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Abstract001

This paper introduces SSR-VLES, a structured002
multi-perspective and multi-modal comprehen-003
sive evaluation system based on self-reflection,004
designed to assess the overall capabilities of005
large multi-modal models (LMMs) in complex006
multi-modal tasks. SSR-VLES addresses this007
gap by defining 11 composite tasks that en-008
compass five visual functions, four language009
functions and robustness, while also model dy-010
namic stability. The system evaluates LMMs011
across four dimensions: visual ability, language012
ability, robustness and model dynamic stabil-013
ity. It employs a self-reflection mechanism014
to ensure stable model outputs and enhances015
evaluation accuracy and flexibility through016
multi-round dialogue mechanisms and addi-017
tional prompts. Experimental results demon-018
strate that SSR-VLES can effectively differ-019
entiate the capability levels of various LMMs020
and provide valuable guidance for further021
model optimization. SSR-VLES code are avail-022
able at https://anonymous.4open.science/r/SSR-023
VLES-BF91024

1 Introduction025

Large Multi-modal Models (LMMs) have made re-026

markable progress in recent years, with numerous027

models being proposed to demonstrate their effec-028

tiveness from diverse perspectives (Dai et al., 2023;029

Zhu et al., 2024; Li et al., 2023a). Despite this030

progress, there is a significant lack of a comprehen-031

sive evaluation system that accurately quantifies032

the performance of these LMMs (Liu et al., 2024a;033

Yu et al., 2024; Liu et al., 2024b; Schwenk et al.,034

2022).035

However, current evaluation systems mainly con-036

centrate on single-modal tasks, such as image or037

text analysis, while neglecting the necessity of com-038

prehensive multi-modal task assessment. The lim-039

itations can be further elaborated upon in terms040

of both breadth and depth. 1) Horizontal Dimen-041

sion (Task Breadth): Current systems predomi-042

Figure. 1. The current mainstream evaluation system is
picture (a), and the SSR-VLES evaluation system is picture
(b). "task" refers to a single problem in the input model.

nantly focus on a narrow range of modal combina- 043

tions, primarily text-image pairs. This narrow fo- 044

cus means that the vast majority of practical multi- 045

modal application scenarios are left unexplored. 2) 046

Vertical Dimension (Interaction Depth): Multi- 047

modal tasks vary significantly, necessitating tai- 048

lored evaluation criteria. Current systems often 049

apply generic metrics that may not fully capture 050

the nuances of individual tasks. Moreover, com- 051

plex multi-modal tasks, which involve interactions 052

across multiple modalities, require a balanced ap- 053

proach that considers multiple dimensions simulta- 054

neously. 055

Given these limitations, there is an urgent need 056

for a detailed and comprehensive evaluation frame- 057

work that addresses both the breadth and depth of 058
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multi-modal evaluation. Therefore, in this paper,059

