDR) and show that it can be tuned by varying the smoothness parameter v and/or bandwidth h. As
investigated in [Tancik et al.| (2020) for coordinate-based MLPs, a rapid decrease of the associated
NTK’s eigenvalues implies slow convergence to high-frequency components of the target function
(up to the point where the network is practically unable to learn these components). Consequently, a
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Figure 3: Eigenvalue decay of Matérn kernels. While we fix &, = 1 and vary v on the left, the EDR
for v = 1/2 and different values of h is shown on the right. Larger values of v and h, i.e., smoother
kernels, lead to faster eigenvalue decay; hence slow convergence to high-frequency details.

smaller EDR, i.e., a slower eigenvalue decay, leads to faster convergence to high-frequency content;
hence, in the context of implicit surface reconstruction, more detailed geometry. To overcome this
slow convergence, a phenomenon known as spectral bias, Tancik et al.| (2020) propose to use a
(random) Fourier feature mapping of the form v(z) = [cos(2mBx),sin(2wBz)] applied to the
inputs x € R? before passing them to the MLP, effectively transforming the MLP’s NTK, knrk,
into a stationary kernel with tunable bandwidth parameter, kntk (v(2) Tv(y)) = kntk (E(z —y)) =:
ki (* — y). When B € R?%? is drawn from a standard normal distribution (i.e., zero mean and
unit variance), k is an approximation of the Gaussian kernel (Rahimi & Recht, 2007). This allows
explicit manipulation of the kernels’ spectrum, overcoming spectral bias.

Matérn kernels, being stationary, allow for the same degree of control over the EDR as a Fourier
feature mapping; their spectrum can also be tuned (by varying v and/or h, see Figure[T). This is in
stark contrast to previously employed, non-stationary and parameter-less arc-cosine kernels, whose
spectrum is not tunable. To further study the dependence of the EDR on v and &, we use:

Theorem 1 (Seeger et al. (2008), Theorem 3). The eigenvalues of Matérn kernels decay polynomi-
ally at rate

0 (h—QuS—(1+2u/d))
with bandwidth parameter h > 0, and for finite smoothness 0 < v < oo.

Figure [3| visualizes the EDR for different values of v and h along with the EDR of the non-tunable,
first-order arc-cosine kernel which equates to @(s_(1+d)/ ) and has only been very recently proven
by [Li et al.| (2024) for general input domains and distributions. As seen, the smoother the kernel
(i.e., the higher v) and the higher h, the faster the eigenvalues decay. This implies less detailed
surface reconstruction (with a higher error) for smoother kernels and greater h; indeed, that is exactly
what we observe in practice, see Figure [d] Contrary, by lowering both parameters, one can achieve
faster convergence to high-frequency geometric details, effectively leading to more nuanced surface
reconstruction and a smaller reconstruction error. Interestingly, the first-order arc-cosine kernel and
Matérn 1/2 have the same EDR if h = 1.

Reconstruction error. We proceed by investigating the bandwidth’s influence on the reconstruction
error, measured by the mean-squared error which is defined (and can be bounded) as:

R . 9 1/2
I = Ao = ([ (160~ F@)) ) < €GP0 .. ©

where Cy q is a constant that only depends on X" and €2, and

v+d/2

171, = 2 ((2m)"2Cas) / (2Z+<2w||w||>2) FlA@)Pdw (10)

is the norm of the RKHS induced by a Matérn kernel with bandwidth / and smoothness v. Moreover,
Ca. = (297927 (v + d/2)(2v)")/T'(v), and F[f] denotes the Fourier transform of a function f.
For more information on the bound, including details on Cx q, please see, e.g., Santin & Schaback



Under review as a conference paper at ICLR 2025

Matérn 1/2

wE
=
=
=
=
=
=
=)

\ \ \ l \ ‘ ‘ \ \ -

| | | \ \ | | | | /
0005, woow 0

h=0.05 h=0.1 h=05 h=1 h=2 h=5 h=10 h =20 h =50 h =100

Figure 4: Matérn kernels are tunable. Surface reconstructions can be improved in practice by
varying the bandwidth parameter, h, effectively tuning the kernels” EDR (see also Figure [3). How-
ever, setting h too small (< 0.5) results in over-fitting, while setting h too big (> 10) over-smooths
(i.e., under-fits) the true surface. This is also reflected in the reconstruction error (measured using
Chamfer distance), plotted as a function of h on the right.

(2016). By inspecting Eq. (@), we notice that the magnitude of the RKHS norm has a considerably
high influence on the reconstruction error. Based on this observation and the fact that || f || 7, depends
on h, our goal is now to further study the effect of ~ on the RKHS norm. As a first result, we have:

Proposition 2. The RKHS norm of Matérn kernels as defined in Eq. (I0) can be bounded by
Y 1
111, < n® (Wc;,mf]) " cs,mf])) |

where h > 0, and C’é’y and Cg’y are functions of F|f] that do not depend on h.

