The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic
Evaluation of Large Language Models

Shishir G. Patil' Huanzhi Mao'! Fanjia Yan' Charlie Cheng-Jie Ji' Vishnu Suresh '
Ion Stoica' Joseph E. Gonzalez '

Abstract

Function calling, also called tool use, refers to
an LLM’s ability to invoke external functions,
APIs, or user-defined tools—an essential capa-
bility for agentic LLM applications. Despite
its prominence, there does not exist a standard
benchmark to evaluate function calling due to
two reasons — the challenging nature of evaluat-
ing when a function call is valid, and the chal-
lenge of acquiring diverse, real-world functions.
We present the Berkeley Function Calling Leader-
board (BFCL), a comprehensive benchmark de-
signed to evaluate function calling in a wide range
of real-world settings. The BFCL benchmark
evaluates serial and parallel function calls, across
various programming languages, using a novel
Abstract Syntax Tree (AST) evaluation method
that can easily scale to thousands of functions.
We construct the benchmark using a combination
of expert-curated and user-contributed functions
and associated prompts. Finally, BFCL bench-
mark evaluates the ability of models to abstain
and reason in a stateful multistep agentic set-
ting. Evaluating a wide range of models, we
observe that while state-of-the-art LLMs excel
at single-turn calls, memory, dynamic decision-
making, and long-horizon reasoning remain open
challenges. Since its preview, BFCL has become
the defacto standard for evaluating function-calls,
and can be accessed at https://gorilla.
cs.berkeley.edu/leaderboard.html

1. Introduction

Large Language Models (LLMs) have made significant
strides in diverse domains, including conversational Al, rea-

"University of California, Berkeley. Correspondence to: Shishir
G. Patil <shishirpatil@berkeley.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

soning, and creative multimodal tasks. However, agents
powering use-cases such as coding, and knowledge discov-
ery (Huang et al., 2024; Yao et al., 2022) often require LLMs
to interface with external (e.g., web-search) to either retrieve
up-to-date information or to enact actions which have real-
world consequences. To aid in this, previous work such as
Gorilla (Patil et al., 2024) and Toolformer (Schick et al.,
2023) introduced techniques to train LLMS to use tools, and
since then there has been growing interest in enabling LLMs
to leverage external tools, a capability commonly referred
to as function calling or tool use.

Despite substantial progress in leveraging function calling
in LLMs, evaluating function calling remains challenging.
Existing solutions, such as Gorilla—APIBench (Patil et al.,
2024), propose methods for assessing function calls but
exhibit notable limitations: APIBench’s evaluation met-
rics focus primarily on functional correctness, overlooking
semantic errors or variations in API usage. Other bench-
marks—ToolBench (Guo et al., 2024), ToolSandbox (Lu
et al., 2024), and the Nexus Function Calling Leaderboard
(Srinivasan et al., 2023)—fail to capture real-world use cases
or patterns such as parallel invocations. We discuss some of
these limitations in more detail in the related work section.

To address these challenges, we introduce the Berke-
ley Function Calling Leaderboard (BFCL), a large-
scale, multi-task, multi-turn benchmark that distinguishes
function-calling capabilities among LLMs by evaluating
their ability to invoke the correct function call. BFCL is
composed of four parts: (1) ‘single-turn’ that tests single-
turn function-calling scenarios, including parallel function
invocations and multiple function candidates; (2) ‘crowd-
sourced’ which consists of 2, 251 curated from more than
67,000 community contributed real-life function-calling
datapoints; (3) ‘multi-turn’ featuring eight curated API
suites and 1000 queries, assessing sustained context manage-
ment and dynamic decision-making; and finally (4) ‘agentic’
spanning applications (Vu et al., 2023), database queries
(Gao et al., 2024), and chatbot context management (Packer
et al., 2024). This comprehensive structure spans single-
function tasks to complex, multi-step real-world use cases,
enabling a thorough evaluation of an LLM’s adaptability,

https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

correctness, and effectiveness in function invocation.

Evaluating LLMs’ function-invocation capabilities poses
unique challenges because deterministic validation typically
requires executing the corresponding functions which com-
plicates large-scale evaluation. BFCL overcomes this by
introducing a novel validation strategy that obviates the
need for function execution. Drawing inspiration from pro-
gramming language literature, we employ Abstract Syntax
Tree (AST) sub-string matching as a proxy for actual func-
tion execution, thereby facilitating scalable evaluations. To
validate this approach, we utilize a subset of our dataset
to evaluate models using the earlier mentioned execution
approach and observe a strong correlation between BFCL’s
execution and AST metrics.

As models increasingly incorporate function calling capabil-
ity, our phased release lets us compare if BFCL’s single-turn
dataset has possibly leaked into the training data of the latest
models. To investigate this, through CharNLL as a measure,
we compare LLMs’ familiarity with the single-turn dataset
against that of the crowd-sourced dataset which was released
six months apart.

In summary, this work makes the following contributions:

1. BFCL is a diverse dataset of 5, 551 question-function-
answer pairs across multiple programming languages,
including Python, Java, JavaScript, REST APIs, and
SQL. This diversity ensures a comprehensive assess-
ment of LLMs’ function-calling ability across a range
of domains and use cases.

2. A novel application of Abstract Syntax Trees (AST)
based sub-string matching to serve as a proxy for func-
tion execution and enabling scalable, deterministic val-
idation of function calls.

3. The first inclusion of community-contributed, real-
world user queries and functions in function-calling
evaluations, providing a more accurate representation
of practical complexities and use cases.

2. Related Work

Language Models Using Tools. Function calling (Schick
et al., 2023) extends the capabilities of LLMs beyond its
own knowledge base by enabling them to interact with ex-
ternal tools and APIs. Unlike structured output (Zhong
& Chen, 2021), function calling allows LLMs to perform
tasks requiring real-time data or external computation (At-
touche et al., 2024). Models like GPT-4 (OpenAl, 2024)
have demonstrated early ability to generate structured JSON
for function invocation, prompting research into leveraging
API calls as functions. More recent models have natively
integrated function calling, empowering them to interact

Lyienese

(yoroanini Il

Simple(258)

Irrelevance(882)

cpv\
‘."'\@* Multiple(1053)
&0
& AST(1351)
lev, »
Fneq,, «
g
H
g
E wd-s
£ ou,
g reed(2251)
Pt
H <, Graph
H %, 4, 90nticsng, PhQL(00) Database (sqL)(100)
£ 0’4:, Sub-sg,
°’b, % "9(209) Me,.,.,,y(m
Qo0 AST(SO) = %,)
e G 2 Wep
rale! arep,
P (200,
z &)
2 &
o s s &
(‘\\,\\ & B & Base(200)
3 °
¢ s S 6
N g = < 3
> & 2 & <,
& $ H & 7
3 F H 3 2
§ N 5 3
« &S 5S &} % %,
G S 5 g EY el
> & 5] k3 %
8 < 5
s - >,
T 5)
] 3
B 2
H)
8 %
® S
e

Figure 1: This chart visualizes the diverse categories within BFCL.
The inner ring represents the four major sections, the middle ring
specifies their respective evaluation methods, and the outer ring
highlights each category. Numbers indicate the total number of
datapoints in each category.

with external systems for knowledge retrieval (Sasaki et al.,
2024) and real-time interaction. Furthermore, advancements
like the LLMCompiler (Kim et al., 2024) optimize this pro-
cess through parallel function execution, improving both
efficiency and accuracy. This integration of function calling
represents a crucial step towards more capable and versatile
LLMs and subsequently unlocks broad agentic behaviors.

Benchmark for Function Calling. Quite a few benchmarks
have been proposed to test LLM’s ability to perform func-
tion calling, in this work, we focus on those designed to eval-
uate a model’s native function-calling capabilities, rather
than methods that rely on prompt-based or code-generation
approaches (e.g., Nexus Raven (team, 2023) uses a prompt-
based protocol, and AppWorld (Trivedi et al., 2024) empha-
sis code generation capability). Among benchmarks that do
evaluate native function calling, many such as App Blend

(Basu et al., 2024) and API Bench (Patil et al., 2024) focus

solely on single-turn interactions. Although TinyAgent (Er-
dogan et al., 2024) addresses nested function calls, it does so

by using placeholder variables instead of letting the model

see the actual execution output of earlier calls; in effect, it

still operates under a single-turn framework.

For benchmarks that truly cover multi-turn interactions,
most are constrained by a narrow domain scope or a limited
set of functions. TauBench (Yao et al., 2024), for example,
supports only 28 functions spanning two domains (airline
and retail), and RestBench (Song et al., 2023) offers sce-
narios solely within the TMDB and Spotify domains. The

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

narrow coverage (< 150 entries) is more prone to overfit-
ting and does not sufficiently reflect the breadth of real-
world function-calling scenarios. Furthermore, benchmarks
like ToolSandBox (Lu et al., 2024) and TauBench (Yao
et al., 2024) rely on LLMs to simulate user queries. De-
spite careful attempt to control the user simulator’s behav-
ior, LLM-based users remain prone to hallucination and
instruction-following errors, which confound evaluation.

Other works, such as ToolBench (Qin et al., 2023), depend
solely on Rapid APIs that are subject to high variance in
performance, making reproducibility a challenge. While
the subsequent StableToolBench (Guo et al., 2025) version
mitigates this by caching or simulating API responses, it
continues to rely on LLM-based evaluators for determining
response solvability, thus risking model-induced biases and
undermining objectivity (e.g., GPT-family models tending
to favor responses from their own model (Panickssery et al.,
2024)). Similar issues exist in T-Eval (Chen et al., 2024),
which also depends on LLM-based evaluation.

Lastly, current benchmarks uniformly employ LLM-curated
user queries, limiting their ability to accurately reflect gen-
uine user interactions.

Our benchmark directly addresses these shortcomings by
incorporating deterministic evaluation metrics, an exten-
sive and diverse set of robust multi-turn interactions, and a
unique multilingual dataset derived from real-world, user-
contributed queries that have more than 15 languages repre-
sented in user queries, including Chinese, French, Japanese,
and Korean, etc. Additionally, on top of Python and REST
(which are commonly covered in existing benchmarks), we
also have entries in Java and JavaScript for more diverse
programming languages.