we propose a novel benchmark framework, SSR-060

VLES (Structured Self-Reflective Vision-Language061

Evaluation System), to provide a comprehensive062

assessment of the overall capabilities of LLMs.063

The following elaborates on the key aspects of064

SSR-VLES.065

• We innovatively design a self-reflection evalu-066

ation mechanism. This mechanism establishes067

a dynamic feedback correction system to ef-068

fectively mitigate the interference of model069

output fluctuations on evaluation results, en-070

hancing the accuracy, objectivity, and reliabil-071

ity of the evaluation system.072

• We provide a more comprehensive and realis-073

tic evaluation of model performance by defin-074

ing a hierarchical evaluation architecture com-075

prising three core innovation modules: visual076

processing (5 visual capability dimensions),077

linguistic understanding (4 linguistic capabil-078

ity dimensions), and multi-modal interaction079

(2 anti-interference test scenarios and dynamic080

stability indices).081

• We design an automated model evaluation sys-082

tem based on LLM, evaluate 13 major LMMs,083

fully analyzes the experimental results, and084

validate the system based on the results.085

2 SSR-VLES086

2.1 Structured Evaluation Framework087

The architecture of LMMs typically integrates a088

visual translator alongside the core LLM(Large lan-089

guage model). This design inherently limits the090

model’s visual capabilities to those of the visual091

translator, while its linguistic capabilities relies pri-092

marily on the LLM itself (Verma et al., 2024; Goyal093

et al., 2017). To ensure a nuanced evaluation of094

both the model’s visual and linguistic strengths and095

weaknesses, we propose a structured evaluation096

framework that separately assesses four critical di-097

mensions: visual processing, linguistic understand-098

ing, robustness, and dynamic stability.099

Specifically, visual processing testing evaluates100

the model’s ability to accurately interpret and pro-101

cess visual information, including tasks like object102

recognition, scene understanding, and image cap-103

tioning, aiming to assess the effectiveness and limi-104

tations of the integrated visual translator within the105

LLM. The linguistic understanding testing, on the106

other hand, focuses on the model’s capabilities in 107

understanding and generating natural language, en- 108

compassing tasks such as language comprehension, 109

text generation, sentiment analysis, and question 110

answering, with the objective of gauging the core 111

LLM’s linguistic capabilities independently of its 112

visual component. Robustness testing specifically 113

targets potential weaknesses by presenting chal- 114

lenging scenarios(Li et al., 2023b). Model stability 115

testing, on the other hand, focuses primarily on 116

assessing the stability of the model, particularly 117

the frequency of self-reflective systems, which is 118

introduced in Section 2.2. 119

2.2 Self-Reflection Mechanism 120

The rationale behind introducing stability testing 121

lies in the inherent limitations of current evaluation 122

methodologies for black-box LMMs (Jiaming et al., 123

2024). A common practice among these methods 124

is to average multiple results to achieve stability 125

in evaluation outcomes. However, this traditional 126

averaging technique often blends model instability 127

with its core functional limitations, thus concealing 128

the differences between these two distinct aspects. 129

This blurring can lead to inaccurate evaluations of 130

the model’s true performance and capabilities. 131

To overcome this challenge, we introduce a self- 132

reflection mechanism, that isolates stability assess- 133

ment while improving result reliability and sepa- 134

rately evaluates stability as part of the robustness 135

dimension. As shown in Figure. 2(b), during the 136

execution of a single atomic evaluation task, two in- 137

dependent yet identical evaluation channels are run 138

simultaneously.The LLM-based referee then deter- 139

mines whether the two responses are equivalent.If 140

they are not, the model under test is prompted to 141

regenerate its output based on the previous result 142

using a carefully designed prompt. Through a lim- 143

ited number of regenerations, the self-reflection 144

mechanism achieves more stable and objective re- 145

sults while obtaining data on model stability. This 146

approach avoids the high resource consumption 147

and potential result distortion associated with tradi- 148

tional methods that rely on fixed multiple attempts. 149

As shown in Figure. 2(c),a similar self-reflection 150

mechanism has been used in the DeepEval-R1 Scor- 151

ing Framework, which will be covered in Section 152

2.3. 153

2.3 DeepEval-R1 Scoring Framework 154

The diverse array of scenarios, which span both 155

fixed-format responses and open-ended inquiries, 156
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Figure. 2. (a) The structured task generation module constructs assessment tasks comprising three problem categories: visual
(Vt), linguistic (Lt), and robustness (Rt). Each category is enhanced with targeted prompt engineering to create domain-specific
challenges. (b) The self-reflective regeneration module processes these enhanced problems (Vt/Lt/Rt) to produce model
predictions. This component enables iterative refinement of outputs through introspective reasoning mechanisms. (c) The
tripartite evaluation framework employs parallel scoring channels, each combining a scoring model with an alternate verification
model. This architecture computes performance metrics by comparing model predictions against ground truth values, and the
results are optimized by the self-reflection mechanism.