A proof can be found in Appendix [Bl We immediately see that || f||3, — oo in either cases, h — 0
and h — o0o. Moreover, based on roposition it is easy to show that the norm, as a function of h,
decreases as h — h* from the left, and increases as h — oo, where h* is given as

L (d N\ Cl L (FIfD)
" :(wQ> vt Q=52 A Db

(see Appendix [C] for a derivation). This can also be seen in .10
Figure [5] where we plot the RKHS norm with respect to the
obtained bound as a function of h. Interestingly, our analysis
reveals that the reconstruction error can not be made arbitrar-
ily small by just lowering h; if the bandwidth A is chosen too
small, the reconstruction error starts to increase again. Con- 004 |
versely, if h is set too high, the resulting surface is too smooth,
ultimately leading to increased errors. In fact, what we actu-
ally observe is that Matérn kernels under-fit the true surface
when h is set too big, and, conversely, over-fit if h is chosen

too small, see also Figure ] As we have shown, the optimal
trade-off is reached if h equals h*. Moreover, whilst the band- Figure 5: RKHS norm as a func-
width h does play a critical role, our results show it is not very tion of h. We plot the bound from
sensitive in practice, especially for Matérn 1/2 and 3/2. PropositionEl as a function of h.

0.08

0.06

3.3 RELATION TO NEURAL NETWORKS AND THE ARC-COSINE KERNEL

Relation to neural networks. Next, we study the connection between Matérn kernels and neural
networks. It is well known that first-order arc-cosine kernels mimic the computation of a two-layer,
infinite-width ReLU network f : R? — R, f(z) = m~/23°""  v;[w = + b;]; when the bottom
layer weights W = (wy,ws, ..., w,,) € RY™ and biases b = (by, ba, ..., by,) € R™ are fixed
from initialization and drawn from a standard normal distribution, see, e.g., [Cho & Saull (2009);
[Williams et al.| (2021). Here, [x]+ := max{0, z} denotes the ReLU activation function.

Under similar assumptions, we now show that Matérn kernels mimic the computation of two-layer
SIRENS [Sitzmann et al|| (2020) (fully-connected networks with sine activation function) if the layer
width approaches infinity. We claim the following:
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Theorem 3. Consider a two-layer fully-connected network f : R* —s R with sine activation
function, m hidden neurons, and fixed bottom layer weights W = (wy,wa, . .., W,y,) € R¥>*™ and
biases b = (b1, ba, ..., by) € R™. Let h,v > 0 be given. If w; is randomly initialized from

oy —(v+d/2)
i) =172 Ca,, (35 + el
and b; ~ U(0,2r), the NTK of f is a Matérn kernel with bandwidth h and smoothness v as m — 0.

A proof can be found in Appendix [D] This result establishes for the first time a connection between
SIRENSs and kernel methods. While explicitly shown for Matérn kernels, as we argue in the Appendix
D] the arguments of Theorem [3]in fact apply to all stationary kernels, making it a powerful tool to
study the connection between widely used SIRENs and any stationary kernel function.

Matérn kernels vs. arc-cosine kernels. Lastly, we aim to compare Matérn kernels with the previ-
ously used first-order arc-cosine kernels. Our analysis is based on:

Theorem 4 (Chen & Xu| (2021), Theorem 1). When restricted to the hypersphere Se=1 the RKHS
of the Matérn kernel with smoothness v = 1/2 (the Laplace kernel) include the same set of functions
as the RKHS induced by the NTK of a fully-connected (L > 2)-layer ReLU network.

In other words, Theoremshows that the RKHS of the Laplace kernel (a Matérn kernel with smooth-
ness v = 1/2) is the same as the RKHS induced by the NTK of a fully-connected ReLU network
when inputs are restricted to S¢~!. This immediately raises the question of whether the NTK for
general input domains is significantly different from a standard Laplace kernel. Indeed, empirical
results (Belkin et al.,[2018};Hui et al.||2019; Geifman et al.,2020) already suggest a negative answer;
however, from a theoretical perspective, the claim is still unproven. Based on Theorem 4] we obtain
the following connection between Laplace and the first-order arc-cosine kernel:

Corollary 5. When restricted to the hypersphere S*=1, (1) the RKHS of the Matérn kernel with
smoothness v = 1/2 (the Laplace kernel) is equal to the RKHS induced by the first-order arc-cosine
kernel, implying that (2) the Laplace and arc-cosine kernel are equal up to an affine transformation.