Collectively, these enhancements enable a more compre-
hensive, fair, and reproducible assessment of LLM function
calling, setting our benchmark apart from existing efforts.

Impact: Since it’s preview, BFCL has become the de-
facto evaluation for function calling used by all leading labs
developing large language models (MetaAl, 2024; Team,
2025; Cohere, 2025). The leaderboard is constantly evolving
and is in it’s current iteration (v4). This paper collapses the
timeline and condenses all the learnings

3. Berkeley Function Calling Leaderboard

BFCL employs a structured data curation pipeline to con-
struct our benchmarking dataset across different categories.
The pipeline follows five stages: data collection sources
functions from online repositories, APIs, and user queries;
data pre-processing extracts and structures key function
attributes; data generation standardizes functions and
user queries into a schema that can be presented to the

Function Relevance
Detection

Multiple Functions Parallel Functions

User: User: User:
Prompt: What is 2 + 32 Prompt: What is (2 + 3) Prompt: What is 2*3?
and (4 + 5)?
Function:
[add (int a, int b),
mult (int a, int b)
1

Function:
[add (int a, int b)]

Function:
[add (int a, int b)]

Agent: Agent: Agent:
add (a=2, b=3) [add (a=2, b=3), Error. The user
add(a=4, b=5)] asks for adding but
we only have
multiplication.

Figure 2: Examples of single-turn function-calling scenarios to
illustrate multiple, parallel, and irrelevance entry types outlined in
Section 3.1.

LLMs; data transformation augments data with incom-
plete queries, and data validation ensures consistency and
correctness through comprehensive unit-tests.

3.1. Single-turn Dataset

We classify single turn function-calling scenarios into five
types based on the number of available tools and their in-
vocation patterns. Simple involves one tool with a single
invocation, whereas Multiple includes several tools each in-
voked once. Parallel scenarios feature multiple invocations
of a single tool, and Parallel Multiple combines multiple
tools with multiple invocations. Irrelevance refers to cases
where tools are available but not invoked. Detailed defini-
tions are provided in Appendix C.

We evaluate function calling through two methods: AST-
based substring matching and executable tests. For AST-
based evaluation, we curate functions in Python, Java, and
JavaScript from popular GitHub repositories, filtering out
trivial ones. For executable tests, we include (1) Python
functions covering mathematical and physical computations,
and (2) API-wrapped functions emulating real-world ser-
vices (e.g., currency exchange and geocoding). Functions
are standardized into a schema to avoid inconsistent docu-
mentation and ensure fair model comparisons. We further
increase complexity by generating multiple and parallel
calls, adding distractor functions, and testing robustness
with missing parameters. See Appendix E for details.

3.2. Crowd-sourced Dataset

The crowd-sourced dataset contains 64,517 real single-turn
user queries collected between 2024-02-26 and 2024-04-01,
representing genuine function-call interactions from users.
We remove duplicates via ROUGE-L and embedding based
similarity, and exclude queries from public sets to avoid
contamination. Human experts minimally edit queries for
clarity and adherence to our function schema, preserving
their original semantics. See Appendix E.2 for details. This
dataset has the same dataset structure and categories as
Section 3.1.

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

3.3. Multi-turn Dataset

Multi-turn covers an entire conversation between the user
and the assistant. Each conversation includes multiple
turns—a new user message—and each turn may involve
one or more steps—individual interactions between the as-
sistant and a tool or environment.

Our multi-turn dataset evaluates the LLMs’s ability to han-
dle queries that evolve over multiple turns. It is divided into
four categories: Base category covers the basic multi-turn
user queries asking everyday tasks and providing all nec-
essary information. Missing Parameters tests the model’s
ability to recognize when critical parameter information is
missing from the user request and cannot be inferred from
the system. Missing Functions tests the model to identify
when no available function can fulfill the user request. Long
Context challenges the model’s ability to maintain accuracy
in multi-turn long context queries or function call results.
Detailed definitions are provided in Appendix D.

To construct the dataset, we developed a custom API code-
base across diverse domains like vehicle control, ensuring
full transparency of API state and design. Data generation
involves task generation of multi-turn queries that describe
real-world tasks, along with specified initial API state con-
figurations and function documents. Human annotators
label ground truth trajectories from the generated multi-turn
queries. Data validation includes question completeness,
initial state verification, and function call sequence align-
ment with human-labeled ground truth. Detailed data gener-
ation and validation processes are outlined in Appendix E.3.

3.4. Agentic Dataset

The Agentic dataset is divided into three categories. We de-
scribe them in detail below. They share similar data curation
pipeline as the single-turn dataset in Section 3.1.

3.4.1. WEB SEARCH DATASET

For this category, the LLM has two tools: a DuckDuckGo
search function that retrieves webpage titles, snippets, and
URLSs, and a fetch function that extracts full webpage con-
tent. To ensure fairness across models with varying knowl-
edge cutoffs, questions focus on recent but stable informa-
tion, such as the 2024 TIME Person of the Year, rather than
constantly changing data like stock prices.

3.4.2. MEMORY DATASET

Our memory dataset spans five distinct domains, each
chosen to reflect a practical, real-world use case for
LLMs—college advising, customer support, medical as-
sistant, etc. Within every domain, the model is first given
a concise setting prompt (e.g., “You are an academic advi-
sor helping a sophomore plan their coursework”) and then

participates in a sequence of consecutive conversations that
gradually reveal user-specific facts. After each domain-level
dialogue block, we record a memory snapshot. Evaluation
queries are issued with an empty chat history but access to
the stored snapshot, probing whether the model can accu-
rately retrieve, add, overwrite, or delete information that was
mentioned minutes (short-term) or many turns (long-term)
earlier. This design lets us measure how well the model
maintains and updates memory across both topic boundaries
and temporal gaps, mirroring real deployment scenarios
where sustained, personalized assistance is critical.

3.4.3. SQL DATASET

Each question in the SQL category can be succinctly trans-
lated into an SQL query. Traditional text-to-SQL tasks
typically involve prompting language models to generate a
valid SQL query, then evaluating the result via exact string
matching or by querying a predefined database. In BFCL,
however, we adopt a more structured approach by supplying
the LLM with a JSON-based schema that defines funda-
mental SQL operations (e.g., SELECT, INSERT, UPDATE,
DELETE). Each operation includes detailed structured pa-
rameters needed for a complete SQL query (e.g., WHERE,
LIMIT, JOIN). This schema allows for a deterministic
translation of function calls into SQL queries and supports
nested or more complex queries through the composition of
multiple function calls.

4. Evaluation Methodology

BFCL employs tailored evaluation protocols for each dataset
category. The Single-Turn category use both AST-substring
matching (Section 4.1) and execution-response matching
(Section 4.2), whereas the Crowd-Sourced category re-
lies solely on the AST matcher. The Multi-Turn category
combines a state-based and a response-based checker (Sec-
tion 4.4), and the Agentic category is evaluated with a strict
exact-match criterion (Section 4.5).

We later quantify the agreement among the AST substring-
matching and execution-response matching metrics (Sec-
tion 4.3) to validate the reliability of the AST approach,
highlight differences in inference strategies for prompt-only
versus function-calling models (Section 5.1), and, finally,
leverage perplexity ratios on the single-turn and crowd-
sourced settings to detect potential data contamination in
the BFCL single-turn corpus.

4.1. AST Substring Matching

Evaluating function calls by direct execution can be chal-
lenging due to the limited availability of executable func-
tions and the laborious process of manual implementation,
which curtails the diversity of functions available for testing.

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

x Models GPT-4-1106-preview
0.9 . %
Trend Line . x x
>0.8 Variance x %
g x %
£ x
£ 0.7
A . Gemini-1.5-pro
9 0.6
X
w
0.5 =
0.41 x
0.4 0.5 0.6 0.7 0.8

AST Summary

Figure 3: The Abstract Syntax Tree (AST) based evaluation
(AST Summary) are strongly correlated with the evaluation
by executing the functions (Exec Summary) validating AST
as a reliable off-line evaluation methodology.

To address this, we introduce an Abstract Syntax Tree (AST)
substring matching approach that preserves alignment with
execution-based evaluation without actual execution.

We restrict the model’s output to Python-callable function
calls using prompt-based instructions, then extract function
names and parameters through Python’s ast module. In-
stead of requiring exact parameter matches, we verify that
each parameter belongs to a predefined set of valid values.
A function call is correct if the function name matches ex-
actly and if all parameter values fall within their respective
possible answers. For details on the AST matching rules,
please refer to Appendix H.

4.2. Execution Response Matching

Execution response matching involves validating function
calls by executing them and comparing the results against
expected outcomes. There are three ways we compare the
response. For functions that output deterministic results, we
check for exact-match of the response. For functions whose
outputs are time sensitive, we execute the ground truth func-
tion call and the model’s output function call simultaneously
and match the results, accounting for real-time value fluctu-
ations. For nested lists or dictionaries, we perform structure
matching, which only checks the length of the list and the
presence of the dictionary key.

4.3. AST Matching Performance

By comparing the scores and relative rankings on the BFCL
single-turn dataset, evaluated using AST and Execution in
Figure 3, we observe a strong correlation between AST
scores and execution-based performance. This suggests
that AST matching serves as a reliable indicator of model
effectiveness in real-world scenarios.

4.4. State & Response Based Evaluation

For multi-turn tasks, we employ two checks after each turn:
state-based and response-based. An entry is correct only

if it passes both checks in all turns.

State-Based Evaluation compares the system’s final state
after each turn (i.e., after all function calls) with the ground-
truth state. Multiple sequences of function calls can achieve
the same result, but the final state must match the labeled out-
come. This approach captures modifications to the system
(e.g., creating files or removing stocks from a watchlist).

Response-Based Evaluation verifies that the model follows
the necessary sequence of function calls (the minimal vi-
able execution result path) to produce the requested output.
This is critical for read-only requests (e.g., retrieving stock
prices), where we want to ensure the model calls the appro-
priate functions rather than guessing the result.

While state-based evaluation is a powerful technique, it
cannot detect whether non-state-changing functions (e.g.,
get_zipcode by_city or estimate_distance)
were actually invoked. We need response-based checks
to confirm the model is reasoning through the task reliably
(e.g., calling get _zipcode by _city (City_Name) be-
fore get_weather by_zipcode (City_Zipcode)).
By combining both types of evaluation, BFCL provides
deeper insight into the model’s correctness and decision-
making process.

