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Abstract

This paper introduces SSR-VLES, a structured
multi-perspective and multi-modal comprehen-
sive evaluation system based on self-reflection,
designed to assess the overall capabilities of
large multi-modal models (LMMs) in complex
multi-modal tasks. SSR-VLES addresses this
gap by defining 11 composite tasks that en-
compass five visual functions, four language
functions and robustness, while also model dy-
namic stability. The system evaluates LMMs
across four dimensions: visual ability, language
ability, robustness and model dynamic stabil-
ity. It employs a self-reflection mechanism
to ensure stable model outputs and enhances
evaluation accuracy and flexibility through
multi-round dialogue mechanisms and addi-
tional prompts. Experimental results demon-
strate that SSR-VLES can effectively differ-
entiate the capability levels of various LMMs
and provide valuable guidance for further
model optimization. SSR-VLES code are avail-
able at https://anonymous.4open.science/r/SSR-
VLES-BF91

1 Introduction

Large Multi-modal Models (LMMs) have made re-
markable progress in recent years, with numerous
models being proposed to demonstrate their effec-
tiveness from diverse perspectives (Dai et al., 2023;
Zhu et al., 2024; Li et al., 2023a). Despite this
progress, there is a significant lack of a comprehen-
sive evaluation system that accurately quantifies
the performance of these LMMs (Liu et al., 2024a;
Yu et al., 2024; Liu et al., 2024b; Schwenk et al.,
2022).

However, current evaluation systems mainly con-
centrate on single-modal tasks, such as image or
text analysis, while neglecting the necessity of com-
prehensive multi-modal task assessment. The lim-
itations can be further elaborated upon in terms
of both breadth and depth. 1) Horizontal Dimen-
sion (Task Breadth): Current systems predomi-

g
g
g
g

Single class

problem Visual task Language task Robust task

!

G

Multigroup
problem
prompt
inset
& )G G
Visual task

outcome

|

Language taskRobust task
output output

-0

Single category
output

i 38

Structured
output

(a)Typical Translation (b)SSR-VLES (ours)

Figure. 1. The current mainstream evaluation system is
picture (a), and the SSR-VLES evaluation system is picture
(b). "task" refers to a single problem in the input model.

nantly focus on a narrow range of modal combina-
tions, primarily text-image pairs. This narrow fo-
cus means that the vast majority of practical multi-
modal application scenarios are left unexplored. 2)
Vertical Dimension (Interaction Depth): Multi-
modal tasks vary significantly, necessitating tai-
lored evaluation criteria. Current systems often
apply generic metrics that may not fully capture
the nuances of individual tasks. Moreover, com-
plex multi-modal tasks, which involve interactions
across multiple modalities, require a balanced ap-
proach that considers multiple dimensions simulta-
neously.

Given these limitations, there is an urgent need
for a detailed and comprehensive evaluation frame-
work that addresses both the breadth and depth of
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multi-modal evaluation. Therefore, in this paper,
we propose a novel benchmark framework, SSR-
VLES (Structured Self-Reflective Vision-Language
Evaluation System), to provide a comprehensive
assessment of the overall capabilities of LLMs.

The following elaborates on the key aspects of
SSR-VLES.

* We innovatively design a self-reflection evalu-
ation mechanism. This mechanism establishes
a dynamic feedback correction system to ef-
fectively mitigate the interference of model
output fluctuations on evaluation results, en-
hancing the accuracy, objectivity, and reliabil-
ity of the evaluation system.

* We provide a more comprehensive and realis-
tic evaluation of model performance by defin-
ing a hierarchical evaluation architecture com-
prising three core innovation modules: visual
processing (5 visual capability dimensions),
linguistic understanding (4 linguistic capabil-
ity dimensions), and multi-modal interaction
(2 anti-interference test scenarios and dynamic
stability indices).

* We design an automated model evaluation sys-
tem based on LLM, evaluate 13 major LMMs,
fully analyzes the experimental results, and
validate the system based on the results.