presents significant challenges in model evaluation157

and metric design. Traditional methods are inad-158

equate for accurately aligning the wide variety of159

predicted answers with the true answers, particu-160

larly given the complexity and nuances involved.161

Drawing inspiration from recent advancements in162

NLP and LMMs evaluation, we develop a sophis-163

ticated scoring framework based on DeepSeek-R1164

(DeepSeek-AI et al., 2025; Dai et al., 2024) to en-165

hance the evaluation process. DeepSeek-R1 has166

received widespread acclaim in recent academic167

circles, thanks to its innovative thought chain mech-168

anism. This mechanism excels in achieving highly169

accurate interdisciplinary causal reasoning through170

a combination of hierarchical reasoning, multi-171

modal correlation, and a dynamic calibration pro-172

cess (Ji et al., 2024; Chen et al., 2024a; Nowak173

et al., 2024). 174

To enhance the scalability of our scoring sys- 175

tem, we meticulously design a composite prompt 176

set tailored specifically for model evaluation. This 177

prompt set carefully selects a variety of sample 178

prompts, which are then fed through three distinct 179

channels into the scoring model (DeepSeek-R1) to 180

produce comprehensive scores. During the scor- 181

ing process, the model initially checks for con- 182

sistency among the scores generated by the three 183

channels. This step is crucial for eliminating any 184

erroneous ratings and ensuring the accuracy of the 185

final score. In the event that the scores from the dif- 186

ferent channels differ, a review mechanism based 187

on self-reflection mechanism is activated. This 188

mechanism reconsiders the answers a limited num- 189

ber of times. The goal is to identify and correct 190
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Relevant
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Scoring
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Figure. 3. The input template for the scoring model is divided into four parts, scoring rubric, chain of thought prompt,scoring
case and test subject, from top to bottom, separated by color. Q represents the sample question;G represents the answer; P is the
predicted value of the sample model.

any discrepancies, ensuring that the final score ac-191

curately reflects the model’s performance. Finally,192

after all necessary reviews and adjustments have193

been made, the averaged score from the three chan-194

nels is calculated. This averaged score serves as the195

definitive model’s performance rating for the given196

question, providing a comprehensive and reliable197

assessment of the model’s capabilities Alongside198

these sample prompts, as shown in Fig 3, we also199

establish a set of relevant scoring rules,chain of200

thought prompt and scoring case to ensure consis-201

tency and accuracy.202

In addition, due to the uncontrollable nature of203

the model’s output, the scoring model occasion-204

ally produces non-standardized outputs (Zhang205

et al., 2024). To address this, we design a com-206

pensation mechanism. When the output is non-207

standardized, the standby model (DeepSeek-v3) is208

activated to implement standardization procedures.209

If the model’s output remains non-standardized,210

this mechanism judges the output and performs a211

limited number of retries. This will ensure that 212

our evaluation system can handle automation in the 213

face of non-standardized LLM output. 214

2.4 Overall Evaluation Process 215

The SSR-VLES framework’s structured task testing 216

process is designed to comprehensively evaluate 217

LLMs rigorously and systematically. The follow- 218

ing is an expanded and more detailed description 219

of the overall evaluation process: 220

Step1. Task Restructuring: The initial input 221

question for each of the three sub-tasks undergoes 222

restructuring by appending an additional prompt 223

tailored to the type of question to form a refined 224

query. This newly crafted query is then submitted 225

to the model under evaluation. 226

Step2. Parallel Task Channels: As shown in 227

Figure. 2 (b), the query is processed simultaneously 228

through two parallel task channels. Within these 229

channels, the model generates predicted answers 230

based on its internal processing mechanisms. In 231

addition, when the set of problems includes both 232
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visual and language tasks, the model output of the233

