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Abstract
We provide a rigorous analysis of implicit regu-
larization in an overparametrized tensor factoriza-
tion problem beyond the lazy training regime. For
matrix factorization problems, this phenomenon
has been studied in a number of works. A par-
ticular challenge has been to design universal ini-
tialization strategies which provably lead to im-
plicit regularization in gradient-descent methods.
At the same time, it has been argued by (Cohen
et al., 2016) that more general classes of neural
networks can be captured by considering tensor
factorizations. However, in the tensor case, im-
plicit regularization has only been rigorously es-
tablished for gradient flow or in the lazy training
regime. In this paper, we prove the first tensor
result of its kind for gradient descent rather than
gradient flow. We focus on the tubal tensor prod-
uct and the associated notion of low tubal rank,
encouraged by the relevance of this model for im-
age data. We establish that gradient descent in an
overparametrized tensor factorization model with
a small random initialization exhibits an implicit
bias towards solutions of low tubal rank. Our the-
oretical findings are illustrated in an extensive set
of numerical simulations show-casing the dynam-
ics predicted by our theory as well as the crucial
role of using a small random initialization.

1. Introduction
Analyzing implicit regularization during Neural Network
(NN) training is considered crucial for understanding why
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overparametrization can give rise to superior generalization
capability and lead to strong overall NN performance. Con-
sequently, there has been a recent surge in research aimed at
explaining how gradient-based methods interact with over-
parameterized models under nonconvex losses (see, e.g.,
(Ma et al., 2018; Ling & Strohmer, 2019)). Notably, re-
cent empirical and theoretical studies have suggested that
gradient-based methods with small random initializations
exhibit a bias towards low-rank solutions in a variety of
models.

For matrix factorization models which represent linear neu-
ral networks, a rigorous analysis of implicit bias is available
for both gradient descent (Gunasekar et al., 2018; Stöger &
Soltanolkotabi, 2021) and gradient flow (its asymptotic limit
for small step size) (Bah et al., 2022; Chou et al., 2024).
In contrast, for neural networks with nonlinear activation,
there has been a good deal of work done showing that fully
connected layers can be represented by, e.g., tensor train fac-
torizations in (Novikov et al., 2015; Razin et al., 2021). As
a consequence, it has been argued that tensor factorizations
should be considered instead of matrix factorizations (see,
e.g., (Cohen et al., 2016)). For tensor factorization models,
however, results predating 2024 were only available for the
asymptotic regime, i.e., gradient flow. This is perhaps due to
the many additional complications in the tensor setting be-
yond those in the matrix setting including, e.g, that there are
many different valid notions of tensor rank, each of which
motivates its own equally valid class of tensor factorizations.
For gradient descent applied to the tensor recovery problem,
only a very recent partial analysis by (Liu et al., 2024) cur-
rently exists for the tubal factorization model. This analysis
requires that the initialization already well approximates
the solution, only after which the convergence of gradient
descent toward a low tubal-rank solution is shown. Herein
we also focus on the tubal factorization, but establish the
corresponding implicit regularization result without needing
such a strong initialization assumption.

Our work is motivated by recent research showing that the
way neural networks are trained, especially with gradient de-
scent, can lead to solutions with useful structure, even with-
out adding explicit regularization terms. This phenomenon,
known as implicit regularization, has been studied in con-
texts such as sparse recovery (Vaskevicius et al., 2019) and
low-rank matrix completion (Li et al., 2020), where specific
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network architectures are designed to encourage certain
types of structure in the solutions. However, for tensor re-
covery problems, most existing work either focuses only on
gradient flow or provides only partial analysis. To the best
of our knowledge, our paper is the first to analyze implicit
bias under gradient descent with small random initialization
for a tensor recovery problem. We focus on the tubal rank
model, which is particularly relevant for applications like
video representation. This opens the door to a broader in-
vestigation into how implicit regularization can be used for
structured tensor recovery, how network architectures influ-
ence this bias, and what conditions ensure convergence. We
see this work as a starting point for a larger line of research
on implicit regularization in tensor problems.

Related work: In deep learning it is common to use more
network parameters than training points. In such overpa-
rameterized scenarios there are usually many networks that
achieve zero training error so that the training algorithm
effectively imposes an implicit regularization (bias) on the
solution it computes. In practice, training networks with gra-
dient descent is both common and tends to favor solutions
that generalize well, offering the exploration of how gradient
descent implicitly regularlizes in overparameterized regimes
as one avenue for better understanding the success of deep
learning more widely. As a result, a lot of recent work has
been focussed on understanding the implicit regularization
phenomena of gradient descent in multiple settings. The
first theoretical works in this direction (Gunasekar et al.,
2017; 2018; Geyer et al., 2020; Arora et al., 2019; Soudry
et al., 2018) concentrated on training linear networks and
suggested that during training (stochastic) gradient descent
implicitly converges to a linear network (i.e., a linear func-
tion described by a matrix) that’s low rank. Motivated by
specific deep learning tasks, multiple works also investi-
gated implicit bias phenomena in the special cases of sparse
vector and low-rank matrix recovery from underdetermined
measurements via an overparameterized square loss func-
tional, where the vectors and matrices to be reconstructed
were deeply factorized into several vector/matrix factors. In
this setting, these works then showed that the dynamics of
vanilla gradient descent are biased towards sparse/low-rank
solutions, respectively (Chou et al., 2024; 2023; Li et al.,
2022; Kolb et al., 2023).