See Appendix [E]for a proof. For general input domains, our empirical results presented next support
the claim mentioned above (at least for (L = 2)-layer networks), showing that the Laplace kernel
even outperforms the arc-cosine kernel.

4 EXPERIMENTS AND RESULTS

We systematically evaluated the effectiveness of Matérn kernels in the context of implicit surface
reconstruction, presenting results on ShapeNet (Chang et al., 2015) and the Surface Reconstruction
Benchmark (SRB; [Berger et al.| (2013)) in Section @ Section [Z;Z] evaluates Matérn kernels for
high-frequency texture reconstruction. Leveraging Neural Kernel Fields (Williams et al., |2022), we
present and evaluate learnable Matérn kernels in Section

4.1 SURFACE RECONSTRUCTION ON SHAPENET AND SRB

ShapeNet. We compare Matérn kernels in a sparse setting against the arc-cosine kernel on ShapeNet
(using train/val/test split provided by Mescheder et al.| (2019)). To do so, we randomly sample
m = 1,000 surface points with corresponding normals for each shape. We implemented Matérn
kernels in PyTorch and took the official CUDA implementation of the arc-cosine kernel from NS,
eventually integrated into a unified framework to ensure fair comparison. Notably, we did not use
Nystrom sampling as in NS, and employ PyTorch’s direct Cholesky solver to solve the KRR problem
in Eq. (I) instead of an iterative conjugate gradient solver. Moreover, similar to NS, we approximate
the gradient part in Eq. (I) with finite differences. See Appendix [F]for details.

Quantitative results in terms of F-Score (with a threshold of 0.01) and Chamfer distance (CD; always
reported x 10%) can be found in Table Matérn 1/2 and 3/2 consistently outperform the arc-cosine
kernel as well as popular SPSR (Kazhdan & Hoppe, 2013). In addition, our experiments show
that the bandwidth parameter, h, can be used to tune the surface reconstruction (lower the error),
while not being too sensitive in practice. Matérn 5/2 and the Gaussian kernel (for v — co) perform
significantly worse, being simply too smooth. Figure|2|and Appendix |F|shows qualitative results.
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F-Score 1 | CD| Cb| HD}

Matém 172 021 443

0.5 1 2 | 05 1 2 Matém 32 0.8  2.93

Matém 52 058 2252

Matérn 1/2 93.6 93.7 93.7 | 4.05 4.02 4.02 Matérn oo 3.83 3327
Matérn 3/2 94.6 94.8 94.9 | 4.05 4.00 4.09 NS* 0.19  3.19
Matérn 5/2 924 93.8 929 | 642 5.65 6.91 NS 017 285
Matérnoo 593 524 409 | 57.56 50.59 48.38 SPSR 021 4.69
FEN 028 445

Arc-cosine 92.8 | 4.67 SIREN 019  3.86
SAP 021 485

NS 90.6 474 DiGS 018 355
VisCo 0.18 2.95

SPSR 84.3 6.26 VisCo . LB 295

Table 1: Results on ShapeNet (left) and SRB (right) for non-learnable kernels. Arc-cosine
kernel and Matérn v € {1/2,3/2,5/2,00} are implemented in a unified framework and based on
the exact same parameters. "NS*” denotes the best result we could achieve by running the official
implementation of NS, see Appendix Bold marks best result, underline second best.

Matérn 1/2 Matérn 3/2 NS Matérn 1/2 Matérn 3/2 NKF NKSR Ground truth

Figure 6: Qualitative results for non-learnable kernels on SRB (left) and learned kernels on
ShapeNet (right). Please see Appendix andmfor more qualitative results.

SRB. Next, we evaluate Matérn kernels on the challeng-

ing Surface Reconstruction Benchmark (Berger et al.| [2013) Time
which consists of five complex shapes simulated from incom- Matérn 1/2  9.85
plete and noisy range scans with up to 100,000 points. For Matérn 3/2  12.47
this, we implemented a highly scalable version of Matérn ker- Matérn 5/2  15.26
nels in CUDA and closely followed the NS framework to Matérn oo 12.76
solve the KRR problem in Eq. (I)) using Nystrom sampling NS* 19.89
(with 15,000 samples) and the GPU-based FALKON ;
solver. We compare against NS and SPSR, NS 11.91
as well as kernel-free methods, Fourier Feature Networks SPSR 1.65

(FFNs; [Tancik et al.| (2020)), SIREN, SAP 2021)),
DiGS (Ben-Shabat et al., 2022), VisCo (Pumarola et al] Table 2: Runtime comparison on

2022), and OG-INR (Koneputugodage et al}[2023)). All meth- SRB. Measurements are reported in
ods are optimization-based (FFN and SIREN are overfitted to seconds and computed on a single

a single shape) and use surface normals. For Matérn kernels, NVIDIA V100. Bold marks best
we did a modest parameter sweep over h € {0.5,1,2} and result, underline second best.
took the reconstruction with the lowest Chamfer distance.