4.5. Exact-Match Evaluation

During evaluation, the model is given explicit formatting in-
structions through the system prompt detailed in Appendix J.
We evaluate only the dedicated answer field with a strict
exact-match criterion. Focusing on this individual field pre-
vents spurious positives that would occur if the reference
phrase appeared incidentally inside a longer, unclear sen-
tence. For example, consider a yes/no question: a reply
such as “I am not sure because no relevant information was
found” contains the token “no,” but the model has not ac-
tually committed to the negative answer. By isolating the
answer field, such cases are not erroneously marked as
correct responses.

Before matching, both candidate and reference answers
are normalized—converted to lowercase and stripped of
punctuation—using the same procedure as in our AST-based
evaluation. A prediction is deemed correct if and only if the
normalized strings are identical.

5. Results and Analysis
5.1. Accuracy

Table 1 presents the evaluation results of various LLMs on
BFCL. While the top-performing models excel in single-
turn, crowd-sourced, and hallucination-related metrics, there
remains significant room for improvement in multi-turn and
agentic tasks, particularly in memory management.

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Table 1: Evaluating different LLMs on BFCL. The categories are defined in Section 4

Model Overall Ace Single Turn Crowd Sourced Hallucination Measure Multi Turn Agentic
AST Execute AST
Simple Multiple Parallel Parallel Multiple Simple Multiple Parallel Parallel Multiple Simple Multiple Parallel Parallel Multiple Irrelevance ~ Relevance Base Miss Func Miss Param Long Context Web Search Memory ~ SQL.
pt-40-2024-11-20 (Prompt) 66.4 794 955 94.0 835 1000 940 86.0 715 84.9 798 875 75.0 838 833 590 410 355 55.0 64.0 60 780
2pt-40-2024-11-20 (FC) 65.8 772 935 93.0 86.0 883 920 94.0 825 814 788 875 75.0 83.1 833 625 6.0 375 58.0 82.0 00 810
GPT 4-urbo-2024-04-09 (FC) 60.9 704 910 90.0 875 874 900 86.0 775 837 786 812 70.8 838 722 540 135 355 495 66.0 40 500
nini-2024-07-18 (FC) 60.6 748 92.0 90.0 84.0 833 92.0 84.0 75.0 787 762 875 70.8 747 833 415 19.5 29.0 405 780 60 660
m 2024-12-17 (Prompt) 59.1 727 935 915 85.0 586 920 86.0 825 829 765 812 75.0 878 722 505 05 485 45 50 120 910
Qwen2.5-72B-Instruct (Prompt) 57.0 802 97.5 93.5 92.0 993 94.0 90.0 87.5 853 821 625 75.0 72.8 1000 245 200 155 120 54.0 80 700
Gemini-2.0-Flash-Exp (Prompt) 56.8 768 955 95.0 925 636 920 84.0 80.0 857 793 812 87.5 864 718 280 30 19.0 215 73.0 00 530
Tool ACE-2-8B (FC) 56.6 753 925 92.5 90.0 954 920 86.0 75.0 70.9 79.0 812 542 90.1 722 485 290 28.0 420 250 20 370
Amazon-Nova-Pro-v1:0 (FC) 566 68.8 925 92.0 845 97.1 840 84.0 715 802 715 812 583 710 778 315 19.0 220 26.0 76.0 00 510
Qwen2.5-32B-Instruct (FC) 55.6 728 94.0 935 885 97.6 88.0 840 715 802 80.1 438 625 819 647 295 255 205 135 53.0 40 450
Gemini-2.0-Flash-Exp (FC) 555 68.4 89.5 92.0 90.5 619 88.0 80.0 80.0 748 707 812 70.8 915 556 310 05 25 27.0 70.0 60 450
BitAgent-8B 55.0 762 95.0 94.0 825 986 940 88.0 775 719 774 875 70.8 824 833 480 400 265 395 220 00 290
GPT-40-mini-2024-07-18 (Prompt) 545 80.1 905 895 87.0 629 96.0 820 825 814 767 93.8 79.2 807 833 330 120 17.0 260 430 00 630
Claude-3.5-Sonnet-20241022 (FC) 538 788 9.5 35 50 976 900 4.0 0.0 84.1 820 250 208 740 718 550 190 425 475 74.0 40 600
01-mini-2024-09-12 (Prompt) 535 712 89.0 835 720 893 86.0 78.0 715 729 716 75.0 75.0 89.6 61.1 40.5 50 345 330 7.0 00 700
01-2024-12-17 (FC) 528 67.9 93.0 00 0.0 606 940 0.0 00 818 79.0 0.0 00 820 722 525 380 305 43.0 48.0 120 830
claude-3.5-haiku-20241022 (FC) 523 680 920 25 0.0 879 90.0 240 00 829 783 188 00 63.7 833 545 265 350 440 83.0 60 590
Qwen2.5-32B-Instruct (Prompt) 521 702 945 90.5 88.0 96.6 900 90.0 825 83.0 785 625 58.3 738 1000 250 200 150 110 46.0 00 420
Amazon-NovaLite-v1:0 (FC) 521 69.8 94.0 840 66.0 92,0 840 80.0 65.0 729 70.1 75.0 66.7 764 667 215 55 17.5 19.0 62.0 00 580
PT-4-turbo-2024-04-09 (Prompt) 514 82.5 955 93.5 92.0 993 96.0 80.0 825 880 841 100.0 79.2 356 1000 425 250 205 33.0 27.0 00 540
Llama-3.1-70B-Instruct (Prompt) 504 779 96.0 945 915 940 980 86.0 825 783 762 875 66.7 548 1000 165 130 10.5 100 56.0 00 610
Llama-3.3-70B-Instruct (Prompt) 50.4 748 945 840 87.0 957 98.0 84.0 85.0 818 711 938 66.7 48.7 1000 90 80 45 6.0 78.0 00 640
Sonnet-20241022 (Prompt) 49.4 814 920 70.5 46.0 1000 920 68.0 60.0 86.8 80.1 812 458 64.4 778 9.0 5.5 50 10.5 68.0 00 600
Qwen2.5-14B-Instruct (FC) 49.2 69.7 95.0 88.0 89.0 904 920 720 85.0 711 75.0 75.0 70.8 717 556 19.5 17.0 16.5 10.5 300 00 300
Hammer2.1-7b (FC) 48.6 78.1 95.0 93.5 88.0 864 92.0 86.0 715 767 774 812 70.8 78.6 823 355 255 19.0 140 14.0 00 130
14B-Instruct (Prompt) 478 732 925 920 85.0 924 900 88.0 85.0 74.4 758 625 66.7 771 778 19.0 s 120 65 280 00 260
aiku-20241022 (Prompt) 46.6 762 93.0 840 795 979 90.0 76.0 75.0 84.9 75.0 875 542 65.8 718 16.0 05 80 145 0.0 20 680
Command-R-Plus (FC) 46.5 721 895 825 64.0 909 90.0 84.0 60.0 705 58.8 625 458 532 722 165 10.0 9.0 170 69.0 00 450
Command R7B (FC) 46.4 68.2 915 855 815 87.1 92.0 820 75.0 63.2 587 562 625 810 556 65 15 65 55 69.0 00 180
Tool ACE-8B (FC) 45.6 767 935 90.5 895 974 94.0 88.0 775 733 767 812 70.8 879 833 75 115 50 70 9.0 00 130
Haha-7B 452 78.1 955 895 81.0 804 960 88.0 80.0 783 776 75.0 70.8 807 833 13.0 10.0 15 70 200 00 8.0
Hmmmelz 1-3b (FC) 45.0 814 95.0 895 815 829 92.0 84.0 715 733 733 625 66.7 819 823 215 17.5 145 10.0 20 00 6.0
447 718 95.0 90.0 86.0 954 940 84.0 775 75.6 756 688 66.7 69.1 778 135 145 11.0 70 120 00 140
442 736 90.0 69.0 380 892 90.0 720 45.0 748 793 438 67.2 944 260 13.0 115 s 230 00 340
Amazon-Nova-Lite-v1:0 (FC) 437 69.8 94.0 840 66.0 92.0 840 80.0 65.0 729 70.1 75.0 76.4 6.7 215 55 17.5 19.0 10.0 00 9.0
XLAM-Tb-r (FC) 43.0 742 955 810 735 740 960 820 675 721 749 50.0 771 944 165 85 75 75 140 00 9.0
GoGoAgent 429 754 93.0 92.0 845 95.4 96.0 88.0 80.0 729 754 68.8 83.1 778 L5 20 05 00 10.0 00 140
Qwen2.5-7B-Instruct (Prompt) 27 753 9.5 915 845 92.1 90.0 86.0 85.0 767 749 625 65.2 889 95 85 70 55 140 00 150
Llama-3.3-70B-Instruct (Prompt) 424 748 9.5 840 87.0 957 98.0 84.0 85.0 818 771 938 48.7 1000 9.0 80 45 6.0 36.0 20 8.0
Gemma-3-12b-it (Prompt) 414 773 95.0 90.0 73.0 847 94.0 80.0 725 849 708 875 611 889 8.0 35 25 45 250 00 130
Hammer2.1-1.5b (FC) 413 747 92.0 845 80.0 86.6 900 820 75.0 713 69.8 50.0 793 778 145 125 9.0 6.0 0.0 00 20
Ministral-8B-Instruct-2410 (FC) 40.9 718 915 845 875 713 86.0 86.0 75.0 75.6 723 625 553 706 215 85 10.0 55 13.0 00 120
MiniCPM3-4B-FC (FC) 399 69.8 915 825 795 893 90.0 86.0 85.0 748 63.9 438 722 722 50 10 30 15 6.0 00 8.0
Amazon-Nova-Micro-v1:0 (FC) 39.8 63.5 88.0 775 555 804 76.0 68.0 525 659 642 625 742 722 245 55 14.0 205 10.0 00 50
Llama-3.1-8B-Instruct (Prompt) 39.6 728 935 870 835 837 96.0 88.0 775 74.0 733 562 488 718 13.0 10.0 75 80 8.0 00 9.0
0b-] 39.4 728 915 84.0 815 849 92.0 86.0 825 68.2 563 438 748 889 6.0 15 45 15 0.0 00 290
3 387 733 920 735 765 869 90.0 66.0 70.0 74.0 721 625 64.3 889 8.5 60 45 50 30 00 50
Falcons. 10B-Instrct (FC) 371 705 935 875 87.0 97.1 92.0 920 825 76.4 762 50.0 319 944 6.0 50 45 45 120 00 8.0
Qwen2.5-1.5B-Instruct (FC) 366 724 87.0 815 755 880 900 780 725 740 661 50.0 62.7 94.4 4.0 15 30 15 0.0 00 Lo
Qwen2.5-3B-Instruct (Prompt) 357 742 90.5 795 79.0 809 86.0 80.0 80.0 69.8 66.5 562 542 889 55 35 20 25 0.0 00 40
Llam: B-Instruct (Prompt) 356 738 92.0 805 76.0 873 92.0 780 775 640 649 125 517 889 8.5 25 45 55 0.0 00 5.0
Falcon3-7B-Instruct (FC) 354 64.8 895 865 885 890 940 86.0 775 740 665 75.0 337 889 35 35 35 30 8.0 00 6.0
Qwen2.5-1.5B-Instruct (Prompt) 353 710 860 70.0 66.5 804 940 88.0 80.0 705 593 562 63.0 833 L5 25 05 00 0.0 00 3.0
DBRX-Instruct (Prompt) 350 735 920 2.5 370 90.1 88.0 46.0 525 783 73.0 75.0 40.5 944 0.0 00 00 00 9.0 60 360
Hammer2.1-0.5b (FC) 340 680 830 715 54.0 68.4 840 820 475 60.1 58.0 50.0 739 718 4.0 05 3.0 15 0.0 00 1.0
Bielik-11B-v2.3-Instruct (Prompt) 325 712 935 46.0 49.5 766 900 440 500 729 693 438 40.6 778 7.0 05 30 45 6.0 00 100
GLM-4-9b-Chat (FC) 301 65.2 815 0.0 0.0 940 900 0.0 00 725 644 0.0 79.7 66.7 35 40 25 40 30 00 8.0
XLAM-Tb-fe-r (FC) 30.0 768 935 77.0 410 845 92.0 56.0 10.0 787 58.0 312 45.0 718 0.0 00 00 00 20 00 50
MiniCPM3-4B (Prompt) 292 63.5 725 65.5 62.0 404 340 480 80.0 465 348 438 744 50.0 30 35 10 05 0.0 00 30
Gemma-3-4b-it (Prompt) 289 64.3 915 565 410 68.1 800 300 125 729 628 315 8.1 718 0.0 00 05 00 0.0 00 6.0
Meta-LI 8B-Instruct (Prompt) 273 62.7 825 48.0 50.0 717 86.0 420 60.0 612 614 315 18.6 778 15 00 10 05 20 00 7.0
QWLnZS 0.5B-Instruct (FC) 271 61.2 78.0 60.0 50.0 512 88.0 520 525 562 413 562 46.2 889 10 20 10 10 0.0 00 0.0
B-Instruct (FC) 27 580 690 61.0 250 546 460 200 10.0 554 563 312 345 778 05 05 00 10 0.0 00 3.0
-Instruct (Prompt) 220 512 79.0 46.5 405 466 760 520 350 488 403 125 212 944 05 10 00 05 0.0 00 0.0
Qv\an 5-0.5B-Instruct (Prompt) 21.0 582 68.0 535 33.0 63.1 70.0 620 525 53.9 348 562 164 94.4 0.0 00 00 00 0.0 00 0.0
Llama-3.1-8B-Instruct (FC) 21.0 558 54.0 485 345 587 58.0 540 30.0 519 490 315 49 944 50 75 50 40 4.0 00 0.0
Llama-3.1-70B-Instruct (FC) 208 49.2 245 125 15.0 53.0 36.0 300 75 523 526 312 448 1000 70 40 45 40 50 00 0.0
XLAM:-Ib-fe-r (FC) 187 717 86.0 50 20 778 90.0 4.0 00 640 534 62 67 1000 05 00 00 0.0 0.0 00 0.0
Llama-3.2-1B-Instruct (Prompt) 154 292 335 360 150 341 280 340 50 314 7.6 125 59.7 389 0.0 00 00 00 0.0 00 0.0
Falcon3-1B-Instruct (FC) 131 36 60 175 9.0 9.4 40 180 150 47 24 0.0 872 0.0 0.0 00 00 00 0.0 00 0.0
Gemma-3-1b-it (Prompt) 125 435 385 20 20 340 440 4.0 00 310 105 0.0 309 50.0 0.0 0.0 0.0 0.0 0.0 0.0 10