In the realm of optimization, a substantial body of work has
also emerged that provides guarantees for gradient descent’s
convergence in the nonconvex setting for different problems
such as phase retrieval, matrix completion, and blind decon-
volution. Broadly, these findings can be categorized into
two main approaches: smart initialization coupled with lo-
cal convergence (demonstrating, e.g., local convergence of
descent techniques starting from carefully designed spectral
initializations) (Ma et al., 2018; Tu et al., 2016; Ling &

Strohmer, 2019; Candes et al., 2015); and landscape anal-
ysis paired with saddle-escaping algorithms which show,
e.g., that all local minima are global and that saddle points
exhibit strict negative curvature so that (stochastic) gradient-
based methods can effectively escape saddles and ensure
convergence to global minimizers (Jin et al., 2017; Ge et al.,
2015; Raginsky et al., 2017).

Notably, several studies (Woodworth et al., 2020; Ghorbani
et al., 2020) have highlighted the importance of the scale
of the training initialization for the generalization and test
performance of modern machine learning architectures. In
fact, a small random initialization followed by (stochastic)
gradient descent is arguably the most widely used train-
ing algorithm in contemporary machine learning. And,
stronger generalization performance is typically observed
with smaller-scale initializations. Implicit bias for low-rank
matrix recovery with small random initializations has been
extensively studied in this setting as a result by, e.g., (Stöger
& Soltanolkotabi, 2021; Soltanolkotabi et al., 2023; Wind,
2023; Kim & Chung, 2024). These studies have shown that
a small random Gaussian initialization behaves similarly to
a spectral initialization in overparameterized settings. Fur-
thermore, they have shown that gradient descent algorithms
with this initialization tend to converge towards low-rank so-
lutions (i.e., that they demonstrate an implicit regularization
towards low-rank solutions).

Recently, numerous connections between tensor decompo-
sitions and training neural networks have also been estab-
lished by, e.g., (Novikov et al., 2015; Razin et al., 2021;
2022). These studies argue that low-rank tensor factoriza-
tion helps explain implicit regularization in deep learning,
as well as how properties of real-world data translate this
regularization to generalization. Similar to how matrix fac-
torization can be viewed as a linear neural network (i.e., a
fully connected network with linear activation), tensor fac-
torizations correspond to a specific type of shallow (depth-
two) nonlinear convolutional neural network (Cohen et al.,
2016; Razin et al., 2021). Additionally, (Novikov et al.,
2015) demonstrated that the dense weight matrices of fully
connected layers can be converted to tensor trains while
preserving the layer’s expressive power. These findings
have positioned low-rank tensor factorizations as theoreti-
cal surrogates for various neural network learning settings,
thereby enhancing our understanding of implicit regulariza-
tion and overparameterization, and so further motivating
investigation in this area.

Since no unique definition of tensor rank is available, related
literature concerning implicit bias has naturally split with
respect to the notion of tensor rank being considered: CP-
rank, Tucker-rank, and tubal-rank, in analogy to the analysis
of algorithms specifically designed for tensor recovery and
completion by, e.g., (Zhang et al., 2019; Hou et al., 2021;
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Figure 1: A low tubal-rank factorization of a three-
dimensional tensor. Using the (reduced) tubal-SVD, each
three-dimensional tensor T ∈ Rn×m×k can be decomposed
into a tubal product of three tensors T = V ∗Σ ∗W⊤ with
V ∈ Rn×n×k, W ∈ Rm×m×k and the frontal slice diago-
nal tensor Σ ∈ Rn×m×k. Here, the tubal rank of a tensor
is the number of non-zero singular tubes in Σ ∈ Rn×m×k.
For example, in the figure, the tubal rank of the tensor is
equal to six.

Kong et al., 2018; Ahmed et al., 2020; Liu et al., 2019; 2020;
Haselby et al., 2024). For the CP-tensor factorization, sev-
eral results are available for gradient-based methods (Wang
et al., 2020; Ge & Ma, 2017). The first theoretical analysis
of implicit regularization towards low tensor rank under
arbitrarily small initialization was provided considering gra-
dient flow in (Razin et al., 2021). In (Ge et al., 2015), it has
been shown for the orthogonal tensor decomposition prob-
lem a simple variant of the stochastic gradient algorithm
is able to leverage a low-rank structure from an arbitrary
starting point. In addition, (Wang et al., 2020) shows that
using gradient descent on an over-parametrized objective
for the CP-rank tensor decomposition problem one could go
beyond the lazy training regime and utilize certain low-rank
structures.

Perhaps most closely related to this paper, very recently
(Liu et al., 2024) analyzed the convergence of factorized
gradient descent for the low-tubal-rank sensing problem,
showing that with carefully designed spectral initialization
the gradient iterates converge to a low-tubal rank tensor.
Although the authors in (Liu et al., 2024) allow for over-
parametrization, they argue the minimal recovery error can
be achieved when knowing the true rank, thereby leaving
questions concerning the advantages of overparametrization
and small random initializations open.

Our contribution: Motivated by connections between
tensor rank and non-linear neural network representations,
herein we study the implicit regularization phenomenon for
low tubal-rank tensor recovery. Namely, our objective is to
analyze the recovery process of a tensor with a low tubal-
rank factorization (Kilmer & Martin, 2011) (see Fig 1) from
a limited number of random linear measurements. More

specifically, we consider tensors of the form X ∗X⊤ and em-
ploy a non-convex method based on the tensor factorization,
minimizing the loss function using gradient descent with a
small random initialization. To the best of our knowledge,
we are the first to investigate the implicit bias phenomenon
for gradient descent with a small random initialization ap-
plied to a tensor factorization. Namely, we demonstrate that,
irrespective of the degree of overparameterization, vanilla
gradient descent with a small random initialization applied
to a tubal tensor factorization will consistently converge to
a low tubal-rank solution.