Quantitative results obtained by employing Chamfer and Hausdorff distance (HD) can be found in
Table[T} demonstrating that Matérn 3/2 performs on par with NS while being significantly faster to
compute (compared to what we measured for NS), see Table 2] Moreover, Matérn 3/2 outperforms
all evaluated state-of-the-art kernel-free methods (FFN, SIREN, SAP, DiGS, VisCo, and OG-INR).
Figure[6] (left) and Appendix [G]provide more qualitative results and per-object metrics.
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4.2 TEXTURE RECONSTRUCTION ON GSO AND OBJAVERSE

Lastly, we demonstrate Matérn kernel’s abilit
to regresent other high-frequency scene attributes}j m Kernel PSNRT LPIPS |
such as texture. To do so, we randomly sam- 10.000 Matérn 3/2 19.61 2.05
ple m surface points with corresponding normals ’ Arc-cosine 19.34 2.07
and per—p.oint. RGB color values from/ textured Matérn 372 18.92 215
meshes, yielding an extended dataset D' = D X 2,500 Arc-cosine 18.88 2.09
{c1,¢2,. .. em} C Q x R? x R? for each shape. : .
Then, instead of modeling an SDF f as in Eq. ,
we are seeking a function f/ : RY — R* that,
along with signed distances, also predicts per-point
RGB values. Please find more information in Ap-
pendix [H]about how we adapt the KRR problem in
Eq. to estimate f ’. Finally, we extract the object’s surface from the estimated implicit volume
using Marching Cubes and trilinearily interpolate RGB values at previously predicted surface points.

Table 3: Texture reconstruction results on
GSO. Matérn kernels outperform the arc-
cosine kernel in dense and sparse settings.

We present quantitative results in Table [3] com-
puted on the Google Scanned Objects (GSO;
(Downs et al. 2022)) dataset using PSNR and
LPIPS (evaluated on the texture atlas; see Appendix
Hifor further details). Matérn 3/2 surpasses the arc-
cosine kernel in both metrics in the densely sampled
setting using 10,000 surface points, as well as in
the sparse setting. Notably, we did not tune Matérn
kernels’ bandwidth parameter for this experiment. W\ © V¢
We also show qualitative results on the challenging Arc-cosine Matérmn 3/2 Ground truth
Objaverse (Deitke et al., [2023) dataset in Figure[7] . .
We chose Objaverse as it includes extremely high- Figure 7: Texture reconstruction on ija-
resolution and complex textures. Matérn 3/2 re- Vverse. Matérn kernels lead to fewer artifacts
constructs high-frequency texture details with great and sharper details than the arc-cosine kernel.
precision, overall yielding visually more pleasant

reconstructions than the arc-cosine kernel. Reconstructed textures have fewer artifacts and are
sharper, showing that Matérn kernels can overcome spectral bias much better than the arc-cosine
kernel. This perfectly confirms our theoretical analysis presented in Section[3.2]

4.3 DATA-DEPENDENT MATERN KERNELS

We leverage the Neural Kernel Field (NKF) framework introduced by Williams et al.| (2022) to make
Matérn kernels learnable. Specifically, NKF proposed to feed points z,y € R? through an input-
conditioned neural network ¢ : R? — RY before evaluating a kernel function, k¥ (z,y; D) =
k([z, o(x; D)), [y, ¢(y; D)]). We re-implemented the NKF framework since the authors did not
provide code. We set ¢ = 32 for our experiments. Please see (Williams et al.,2022) for details.

Sparse surface reconstruction and extreme generalization. We compare learned Matérn kernels
against the original NKF framework (with the arc-cosine kernel) and NKSR (Huang et al.| 2023)
in a sparse setting on ShapeNet. Again, we sample m = 1,000 surface points and corresponding
normals for each shape and set h = 1 for all Matérn kernels. Additionally, we evaluate Matérn
kernel’s out-of-category generalization ability in an extreme setting, in which we train only on chairs
and evaluate on the other 12 ShapeNet categories. Table [ reports the results, quantified using
intersection-over-union (IoU), Chamfer distance, and normal consistency (NC). Learned Matérn 1/2
and 3/2 outperform the arc-cosine kernel while being significantly faster to train. Training NKF
on the entire ShapeNet dataset (consisting of approx. 30,000 shapes) takes about six days—almost
twice as long as for Matérn kernels, which require about three days (measured on a single NVIDIA
A100). Additionally, although Matérn 1/2 is not able to surpass NKSR, it comes very close (95.3
vs. 95.6 in IoU) while having a shorter training time. Regarding out-of-category generalization, we
observe that Matérn 1/2 performs best, followed by Matérn 3/2, NKF, and NKSR. Please see Figure
[6] (right) and Appendix [[] for qualitative results.
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IoUT CDJ] NC?tT Train only on chairs, test on all
Matém 1/2 953 2.58 95.6 IoUT CD] NC* || Time/epoch
Matém 3/2 949 270 ~ 95.3 Matérn 1/2 934 306 943 | 7.71min
Matém 5/2 933 307 949 Matém 32 92.8 334 942 | 826min
Matémoo ~ 92.1 339 942 Matérn 5/2 905 411 939 | 8.56 min
NKF* 94.7 270 952 Matérn co 84.7 6.70 92.6 7.74 min
NKF 947 265 954 NKF* 928 330 941 || 31.98 min
NKSR 956 234 954 NKSR 89.6 270 94.1 || 41.66 min