Models that support native function-calling (FC), such as
GPT-4, Gemini-1.5-Pro, Claude-3.5-Sonnet, can run BFCL
directly by supplying all function definitions in their tools
input field. In contrast, most models lack built-in function-
calling capabilities. For these models, we use a prompt-
based workaround: we guide them to produce structured
function calls through the system prompt (detailed in Ap-
pendix A), placing the function definitions in the system
prompt rather than in a dedicated tools field. Through-
out this paper, we refer to models that have their native
function-calling feature enabled as “FC models” (or operat-
ing in “FC mode”), and those for which we rely on system
prompts to trigger function calls as “prompting models” (or
in “prompting mode”).

If a model supports both FC and prompting modes, we find
that the FC mode outputs tend to be structured responses
that lower parsing errors. However, these structural con-
straints of the FC mode can limit the flexibility of a model
in complex function calling scenarios. We therefore see
more capable models often performing better in the prompt-
ing mode. For instance, Claude cannot execute parallel

function calls in FC mode, whereas it can in prompting
mode. In addition, when handling other programming lan-
guages (e.g., Java or JavaScript), models in prompting mode
often outperforms FC mode.

Prompting models exhibit on average three times more de-
coding issues than FC models (412.93 vs. 182.5 out of 4,251
total entries), aligning with the observation that structured
FC-mode outputs are easier to parse. However, among
successfully decoded responses in the multiple function-
call category, FC models show more incorrect function-call
counts on average (77.5 vs. 21). A similar trend appears
in the parallel multiple category, indicating that prompting
models are generally more flexible in complex scenarios.

5.2. Dataset Composition Difference

We construct the data generation pipeline for single-turn
based on our understanding of the composition of real-life
function-calling scenarios from our experiences building a
function-calling LLM, and from function-calling documen-
tations (OpenAl, 2025b) and community forums (OpenAl,
2025a). At that time, there were no formal crowd-sourced

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

datasets. After we collected the crowd-sourced part of this
dataset, we found that there are quite a few differences
between the single turn and the crowd-sourced.

In crowd-sourced, there are significantly more scenarios
on multiple and much less parallel function calling scenar-
i0s. This observation reflects how most users interact with
function calling: high demand for the feature of having to
intelligently choose between functions and lower demand
for making parallel function calls in a single turn.

Crowd-sourced dataset also differ from single turn in that
they contain multi-lingual user prompts, multi-lingual func-
tion docs, as well as user prompts that contains lots of redun-
dant information, etc. As an example of the rich diversity
we observed in our dataset, we even include a classification
function triggered through function calling.

On average, each entry in crowd-sourced contains 3 func-
tion choices, with the maximum one having 37 function
choices. Each function has an average of 4 parameters, with
the maximum one having 28 parameters. Here are some
statistics and distributions.

5.3. Parallel Function Call Ability

When a question requires multiple function calls (whether
to the same function or different ones), the model can issue
them all at once in a single turn, or sequentially across
multiple turns. For tasks that have no interdependencies
among calls, issuing parallel function calls in a single turn
significantly reduces latency. For instance, checking the
stock prices of 20 different stocks simultaneously is far
more efficient than making 20 separate requests.

We observe notable shifts in the evlolution of models’ abili-
ties to generate parallel function calls. Early models (e.g.,
the Claude Sonnet) lacked any function call capability. Later
iterations introduced partial support for parallel calls—albeit
with suboptimal performance. Interestingly, with the re-
lease of flagship versions such as 01-2024-12-17-FC
and claude-3-5-sonnet-20241022-FC, the paral-
lel function call feature appears to have regressed or even
removed! We hypothesize that this is because although par-
allel calls can be more efficient for non-interdependent tasks,
they may adversely affect accuracy when function calls are
chained. In many real-world scenarios, each subsequent call
relies on information returned by the previous one. As a
result, generating calls one at a time—waiting for each exe-
cution’s result—might ultimately be both faster and more
accurate for these use cases.

5.4. Multi Turn Error Analysis

We analyze the errors made by models in two ways: The
first is through a deterministic algorithmic approach for
classifying the different ways a model’s results don’t align

with our ground truth answers. The second is an LLM-as-a-
Judge approach to better understand the root-causes behind
the the errors.

5.4.1. DETERMINISTIC ERROR ANALYSIS

We classify the errors shown by our benchmarked models
into 5 categories: Empty Turn Response Error, Instance
State Mismatch, Execution Response Mismatch, Force Ter-
mination, and API Error. An Empty Response Error refers
to when a model does not make any function call for one
or more turns in the conversation. An Instance State Mis-
match refers to a discrepancy between the model’s internal
representation of the API state and the expected ground
truth state. An Execution Response Mismatch error occurs
when the responses generated by the model for a specific
turn do not include all the expected responses defined in the
ground truth for that turn. The Force Termination error
occurs when the model’s processing is abruptly stopped dur-
ing inference. This happens in cases when the model uses
many steps within a turn in an attempt to answer the user’s
question leading to termination of its efforts. Lastly, the
API Error simply groups all the cases the model’s provided
API endpoint failed to run on an entry in the dataset due to
it being down or the token length of our questions going
over the maximum allowable input token length.

Eror ype
1 = Empty Tur Response
I Execution Response Mismatch
ed

01-2024-12-17-FC

claude-3-5-sonnet-20241022-FC

gpt-40-2024-11-20-FC

gemini-2.0-flash-exp-FC

DeepSeek-V3

Llama-3.1-70B

0 100 200 300 400 500 600 700
Count

Figure 4: Error distribution across models on the BFCL Multi-
Turn Dataset showing the counts of different error types: Empty
Response Error, Execution Response Mismatch, Force Terminated,
Instance State Mismatch, and API Error. The total number of
entries in the dataset is 800.