visual task is compiled as part of the input of the234

language task.235

Step3. Output Comparison and Judgment:236

A judge is employed to meticulously compare the237

outputs from both channels. If the answers from238

both channels align perfectly, the model’s output239

is deemed acceptable and is subsequently utilized.240

Conversely, if a discrepancy is observed, a self-241

reflection process is initiated. This process involves242

regenerating a limited number of answers until a243

reliable and consistent output is obtained.244

Step4. Scoring and Evaluation: Once accept-245

able outputs are obtained, the deepEval-R1 scor-246

ing framework generates evaluation scores rang-247

ing from 0 to 1 based on predefined criteria. This248

framework leverages the advanced capabilities of249

DeepSeek-R1 to provide comprehensive and objec-250

tive scores for each task.251

3 Evaluation result252

3.1 Experiments Settings253

We use our evaluation system SSR-VLES to eval-254

uate 13 mainstream LMMs: Claude3.5, deepseek-255

vl2 (Wu et al., 2024), Doubao1.5, Gemini2.0-256

flash (Sayyafzadeh et al., 2024), ChatGlm-4v,257

ChatGPT4o (OpenAI et al., 2024), ChatGPT4o-258

all, InternVL2 (Chen et al., 2024b), Llama-3.2,259

Moonshot-v1, QVQ, Qwen2-vl (Wang et al., 2024),260

and Yi-vision-v2.261

We collect 110 images from diverse online262

sources and formulate 181 tasks (comprising a min-263

imum of 318 sub-problems). Each task requires264

one or more specific capabilities to answer. These265

questions vary in type and complexity, necessitat-266

ing open-ended or standard answers of different267

lengths. For each question, we identify the re-268

quired capabilities and statistically summarize this269

information in Figure. 4. All true answers are270

manually annotated by experts. The question types271

encompass a wide range of categories, including272

humanities and social sciences, mathematics, mod-273

ern common sense, medical imaging, biological274

science, image sequences, flowcharts, emoticons,275

and more, ensuring comprehensive coverage.276

We develop 11 independent capability tests277

across three dimensions: visual ability, language278

ability, and robustness. For the visual task, we279

assess five core visual functions. These include280

visual recognition, which involves identifying ob-281

jects, attributes, and performing advanced vision282

tasks; OCR, which focuses on recognizing and rea- 283

soning about text within images; spatial perception, 284

understanding spatial relationships in both 2D and 285

3D contexts; motion recognition, identifying and 286

interpreting movements in image sequences; and 287

environmental understanding, recognizing and in- 288

terpreting the contexts depicted in images. For 289

the language task, we evaluate four core language 290

functions. These encompass knowledge, utilizing 291

social, visual, and encyclopedic information; infer- 292

ence, predicting or generating new content through 293

reasoning; mathematics, solving written equations 294

or arithmetic problems; and language generation, 295

producing natural and correct language text. For 296

the robustness task, we focus on two core robust- 297

ness functions. These are hallucination, assessing 298

when generated content is inconsistent with facts; 299

and formatted input, evaluating robustness across 300

varied input formats. Tasks are also classified by 301

difficulty level: high (3), medium (2), and low (1). 302

In real-world scenarios, complex multi-modal 303

tasks often require the integration of multiple core 304

visual and language capabilities. Therefore, it 305

is essential to include composite tasks that com- 306

bine these capabilities in the evaluation framework. 307

SSR-VLES designed 15 capability sets, as illus- 308

trated in Figure.5. Each set integrates multiple core 309

capabilities, such as combining OCR with mathe- 310

matical reasoning to solve icon problems; integrat- 311

ing visual recognition with knowledge to perform 312

object tracking; and combining motion recognition 313

with inference to predict future object movements. 314

This approach allows for a more nuanced and com- 315

prehensive evaluation of LMMs. 316

Combining the aforementioned assessment tasks, 317

we also report two comprehensive scores: 318

1) Model capability, which encompasses vi- 319

sual capability and language capability, provides a 320

macro-level description of the LMMs’ benchmark 321

performance. 322

2) Model composite score, comprising visual 323

capability, language capability, robustness, and dy- 324

namic stability indices, offers an all-encompassing 325

evaluation of the model. 326

3.2 Multi-Perspective Evaluation 327

According to data in Table 1, the degree of syn- 328

ergy between visual and linguistic capabilities sig- 329

nificantly impacts model performance. MoE ar- 330

chitecture models demonstrate absolute superior- 331

ity in cross-modal integration: Doubao1.5 ranks 332

first in model capabilities, where its expert network 333
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Model Vision Language Model
capability Robustness Model dynamic

stability
Model composite

score

Claude3.5 71.3% 65.8% 70.3% 38.5% 46.8% 68.0%
deepseek-vl2 53.3% 37.0% 47.9% 10.5% 17.0% 44.8%
Doubao1.5 78.7% 75.7% 76.6% 17.5% 30.1% 72.0%