2 SSR-VLES

2.1 Structured Evaluation Framework

The architecture of LMMs typically integrates a
visual translator alongside the core LLM(Large lan-
guage model). This design inherently limits the
model’s visual capabilities to those of the visual
translator, while its linguistic capabilities relies pri-
marily on the LLM itself (Verma et al., 2024; Goyal
et al., 2017). To ensure a nuanced evaluation of
both the model’s visual and linguistic strengths and
weaknesses, we propose a structured evaluation
framework that separately assesses four critical di-
mensions: visual processing, linguistic understand-
ing, robustness, and dynamic stability.
Specifically, visual processing testing evaluates
the model’s ability to accurately interpret and pro-
cess visual information, including tasks like object
recognition, scene understanding, and image cap-
tioning, aiming to assess the effectiveness and limi-
tations of the integrated visual translator within the
LLM. The linguistic understanding testing, on the

other hand, focuses on the model’s capabilities in
understanding and generating natural language, en-
compassing tasks such as language comprehension,
text generation, sentiment analysis, and question
answering, with the objective of gauging the core
LLM’s linguistic capabilities independently of its
visual component. Robustness testing specifically
targets potential weaknesses by presenting chal-
lenging scenarios(Li et al., 2023b). Model stability
testing, on the other hand, focuses primarily on
assessing the stability of the model, particularly
the frequency of self-reflective systems, which is
introduced in Section 2.2.

2.2 Self-Reflection Mechanism

The rationale behind introducing stability testing
lies in the inherent limitations of current evaluation
methodologies for black-box LMMs (Jiaming et al.,
2024). A common practice among these methods
is to average multiple results to achieve stability
in evaluation outcomes. However, this traditional
averaging technique often blends model instability
with its core functional limitations, thus concealing
the differences between these two distinct aspects.
This blurring can lead to inaccurate evaluations of
the model’s true performance and capabilities.

To overcome this challenge, we introduce a self-
reflection mechanism, that isolates stability assess-
ment while improving result reliability and sepa-
rately evaluates stability as part of the robustness
dimension. As shown in Figure. 2(b), during the
execution of a single atomic evaluation task, two in-
dependent yet identical evaluation channels are run
simultaneously.The LLM-based referee then deter-
mines whether the two responses are equivalent.If
they are not, the model under test is prompted to
regenerate its output based on the previous result
using a carefully designed prompt. Through a lim-
ited number of regenerations, the self-reflection
mechanism achieves more stable and objective re-
sults while obtaining data on model stability. This
approach avoids the high resource consumption
and potential result distortion associated with tradi-
tional methods that rely on fixed multiple attempts.
As shown in Figure. 2(c),a similar self-reflection
mechanism has been used in the DeepEval-R1 Scor-
ing Framework, which will be covered in Section
2.3.

2.3 DeepEval-R1 Scoring Framework

The diverse array of scenarios, which span both
fixed-format responses and open-ended inquiries,
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Figure. 2. (a) The structured task generation module constructs assessment tasks comprising three problem categories: visual
(V1), linguistic (Lt), and robustness (Rt). Each category is enhanced with targeted prompt engineering to create domain-specific
challenges. (b) The self-reflective regeneration module processes these enhanced problems (Vt/Lt/Rt) to produce model
predictions. This component enables iterative refinement of outputs through introspective reasoning mechanisms. (c) The
tripartite evaluation framework employs parallel scoring channels, each combining a scoring model with an alternate verification
model. This architecture computes performance metrics by comparing model predictions against ground truth values, and the

results are optimized by the self-reflection mechanism.

presents significant challenges in model evaluation
and metric design. Traditional methods are inad-
equate for accurately aligning the wide variety of
predicted answers with the true answers, particu-
larly given the complexity and nuances involved.
Drawing inspiration from recent advancements in
NLP and LMMs evaluation, we develop a sophis-
ticated scoring framework based on DeepSeek-R1
(DeepSeek-Al et al., 2025; Dai et al., 2024) to en-
hance the evaluation process. DeepSeek-R1 has
received widespread acclaim in recent academic
circles, thanks to its innovative thought chain mech-
anism. This mechanism excels in achieving highly
accurate interdisciplinary causal reasoning through
a combination of hierarchical reasoning, multi-
modal correlation, and a dynamic calibration pro-
cess (Ji et al., 2024; Chen et al., 2024a; Nowak

et al., 2024).