5.4.2. LLM-AS-A-JUDGE ERROR ANALYSIS

In addition to the mechanical error analysis, we employed
LLMs-as-judges to classify and analyze the root causes of
failures in multi-turn interactions. We utilized a few-shot
structured prompting method to query the LLMs about error
cases. The prompts included detailed multi-turn conversa-
tion logs, initial configurations, and user queries. The judges
were tasked with explaining and categorizing failures into
predefined types: 1) Failed to Understand Environment
State: Errors stemming from inaccurate assumptions or
hallucinated environment states. 2) Failed to Understand
User’s Request: Misinterpretation of user request specifi-

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Distribution of Error Types Across Models

Error Type
EEm Failed to Understand Environment State
Failed to Understand Function Documentation
mmm Failed to Understand User's Request

Number of Errors

Model Name

Figure 5: The bar chart shows the frequency of three error
types—tfailed to understand environment state, failed to under-
stand function documentation, and failed to understand the user’s
request—across various Al models. Error types are color-coded,
illustrating differences in model performance.

cations. 3) Failed to Understand Function Documenta-
tion: Errors due to misinterpretation or misuse of provided
function documentation. Full judge prompt template is in
Appendix F

The most prevalent failure mode across models was Failed
to Understand Environment State as can be seen in Figure
5. These errors occurred when the model either hallucinated
or assumed incorrect environment state information, includ-
ing attempting actions in incorrect directories or failing
to execute necessary steps due to premature termination
of actions due to state misalignment. Failed to Under-
stand User’s Request was the second most frequent error
type. These failures typically arose when the model misin-
terpreted user intent, such as returning unsorted data instead
of sorted content or failing to execute requested multi-step
operations in the correct sequence user requested.

5.5. Measuring Data Contamination using
crowd-sourced

Traditional benchmarks inadvertently compromise if a
model’s training data overlaps with the evaluation set, lead-
ing to artificially low perplexity and Negative log likelihood
on those benchmarks. By comparing language modeling
metrics between crowd-sourced and single-turn, we can
diagnose possible data contamination or overfitting. In par-
ticular, an abnormally low perplexity or character-level neg-
ative log-likelihood (char-NLL) on the static single-turn
benchmark, coupled with a significant performance drop
on crowd-sourced, would signal that the model may have
memorized the former. On the other hand, consistent per-
formance across single-turn and crowd-sourced suggests
genuine generalization rather than training exposure to the
test answers

Table 2: While all models display consistently high perplexity in
single-turn dataset then its crowd-sourced counterpart, the relative
difference entails the model’s familiarity to the single-turn which
is open to be trained on as evaluation entries.

Model PPL (single-turn) PPL (crowd-sourced)
Llama2-7B 3.47 2.56
Openfunctions-v2 3.09 2.49
CodeLlama-7B 3.45 2.49
Meta-Llama-3 8B 3.58 2.63
Mistral-7B 4.39 2.92
Functionary-7B 3.81 2.73
Salesforce XLAM-7B 3.67 5.09

Table 3: Character-level negative log-likelihood (Char-NLL) met-
ric provides insights similar to those from Table 2. As the outputs
of the function calls are structured, Char-NLL effectively captures
model uncertainty and predictive performance at the token level
across both single-turn and crowd-sourced settings. Lower values
indicate better modeling of structured output.

Model Char-NLL (single-turn) Char-NLL (crowd-sourced)
Llama2-7B 0.344 0.264
Openfunctions-v2 0.295 0.239
CodeLlama-7B 0.342 0.256
Meta-Llama-3 8B 0.322 0.245
Mistral-7B 0.404 0.295
Functionary-7B 0.337 0.254
Salesforce xXLAM-7B 0.340 0.427

Tables 2 and 3 present the perplexity and char-NLL metrics,
respectively, for several open-source models on the origi-
nal single-turn benchmark versus the novel crowd-sourced
dataset (wherein lower values signify superior predictive
performance). It is observed that the majority of models
achieve comparable or improved performance, i.e., lower
perplexity and char-NLL on the crowd-sourced data relative
to single-turn. For instance, Llama 2-7B (Touvron et al.,
2023) exhibits a perplexity of 3.47 on single-turn compared
to 2.56 on crowd-sourced, and a char-NLL of 0.344 versus
0.264. Similarly, Openfunctions-v2 and CodeLlama-7B also
demonstrate slightly enhanced performance on the crowd-
sourced queries. This trend implies that these models did
not derive an unfair advantage from memorization on the
original benchmark. This finding supports the inference
that their strong benchmark scores are attributable to gen-
uine capability rather than exposure to test solutions. In
contrast, Salesforce XLAM-7B (Zhang et al., 2024) shows
an increase in perplexity from 3.67 to 5.09(char-NLL from
0.340 to 0.427) on crowd-sourced, representing a notable
performance degradation.

These performance decrements underscore the utility of the
crowd-sourced dataset as a “stress test” for models: any
model that has primarily memorized benchmark solutions
or was overly tuned to the static test distribution is likely
to be exposed through a significant score regression on the
new dataset. In the instances of XLAM, the crowd-sourced
evaluation reveals vulnerabilities that the original static test
masked. It is noteworthy that both are specialized or smaller-

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

scale models, which may have been exposed to limited
data variety; consequently, when confronted with genuinely
novel queries, their performance markedly declines.

Overall, the perplexity and char-NLL metrics across single-
turn and crowd-sourced present a coherent pattern. Figure 6,
and 7 visualize these results, plotting each model’s perfor-
mance on single-turn against its performance on crowd-
sourced. The majority of data points are situated near
the diagonal, signifying comparable proficiency on both
datasets. In contrast, the outlier models deviate sharply up-
ward, indicating higher perplexity/NLL on crowd-sourced.
This analysis substantiates the practical value of the BFCL
Live methodology. By incorporating a real-world test set,
a more robust indicator of contamination or overfitting is
obtained. Models cannot rely on memorized answers for
crowd-sourced queries; thus, any substantial discrepancy
in metrics serves as an immediate flag for potential eval-
uation inflation. In summary, these comparative metrics
confirm that top-performing models maintain strong gen-
eralization on fresh data, whereas models exhibiting any
indication of contamination or poor robustness are clearly
identified by the performance gap between their single-turn
and crowd-sourced scores.

Character-level NLL (Single-turn)

XLAM-7B

Mistral-7B

Llama2-7B

leLlama-78B

:tionary-7B

_lama-3 8B

Inctions-v2

000 005 010 015 020 025 030 035 040
Char-NLL

Figure 6: Character-level NLL on single-turn dataset.

5.6. Memory Management Category Analysis

Current models struggle with memory tasks; even the bench-
mark leader, openai 01-2024-12-17 (FC), reaches only 12%
accuracy. We observe models demonstrate faulty behaviors
in memory management and organization. For instance,
when preserving the fact that “the user is a fourth-year
male CS major,” some models save as one key (user
profile), others splitit (major, year, gender). Split-
ting quickly exhausts key space, demands frequent merges,
and complicates retrieval.

Models often hallucinate during key retrieval. Because the
key—value store requires exact matches, models should first
call 1ist_keys to view existing keys before retrieving

Character-level NLL (Live)

XLAM-7B

Mistral-78

Llama2-7B

Codellama-7B

Functionary-7B

Llama-3 8B

Openfunctions-v2

000 005 010 015 020 025 030 035 040
Char-NLL

Figure 7: Character-level NLL on crowd-sourced dataset.

information. While some models handle this correctly, most
skip listing the keys and instead attempt to guess a key
when calling ret rieve, leading to mismatches and errors.
Even worse, many models give up after a single failure,
mistakenly concluding that the information is unavailable
rather than attempting to look up valid keys.

6. Conclusion

The Berkeley Function Calling Leaderboard (BFCL) estab-
lishes a new standard for evaluating large language mod-
els” (LLMs) ability to invoke and manage external tools
and APIs. By introducing a comprehensive benchmark
that spans single-turn, crowd-sourced, multi-turn, and agen-
tic scenarios, BFCL provides a robust and scalable frame-
work for assessing the function-calling capabilities critical
to agentic Al systems. Its use of Abstract Syntax Tree
(AST) based evaluation ensures reproducibility and avoids
the scalability limitations of execution-based methods. The
inclusion of real-world, multilingual user queries further
enhances the benchmark’s practical relevance.

Our analysis reveals that while many LLMs perform well on
simple single-turn tasks, they often falter in more complex
agentic and memory-intensive scenarios. This underscores
the gap between current LLM performance and the demands
of real-world, long-horizon reasoning tasks. Moreover, our
comparative evaluations with crowd-sourced data expose po-
tential overfitting in static benchmarks and highlight BFCL’s
role in stress-testing generalization.

As function-calling becomes a foundational capability for
LLM-powered applications, BFCL serves as an essential
tool for the community. We hope this benchmark not only
drives advancements in LLM architectures and training but
also promotes transparent and reproducible evaluation prac-
tices in the development of functionally robust Al agents.

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Impact Statement

The introduction of the Berkeley Function Calling Leader-
board (BFCL) represents a significant advancement in the
evaluation and benchmarking of large language models
(LLMs) for function-calling capabilities. Function calling is
an increasingly critical skill for LLMs, enabling them to in-
tegrate seamlessly with external systems, perform complex
tasks, and reason effectively in stateful, multi-turn interac-
tions. Despite its importance, existing benchmarks inad-
equately capture the diversity, complexity, and real-world
applicability of function-calling scenarios.

BFCL addresses these challenges by presenting a multi-
faceted benchmark that evaluates LLMs across single-turn,
multi-turn, crowd-sourced, and agentic datasets. By lever-
aging innovative techniques such as Abstract Syntax Tree
(AST) substring matching for scalable and deterministic
evaluation, and incorporating real-world user-contributed
data, BFCL sets a new standard for evaluating LLMs’ capa-
bilities.

This benchmark has the potential to significantly shape
the development of next-generation LLMs by providing
researchers and practitioners with a comprehensive tool to
assess and improve function-calling performance. More-
over, it paves the way for more robust, adaptable, and
ethically-aligned LLM deployments in diverse domains such
as healthcare, finance, and education.