Gemini2.0-flash 76.1% 77.5% 76.4% 26.2% 35.5% 72.3%
ChatGlm-4v 66.6% 64.1% 65.6% 41.7% 49.0% 64.0%
ChatGpt4o 70.3% 74.9% 73.1% 20.2% 32.2% 69.0%

ChatGpt4o-all 64.8% 50.2% 58.8% 21.6% 29.9% 56.0%
InternVL2 64.1% 53.9% 61.9% 45.7% 48.5% 60.6%
Llama-3.2 65.8% 59.6% 62.5% 10.1% 18.5% 58.1%

Moonshot-v1 65.0% 50.8% 59.0% 8.7% 24.7% 55.6%
QVQ 74.9% 68.5% 69.8% 25.4% 33.1% 66.1%

Qwen2-vl 64.2% 62.7% 61.8% 23.5% 29.7% 58.6%
Yi-vision-v2 60.4% 45.9% 53.8% 29.4% 36.7% 52.1%

Table 1: The multidimensional capabilities of the model to be tested, that is, visual capability, language capability, robustness,
and model dynamic stability, are counted in 100%, and the highest score of a group of capabilities in the model to be tested is
indicated by underline. The model ability is the integration of model vision ability and language ability.

Figure. 4. The statistical distribution of our constructed 11 capability. (a) shows the frequency of each capability, while (b)
illustrates the proportion of each capability. Note that the total percentage exceeds 100% because individual tasks may involve
multiple labels.

routing mechanism effectively coordinates visual-334

linguistic feature alignment; Gemini2.0-flash ranks335

first in model composite score, which exhibits a336

"language-dominant" characteristic, indicating its337

architecture may prioritize textual reasoning pro-338

cesses. Traditional architecture models generally339

suffer from modality bias, as seen in Qwen2-vl340

and Yi-vision-v2, exposing the limitations of dense341

parameter architectures in multimodal fusion.342

According to our data, the distinction between343

visual and linguistic abilities is significant in many344

mainstream LMMs, with a performance gap of up345

to 16.3% between these two dimensions. However,346

LMMs that excel can effectively integrate both ca-347

pabilities, achieving high performance in both vi-348

sion and language tasks. In contrast, LMMs with349

weaker abilities exhibit more pronounced dispari-350

ties between their visual and linguistic capabilities.351

Robustness and dynamic stability indices high-352

lights differences in anti-interference capabilities353

across structure design (Yang et al., 2024; Ma-354

haut et al., 2024). ChatGlm-4v leads with a model 355

dynamic stability score of 49.0%, potentially en- 356

hanced by its hybrid architecture to resist adversar- 357

ial samples (Du et al., 2022). SSR-VLES eval- 358

uation reveals a significant negative correlation 359

between model capability and dynamic stability 360

of the model, with top performing models gener- 361

ally facing stability deficiencies. The capability 362

leaders Doubao1.5 and Gemini2.0 achieve only 363

30.1%/35.5% model dynamic stability—less than 364

half of their capability scores—while the mid-tier 365

model ChatGlm-4v attains 49.0% model dynamic 366

stability through its hybrid architecture, validating 367

the potential of architectural innovation to break 368

the "capability-model dynamic stability trade-off." 369

Commercial model version iterations expose model 370

dynamic stability risks, with ChatGPT4o-all show- 371

ing a 2.3% decrease compared to the standard ver- 372

sion, reflecting how parameter scaling may com- 373

promise system robustness. 374
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Figure. 5. This chart presents the statistical distribution of each combination. (a) shows the frequency of each label, while (b)
illustrates the proportion of each label. The total percentage exceeds 100% because individual tasks may involve multiple labels.