Inspired by recent results for the low-rank matrix sensing
problem by (Stöger & Soltanolkotabi, 2021), we establish
that gradient descent iterates with small random initializa-
tions can be closely approximated by power method itera-
tions in (Gleich et al., 2013; Kilmer et al., 2013) modulo
normalization, and deduce that after sufficient time the iter-
ates approach a commonly used spectral initialization from
the tubal-rank literature in (Liu et al., 2024). Along the way
we must also overcome, e.g., a challenging intersection be-
tween the tensor slices during each gradient descent iterate
which forces a non-trivial convergence analysis.

Organization: In Section 2, we define our notation and
present a few basic facts regarding tubal tensors. In Sec-
tion 3, we state our problem and our main result. In Sec-
tion 4, we outline the steps of the proof in order to provide
intuition. In Section 5, we show numerical experiments
which demonstrate our theoretical findings. We conclude
the paper in Section 6. The proof of our main result is bro-
ken up into several lemmas, which are stated and proven in
the appendix.

2. Notation and Preliminaries
Every tensor in this paper will be an order-3 tensor whose
third mode is length k. For such a tensor T ∈ Rm×n×k, we
define a block-diagonal Fourier domain representation by

T = blockdiag(T (1)
, . . . ,T (k)

) ∈ Cmk×nk

where the j-th block T (j) ∈ Cm×n is defined by
T (j)

(i, i′) =
∑k

j′=1 T (i, i′, j′)e−
√
−12π(j−1)(j′−1)/k. In

other words, we take the FFT of each tube, and then arrange
the resulting frontal slices into a block-diagonal matrix.

The tubal product (or t-product) of two tubal tensors A ∈
Rm×q×k and B ∈ Rq×n×k is a tubal tensor A ∗ B ∈
Rm×n×k whose tubes are given by

(A ∗B)(i, i′, :) =

q∑
p=1

A(i, p, :) ∗B(p, i′, :).

Here, ∗ denotes the circular convolution operation, i.e., (x ∗
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y)i =
∑k

j=1 xjyi−j (mod k). One can check that A ∗B =

A B.

For any tubal tensor T ∈ Rm×n×k, its tubal transpose
T ⊤ ∈ Rn×m×k is given by (T ⊤)(i, i′, 1) = T (i′, i, 1)
and (T ⊤)(i, i′, j) = T (i′, i, k + 2 − j) for j = 2, . . . , k,
i.e., we take the transpose of each face, and then reverse
the order of frontal slices j = 2, . . . , k. This ensures that
T ⊤ = T ⊤

.

For any n, the n × n × k identity tensor I ∈ Rn×n×k

is defined by I(:, :, 1) = In×n (identity matrix), and I(:
, :, j) = 0n×n (zero matrix). An orthogonal tensor Q ∈
Rn×n×k satisfies Q∗Q⊤ = Q⊤∗Q = I . An orthonormal
tensor W ∈ Rm×n×k with m ≥ n satisfies W⊤ ∗W = I .

The tubal-SVD (Kilmer & Martin, 2011) (or t-SVD) of a
tubal tensor T ∈ Rm×n×k is a factorization of the form

T = U ∗Σ ∗ V⊤ (2.1)

where U ∈ Rm×m×k and V ∈ Rn×n×k are orthogonal, and
each frontal slice of Σ ∈ Rm×n×k is diagonal. The t-SVD
of a tensor T ∈ Rm×n×k can be computed as follows: (1)
compute the FFT of each tube of T to get the frontal slices
T (j)

, j = 1, . . . , k, (2) compute the SVD of each resulting
frontal slice T (j)

= U
(j)

Σ
(j)
V

(j)⊤
, (3) concatenate the

matrices {U (j)}kj=1 into a tubal tensor Ũ ∈ Cm×m×k and
take the inverse FFT along mode-3 to obtain U ∈ Rm×m×k

(and similarly to obtain Σ ∈ Rm×n×k and V ∈ Rn×n×k).
The tubal rank of a tensor T ∈ Rm×n×k is the number of
non-zero diagonal tubes in the Σ tensor of its t-SVD, i.e.,
rank(T ) = #{i : Σ(i, i, :) ̸= 0}. For an illustration of
the t-SVD decomposition, see Figure 1. We also define the
condition number κ(T ) of the tubal tensor T ∈ Rm×n×k

by

κ(T ) :=
σ1(T )

σmin{m,n}k(T )
.

Finally, for tubal tensors T ∈ Rm×n×k we define
the tensor spectral norm ∥T ∥ := ∥T ∥ and the tensor
nuclear norm ∥T ∥∗ := ∥T ∥∗ as the spectral and nu-
clear norm respectively of the block-diagonal Fourier do-
main representation T , and the tensor Frobenius norm
∥T ∥2F :=

∑m
i=1

∑n
j=1

∑k
ℓ=1 T (i, j, ℓ)2 = 1

k∥T ∥2F as a
scaled version of the Frobenius norm of the block-diagonal
Fourier domain representation T .