Table 4: Results on ShapeNet for learned kernels. NKF* denotes a re-implemented variant of
NKF. NKF* and Matérn v € {1/2,3/2,5/2, 00} are based on the exact same framework and param-
eters; they differ only in the employed kernel. Runtime is measured on a single NVIDIA A100 with
a batch size of one to ensure fair comparison. Bold marks best result, underline second best.

No noise (o = 0) I Small noise (¢ = 0.0025) I Big noise (o = 0.005)
IoU 1 \ cD| [ ToU 1 \ D I IoU 1 \ D
05 1 2 (05 1 2 o5 1 2 [05 1 2|05 1 2|05 1 2

Matérn 1/2 933 93.6 93.5|2.88 285 2.87 | 919 921 921 |3.03 304 307 | 89.5 89.6 89.6| 337 336 339
Matérn 3/2 927 927 923 |3.08 320 325|897 89.8 89.7 | 348 3.69 3.54 | 858 855 863|423 432 415
Matérn 5/2 91.8 905 88.8 | 358 3.69 4.18| 879 87.6 87.0 | 429 448 443 | 834 822 843|490 503 5.1
Matémoo 864 858 86.8 | 5.80 507 475 | 813 833 810|727 562 645|767 80.7 793|827 590 6.67

NKF* 93.2 | 2.97 [ 92.0 | 3.12 | 89.5 | 339
NKSR 911 | 2.65 [ 90.1 | 2.98 [ 88.4 | 341

Table 5: Robustness against noise. We compare Matérn kernels’ robustness against noise on a
subset of the ShapeNet dataset using different noise levels, o € {0,0.0025,0.005} and bandwidths,
h € {0.5,1,2}. Bold marks best result, underline second best.

Robustness against noise. We evaluate Matérn kernel’s robustness against different noise levels,
o € {0,0.0025,0.005}, on a subset of the ShapeNet dataset which includes approximately 1,700
shapes. To construct the dataset, we downsampled each ShapeNet category to include only 5% of
the shapes. Table [5 presents the results. NKSR, being specifically optimized to deal with noisy
inputs, degrades the least with increasing noise level (3% in IoU from no to big noise versus 4.3%
for Matérn 1/2). Moreover, Matérn 1/2 is slightly more robust against noise than NKF. Generally,
varying the bandwidth, h, helps increase the robustness against noise.

Convergence speed. Finally, we analyze Matérn kernel’s conver- o
gence speed in comparison to the arc-cosine kernel as implemented =
in NKF, see inset figure on the right. As exemplified, Matérn 1/2 =
already converges after just 100 epochs, while the arc-cosine kernel _ss
requires twice as many epochs, also never being able to reach the ~so
same top accuracy. In general, we see that the smoother the kernel, s
the slower the convergence—an observation that perfectly matches =
our theoretical analysis in Section [3.2] Matérn 1/2 converges the =
fastest, followed by Matérn 3/2, 5/2, and the Gaussian kernel.

ToU

20 100 200
Number

300 400
hs

5 CONCLUSION

In this work, we proposed to use the family of Matérn kernels for tunable implicit surface reconstruc-
tion, acting as a drop-in replacement of the recently employed first-order arc-cosine kernel within
frameworks such as Neural Splines (Williams et al.,[2021)) and Neural Kernel Fields (Williams et al.,
2022). We presented an in-depth theoretical analysis of Matérn kernels, analyzing its relation to
Fourier feature mappings, SIREN networks, as well as arc-cosine kernels. Our systematic evaluation
confirmed our theoretical results and showed that Matérn kernels are significantly faster to compute
and train, and, especially Matérn 1/2 and 3/2, lead to better surface reconstructions compared to the
arc-cosine kernel—both, in a non-learnable as well as learnable regime.