Ultimately, BFCL contributes to the broader goal of making
LLMs more effective, and reliable in real-world applications,
fostering innovation and ensuring responsible Al use.

References

Attouche, L., Baazizi, M.-A., Colazzo, D., Ghelli, G., Sar-
tiani, C., and Scherzinger, S. Validation of modern json
schema: Formalization and complexity. Proceedings of
the ACM on Programming Languages, 8(POPL):1451—
1481, 2024.

Basu, K., Abdelaziz, I., Chaudhury, S., Dan, S., Crouse, M.,
Munawar, A., Kumaravel, S., Muthusamy, V., Kapani-
pathi, P, and Lastras, L. A. Api-blend: A comprehensive
corpora for training and benchmarking api llms, 2024.
URL https://arxiv.org/abs/2402.15491.

Chen, Z., Du, W., Zhang, W., Liu, K., Liu, J., Zheng, M.,
Zhuo, J., Zhang, S., Lin, D., Chen, K., and Zhao, F. T-
eval: Evaluating the tool utilization capability of large
language models step by step, 2024. URL https://
arxiv.org/abs/2312.14033.

Cohere, T. Command a: An enterprise-ready large lan-
guage model, 2025. URL https://arxiv.org/
abs/2504.00698.

10

Erdogan, L. E., Lee, N., Jha, S., Kim, S., Tabrizi, R., Moon,
S., Hooper, C., Anumanchipalli, G., Keutzer, K., and Gho-
lami, A. Tinyagent: Function calling at the edge, 2024.
URL https://arxiv.org/abs/2409.00608.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding,
B., and Zhou, J. Text-to-sql empowered by large lan-
guage models: A benchmark evaluation. Proc. VLDB
Endow., 17(5):1132-1145, January 2024. ISSN 2150-
8097. doi: 10.14778/3641204.3641221. URL https:
//doi.org/10.14778/3641204.3641221.

Ge, T., Chan, X., Wang, X., Yu, D., Mi, H., and Yu,
D. Scaling synthetic data creation with 1,000,000,000
personas, 2024. URL https://arxiv.org/abs/
2406.20094.

Guo, Z., Cheng, S., Wang, H., Liang, S., Qin, Y., Li, P,
Liu, Z., Sun, M., and Liu, Y. Stabletoolbench: Towards
stable large-scale benchmarking on tool learning of large
language models, 2024.

Guo, Z., Cheng, S., Wang, H., Liang, S., Qin, Y., Li, P,
Liu, Z., Sun, M., and Liu, Y. Stabletoolbench: Towards
stable large-scale benchmarking on tool learning of large
language models, 2025. URL https://arxiv.org/
abs/2403.07714.

Huang, S., Zhong, W., Lu, J., Zhu, Q., Gao, J., Liu, W.,
Hou, Y., Zeng, X., Wang, Y., Shang, L., Jiang, X., Xu,
R., and Liu, Q. Planning, creation, usage: Benchmark-
ing LLMs for comprehensive tool utilization in real-
world complex scenarios. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 4363—
4400, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.259. URL https://aclanthology.
org/2024.findings-acl.259/.

Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. An LLM compiler for
parallel function calling. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=uQ2FUoF jnF.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74-81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013/.

Lu, J., Holleis, T., Zhang, Y., Aumayer, B., Nan, F., Bai,
F., Ma, S., Ma, S., Li, M., Yin, G., Wang, Z., and Pang,
R. Toolsandbox: A stateful, conversational, interactive
evaluation benchmark for llm tool use capabilities, 2024.
URL https://arxiv.org/abs/2408.04682.

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2504.00698
https://arxiv.org/abs/2504.00698
https://arxiv.org/abs/2409.00608
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2403.07714
https://aclanthology.org/2024.findings-acl.259/
https://aclanthology.org/2024.findings-acl.259/
https://openreview.net/forum?id=uQ2FUoFjnF
https://openreview.net/forum?id=uQ2FUoFjnF
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2408.04682

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Marten, R., Vu, T., Cheng-Jie Ji, C., Sharma, K., Dimakis,
A., and Sathiamoorthy, M. Curator, January 2025.

MetaAl. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

OpenAl. Gpt-4 technical report, 2024. URL https://
arxiv.org/abs/2303.08774.

OpenAl. Openai community forum, 2025a. URL https:
//community.openai.com. Community of devel-
opers building Al-powered applications.

OpenAl. Function calling, 2025b. URL https:
//platform.openai.com/docs/guides/
function-calling. Documentation for integrating
OpenAl models with custom code and external services.

Packer, C., Wooders, S., Lin, K., Fang, V., Patil, S. G,,
Stoica, I., and Gonzalez, J. E. Memgpt: Towards 1lms
as operating systems, 2024. URL https://arxiv.
org/abs/2310.08560.

Panickssery, A., Bowman, S. R., and Feng, S. Llm eval-
uators recognize and favor their own generations, 2024.
URL https://arxiv.org/abs/2404.13076.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Go-
rilla: Large language model connected with massive
apis. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=tBRNC6YemY.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin,
Y., Cong, X., Tang, X., Qian, B., Zhao, S., Hong, L.,
Tian, R., Xie, R., Zhou, J., Gerstein, M., Li, D., Liu,
Z., and Sun, M. Toolllm: Facilitating large language
models to master 16000+ real-world apis, 2023. URL
https://arxiv.org/abs/2307.16789.

Sasaki, M., Watanabe, N., and Komanaka, T. Enhancing
contextual understanding of mistral 1lm with external
knowledge bases. 2024.

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R.,
Lomeli, M., Hambro, E., Zettlemoyer, L., Cancedda,
N., and Scialom, T. Toolformer: Language models
can teach themselves to use tools. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=Yacmpz84TH.

Song, Y., Xiong, W., Zhu, D., Wu, W., Qian, H., Song,
M., Huang, H., Li, C., Wang, K., Yao, R., Tian, Y., and
Li, S. Restgpt: Connecting large language models with

real-world restful apis, 2023. URL https://arxiv.

org/abs/2306.06624.

11

Srinivasan, V. K., Dong, Z., Zhu, B., Yu, B., Mao, H.,
Mosk-Aoyama, D., Keutzer, K., Jiao, J., and Zhang,
J. Nexusraven: a commercially-permissive language
model for function calling. In NeurIPS 2023 Work-
shop on Instruction Tuning and Instruction Following,
2023. URL https://openreview.net/forum?
1d=Md6RUrGz67.

team, N. Nexusraven-v2: Surpassing gpt-4 for zero-shot
function calling, 2023. URL https://nexusflow.
ai/blogs/ravenv?.

Team, Q. Qwen3 technical report, 2025. URL https:
//arxiv.org/abs/2505.09388.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, L., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R.,
Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subra-
manian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P,, Yan, Z., Zarov, 1., Zhang, Y.,
Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Sto-
jnic, R., Edunov, S., and Scialom, T. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

Trivedi, H., Khot, T., Hartmann, M., Manku, R., Dong, V.,
Li, E., Gupta, S., Sabharwal, A., and Balasubramanian,
N. Appworld: A controllable world of apps and people
for benchmarking interactive coding agents, 2024. URL
https://arxiv.org/abs/2407.18901.

Vu, T., Iyyer, M., Wang, X., Constant, N., Wei, J., Wei,
J., Tar, C., Sung, Y.-H., Zhou, D., Le, Q., and Luong, T.
Freshllms: Refreshing large language models with search
engine augmentation, 2023. URL https://arxiv.
org/abs/2310.03214.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 20744-20757. Curran Associates, Inc., 2022.

Yao, S., Shinn, N., Razavi, P., and Narasimhan, K. 7-bench:
A benchmark for tool-agent-user interaction in real-world
domains, 2024. URL https://arxiv.org/abs/
2406.12045.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://community.openai.com
https://community.openai.com
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2404.13076
https://openreview.net/forum?id=tBRNC6YemY
https://openreview.net/forum?id=tBRNC6YemY
https://arxiv.org/abs/2307.16789
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://openreview.net/forum?id=Md6RUrGz67
https://openreview.net/forum?id=Md6RUrGz67
https://nexusflow.ai/blogs/ravenv2
https://nexusflow.ai/blogs/ravenv2
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Zhang, J., Lan, T., Zhu, M., Liu, Z., Hoang, T., Kokane, S.,
Yao, W., Tan, J., Prabhakar, A., Chen, H., Liu, Z., Feng,
Y., Awalgaonkar, T., Murthy, R., Hu, E., Chen, Z., Xu,
R., Niebles, J. C., Heinecke, S., Wang, H., Savarese, S.,
and Xiong, C. xlam: A family of large action models
to empower ai agent systems, 2024. URL https://
arxiv.org/abs/2409.03215.

Zhong, Z. and Chen, D. A frustratingly easy approach for en-
tity and relation extraction. In Toutanova, K., Rumshisky,
A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, 1., Bethard,
S., Cotterell, R., Chakraborty, T., and Zhou, Y. (eds.), Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 50-61, On-
line, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.5. URL https:
//aclanthology.org/2021.naacl-main.5/.

12

https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2409.03215
https://aclanthology.org/2021.naacl-main.5/
https://aclanthology.org/2021.naacl-main.5/

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

A. System Prompt for Prompting Models

To enable prompting models to execute function-calling actions, we use the following universal system prompt, where the
{functions} placeholder is replaced with the function documentation(s):

3395 9

You are an expert in composing functions. You are given a question and a set of
possible functions. Based on the question, you will need to make one or more
function/tool calls to achieve the purpose.

If none of the functions can be used, point it out. If the given question lacks
the parameters required by the function, also point it out.

You should only return the function calls in your response.

If you decide to invoke any of the function(s), you MUST put it in the format of
[func_namel (params_namel=params_valuel , params_name2=params_value2 ...),
func_name?2 (params)]

You SHOULD NOT include any other text in the response.

At each turn, you should try your best to complete the tasks requested by the
user within the current turn. Continue to output functions to call until you
have fulfilled the user’s request to the best of your ability. Once you have
no more functions to call, the system will consider the current turn complete
and proceed to the next turn or task.