3. Main Results
Problem Formulation Let X ∈ Rn×r×k have tubal rank
r ≤ n so that X ∗ X⊤ ∈ Sn×n×k

+ is a tubal positive
semidefinite tensor with tubal rank r. Let κ = κ(X ) be
the condition number of X . Suppose we observe m linear

measurements of X ∗X⊤, that is

yi =
〈
Ai,X ∗X⊤

〉
for i = 1, . . . ,m (3.1)

where each Ai ∈ Sn×n×k is a tubal-symmetric tensor.
We can write this compactly as y = A(X ∗ X⊤) where
A : Sn×n×k → Rm is the linear measurement operator. We
aim to recover X ∗X⊤ from our measurements y by using
gradient descent to learn an overparameterized factorization.
Specifically, we fix anR ≥ r and try to find a U ∈ Rn×R×k

such that U ∗ U⊤ = X ∗X⊤ by using gradient descent to
minimize the loss function

ℓ(U) : =
∥∥∥A(U ∗ U⊤

)
− y

∥∥∥2
2

(3.2)

=

m∑
i=1

(〈
Ai,U ∗ U⊤

〉
− yi

)2
. (3.3)

We will start with a small random initialization U0 ∈
Rn×R×k where each entry is i.i.d. N (0, α

2

R ) for some small
α > 0. Then, the gradient descent iterations are given by

U t+1 = U t − µ∇ℓ(U t)

= U t + µA∗
[
y −A

(
U t ∗ U⊤

t

)]
∗ U t

=
[
I + µ(A∗A)

(
X ∗X⊤ − U t ∗ U⊤

t

)]
∗ U t

(3.4)

for some suitably small stepsize µ > 0. Here
A∗ : Rm → Sn×n×k denotes the adjoint of A which is
given by A∗z =

∑m
i=1 ziAi.

Moreover, we say that a measurement operator
A : Sn×n×k → Rm satisfies the Restricted Isometry
Property (RIP) of rank-r with constant δ > 0 (abbreviated
RIP(r, δ)), if we have

(1− δ)∥Z∥2F ≤ ∥A(Z)∥22 ≤ (1 + δ)∥Z∥2F ,

for all Z ∈ Sn×n×k with tubal-rank ≤ r. We note that an
RIP condition is a standard condition in the literature, and
is used in similar works such as (Li et al., 2018; Stöger &
Soltanolkotabi, 2021). This condition is necessary to ensure
that there is only one low tubal rank tensor for which the
loss function is zero, and that this tensor could be recovered
stably in the presence of noise.

Results We have analyzed the convergence process of the
gradient descent iterates (3.4) in the scenario of small ran-
dom initialization and overparametrization. Namely, with
the ground truth tensor X ∈ Rn×r×k, we assume the ini-
tialization U0 ∈ Rn×R×k is such that each entry is i.i.d.
N (0, α

2

R ) with small scaling parameter α > 0 and the sec-
ond dimension R exceeding three timesthe ground truth
dimension r. Below, we present the direct results of our
analysis.
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Theorem 3.1. Suppose we have m linear measurements
y = A(X ∗ X⊤) of a tubal positive semidefinite tensor
X ∗ X⊤ ∈ Sn×n×k

+ where X ∈ Rn×r×k has tubal rank
r ≤ n. We assume A satisfies RIP(2r + 1, δ) with δ ≤
cκ−4r−1/2. Suppose we fit a model X ∗ X⊤ = U ∗ U⊤

where U ∈ Rn×R×k with R ≥ 3r and obtain U by running
the gradient descent iterations

U t+1 =
[
I + µ(A∗A)

(
X ∗X⊤ − U t ∗ U⊤

t

)]
∗ U t

with a stepsize µ ≤ c
√
kκ−4∥X∥2 starting from the initial-

ization U0 ∈ Rn×R×k where each entry is i.i.d. N (0, α
2

R ).
Then, if the scale of the initialization satisfies

α ≲
σmin(X )

κ2 min{n,R}
√
k

(
C2κ

2
√
n√

min{n,R}

)−16κ2

,

then after

t̂ ≲ 1
µσmin(X )2 ln

(
C1κn

min{n,R} min
{
1, κr

k(min{n,R}−r)

}
∥X∥
kα

)
iterations, we have that

∥U t̂ ∗ U
⊤
t̂
−X ∗X⊤∥2F

∥X∥2
≲

k
61
32 r

1
8κ

−3
16 (min{n,R} − r)

3
8

[
C2κ

2√n√
min{n,R}

]21κ2 [
α

∥X∥

] 21
16

holds with probability at least 1 − Cke−c̃R. Here,
c, c̃, C, C1, C2 > 0 are fixed numerical constants.

Intuitively, this means that if the initialization is sufficiently
small, gradient descent will approximately recover the low
tubal rank tensor X ∗X⊤ after t̂ iterations. Note that the
reconstruction error can be made arbitrarily small by making
the size of the random initialization α arbitrarily small. This
comes at the expense of requiring more iterations. However,
this impact is mild as the number of iterations grows only
logarithmically with respect to α.

Although the above theorem holds for any R ≥ 3r, it is
perhaps most interesting in the case where R ≥ n as then
every n × n × k tubal positive semidefinite tensor can be
expressed as U ∗ U⊤ for some U ∈ Rn×R×k. Hence, the
learner model does not assume that the ground truth tensor
has low tubal rank, yet gradient descent is able to recover
the ground truth tensor instead of any of the infinitely many
high tubal rank tensors whose measurements match that of
the ground truth tensor.