10
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A TRANSLATION INVARIANCE OF MATERN KERNELS

No translation Translated

’1 ¢i

Matérn 3/2 Arc-cosine Matérn 3/2 Arc-cosine

Figure 8: Matérn kernels are translation invariant. While we did not apply a global translation
to the input points on the left (i.e., input points on have zero mean), we applied a random translation
to input points on the right. As seen, thanks to the translation invariance, the reconstructed surface
obtained with Matérn kernels stays exactly the same (first and third column). On the other hand, the
arc-cosine kernel leads to different surface reconstructions (second and fourth column) depending
on the actual embedding of the input points.

As noted in Section 3.1, as opposed to arc-cosine kernels, Matérn kernels are stationary. Figure @
visualizes the effect that translation invariance has in practice.

B PROOF OF PROPOSITION

Proposition 2. The RKHS norm of Matérn kernels as defined in Eq. (I0) can be bounded by

17185, <12 (GarsaChu I + CLFIND )

where h > 0, and C’é’y and Cg’y are functions of F|f| that do not depend on h.

Proof. Based on a simple bound

- oy ) v+d/2 )
= / d (mﬂzwnwm) FLf](w) 2w

< [L(Z) " neras s [ ()" e pa

Rd

L FnPas+ [ (@r

) 2)V~‘rd/2
::C'(]:[f]) ic,/iyl,(]:[f])

[FLf(w)[*dw

C'(FLM + Co (FLA)
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we get

an—WW(%dﬁ%le

_1 U v+d/2
w ( (2m d/QCdu ((?ﬂ) C(FLIfD) + Cﬁz,u(]‘-[f])>

—1 —1
= 12 | g (202 (0200, ) CFIA) + (20 Y2C0) T Ch(FLD)
=Cy (FIfD =:C3 (FIfD)
=1 (G Ch (P + LI )
which concludes the proof. O

C DERIVATION OF h* IN EQ. (11))

Taking derivative of the bound presented in Proposition [2| w.r.t. h yields

ddh <h2” (hwdcd JFL) +C3 L (FI f]))) hd1+1 (202 (FIFR2+ — dCL (FIF))) -

Since d, h > 0, the leading factor 1/h%*! never becomes zero, so we must have

a b, (FI
2 C3,(FI7)

wCq (FIDR* ! —dCy (FIf)) =0 <= h* = (

which shows what we have stated in Eq. (TT)) of the main paper.

D PROOF OF THEOREM [3]

The proof of Theorem is based on Bochner’s theorem (in harmonic analysis) which reads:

Theorem 6 (Bochner). A continuous function k : RY — R with k(0) = 1 is positive definite if and
only if there exists a finite positive Borel measure 11 on R? such that

k(r) = /]R ) e Tdp(w).

In essence, Bochner’s theorem states that k and p are Fourier duals; given a stationary kernel k,
one can obtain g (better known as spectral density if normalized) by applying the inverse Fourier
transform to k. On the other hand, given a spectral density u, one can obtain the corresponding
kernel function k by applying the Fourier transform to x. Based on Bochner’s theorem,

k(t) =k(x —y) = /Rd ei“’T(x_y)d,u(w) =Eunp [COS(wT(x — y))]
because k is real and for even spectral densities. On the other hand, [Rahimi & Recht (2007)) showed
k(1) = k(z —y) = Eunpleos(w’ (z — y))]
T@ =)+ Eonppnuio,2mleos(w (z +y) + 20)]
=0 (%)
= By prtt(0,2m)[cOS(w " (2 = y)) + cos(w ' (z +y) + 20)]
= Eomp,bmta(0,27) [2 cos(wTac +0b) cos(wTy +b)],

= Eypfcos(w

where (x) follows because b is uniformly distributed in [0, 27] (hence, the inner expectation w.r.t. b
becomes zero).

We will now prove Theorem 3] copied below for convenience:

14
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Theorem 3. Consider a two-layer fully-connected network f : R* —s R with sine activation
function, m hidden neurons, and fixed bottom layer weights W = (wy,wa, . .., W,y,) € R¥>*™ and
biases b = (b1, ba, ..., by) € R™. Let h,v > 0 be given. If w; is randomly initialized from

L oy ) —(v+d/2)
po(w)=h Ca,v 2 + (27[jw])

and b; ~ U(0,27), the NTK of f is a Matérn kernel with bandwidth h and smoothness v as m — oo.