To enhance the scalability of our scoring sys-
tem, we meticulously design a composite prompt
set tailored specifically for model evaluation. This
prompt set carefully selects a variety of sample
prompts, which are then fed through three distinct
channels into the scoring model (DeepSeek-R1) to
produce comprehensive scores. During the scor-
ing process, the model initially checks for con-
sistency among the scores generated by the three
channels. This step is crucial for eliminating any
erroneous ratings and ensuring the accuracy of the
final score. In the event that the scores from the dif-
ferent channels differ, a review mechanism based
on self-reflection mechanism is activated. This
mechanism reconsiders the answers a limited num-
ber of times. The goal is to identify and correct
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You are a marking teacher, now to mark the work, please compare the ground truth and prediction from Al models to give a correctness score for the prediction.You

need to follow the following scoring rules, each of which is equally important:

1.<AND> in the ground truth means it is totally right only when all elements in the ground truth are present in the prediction, and <OR> means it is totally right when
any one element in the ground truth is present in the prediction.

2.The correctness score is 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). Don't have any extra output.

3.Ignore extra ' ‘(space symbol), for example, '(x + 2) A 2 = 9" and '(x+2)A2=9" are equivalent,they all got perfect score.
4.gnore the difference between upper and lower case letters, for example,'right' and ‘Right’ are equivalent.

5.When the basic facts are long, score the predicted answers based on the main content of the text, without having to be identical word for word.

6.They are considered equivalent as long as the meaning is the same, for example, 0 and no one are equivalent.

7.All the Ground truth appeared in Prediction and no additional relevant answers were judged to be full marks.

8.Synonyms are also treated as inclusive relations, equal in price to the correct answer. Semantic similarity is awarded according to the degree of correlation.

The scoring process is divided into two steps, and here's what you need to do in each step:

1. According to the content of 'Question’ and the style of 'Ground truth’, extract the predicted answer of the model from 'Prediction’. Please note that the content format
of 'Prediction’ to be extracted is similar to that of ‘Ground truth’, but the content may not be the same. In this step, you only need to extract without judging whether it is
right or wrong; When 'Prediction’ is concise enough, you may not need to make any changes; '‘Question’ can be multiple choice or open-ended, you need to look at it on
a case-by-case basis.

2. According to the scoring rules mentioned above, compare 'Ground truth' and ‘Prediction’ and output the score.

Below are eight answers format | am going to upload along with some examples:

Question | Ground truth | Prediction | Correctness

—[=[=]=

What is the answer to the equation?| -1 <AND> 8 | x = 2| 0.0

What is the answer to the equation?| -1 <AND> 8 | x = -1| 0.5

What is the answer to the equation?| -1 <AND> 8 |x = 8|0.5

What is the answer to the equation?| -1 <AND> 8 |x = -1or 1]0.5

What is the answer to the equation?| -1 <AND> 8 |x = -Torx=-5|1.0

What is the answer to the equation?| -1 <AND> 8 |x = -1,x=-5] 1.0

Can you describe the picture? | This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for
its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not
accurately represent their landscapes. | The meme talks about Iceland and Greenland. It's pointing out that despite their names, Iceland is not very icy and Greenland isn't very
green. | 04

Can you describe the picture?| This meme is poking fun at the fact that the names of the countries Iceland and Greenland are misleading. Despite its name, Iceland is known for
its beautiful green landscapes, while Greenland is mostly covered in ice and snow. The meme is saying that the person has trust issues because the names of these countries do not
accurately represent their landscapes. | The meme is using humor to point out the misleading nature of Iceland's and Greenland's names. Iceland, despite its name, has lush green
landscapes while Greenland is mostly covered in ice and snow. The text 'This is why | have trust issues' is a playful way to suggest that these contradictions can lead to distrust or

L_alclP

confusion. The humor in this meme is derived from the unexpected contrast between the names of the countries and their actual physical characteristics. | 1.0
Here are the questions and answers to be scored, in the same format as the examples above:

J

Figure. 3. The input template for the scoring model is divided into four parts, scoring rubric, chain of thought prompt,scoring
case and test subject, from top to bottom, separated by color. Q represents the sample question;G represents the answer; P is the

predicted value of the sample model.

any discrepancies, ensuring that the final score ac-
curately reflects the model’s performance. Finally,
after all necessary reviews and adjustments have
been made, the averaged score from the three chan-
nels is calculated. This averaged score serves as the
definitive model’s performance rating for the given
question, providing a comprehensive and reliable
assessment of the model’s capabilities Alongside
these sample prompts, as shown in Fig 3, we also
establish a set of relevant scoring rules,chain of
thought prompt and scoring case to ensure consis-
tency and accuracy.