We note that (Zhang et al., 2019) shows that a random sub-
Gaussian measurement operator A : Rn×n×k → Rm will
satisfy the RIP for tubal rank-r tensors with RIP constant δ
with high probability if m ≥ O(rnk/δ2). To obtain an RIP

constant of δ = O(κ−4r−1/2), one needs m ≥ O(κ8r2nk)
random sub-Gaussian measurements.

Additionally, we acknowledge that the parameter depen-
dence in Theorem 3.1 may initially seem unfamiliar. How-
ever, it aligns well with intuition and prior work: when the
tensor is ill-conditioned – i.e., possesses a small tubal singu-
lar value – gradient descent without regularization naturally
struggles to recover the rank-one component unless the ini-
tialization is sufficiently small. While our bound exhibits
exponential dependence on the condition number, this is
consistent with known results in the matrix setting (e.g., see
Lemma 8.6 in (Stöger & Soltanolkotabi, 2021)).Although
the necessity of exponential dependence remains an open
question, it presents a compelling direction for future re-
search. Moreover, our numerical experiments (see Figure 4)
support a polynomial relationship between the test error and
the initialization parameter α, and while the empirical de-
gree may differ slightly, our theoretical exponent 21

16 appears
to closely approximate the observed behavior.

4. Proof Outline
In this section, we turn our attention to giving an overview
of the key ideas of the proof.

In our analysis, we demonstrate that the trajectory of gradi-
ent descent iterations can be approximately divided into two
distinct stages: (I) a spectral stage and (II) a convergence
stage described below.

(I) The spectral stage. In the spectral stage, where we show
that the gradient descent starting from random initialization
behaves similarly to spectral initialization, enabling us to
prove that by the end of this stage, the column spaces of
the tensor iterates U t (3.4) and the ground truth matrix X
are sufficiently aligned. Namely, we show that the first
few iterations of the gradient descent algorithm U t can be
approximated by the iteration of the tensor power method
modulo normalization (see, e.g.(Gleich et al., 2013)) defined
as

Ũ t =
(
I + µA∗A(X ∗X⊤)

)∗t
∗ U0 ∈ Rn×R×k.

We call this part of the evolution of the gradient descent
iteration the “spectral stage” since, due to its similarity to
the power method, at the end of this stage the iterates U t

will be closely aligned with the classical t-SVD spectral
initialization of (Liu et al., 2024).

(II) The convergence stage. In the convergence stage, the
gradient iterates converge approximately to the underlying
low tubal-rank tensor X ∗ X⊤ at a geometric rate until
reaching a certain error floor which is dependent on the
initialization scale.

The cornerstone of the analysis of this stage is the de-
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Figure 2: Illustration of (top figure) the two stages of gra-
dient descent algorithm: the spectral alignment stage for
1 ≤ t ≲ 3000 and the convergence stage 3000 ≲ t and
(bottom figure) more details on the alignment phase for
the gradient descent progress. In the ground truth tensor
X ∈ Rn×r×k, we set n = 10, k = 4, r = 3.

composition of the tensor gradient iterates U t into two
components, the so-called “signal” and “noise” terms.
This is done by adapting similar decomposition methods
used in recent works analyzing implicit bias phenomenon
for gradient descent in the matrix setting (see (Stöger &
Soltanolkotabi, 2021; Li et al., 2018)) to our tensor set-
ting. Accordingly, let the tensor-column subspace of the
ground truth tensor X ∈ Rn×r×k be denoted by VX with
the corresponding basis VX ∈ Rn×r×k. Consider the ten-
sor VX ∗ U t ∈ Rr×R×k with its t-SVD decomposition
VX ∗ U t = Vt ∗ Σt ∗ W⊤

t . For Wt ∈ RR×r×k, we

denote by Wt,⊥ ∈ RR×(n−r)×k a tensor whose tensor-
column subspace is orthogonal to those of Wt, that is
∥W⊤

t,⊥ ∗ Wt∥ = 0 and its projection operator PWt,⊥

is defined as PWt,⊥ = Wt,⊥ ∗W⊤
t,⊥ = I −Wt ∗W⊤

t .

We then decompose the gradient descent iterates (3.4) as
follows

U t = U t ∗Wt ∗W⊤
t + U t ∗Wt,⊥ ∗W⊤

t,⊥ (4.1)

referring to the tensors U t ∗Wt ∗W⊤
t as the signal term

of the gradient descent iterates, and to the tensors U t ∗
Wt,⊥ ∗W⊤

t,⊥ as the noise term. The advantage of such a
decomposition is that the tensor-column space of the noise
term U t ∗Wt,⊥ ∗W⊤

t,⊥ is orthogonal to the tensor-column
subspace of the ground truth X allowing for a rigorous
analysis of the convergence process of the two components
separately.

At the convergence stage, we show that symmetric tensor
U t∗Wt∗W⊤

t ∗U⊤
t built from the signal term converges to-

wards the ground truth tensor X ∗X⊤, whereas the spectral
norm of the noise term ∥U t ∗Wt,⊥∥, stays small.

Additional challenges in the tensor setting vs. matrix
setting When coming from the matrix case to the tensor
setting com, there are several important differences and
challenges, which need to be carefully considered and are
described below.

• In contrast to the matrix case, the range and kernel
of a third-order tubal tensor can include overlapping
generator elements (we refrain from using the term
basis, in the sense that knowledge of the multirank
and complimentary tubal scalar of a tensor must be
included to describe the range). Namely, if in the
t-SVD (2.1) of a symmetric tensor X the tensor Σ
contains q non-invertible tubes – tubes that have zero
elements in the Fourier domain –, then there are q
common generators for the range and the kernel of
X , please see (Kilmer et al., 2013) for more details.
With this phenomenon, the decomposition (C.1) of
the gradient iterates into signal and noise term is not
available for non-invertible tubes, which is why we
need to work with a more intricate notion of condition
number.