Here is a list of functions in JSON format that you can invoke.\n{functions}\n

3393 3

B. Data Augmentation on Function Documents

Parallel Functions Category: We created an additional user query that invoked the same function but with a different set of
parameter values. This allowed us to expand the dataset by having multiple questions that invoked the same function, each
with different input parameters. For example:

Parallel Functions Augmentation

queryl + [{’name’: "funcl’, ’'description’: 'order takeout’}] -> ansl
query2 (which contains queryl) + [{’name’: ’funcl’, ’description’: 'order
takeout’}] -> [ansl, ans2]

The key transformation here is introducing query?2 and generating ans2 based on a different set of parameter values.

Multiple Functions Category: In this category, we combined several function documents from different base entries to
introduce distractor functions. However, the user query remained unmodified. These distractor functions were meant to test
whether the model could accurately select the relevant function and not be misled by additional, unrelated function docs.
GPT was used to ensure that none of the distractors could be alternative solutions to the function call. For example:

Multiple Functions Augmentation

query + [{’name’: ’funcl’, ’description’: ‘order takeout’}] -> ansl
query + [{’name’: ’funcl’, ’description’: 'order takeout’}, {’name’:
"func2’, ’'description’: "get weather’}] -> [ansl]

Here, the distractor func? is added to test the model’s ability to focus on funcl and avoid being distracted by irrelevant
functions.

Multiple Parallel Functions Category: We combined multiple user queries and function documents from different base

13

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

entries, ensuring that more function docs were combined than user queries. This transformation tested the model’s ability
to handle multiple function calls and filter out unused functions. Some of the functions remained unused in the process,
creating a more complex multi-query scenario. For example:

Multiple Parallel Functions Augmentation

queryl + [funcl] -> ansl
queryl + query2 + [funcl, func2, func3] -> [ansl, ans2]

The transformation here introduced query?2 and added func2 and func3 while testing how the model handles the
multiple function calls.

Function Parameter Removal: Based on the base entry, we asked GPT to remove one or more pieces of parameter information
from the user prompt, while keeping the function document unchanged. In this case, the model was expected to either ask a
follow-up question to clarify the missing information or return an error message instead of making a function call (which
would be considered a hallucination). This will be used in the irrelevance category. For example:

Function Parameter Removal Augmentation

queryl + [funcl] -> ansl
queryl’ (missing parameter info) + [funcl] -> [No Function Call, Model asks
for clarification.]

The key transformation involved removing the necessary parameter info in queryl’ and testing whether the model responded
with a clarification or error message.

Function Removal: In this case, we removed one or more invoked functions from the function list in the augmented multiple
parallel entries (from the previous step). The model was expected to either ask for more information on the missing function
or produce an error indicating the absence of a relevant function for the query. This will be used in the irrelevance category.
For example:

Function Removal Augmentation

queryl + query2 + [funcl, func2, func3] -> [ansl, ans2]
queryl + query2 + [funcl, func3] -> [No Function Call, Model asks for
clarification.]

The transformation involved removing func?2 from the list and verifying whether the model recognized its absence,
producing the appropriate error message.

C. Single Turn Dataset Formal Definition

C.1. Dataset Structure

Each entry in the dataset consists of a user query, a list of candidate functions, and a corresponding expected model output:

* AST-based functions: Each entry is represented as:

(¢, F, A), where q is the user query, F' = {f1, fo, ...} is the function set, and n

A is the labeled function and valid parameter set.

¢ Executable functions: Each entry follows:

(¢, F, f(P)), where f(P) is the expected executable function call, and)

P = {py,p2...} is the set of parameters used in the function.

14

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

C.2. Dataset Categories

We categorize function-calling scenarios based on the number of available tools and the type of invocation:

* Simple (S): Single available tool, single function invocation.

Fl=1, |f(P)|=1 3)

Multiple (M): Multiple available tools, single function invocation.

IF|>1, |f(P)=1 4)

Parallel (P): Single available tool, multiple function invocations in a single turn.

IFl=1, |f(P)]>1 5)

Parallel Multiple (P.M): Multiple available tools, multiple distinct functions called in parallel.

IF|>1, |f(P)>1 (6)

* Relevance (R): At least one function call is expected.

IF|>1,|f(P)|>1 ©)

Irrelevance (Z): Single or multiple available tools, but no function invocation is expected.

IF|>1, f(P)=0 8)

D. Multi-turn Dataset Formal Definition
D.1. Multi-turn Dataset Structure

Dataset Structure Each dataset entry consists of a multi-turn user query sequence and a corresponding ground truth
function trajectory:

(Q,T), where @ ={q,q2,...,qn } represents the user queries,

9
T = {7, 72, ..., 7o } represents the assistant’s expected function call trajectory per turn. ©)
D.2. Dataset Categories
The dataset is divided into four categories:
* Base (53): Standard multi-turn tasks where each turn has at least one expected function call.
Vi, |rs| > 1 (10)

¢ Missing Parameters (M7P): One turn contains an underspecified query, and the expected assistant response is a
natural language follow-up.
Jist.7; =0, g1 resolves missing parameters. (11

* Missing Functions (M F): One turn requests a function that is unavailable, prompting the assistant to respond with a
clarification request.
Jist. 7; =0, g1 provides missing function information. (12)

* Long Context (LC): User queries and assistant responses in each turn contain a high number of tokens.
Vi, gl + || > 1 (13)

15

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

E. Data Generation Pipeline Implementation Details
E.1. Single-turn Dataset

Data Collection For the single-turn tasks, we divide the data collection into two categories based on their evaluation
method: AST categories that use Abstract Syntax Tree, and Execute categories that evaluate by execution. The evaluation
methodology is discussed in 4.1 and 4.2.

AST: We collect functions from popular GitHub repositories (top 100 starred) in Python, Java, and JavaScript. These
functions are well-documented, making them ideal candidates for our downstream tasks. We exclude trivial functions such
as __init__, _eqg_., and functions with fewer than two parameters (excluding the se1f parameter) to ensure complexity
and relevance.

Execute: The category is divided into two sub-categories based on the backend type. 1) Pure Python Functions: We
manually constructed functions inspired by common math and physics calculations. These are purely executable Python
functions that don’t rely on external APIs. 2) Python Functions Wrapped APIs: This sub-category includes functions
that invoke API calls from popular public API providers such as ExchangeRate API, OMDb API, and Geocoding API. We
focused on GET requests, as they are the most common in real-world scenarios. These functions demonstrate the model’s
ability to generate executable REST API calls through complex function documentation, using requests.get () along
with the API’s hardcoded URL and a description of the function’s purpose and parameters.

Data Preprocessing We pre-process them to extract useful context for downstream data generation tasks.

AST: We extract function names, descriptions, parameter names, types, and default values directly from signatures and
docstrings.

Execute: For executable functions, we use Python’s requests.get () as function document template. The schemas
included base URLSs, query parameters, path parameters, and body parameters.

Data Generation We transform the extracted function information, such as docstrings from python functions and API
documentation from ExchangeRate, into well-formatted function documents. This transformation ensures consistent
formatting, including proper descriptions of parameters, types, and default values, making them compatible with our
downstream evaluation pipeline. Once the function documentation was generated, realistic user questions were created
based on these documents and their use in the original codebase or API context.

Data Transformation To introduce complexity and mimic diverse real-world function-calling scenarios, we expand the
dataset through various transformations detailed in B. These transformations included augmenting the entries to simulate
different function calling patterns, such as parallel and multiple, and introducing scenarios with queries having incomplete
or missing information to test the model’s behavior.

Data Validation We ensure 1) function documentations adhered to the BFCL format, including all required function
schema fields. 2) The function parameters are precisely defined and correctly categorized. 3) User prompts were relevant,
clear, and properly aligned with the corresponding function documentation. We’ve instructed three human experts

E.2. Crowd-sourced Dataset

Data Collection For the crowd-sourced dataset, 64,517 real-world user queries are collected between 2024-02-26 and
2024-04-01 via our hosted model endpoint.

Data Preprocessing To preprocess the collected data:

Deduplication: We applied the ROUGE-L (Lin, 2004) score and OpenAlI’s text-embedding models to remove duplicate
queries and function docs.

Exclusion of Public Datasets: We filtered out any queries from public test sets such as those from Nexus Function Calling
Leaderboard to prevent contamination.

Data Parsing: The valid function documentation was then parsed into a JSON format compatible with the BECL evaluation
pipeline.

16

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

Data Generation The expert-curated dataset doesn’t have a data generation phase, because all entries are authenticate
user-contributed data. The result from the pre-processing phase go directly into the transformation phase.

Data Transformation Minimum Edit Transformation: Using the minimum edit principle, human annotators applied
necessary corrections to improve clarity, precision, and consistency without changing the core content of the function docs
or user prompts.

Data Validation In addition to all the data validation step used in the single-turn section, we also make sure that 1) The
transformed function doc and prompt preserve their original semantic meaning. 2) Any sensitive information in user prompts
was replaced with placeholders to maintain privacy, and ambiguous content was clarified.

E.3. Multi-turn Dataset

Data Collection The multi-turn dataset began with the creation of a custom API codebase that spanned eight domains,
including Vehicle Control, Trading Bots, Travel Booking, File System, Messaging, Twitter, Ticket Booking, and Math. Each
API was designed to simulate real-world multi-turn function calls.

Data Preprocessing We constructed a graph of function dependencies, where each function represented a node, and edges
mapped output dependencies. This setup allowed us to model realistic multi-turn interactions across different APIs and
domains.

Data Generation The data generation process for multi-turn interactions involved:

» Task Generation: We prompt GPT-40-0806a to invoke a series of function calls and then derive a natural langugage
query that requires the function trajectories. The questions vary in tone and style to simulate different user personas
and interaction scenarios.

Precisely, we adopted the dataset from Persona Hub (Ge et al., 2024) to generate a diverse evaluation dataset with
different personas ranging from people with different occupations, age groups, etc. For example, a persona can look
like:

High school physics teachers Science historians Elderly hermits Each persona would have a unique style to phrase the
request.

* Function Lists: For each task, we provided a list of available functions from both primary and companion APIs.

« Initial Configurations: We set up initial states (e.g., pre-authenticated sessions) to avoid unnecessary interactions and
focus on meaningful multi-turn tasks.

* Human-labeled Ground Truth: Expert human labelers reviewed and labeled each data point with ground truth for
each multi-turn interaction.