Model Ocr Vi space Motion Background Common Generation Math Inference Hallucination Input
Model

composite
score

Model
capability

Claude3.5 65.6% 74.0% 65.8% 76.5% 76.1% 81.4% 76.2% 54.5% 54.2% 32.0% 48.5% 68.0% 70.3%
deepseek-vl2 44.9% 55.0% 42.0% 68.1% 65.2% 46.1% 13.9% 21.4% 49.2% 9.5% 12.1% 44.8% 47.9%
Doubao1.5 72.4% 79.0% 74.7% 85.4% 87.5% 85.7% 76.8% 64.7% 73.7% 14.4% 22.2% 72.0% 76.6%

Gemini2.0-flash 81.7% 78.0% 72.8% 62.9% 77.9% 82.7% 74.5% 82.6% 67.7% 12.4% 47.5% 72.3% 76.4%
ChatGlm-4v 58.6% 68.9% 56.2% 71.7% 82.4% 83.7% 85.2% 42.2% 53.9% 34.0% 53.5% 72.3% 65.6%
ChatGpt4o 67.8% 73.6% 70.7% 56.1% 76.5% 86.9% 88.9% 58.7% 71.0% 15.7% 27.3% 64.0% 73.1%

ChatGpt4o-all 61.6% 70.1% 64.1% 52.1% 67.7% 59.3% 33.7% 45.7% 49.5% 16.0% 30.3% 69.0% 58.8%
InternVL2 60.4% 71.2% 65.8% 55.7% 57.4% 58.4% 26.0% 49.3% 62.9% 32.8% 65.7% 69.0% 61.9%
Llama-3.2 59.0% 71.0% 57.6% 57.9% 79.6% 74.6% 60.2% 42.0% 58.1% 5.9% 16.7% 56.0% 62.5%

Moonshot-v1 60.1% 69.6% 61.8% 60.0% 69.2% 59.7% 22.2% 39.9% 60.6% 7.8% 10.1% 60.6% 59.0%
QVQ 74.7% 78.7% 72.2% 75.8% 69.1% 77.6% 67.2% 69.0% 57.7% 8.5% 51.5% 58.1% 69.8%

Qwen2-vl 54.1% 69.2% 60.6% 65.1% 70.8% 72.3% 40.7% 56.1% 65.3% 20.9% 27.6% 55.6% 61.8%
Yi-vision-v2 44.4% 66.2% 48.9% 75.8% 73.3% 54.8% 30.0% 36.8% 49.5% 22.9% 39.6% 66.1% 53.8%

Table 2: Independent ability score results with highest scores underlined. Model composite score includes visual, language, and
robustness. The Model capability score integrates visual and language capabilities.

3.3 Independent Ability375

Table 2 shows the scores of the 11 capability. These376

data reflect the quantitative capability of LMMs in377

a single function. The performance of each LMMs378

can be presented in a more granular manner.379

Ranked the first in model capability Doubao1.5380

LMMs points and individual ability to get the most381

times, including Vi, Space, Motion, Background,382

Inference, and OCR and Common ranked second.383

However, it scored low on both problematic robust-384

ness tests. That pushed it down to second place in385

overall ability, barely missing first place. This ex-386

cellent capability can be found in its model architec-387

ture, which is currently more advanced MoE (Tian388

et al., 2024; Dai et al., 2024) architecture, with389

good performance in multi-task learning. Mean-390

while this also exposes its poor performance in391

robustness and dynamic stability.392

Gemini2.0-flash is the first overall ranking in393

model composite capability, although only two ca-394

pabilities ranked first, but its many capabilities395

ranked at the forefront of the overall score ulti- 396

mately first. The balanced development of multiple 397

independent capabilities can make LMMs show 398

better comprehensive performance. 399

3.4 Integration of Multiple Capabilities 400

Table 3 reflects the scores for the integration of mul- 401

tiple competencies. Integration of multiple capabil- 402

ities refers to the simultaneous examination of mul- 403

tiple capabilities for a single problem. These are 404

questions that are used in specific application sce- 405

narios and often look at various capabilities rather 406

than a single capability. For example, when LMMs 407

are faced with the question of the total price of 408

all apples in the picture, they need to identify the 409

apples in the picture, get the number of apples, and 410

then calculate the total price of apples according 411

to the unit price of apples given in the picture. In 412

this process, the abilities of OCR, Vi and Math 413

are examined respectively. Most of the problem 414

sets we design are such comprehensive problems, 415
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Model math
ocr