Proof. Let f : R? — R be a two-layer fully-connected network with sine activation function, i.e.,

=4/— Zvlsmw x4+ b;)

with bottom-layer weights W = (w1, ws, ..., w,,) € R™ biases b = (by,by,...,b,) € R™,
and top-layer weights v = (v1, v, ...,v;) € R™. Assume that W and b are fixed (that is, we only
allow the second layer to be trained), and initialized according to some distribution. Choose
2
w; ~ py(w) = hle’C’dw <V +

—(v+d/2)
s+ Cnlol? ) (12)

for h,v > 0 and b; ~ U(0,27) forall i € {1,2,...,n}. Then, based on the fact that 9,, f(x) =
V2sin(w;"x + b;)/\/m, it is easy to see that the NTK of f is given by

kNTK(JT,y) = Zavzf 3v,f )

=— Z 2sin(w; © + b;) sin(w, y + b;)

i=1

1 m
= — E 2 cos(w; = + b;) cos(w] y + b;) — 2 cos(w; (z + y) + 2b;)
m
i=1

1 & 1
— > 2 J T+ b JyFb)—— > 2 ; 2b;).
- Z cos(w,; x + b;) cos(w,; y + b;) - Z cos(w; (z+y)+ 2b;)

i=1 i=1
As m — oo, we finally obtain
lentk (2, 9) = E(up) [2cos(w’ @+ b) cos(wy + b)] — 2K, p) [cos(w " (z +y) + 2b)]
~0(%)

()
= kl/(m7 y)

where () follows because b is uniformly distributed, and (xx) since w is distributed according to

p, which is, in fact, the spectral density of k,, see, e.g., Eq. (10) in (Kanagawa et al.| 2018). O

In fact, Theorem 3|can be generalized in that the NTK of a SIREN is generally any stationary kernel.
Specifically, the NTK of a STREN can be associated with an arbitrary stationary kernel if the bottom-
layer weights in Eq. (I2) are initialized according to the corresponding kernel’s spectral density.
This is a direct consequence of Bochner’s theorem.

E PROOF OF COROLLARY [3]

We first re-state the following result, needed to prove the second part of Corollary [5}

Theorem 7 (Saitoh & Sawano|(2016), Theorem 2.17). Let k1 and ko be two positive definite kernels.
Denote by H1, Hy the RKHSs induced by ky and ko. Then,

H, C Hy <= ~%ky — ky is positive definite for v > 0.
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We are now ready to prove Corollary [5| which is copied below for convenience:

Corollary 5. When restricted to the hypersphere SP=1, (1) the RKHS of the Matérn kernel with
smoothness v = 1/2 (the Laplace kernel) is equal to the RKHS induced by the first-order arc-cosine
kernel, implying that (2) the Laplace and arc-cosine kernel are equal up to an affine transformation.

Proof. (1) Follows from Theorem [4| by noting that the NTK of a fully-connected (L = 2)-layer
ReLU network is the first-order arc-cosine kernel, see, e.g., (Cho & Saull (2009); |Williams et al.
(2021). For (2), we know that H,, C Hac and Hyc C H,, 50, based on Theorem 7, k := v?kac — k.,
and k := 52k, — kac are both valid kernels for 7,4 > 0. Re-arranging both equations, we have

kac = ak, +b, where a=1/v*b=Fk/~*

and, equivalently, - o
k, = akac +b, where a=1/3%*b=k/7.

This shows that the Laplace and arc-cosine kernel are indeed related by an affine transformation
when restricted to S, concluding the proof. O

F ADDITIONAL DETAILS FOR SHAPENET EXPERIMENT

In this section, we provide additional details on the ShapeNet evaluation as presented in Section
of the main paper.

F.1 IMPLEMENTATION DETAILS

Following common practice (see, e.g., Williams et al.| (2022)), we use finite differences to ap-
proximate the gradient part of the KRR problem in Eq. (I) of the main paper. Specifically,
denote X’ := X+ U X, where X+ := {z1 + eny, 22 + eno, ..., Ty + €Ny} and X~ =
{z1 — eny1,x9 — eng, ..., &, — €n,, } for a fixed € > 0. The Representer Theorem (Kimeldorf
& Wahba, [1970; [Scholkopf et al.,[2001)) tells us that the solution to Eq. is of the form

fx)= ) aik(e2))
T EX’
which is linear in the coefficients o € R?™, given by
a=(K+X)'y, where K= (K);=k(z;z;)€R*™**"

and
+e ifal e XT,
Yi = . _
—e ifzfeX.

Here, I € R?™*2™ denotes the identity matrix. We employ PyTorch’s built-in Cholesky solver to
numerically stable solve for o and set € = 0.005 for all experiments.