In addition, due to the uncontrollable nature of
the model’s output, the scoring model occasion-
ally produces non-standardized outputs (Zhang
et al., 2024). To address this, we design a com-
pensation mechanism. When the output is non-
standardized, the standby model (DeepSeek-v3) is
activated to implement standardization procedures.
If the model’s output remains non-standardized,
this mechanism judges the output and performs a

limited number of retries. This will ensure that
our evaluation system can handle automation in the
face of non-standardized LLM output.

2.4 Opverall Evaluation Process

The SSR-VLES framework’s structured task testing
process is designed to comprehensively evaluate
LLMs rigorously and systematically. The follow-
ing is an expanded and more detailed description
of the overall evaluation process:

Stepl. Task Restructuring: The initial input
question for each of the three sub-tasks undergoes
restructuring by appending an additional prompt
tailored to the type of question to form a refined
query. This newly crafted query is then submitted
to the model under evaluation.

Step2. Parallel Task Channels: As shown in
Figure. 2 (b), the query is processed simultaneously
through two parallel task channels. Within these
channels, the model generates predicted answers
based on its internal processing mechanisms. In
addition, when the set of problems includes both



visual and language tasks, the model output of the
visual task is compiled as part of the input of the
language task.

Step3. Output Comparison and Judgment:
A judge is employed to meticulously compare the
outputs from both channels. If the answers from
both channels align perfectly, the model’s output
is deemed acceptable and is subsequently utilized.
Conversely, if a discrepancy is observed, a self-
reflection process is initiated. This process involves
regenerating a limited number of answers until a
reliable and consistent output is obtained.

Step4. Scoring and Evaluation: Once accept-
able outputs are obtained, the deepEval-R1 scor-
ing framework generates evaluation scores rang-
ing from O to 1 based on predefined criteria. This
framework leverages the advanced capabilities of
DeepSeek-R1 to provide comprehensive and objec-
tive scores for each task.

3 Evaluation result

3.1 Experiments Settings

We use our evaluation system SSR-VLES to eval-
uate 13 mainstream LMMs: Claude3.5, deepseek-
vl2 (Wu et al., 2024), Doubaol.5, Gemini2.0-
flash (Sayyafzadeh et al., 2024), ChatGlm-4v,
ChatGPT4o (OpenAl et al., 2024), ChatGPT4o-
all, InternVL2 (Chen et al., 2024b), Llama-3.2,
Moonshot-v1, QVQ, Qwen2-vl (Wang et al., 2024),
and Yi-vision-v2.

We collect 110 images from diverse online
sources and formulate 181 tasks (comprising a min-
imum of 318 sub-problems). Each task requires
one or more specific capabilities to answer. These
questions vary in type and complexity, necessitat-
ing open-ended or standard answers of different
lengths. For each question, we identify the re-
quired capabilities and statistically summarize this
information in Figure. 4. All true answers are
manually annotated by experts. The question types
encompass a wide range of categories, including
humanities and social sciences, mathematics, mod-
ern common sense, medical imaging, biological
science, image sequences, flowcharts, emoticons,
and more, ensuring comprehensive coverage.

We develop 11 independent capability tests
across three dimensions: visual ability, language
ability, and robustness. For the visual task, we
assess five core visual functions. These include
visual recognition, which involves identifying ob-
jects, attributes, and performing advanced vision

tasks; OCR, which focuses on recognizing and rea-
soning about text within images; spatial perception,
understanding spatial relationships in both 2D and
3D contexts; motion recognition, identifying and
interpreting movements in image sequences; and
environmental understanding, recognizing and in-
terpreting the contexts depicted in images. For
the language task, we evaluate four core language
functions. These encompass knowledge, utilizing
social, visual, and encyclopedic information; infer-
ence, predicting or generating new content through
reasoning; mathematics, solving written equations
or arithmetic problems; and language generation,
producing natural and correct language text. For
the robustness task, we focus on two core robust-
ness functions. These are hallucination, assessing
when generated content is inconsistent with facts;
and formatted input, evaluating robustness across
varied input formats. Tasks are also classified by
difficulty level: high (3), medium (2), and low (1).