Data Transformation During data transformation, we scaled the dataset by sampling execution paths through the graph.
Additionally, incomplete tasks were fixed by introducing additional configurations and function calls to maintain coherence.

Data Validation Validation in multi-turn interactions involved:

¢ Question Validation: Ensuring that the questions were specific and complete.

* Ground Truth Validation: Verifying that the multi-turn function call sequences matched the ground truth.

Initial Configuration Validation: Ensuring that the initial configurations were complete and relevant to the multi-turn
tasks.

* Function List Validation: Checking that all necessary functions were included in the task’s function list.

API Code Validation: Using unit tests and format checkers to ensure that the API code was consistent and complied
with the required standards.

17

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

F. LLM Judge BFCL Error Analyzer Implementation Details

We use GPT-40-08-06 as a judge, using bespoke curator (Marten et al., 2025) for structured synthetic data generation. The
judge prompt is formatted as follows,

393 9

wxError Analysis Prompt s

xxRole : s

You are an =xxerror analysis expert*x tasked with identifying and classifying
failures in the Al assistant’s responses. Your goal is to determine if and
where the assistant failed, categorizing the root cause as one of the
following :

— xxFailed to Understand Function Documentation %
— xxFailed to Understand User’s Requestsx

— xxFailed to Understand Environment State #x*

— xxNo Failure %x

sxInstructions : %
Carefully analyze the provided sxmulti—turn conversations*x to identify any
failures and their underlying causes.

=xlInitial Configuration and User Queries %x
— #xInitial Configuration:xx {initial_config}
— xxRelated Function Documentations :
{function_documentation}

— #xList of User Queries:xx {user_queries}

wxEvaluation Process #x
Use the following guidelines to critically evaluate the multi—turn responses:

1. =xCompare the model’s function call traces s+ with the ground truth function
call traces to identify any discrepancies in API usage.

2. wxCompare the end state =+ with the ground truth state to determine if the
model achieved the correct outcome.

3. =xPay attention to any mechanistic errors*x reported by the state checker, as
these indicate validation failures.

wxEntry ID: {entry_id}=x
w«xTurn—by—-Turn Breakdown #x*

{turns_breakdown}

wxState Checker Results xx
{state_checker_results}

18

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

=xFailure Categorization #sx

A failure occurs =xONLY+*x if:

— The environment’s =xxfinal statexx differs from the =xground truth state %%, OR
— The assistant =xfailed to produce the minimum required trajectory #x.

sxExploration Steps s

— The assistant may take exploration steps, which may result in execution errors.
— xxDo not penalizexx the assistant for exploration steps.

— *x0nly mark+x the critical step that leads to the failure.

If the =xstate checker reports an error=+%, a failure =xdefinitely xx occurred.
If the =xxstate checker reports "None”’=xx, check if the model failed to produce the
sxminimum required trajectory k.

wxExample Failure Analyses sx
wxExample 1%
xxContext:+x Fuel tank has 5 gallons of gas initially. Max capacity is 50 gallons

sxUser:«+ *«Fill the fuel tank until we are able to reach Rivermist. Oil costs
money so I just need to reach there, I don’t need a full tank.x

xxAssistant Response:xx ‘fillFuelTank(fuel_amount=50)°

xxGround Truth:x+ ‘displayCarStatus(’ fuel '), fillFuelTank (fuelAmount=44)°

xxFailure Analysis:sx

— xxFailure Type:xx xFailed to Understand Environment State x

— xxDescription:xx The model filled the tank to maximum capacity without checking
the current fuel level first.

— sxxTurn ID:x% ‘0°

wxExample 2%

xxContext:*x User has a trading account with $10,000 balance.

#xUser:sx xI want to buy some Apple stock, but first tell me its current price
and make sure I can afford at least 5 shares.

xxAssistant Response:xx ‘execute_trade(symbol="AAPL’, quantity=5, order_type=’
market ’, side="buy’) "

xxGround Truth:xx ‘get_stock_price(symbol="AAPL’) "

xxFailure Analysis:sx

— xxFailure Type:xx xFailed to Understand User’s Request

— xxDescription:xx The model executed a trade immediately when the user only
requested price information and affordability check.

— sxxTurn ID:x%x ‘0°

w=xFinal Taskxx
Now, identify the failures using the above categorization. #xOnly identify ONE
root cause of the failure.xx

19

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

If there is
— xxFailure Type: s

xxNO failure =+ in ANY turn,
‘No Failure *

— xxDescription: %
— *xRoot Cause:xx

— wxxTurn ID:*x

‘No
‘No
‘ _1 ‘

Failure Occurs *
Failure Occurs ‘

wxreport exactly ONE entry =+ with:

wxYour Failure Analysis: =

393 9

G. Function Calling Model Performance over time
PLease refer to Figure 7.

Function Calling Model Performance Over Time

85%

80%

75% 7

70%

65%

60%

Expert-curated AST Accuracy

55%

50%

P 4%,

45%

—8— OpenAl GPT-4: 85%
90% - Anthropic
PT-40: 85%
— Ggog\e E turbo: 92% E-
Mistral

Mistral-Large-1: 71%

Iaude-E.S-Son et: 75% | [wistral-Large-2: 73%

i3 Opus: 9%

T T T T
2023-06-01 2023-07-31 2023-09-29 2023-11-28

T T T T T
2024-01-27 2024-03-27 2024-05-26 2024-07-25 2024-09-23

Release Date

Figure 8: Models from 2023 and early 2024 struggled with reliable function calling at scale. As model sizes grew and function calling
became a post-training objective, their capabilities improved significantly.

H. BFCL AST Substring Matching
Parallel Tool Calls

By definition, parallel tool calls execute simultaneously; therefore, their order is irrelevant. If strict sequencing is required,
the model must emit one function call at a time and wait for its completion before producing the next.

Given a predicted sequence A = [aq, ag, . .

* we do not require positional alignment;

., @) and a ground-truth sequence B = [by, ba, . . .

Y bn]»

* any predicted call a; may match any ground-truth call b;.

The evaluation follows an all-or-nothing rule: if even a single ground-truth call is unmatched, the entire prediction fails.
This ensures the model identifies all required calls, regardless of order.

20

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

)

Function | Model Output
Dt Ser Possible Answer Function
escriptio unctio Error: Parameter No unexpected
s No—
Hallucination parameters?
L] Y

Yes

Extract Function
Name

Error: Type

Mismatch
Err'\o/”r;;gtn;:lon <«—NO— Function Match?

]
Yes

Extract Function }

No—<~ Parameter Types Match?

S)

4 Optional
. String
Dict Check
ict Checker List Checker S Value
Extract Function Handler
Parameters
L A
/7 ™\
\

v Valid Function '\
e call

Error: Required
Parameters No—
Missing

Error: Paramater
Values Mismatch

Required Parameters
Present?

No—< Parameter Value Match?

Figure 9: BFCL AST Substring Matching procedure. The model response is parsed to extract function information in the systematic
manner outlined above.

Parameter Values
INTEGER VS. FLOAT
* Python only: an int may be supplied where a f1oat is expected (Python auto-converts).

» Java & JavaScript: when documentation specifies a £1oat, the model must output a literal float (e.g. 5.0); an int
such as 5 is incorrect.

* Supplying a f1oat for an int parameter is invalid in all languages.

LIST AND TUPLE

* Order matters: [1,2,3] # [2,3,1]. For order-agnostic questions, all permutations of the correct answer are
enumerated.

» Type matching is recursive for nested structures; outer and inner element types must satisfy the specification.

STRING
» Comparison is case-insensitive.
* All strings are standardized before checking:

— whitespace removed,
— punctuation , . /—_ " (note: _and ") stripped.

* Examples
Possible dates: ["20th June", "2023-06-20", "06/20/2023", "Jun.20, 2023"]
Possible locations: ["New York City", "NYC"]

DICTIONARY (DICT)

» Key presence and value correctness are checked.

 Key order is ignored (dictionaries are inherently unordered).

21

The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to Agentic Evaluation of Large Language Models

LIST OF DICTIONARIES

e The list order of dictionaries matters.

» Within each dictionary, key order does not matter.

Cross-Language Notes

For Java and JavaScript, strings representing code constructs are converted to Python equivalents using Tree-Sitters before
evaluation. During conversion, parameter types are also validated (e.g. a Java 1 ong must end with L).

1. Function Parameters Distribution

0.6 4 :*’Mean: 1.68 [Expert-Curated 054 :gMean: 2.74 [Expert-Curated
[} 1
05 [} 1
| 1 1
I 0.4]
5 0.4 : s :
ol T
S 031 : g :
£ I € 0.2 i
0.2+ 11 1
I ‘ 1
I 0.1 N —
0.1 11y 1
i il o
1 1
0.0 - 0.0 -
0.6 - :‘(Mean, 297 [Crowd-Sourced 0.5 :(Mean. 3.78 [Crowd-Sourced
1 1
05 1 1
-2 1 1 1
1 0.4 1
5 04f 1 5 I
g ﬂ 1 -g 0.3 I
803711 g |
Sl Fuol i
1l |
I
4 ™
0.1 _‘ 0.1 :
1. |
0.0 . = . . r ‘ r 0.0 o — T = .
0 5 10 15 20 25 30 35 o] 5 10 15 20 25
Number of Functions Number of Parameters

Figure 10: Distribution of functions (left) and function parameters (right) in BFCL dataset between single-turn and crowd-sourced
categories. The histograms reveal that the crowd-sourced data entries have broader range and higher mean in both functions and parameters
count compared to single-turn scenarios. It’s worth noting that in crowd-sourced, we have entries with 37 functions and functions with 21
parameters, where that max number for single-turn is only 3.36 and 3.69, respectively.

J. Format Instruction Prompt for Agentic Task

This is the additional system prompt that models would receive on agentic dataset entries:

395 9

For your final answer to the user, you must respond in this format: { answer’: A

short and precise answer to the question, ’context’: A brief explanation of
how you arrived at this answer or why it is correct}. If you do not know the
answer, respond with { answer’: ’I do not know’, ’context’: ’'I do not know ’}.
If you think the question cannot be properly answered, response with {’
answer ’: I cannot answer this question’, ’'context’: A short reason

explaining why this question cannot be answered}.

3395 9

22