math
space
ocr

inference
ocr

vi
ocr

generation
common

ocr

math
vi

common
vi

inference
vi

inference
vi
ocr

vi
motion

background
motion

background
inference

common
background

space
inference

generation
common

Combined
score

Claude3.5 55.0% 56.1% 33.3% 49.1% 80.8% 63.8% 83.8% 48.1% 40.0% 73.7% 66.7% 68.2% 77.8% 49.1% 82.3% 61.6%
deepseek-vl2 26.0% 31.8% 35.2% 29.8% 10.0% 31.9% 53.7% 45.4% 33.3% 61.1% 66.7% 63.6% 65.6% 41.7% 9.2% 41.0%
Doubao1.5 65.5% 68.2% 72.2% 54.4% 85.8% 58.7% 79.6% 66.7% 70.0% 82.0% 91.7% 81.8% 99.1% 58.3% 79.2% 72.6%

Gemini2.0-flash 86.0% 81.8% 77.8% 67.5% 81.1% 73.9% 86.6% 61.1% 70.0% 58.3% 58.3% 81.8% 72.2% 47.2% 82.6% 73.9%
ChatGlm-4v 41.1% 50.0% 52.8% 41.4% 96.1% 37.7% 80.6% 47.7% 45.0% 57.2% 75.0% 75.8% 90.7% 47.2% 96.4% 59.5%
ChatGpt4o 67.4% 72.7% 64.8% 45.6% 93.1% 47.8% 91.2% 65.7% 46.7% 59.3% 47.2% 86.4% 78.7% 61.1% 93.6% 69.2%

ChatGpt4o-all 51.2% 50.0% 38.9% 12.6% 35.0% 34.8% 69.6% 41.7% 20.0% 49.4% 50.0% 59.1% 55.6% 52.8% 40.0% 46.6%
InternVL2 50.4% 54.5% 66.7% 28.4% 22.5% 42.8% 74.3% 54.5% 50.0% 48.7% 36.1% 77.3% 55.6% 60.2% 28.5% 53.0%
Llama-3.2 34.5% 26.5% 43.5% 54.7% 60.3% 43.5% 83.1% 53.2% 50.0% 38.9% 58.3% 80.3% 72.2% 32.4% 63.3% 52.8%

Moonshot-v1 43.4% 43.9% 44.4% 36.8% 21.9% 37.0% 72.0% 55.6% 40.0% 53.0% 58.3% 77.3% 66.7% 52.8% 27.9% 51.0%
QVQ 73.3% 65.9% 60.2% 49.1% 73.1% 69.6% 80.1% 50.0% 50.0% 72.2% 58.3% 63.6% 64.8% 47.2% 75.1% 64.6%

Qwen2-vl 54.4% 54.5% 61.1% 51.6% 38.9% 64.3% 83.3% 61.9% 60.0% 59.6% 66.9% 77.3% 73.3% 63.9% 43.6% 62.5%
Yi-vision-v2 35.3% 34.1% 35.6% 33.7% 34.4% 37.7% 63.6% 45.1% 34.0% 57.2% 58.3% 69.7% 69.8% 38.9% 31.8% 46.0%

Table 3: The score of the combination of various abilities of the model to be tested is counted by 100%. The highest score of a
certain group of abilities in the model to be tested is indicated by underline. "Combined score" represents the average score of
the various combinations.

Scoring model Vision Language Model
capability Robustness Model dynamic

stability
Combined

score
Model composite

score

Humans 61.5% 56.7% 57.5% 19.1% 17.00% 59.1% 53.7%
DeepSeek-r1 64.2% 62.7% 61.8% 23.5% 29.7% 62.5% 58.6%

O1 51.0% 47.7% 47.7% 24.3% 22.7% 49.7% 45.4%
DeepSeek-v3 58.2% 50.1% 52.1% 11.7% 21.3% 53.% 54.2%

Table 4: The multidimensional capabilities of the model Qwen2-vl are counted at 100% using different scoring models,
"Humans" represents the result of manual scoring.