In real-world scenarios, complex multi-modal
tasks often require the integration of multiple core
visual and language capabilities. Therefore, it
is essential to include composite tasks that com-
bine these capabilities in the evaluation framework.
SSR-VLES designed 15 capability sets, as illus-
trated in Figure.5. Each set integrates multiple core
capabilities, such as combining OCR with mathe-
matical reasoning to solve icon problems; integrat-
ing visual recognition with knowledge to perform
object tracking; and combining motion recognition
with inference to predict future object movements.
This approach allows for a more nuanced and com-
prehensive evaluation of LMMs.

Combining the aforementioned assessment tasks,
we also report two comprehensive scores:

1) Model capability, which encompasses vi-
sual capability and language capability, provides a
macro-level description of the LMMs’ benchmark
performance.

2) Model composite score, comprising visual
capability, language capability, robustness, and dy-
namic stability indices, offers an all-encompassing
evaluation of the model.

3.2 Multi-Perspective Evaluation

According to data in Table 1, the degree of syn-
ergy between visual and linguistic capabilities sig-
nificantly impacts model performance. MoE ar-
chitecture models demonstrate absolute superior-
ity in cross-modal integration: Doubaol.5 ranks
first in model capabilities, where its expert network



Model Vision Language c:[/)[:l?ileilty Robustness Moif;l%rt‘;mic MOdelszg::posne
Claude3.5 71.3% 65.8% 70.3% 38.5% 46.8% 68.0%
deepseek-v2 | 53.3% 37.0% 47.9% 10.5% 17.0% 44.8%
Doubaol.5 787%  75.7% 76.6% 17.5% 30.1% 72.0%
Gemini2.0-flash | 76.1% 77.5% 76.4% 26.2% 35.5% 72.3%
ChatGlm-4v 66.6% 64.1% 65.6% 41.7% 49.0% 64.0%
ChatGpt4o 70.3% 74.9% 73.1% 20.2% 32.2% 69.0%
ChatGptdo-all | 64.8% 50.2% 58.8% 21.6% 29.9% 56.0%
InternVL2 64.1% 53.9% 61.9% 45.7% 48.5% 60.6%
Llama-3.2 65.8% 59.6% 62.5% 10.1% 18.5% 58.1%
Moonshot-v1 65.0% 50.8% 59.0% 8.7% 24.7% 55.6%
QvVQ 74.9% 68.5% 69.8% 25.4% 33.1% 66.1%
Qwen2-vl 64.2% 62.7% 61.8% 23.5% 29.7% 58.6%
Yi-vision-v2 60.4% 45.9% 53.8% 29.4% 36.7% 52.1%

Table 1: The multidimensional capabilities of the model to be tested, that is, visual capability, language capability, robustness,
and model dynamic stability, are counted in 100%, and the highest score of a group of capabilities in the model to be tested is
indicated by underline. The model ability is the integration of model vision ability and language ability.
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Figure. 4. The statistical distribution of our constructed 11 capability. (a) shows the frequency of each capability, while (b)
illustrates the proportion of each capability. Note that the total percentage exceeds 100% because individual tasks may involve

multiple labels.

routing mechanism effectively coordinates visual-
linguistic feature alignment; Gemini2.0-flash ranks
first in model composite score, which exhibits a
"language-dominant" characteristic, indicating its
architecture may prioritize textual reasoning pro-
cesses. Traditional architecture models generally
suffer from modality bias, as seen in Qwen2-vl
and Yi-vision-v2, exposing the limitations of dense
parameter architectures in multimodal fusion.
According to our data, the distinction between
visual and linguistic abilities is significant in many
mainstream LMMs, with a performance gap of up
to 16.3% between these two dimensions. However,
LMMs that excel can effectively integrate both ca-
pabilities, achieving high performance in both vi-
sion and language tasks. In contrast, LMMs with
weaker abilities exhibit more pronounced dispari-
ties between their visual and linguistic capabilities.
Robustness and dynamic stability indices high-
lights differences in anti-interference capabilities
across structure design (Yang et al., 2024; Ma-