• As stated in (Gleich et al., 2013), running the power
method for tubal tensors of dimensions n × n × k
is equivalent to running in parallel k independent
matrix power methods in Fourier domain. However,
running gradient descent in the tubal tensor setting
is not equivalent to running k gradient descent
algorithms independently in Fourier space. This
can be easily seen when transforming the measure-
ment operator part of the gradient descent iterates.

6



Implicit Regularization for Tubal Tensors via GD

Figure 3: Outcomes of employing gradient descent to mini-
mize the loss function (3.2) with different overparametriza-
tion rates. We set n = 10, k = 4, r = 3 in the ground truth
tensor X ∈ Rn×r×k and for initialization U0 ∈ Rn×R×k,
we set the over-rank to R = 10, 50, 100, 200, 400. For
each R we plot the average over twenty experiments. The
plots for ∥Ut∗U⊤

t −X∗X⊤∥F

∥X∗X⊤∥F
, ℓ(Ut) and ∥σr(Ut)−σr(X )∥2

∥σr(X )∥2
are

semi-log plots.

Namely, let as before y = A(X ∗X⊤) ∈ Rm

with yi =
〈
Ai,X ∗X⊤

〉
=
〈
Ai,X ∗X⊤

〉
=∑k

q=1

〈
Ai

(q), X(q)X(q)H
〉
, j = 1, . . .m then

A∗A(X ∗ X⊤) = A∗(y) =
∑m

i=1 yiAi ∈
Sn×n×k and the for j-th slice in the
Fourier domain, we get A∗A(X ∗X⊤)(j) =∑m

i=1

∑k
j=1Ai

(j)
〈
Ai

(q), X(q)X(q)H
〉
. This means

that in each Fourier slice U t
(j) of the gradient descent

iterates (3.4) we have the full information about the
ground truth tensor X ∗ X⊤ and not only about its
j-th slice. In the spectral stage, this fact does not cause
significant difficulties. However, in the convergence
stage, in order to get the global estimates, it requires a
thorough and vigilant analysis of intersections between
the slices in the Fourier domain.

In particular, this required nontrivial estimations, such
as those presented in Lemmas E.4 and E.5, to control
these interactions and provide the respective bounds,
which require control of proximity of the auxiliary
parameter

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j)

to the cor-
responding jth Fourier slice of X ∗X⊤−U t ∗U⊤

t via
the RIP property of the measurement operator A and
aligned matrix subspaces. Another important point
is that one need to choose the learning rate µ and
the initialization scale α carefully for the noise term
U t ∗W⊥,t to grow slowly enough in each of the ten-
sor slices in order to not allow overtaking the signal
term U t ∗Wt in the norm, see, e.g., Theorem E.1 and
the usage of Lemma E.3 in its proof.

5. Numerical Experiments
To verify our theoretical findings, we set multiple numerical
tests: from showing two phases of the gradient descent algo-
rithm to demonstrating the advantages of overparametriza-
tion. These experimental results showcase not only the
implicit regularization for the gradient descent algorithm
toward low-tubal-rank tensors but also demonstrate the firm-
ness of our theoretical findings.

Our experiments were conducted on a MacBook Pro
equipped with an Apple M1 processor and 16GB of
memory, using MATLAB 2023a software. The cor-
responding code is available in our GitHub reposi-
tory, https://github.com/AnnaVeselovskaUA/tubal-tensor-
implicit-reg-GD.git.

We generate the ground truth tensor T ∈ Rn×n×k with
tubal rank r by T = X ∗ X⊤ , where the entries of
X ∈ Rn×r×k are i.i.d. sampled from a Gaussian distri-
bution N (0, 1), and then X is normalized. The entries of
measurement tensor Ai are i.i.d. sampled from a Gaussian
distribution N (0, 1

m ). In the following, we describe dif-
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ferent testing scenarios for recovery of T via the gradient
descent algorithm and their outcome. For all the experi-
ments, we set the dimensions to n = 10, k = 4, r = 3, the
learning rate µ = 10−5, and the number of measurements
m = 254.

Illustration of the two convergence stages. To illustrate
the convergence process of the gradient iterates, for the
ground truth tensor X ∗ X⊤ ∈ Rn×n×k and its counter-
part U t ∗ U⊤

t ∈ Rn×n×k being learned by the gradient
descent, we consider the training error ℓ(Ut), the test error
∥Ut∗U⊤

t −X∗X⊤∥F

∥X∗X⊤∥F
, and the test error for their rth singular

tubes σr(U t), σr(X ) ∈ Rk, ∥σr(Ut)−σr(X )∥2

∥σr(X )∥2
. Moreover,

we also take into our consideration the tensor subspace L
spanned by the tensor-columns corresponding to the first
r singular-tubes of the tensor A∗A(X ∗ X⊤) and denote
by Lt the tensor-column subspace spanned by the tensor-
columns corresponding to the first r singular tubes U t ∗U⊤

t .
We note that although Theorem 3.1 bounded a relative error
with ∥X∥2 in the denominator, we use ∥X ∗X⊤∥F in the
denominator of the relative error for our experiments as it
is a more natural relative error to consider. Furthermore,
since ∥X ∗ X⊤∥F ≥ ∥X∥2, and ∥X ∗ X⊤∥F could be
much larger than ∥X∥2 in cases where the singular values
of X ∗ X⊤ vary drastically, the result of Theorem 3.1 is
stronger than if we bounded the more natural Frobenius
norm error. Besides, the qualitative behavior in the numeri-
cal simulation will be the same for the two error measures
as generically they will just differ by a dimensional factor.