F.2 FURTHER QUALITATIVE RESULTS

We show additional qualitative results on ShapeNet in Figure[9]

G FURTHER DETAILS ON THE SURFACE RECONSTRUCTION BENCHMARK

G.1 EXPERIMENTAL SETTING

For Neural Splines (NS;|Williams et al.|(2021)), we used the official implementation provided here:
https://github.com/fwilliams/neural-splines. Similar to the original paper, we
used 15,000 Nystrom samples and did the same parameter sweep over the regularization parameter,
A€ {0,107,10712, 1071, 10719}, For the rest of the parameters (not mentioned in the paper),
default values provided in the repository have been used, except for the grid size which we set to
512. We used exactly the same setting for Matérn kernels, except that we did a modest parameter

16


https://github.com/fwilliams/neural-splines

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2
3
L4

fﬂ—' W

el
Y
l)
TR

h=1

=

—

Matérn 1/2 Matérn 3/2 Arc-cosine

Figure 9: More qualitative results on ShapeNet, comparing Matérn 1/2 and 3/2 for different values
of h to the arc-cosine kernel as implemented in Neural Splines (Williams et al.} 202T).

sweep over the bandwidth parameter, h € {0.5, 1,2}. We utilized the SRB data from here:

github.com/fwilliams/deep—geometric—prior.

Despite our best efforts, we were unable to reproduce the results for the NS kernel reported in the
original paper. We run on four different GPUs, including NVIDIA RTX A2000, A40, A100, and
V100 (which has been used by the authors of Neural Splines) and tested different configurations of
the following parameters (see code): grid_size, eps, cg-max—iters, cg-stop-thresh,
outer-layer—-variance. In Table [I] of the main paper, we report the best result we could
achieve on a V100, which is 0.19 for Chamfer and 3.19 for the Hausdorff distance; the authors of
(Williams et al} [2021)) reported 0.17 and 2.85 for Chamfer and Hausdorff distance, respectively. In
order to achieve this, we had to lower outer-layer—variance form 10~3 per default to 10~°.

To measure runtime, we again used the same setting as in the original NS paper: 15,000 Nystrom
samples, and A\ = 10~'1. Due to the absence of further information about the experimental setting
in the original paper, we used default values provided in the repository for the rest of the parameters.
Runtime was measured on a single NVIDIA V100, similar to (Williams et al.,[2021).

G.2 ADDITIONAL RESULTS

Per-object metrics are shown in Table[6] and more qualitative result in Figure

H IMPLEMENTATION DETAILS FOR TEXTURE RECONSTRUCTION

I ADDITIONAL RESULTS FOR DATA-DEPENDENT KERNELS

We show additional qualitative results for learned kernels on ShapeNet in Figure[TT]
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Matérn 1/2 Matérn 3/2 NS

Figure 10: Qualitative results on the Surface Reconstruction Benchmark, comparing Matérn 1/2 and

3/2 to Neural Splines (NS; Williams et al| (2021)).
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972
973 Anchor |  Daratech | DC | Gargoyle | LordQuas
974 CD| HD| |CD) HD)|CD| HD||CD| HDJ/|CD| HDJ|
975 Matém 1/2 031 697 | 025 6.11 | 0.18 262 | 019 514 | 012 132
976 Matérn 3/2 025 508 | 023 490 | 0.15 124 | 016 254 | 0.12 090
977 Matérn 5/2 093 2833 | 0.87 32.17 | 034 1598 | 055 2252 | 021 949
978 Matérn oo 2.88 29.48 | 580 4594 | 035 3570 | 3.84 30.70 | 3.13  24.55
2;3 NS* 027 538 | 023 467 | 015 141 | 017 349 | 012 099
981 NS 022 465 | 021 435 | 014 135 | 0.16 320 | 0.12 0.69
982 SPSR 033 7.62 | 026 662 | 017 279 | 0.18 460 | 012 1.83
- FFN 031 449 | 034 597 | 020 287 | 022 504 | 035 390
SIREN 032 819 | 021 430 | 0.15 218 | 0.17 464 | 017 0.82
aea SAP 034 883 | 022 3.09 | 017 330 | 0.18 554 | 0.13 349
985 DiGS 028 571 | 021 502 | 015 213 | 016 3.81 | 0.12 1.10
986 VisCo 021 3.00 | 026 4.06 | 0.15 222 | 0.17 440 | 012 1.06
987 OG-INR 029 756 | 023 289 | 017 268 | 0.19 501 | 013 214
988
989 Table 6: Per-object quantitative results on the Surface Reconstruction Benchmark. "NS*” denotes

990 the best result we could achieve by running the official implementation of NS, see Section|G.1] Bold
991 marks best result, underline second best.
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1022 Matérn 1/2 Matérn 3/2 NKSR

1023 ... . .
1024 Figure 11: Additional qualitative results for learned kernels on ShapeNet. We compare against
Neural Kernel Fields (NKFs; [Williams et al.| (2022)) and Neural Kernel Surface Reconstruction

195 (NKSR; [Huang et al| (2023)).
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