haut et al., 2024). ChatGlm-4v leads with a model
dynamic stability score of 49.0%, potentially en-
hanced by its hybrid architecture to resist adversar-
ial samples (Du et al., 2022). SSR-VLES eval-
uation reveals a significant negative correlation
between model capability and dynamic stability
of the model, with top performing models gener-
ally facing stability deficiencies. The capability
leaders Doubaol.5 and Gemini2.0 achieve only
30.1%/35.5% model dynamic stability—Iess than
half of their capability scores—while the mid-tier
model ChatGlm-4v attains 49.0% model dynamic
stability through its hybrid architecture, validating
the potential of architectural innovation to break
the "capability-model dynamic stability trade-off."
Commercial model version iterations expose model
dynamic stability risks, with ChatGPT4o0-all show-
ing a 2.3% decrease compared to the standard ver-
sion, reflecting how parameter scaling may com-
promise system robustness.
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Model Ocr Vi space  Motion Background | Common Generation Math Inference | Hallucination Input col\i%‘:j:;te . ;\::l;]iél:illy
Claude3.5 65.6% 74.0% 65.8% 76.5% 76.1% 81.4% 76.2% 545%  54.2% 32.0% 48.5% | 68.0%  70.3%
deepseek-vI2 | 44.9% 55.0% 42.0% 68.1% 65.2% 46.1% 13.9% 214%  49.2% 9.5% 121% | 44.8%  47.9%
Doubaol.5 724% 19.0% 14.7% 85.4% 87.5% 85.7% 76.8% 64.7%  13.1% 14.4% 222% | 72.0%  76.6%
Gemini2.0-flash | 81.7% 78.0% 72.8% 62.9% 77.9% 82.7% 74.5% 82.6%  67.7% 12.4% 47.5% | 723%  76.4%
ChatGlm-4v | 58.6% 689% 562% 71.7% 82.4% 83.7% 85.2% 422%  53.9% 34.0% 53.5% | 723%  65.6%
ChatGpt4o 678% 73.6% 70.7% 56.1% 76.5% 86.9% 88.9% 587%  71.0% 15.7% 273% | 64.0%  73.1%
ChatGptdo-all | 61.6% 70.1% 64.1% 52.1% 67.7% 59.3% 33.7% 457%  49.5% 16.0% 30.3% | 69.0%  58.8%
InternVL2 60.4% 712% 65.8% 55.7% 57.4% 58.4% 26.0% 493%  62.9% 32.8% 65.7% | 69.0%  61.9%
Llama-3.2 59.0% 71.0% 57.6% 57.9% 79.6% 74.6% 60.2% 42.0%  58.1% 5.9% 16.7% | 56.0%  62.5%
Moonshot-vl | 60.1% 69.6% 61.8% 60.0% 69.2% 59.7% 22.2% 39.9%  60.6% 7.8% 10.1% | 60.6%  59.0%
QvVQ 747% 787% 722% 75.8% 69.1% 77.6% 67.2% 69.0%  57.7% 8.5% 51.5% | 58.1%  69.8%
Qwen2-vl 54.1% 69.2% 60.6% 65.1% 70.8% 72.3% 40.7% 56.1%  65.3% 20.9% 27.6% | 55.6%  61.8%
Yi-vision-v2 | 444% 66.2% 48.9% 75.8% 73.3% 54.8% 30.0% 36.8%  49.5% 22.9% 39.6% | 66.1%  53.8%

Table 2: Independent ability score results with highest scores underlined. Model composite score includes visual, language, and
robustness. The Model capability score integrates visual and language capabilities.

3.3 Independent Ability

Table 2 shows the scores of the 11 capability. These
data reflect the quantitative capability of LMMs in
a single function. The performance of each LMMs
can be presented in a more granular manner.

Ranked the first in model capability Doubaol.5
LMMs points and individual ability to get the most
times, including Vi, Space, Motion, Background,
Inference, and OCR and Common ranked second.
However, it scored low on both problematic robust-
ness tests. That pushed it down to second place in
overall ability, barely missing first place. This ex-
cellent capability can be found in its model architec-
ture, which is currently more advanced MoE (Tian
et al., 2024; Dai et al., 2024) architecture, with
good performance in multi-task learning. Mean-
while this also exposes its poor performance in
robustness and dynamic stability.