Figures 2 demonstrates that the convergence analysis can
be divided into two stages: the spectral and the convergence
stage. We see that in the first stage (1 ≤ t ≲ 3000), the
first r tensor-columns of U t ∗ U⊤

t learn the tensor column
subspace corresponding to the first r singular-tubes of the
tensor A∗A(X ∗X⊤), i.e. the principal angle between the
tensor column subspaces Lt and L becomes small. Namely,
as one can observe in Figure 2 (bottom), the principal angle
between the two subspaces, ∥V⊤

L⊥ ∗VLt∥, decreases where
as the principal angle between X and Lt reaches certain
plateau, see the behavior of ∥V⊤

X⊥ ∗ VLt
∥. At the same

time, test errors ∥Ut∗U⊤
t −X∗X⊤∥F

∥X∗X⊤∥F
and ∥σr(Ut)−σr(X )∥2

∥σr(X )∥2

stay large. In the second stage, we see that the test error
∥Ut∗U⊤

t −X∗X⊤∥F

∥X∗X⊤∥F
starts decreasing, meaning that the gra-

dient descent iterates U t ∗ U⊤
t start converging to X ∗X⊤

by learning more about the tensor-column subspace of the
ground truth tensor. At the same time, the test error over
rth singular tube ∥σr(Ut)−σr(X )∥2

∥σr(X )∥2
starts decreasing too and

as a result converges to zero. We also see that in this stage
the principal angle between Lt and L grows, which is also
intuitive as the tensor-column subspace L does not have
the full information about the tensor-column subspace of

the ground truth tensor X ∗X⊤, and learning more about
X ∗X⊤ leads to a larger error in terms of principal angles
of the two.

Depiction of the alignment stage. In this experiment,
we illustrate that gradient descent with small initialization
behaves similarly to the tensor-power method modulo nor-
malization in the first few iterations, bringing the gradient
iterates close to the spectral tubal initialization, used, e.g., in
(Liu et al., 2024). Here, as before L denote the tensor sub-
space spanned by the tensor-columns corresponding to the
first r singular-tubes of tensor A∗A(X ∗X⊤) and Lt is the
tensor-column subspace corresponding to the first r singular
tubes U t ∗U⊤

t . Additionally, L̃t denotes the tensor-column
subspace spanned by the first r singular-tubes of the ten-

sor Ũ t ∗ Ũ
⊤
t , where Ũ

⊤
t =

(
I +A∗A

(
X ∗X⊤))∗t ∗ U0.

In Figure 2 (bottom), we see that U t and Ũ t learn the
subspace L almost at the same rate in the first iterations,
1 ≤ t ≲ 3000. In the same figure, we observe that also
the angle between VX and Lt, respectively L̃t, decreases
monotonically in the spectral stage. Then at the beginning
of the convergence stage, 3000 ≲ t, the angle between VX
and Lt starts decreasing gradually and converges to zero, as
expected since U t ∗U⊤

t converges to X ∗X⊤. Whereas the
principal angle between L and Lt growths until it reaches a
certain plateau.

Figure 4: Impact of different initialization scales on the test
and the training error. The data are represented in the log-log
plot. We set n = 10, k = 4, r = 3 in the ground truth tensor
X ∈ Rn×r×k and for initialization U0 = αU ∈ Rn×R×k

with R = 200 and different scales of α. The plot depicts the
averaged value for five runs and the bars represent the devi-
ations from the mean value. For illustration, we also depict
the theoretical test error bound obtained in Theorem 3.1. As
one can see, the numerical error resembles the theoretical
behavior of Cn,k,r,κ · α 21

16 .
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Test and train error under different scales of initializa-
tion. In this experiment, we explore the influence of the
initialization scale, denoted by α, on the training and the test
error. With R = 200, we apply gradient descent for various
values of α, halting the iterations at t = 3500 in each run.
The results, presented in Figure 4, demonstrate a reduction
in test error as α decreases. Notably, the figure indicates that
the test error follows an almost polynomial relationship with
the initialization scale α. This observation is consistent with
our theoretical predictions, which also forecast a decrease
in test error at a rate of α, see Theorem 3.1.

Impact of different levels of overparameterization on the
convergence. In this numerical analysis, we set α = 10−7

and examined the convergence speed of gradient descent
to the ground truth tensor for various overparameterization
rates R. We run the experiment twenty times for each value
of R and plot the averaged values per each iteration. The
results, shown in Figure 3, reveal that increasing the number
of tensor columnsR, that is, overparameterizing, accelerates
the convergence rate, resulting in fewer iterations to reach
the desired error level. Additionally, overparameterization
reduces the test error and the training error by affecting the
spectral stages.