so it is relatively intuitive and reasonable to judge416

the performance of the model in a certain scene417

through the integration of multiple capabilities.418

Gemini2.0-flash ranked first in the integration419

of various capabilities, and the number of single420

first is the largest and obtained seven. Two of them,421

DouBao1.5, ranked second overall in the integra-422

tion of multiple capabilities, tied for first place.423

Doubao1.5 has five items to obtain the first compre-424

hensive ranking, second only to Gemini2.0-flash,425

and the difference is small. Another five groups are426

scattered among the remaining LMMs.This phe-427

nomenon may be related to differences in the dif-428

ferent training data used by the major vendors. The429

difference in training data directly leads to better430

performance of models in specific application sce-431

narios.432

3.5 Validity Analysis Based on LLM Score433

To validate the validity of the LLM-based434

DeepEval-R1 Scoring Framework, we scored the435

same result set using different methods. Through436

comparative analysis of scoring data on Qwen2-437

vl, it is found that the large model scoring system438

demonstrates high consistency with human evalu-439

ations in relative ranking, with visual dimension440

scores showing a significant positive correlation to441

human judgments. DeepSeek-R1 came closest to442

the human assessment. Furthermore, we conducte a443

comparison between DeepSeek-R1’s performance444

and manually scored results obtained from other445

models. The analysis reveals a linear relationship 446

between the two sets of scores, and both exhibit 447

similar biases across all areas. This consistency 448

will facilitate the establishment of uniform evalua- 449

tion criteria. 450

4 Conclusions 451

This paper proposes an innovative multimodal eval- 452

uation framework that systematically assesses four 453

core dimensions: visual capability, language ca- 454

pability, robustness, and model dynamic stabil- 455

ity. The multi-dimensional capability index of 456

LMMs is obtained through this evaluation frame- 457

work, and the reliability of the system is verified 458

by experiments. Benchmark tests indicate that 459

Doubao1.5 excels in both model and visual capabil- 460

ities, Gemini2.0-flash outperforms in model com- 461

posite capability, ChatGpt4o leads in language pro- 462

ficiency, Intern VL2 shows superior robustness, and 463

ChatGlm-4v demonstrates outstanding dynamic 464

stability. Notably, top models demonstrate sig- 465

nificant performance-robustness trade-offs, with 466

robustness scores below 30% of capability met- 467

rics. Looking ahead, we will continue to refine 468

SSR-VLES, extending its applicability to emerging 469

LMMs and complex application scenarios. 470

Limitations 471

Data Accuracy: The benchmark tasks of SSR- 472

VLES are manually engineered with structured 473
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annotation frameworks, where each task instance474

undergoes three-stage validation including require-475

ment verification, label consistency checking, and476

difficulty calibration. A self-reflection system is477

employed to screen and remove anomalous tasks,478

ensuring that the final uploaded task sets have un-479

dergone rigorous selection. However, it is possible480

that some anomalies may still exist and will be481

addressed in future updates.482

Data Richness: SSR-VLES’s task sets encom-483

pass a wide range of task types and formats. An-484

swer formats include multiple-choice questions,485

true or false questions, and open-ended questions.486

Image-based tasks feature single images, dual im-487

ages, and multi-image sets. Question categories488

span humanities and social sciences, mathematics,489

modern common knowledge, medical imaging, bio-490

logical sciences, image sequences, flowcharts, and491

emoticons. Despite this diversity, the current task492

sets remain insufficient in both quantity and variety.493

We plan to expand the number and types of tasks494

in future iterations.495

Model Selection: Currently, all the auxiliary496

models in SSR-VLES are based on ChatGPT. After497

our experimental adjustments, the accuracy of the498

models has become relatively reliable. As technol-499

ogy progresses and more powerful LLMs emerge,500

we will adjust the configuration of the auxiliary501

models and introduce other methods as assistance.502

Prompt Engineering: Additional prompts are503

utilized in task pruning, self-reflection regenera-504

tion, and scoring to assist model operations. How-505

ever, our experiments revealed that different task506

types exhibit varying responses to these prompts,507

with some cases showing performance degradation.508

Therefore, we will consider customizing prompts509

for specific task types to optimize system perfor-510

mance.511
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