Gemini2.0-flash is the first overall ranking in
model composite capability, although only two ca-
pabilities ranked first, but its many capabilities

ranked at the forefront of the overall score ulti-
mately first. The balanced development of multiple
independent capabilities can make LMMs show
better comprehensive performance.

3.4 Integration of Multiple Capabilities

Table 3 reflects the scores for the integration of mul-
tiple competencies. Integration of multiple capabil-
ities refers to the simultaneous examination of mul-
tiple capabilities for a single problem. These are
questions that are used in specific application sce-
narios and often look at various capabilities rather
than a single capability. For example, when LMMs
are faced with the question of the total price of
all apples in the picture, they need to identify the
apples in the picture, get the number of apples, and
then calculate the total price of apples according
to the unit price of apples given in the picture. In
this process, the abilities of OCR, Vi and Math
are examined respectively. Most of the problem
sets we design are such comprehensive problems,



Model math math 4 erence vi generation L Common  inference  MErSRCS vi background  background  common space  generation | Combined

ode ocr space ocr ocr  common vi vi vi Vi motion  motion inference  background  inference  common score

ocr ocr ocr

Claude3.5 55.0% 56.1% 333% 49.1% 80.8% 63.8% 83.8% 48.1% 40.0% 73.7% 66.7% 68.2% 77.8% 49.1% 82.3% 61.6%
deepseek-vI2 26.0% 31.8% 352% 29.8% 10.0% 31.9% 53.7% 45.4% 333% 61.1% 66.7% 63.6% 65.6% 41.7% 9.2% 41.0%
Doubaol.5 655% 682% 122% 544% 858% 58.7% 79.6% 66.7% 70.0% 82.0% 91.7% 81.8% 99.1% 58.3% 79.2% 72.6%
Gemini2.0-flash | 86.0% 81.8% 77.8% 67.5% 81.1% 739% 86.6% 61.1% 70.0% 58.3% 58.3% 81.8% 72.2% 47.2% 82.6% 73.9%
ChatGlm-4v 41.1% 50.0% 528% 414% 96.1% 37.7% 80.6% 47.7% 450% 57.2% 75.0% 75.8% 90.7% 47.2% 96.4% 59.5%
ChatGptdo 674% 727% 648% 456% 931% 478% 912% 657% 46.7% 59.3% 47.2% 86.4% 78.7% 61.1% 93.6% 69.2%
ChatGptdo-all | 51.2% 50.0% 38.9% 12.6% 350% 34.8% 69.6% 41.7% 20.0% 49.4% 50.0% 59.1% 55.6% 52.8% 40.0% 46.6%
InternVL2 504% 54.5% 66.7% 284% 225% 428% T43% 545% 50.0% 48.7% 36.1% 77.3% 55.6% 60.2% 28.5% 53.0%
Llama-3.2 34.5% 265% 43.5% 547% 603% 43.5% 83.1% 532%  50.0% 38.9% 58.3% 80.3% 72.2% 32.4% 63.3% 52.8%
Moonshot-v1 43.4% 439% 444% 36.8% 219% 37.0% 72.0% 55.6% 40.0% 53.0% 58.3% 77.3% 66.7% 52.8% 27.9% 51.0%
QvVQ 733% 659% 602% 491% 73.1% 69.6% 80.1%  50.0% 50.0% 72.2% 58.3% 63.6% 64.8% 47.2% 75.1% 64.6%
Qwen2-vl 544% 545% 61.1% 51.6% 389% 643% 833% 619% 60.0% 59.6% 66.9% 77.3% 73.3% 63.9% 43.6% 62.5%
Yi-vision-v2 353% 34.1% 35.6% 33.7% 344% 37.7% 63.6% 45.1% 34.0% 57.2% 58.3% 69.7% 69.8% 38.9% 31.8% 46.0%

Table 3: The score of the combination of various abilities of the model to be tested is counted by 100%. The highest score of a
certain group of abilities in the model to be tested is indicated by underline. "Combined score" represents the average score of

the various combinations.

Scoring model | Vision Language cal\:::;adﬁi]‘y Robustness M”‘:f;;'ﬁ;‘:;’m'c C";"s::“' M"dct sg::p"’“c
Humans 61.5% 56.7% 57.5% 19.1% 17.00% 59.1% 53.7%
DeepSeek-rl | 64.2% 62.7% 61.8% 23.5% 29.7% 62.5% 58.6%
o1 51.0% 47.7% 47.7% 24.3% 22.7% 49.7% 45.4%
DeepSeek-v3 | 58.2% 50.1% 52.1% 11.7% 21.3% 53.% 54.2%

Table 4: The multidimensional capabilities of the model Qwen2-vl are counted at 100% using different scoring models,

"Humans" represents the result of manual scoring.

so it is relatively intuitive and reasonable to judge
the performance of the model in a certain scene
through the integration of multiple capabilities.

Gemini2.0-flash ranked first in the integration
of various capabilities, and the number of single
first is the largest and obtained seven. Two of them,
DouBaol.5, ranked second overall in the integra-
tion of multiple capabilities, tied for first place.
Doubaol.5 has five items to obtain the first compre-
hensive ranking, second only to Gemini2.0-flash,
and the difference is small. Another five groups are
scattered among the remaining LMMs.This phe-
nomenon may be related to differences in the dif-
ferent training data used by the major vendors. The
difference in training data directly leads to better
performance of models in specific application sce-
narios.

3.5 Validity Analysis Based on LLLM Score

To validate the validity of the LLM-based
DeepEval-R1 Scoring Framework, we scored the
same result set using different methods. Through
comparative analysis of scoring data on Qwen2-
vl, it is found that the large model scoring system
demonstrates high consistency with human evalu-
ations in relative ranking, with visual dimension
scores showing a significant positive correlation to
human judgments. DeepSeek-R1 came closest to
the human assessment. Furthermore, we conducte a
comparison between DeepSeek-R1’s performance
and manually scored results obtained from other

models. The analysis reveals a linear relationship
between the two sets of scores, and both exhibit
similar biases across all areas. This consistency
will facilitate the establishment of uniform evalua-
tion criteria.

4 Conclusions

This paper proposes an innovative multimodal eval-
uation framework that systematically assesses four
core dimensions: visual capability, language ca-
pability, robustness, and model dynamic stabil-
ity. The multi-dimensional capability index of
LMMs is obtained through this evaluation frame-
work, and the reliability of the system is verified
by experiments. Benchmark tests indicate that
Doubaol.5 excels in both model and visual capabil-
ities, Gemini2.0-flash outperforms in model com-
posite capability, ChatGpt4o leads in language pro-
ficiency, Intern VL2 shows superior robustness, and
ChatGlm-4v demonstrates outstanding dynamic
stability. Notably, top models demonstrate sig-
nificant performance-robustness trade-offs, with
robustness scores below 30% of capability met-
rics. Looking ahead, we will continue to refine
SSR-VLES, extending its applicability to emerging
LMMs and complex application scenarios.

Limitations

Data Accuracy: The benchmark tasks of SSR-
VLES are manually engineered with structured



annotation frameworks, where each task instance
undergoes three-stage validation including require-
ment verification, label consistency checking, and
difficulty calibration. A self-reflection system is
employed to screen and remove anomalous tasks,
ensuring that the final uploaded task sets have un-
dergone rigorous selection. However, it is possible
that some anomalies may still exist and will be
addressed in future updates.

Data Richness: SSR-VLES’s task sets encom-
pass a wide range of task types and formats. An-
swer formats include multiple-choice questions,
true or false questions, and open-ended questions.
Image-based tasks feature single images, dual im-
ages, and multi-image sets. Question categories
span humanities and social sciences, mathematics,
modern common knowledge, medical imaging, bio-
logical sciences, image sequences, flowcharts, and
emoticons. Despite this diversity, the current task
sets remain insufficient in both quantity and variety.
We plan to expand the number and types of tasks
in future iterations.

Model Selection: Currently, all the auxiliary
models in SSR-VLES are based on ChatGPT. After
our experimental adjustments, the accuracy of the
models has become relatively reliable. As technol-
ogy progresses and more powerful LLMs emerge,
we will adjust the configuration of the auxiliary
models and introduce other methods as assistance.

Prompt Engineering: Additional prompts are
utilized in task pruning, self-reflection regenera-
tion, and scoring to assist model operations. How-
ever, our experiments revealed that different task
types exhibit varying responses to these prompts,
with some cases showing performance degradation.
Therefore, we will consider customizing prompts
for specific task types to optimize system perfor-
mance.
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