6. Conclusion and Outlook
In this paper, we focused on studying the implicit regular-
ization of tubal tensor factorizations via gradient descent
by showing that with small random initialization and over-
parametrization, the gradient descent algorithm is biased
towards a low-tubal-rank solution. We have shown that the
first iterations of gradient descent with small random initial-
ization behave similarly to the tensor power method, which
leads to learning in these first iterations the tensor-column
spaces close to the tensor-column space of the ground truth.
We also demonstrate that the implicit regularization from
small random initialization guides the gradient descent it-
erations toward low-tubal rank solutions that are not only
globally optimal but also generalize well.
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Supplementary Material

A. Outline of Appendices
For ease of organization, we divide the supplementary material into appendices as follows. In Appendix B, we define some
additional notation, including the angles between two tensor-column subspaces. In Appendix C, we decompose the gradient
descent iterates into a “signal” term and a “noise” term, which will aid us in our analysis. In Appendices D and E, we
analyze the spectral and convergence stages, respectively, of the gradient descent iterations. In Appendix F, we prove our
main result.

To avoid breaking up the flow of our analysis, we put some technical lemmas in the last few appendices instead of in
the previously mentioned appendices. In Appendix G, we prove some properties of measurement operators which satisfy
the restricted isometry property. In Appendix H, we prove some properties of matrices and their subspaces. Finally, in
Appendix I, we prove some properties of random Gaussian tubal tensors.

B. Additional Notation
For a tensor Y ∈ Rn×r×k, we denote its t-SVD by Y = VY ∗ ΣY ∗ W⊤

Y with the two orthogonal tensor
VY ,WY ∈ Rn×r×k, and the f-diagonal tensor ΣY ∈ Rr×r×k. We will refer to VY as the tensor-column subspace
of Y and by VY⊥ ∈ Rn×(n−r)×k we denote the tensor-column subspace orthogonal to VY with its projection operator
VY⊥ ∗ V⊤

Y⊥ = I − VY ∗ V⊤
Y .

We measure the angles between two tensor-column subspaces Y1 and Y2 by the tensor-spectral norm ∥VY⊥
1
∗VY2

∥ which
according to (Liu et al., 2019; Gleich et al., 2013; Kilmer & Martin, 2011) is equal to

∥V⊤
Y⊥

1
∗ VY2

∥ = ∥V⊤
Y⊥

1
∗ VY2

∥ =
∥∥V⊤

Y⊥
1
VY2

∥∥.
which means that the largest principal angle between Y1 and Y2 equals to that of these two subspaces represented in the
Fourier domain. In the Fourier domain, since V⊤

Y⊥
1
∈ C(n−r)k×nk and VY2

∈ Cnk×nk are block diagonal matrices, it holds
that

∥∥V⊤
Y⊥

1
VY2

∥∥ =

∥∥∥∥∥∥∥∥∥∥∥


V⊤

Y⊥
1

(1)

V⊤
Y⊥

1

(2)

. . .

V⊤
Y⊥

1

(k)



VY2

(1)

VY2

(2)

. . .

VY2
(k)


∥∥∥∥∥∥∥∥∥∥∥
= max

1≤j≤k

∥∥V⊤
Y⊥

1

(j)VY2

(j)
∥∥

C. Signal Decomposition
Recall that the gradient descent iterates are defined in (3.4) as

U t+1 = U t − µ∇ℓ(U t)

= U t + µA∗
[
y −A

(
U t ∗ U⊤

t

)]
∗ U t

=
[
I + µ(A∗A)

(
X ∗X⊤ − U t ∗ U⊤

t

)]
∗ U t.

For the ground truth tensor X ∈ Rn×r×k, consider its tensor-column subspace VX with the corresponding basis VX ∈
Rn×r×k. Consider the tensor VX ∗ U t ∈ Rr×R×k with its t-SVD decomposition VX ∗ U t = Vt ∗ Σt ∗ W⊤

t . For
Wt ∈ RR×r×k, we denote by Wt,⊥ ∈ RR×(n−r)×k a tensor whose tensor-column subspace is orthogonal to those of Wt,
that is ∥W⊤

t,⊥ ∗Wt∥ = 0 and its projection operator PWt,⊥ is defined as PWt,⊥ = Wt,⊥ ∗W⊤
t,⊥ = I −Wt ∗W⊤

t .
We then decompose the gradient descent iterates U t as follows

U t = U t ∗Wt ∗W⊤
t + U t ∗Wt,⊥ ∗W⊤

t,⊥ (C.1)

We will refer to the tensors U t∗Wt∗W⊤
t as the signal term of the gradient descent iterates, and the tensors U t∗Wt,⊥∗W⊤

t,⊥
will be named as the noise term.
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Lemma C.1. The tensor-column space of the noise term U t ∗Wt,⊥ ∗W⊤
t,⊥ is orthogonal to the tensor-column subspace

of the X , namely V⊤
X ∗ U t ∗Wt,⊥ ∗W⊤

t,⊥ = 0. Moreover, if V⊤
X ∗ U t is full tubal-rank with all invertible singular tubes,

then the signal term
U t ∗Wt ∗W⊤

t

has tubal-rank r with all invertible singular tubes and the noise term has tubal rank at most R− r.

Proof. V⊤
X ∗ U t ∗Wt,⊥ ∗W⊤

t,⊥ = V⊤
X ∗ U t ∗ (I −Wt ∗W⊤

t ) = V⊤
X ∗ U t − V⊤

X ∗ U t ∗Wt ∗W⊤
t = 0 ∈ Rr×R×k.

The second part follows fact that if V⊤
X ∗ U t is full tubal rank with all invertible singular tubes then all the slices in the

Fourier have full rank.

D. Analysis of the Spectral Stage
The goal of this section is to show that the first few iterations of the gradient descent algorithm can be approximated by the
iteration of the tensor power method modulo normalization defined as

Ũ t =
(
I + µA∗A(X ∗X⊤)

)∗t
∗ U0 = Zt ∗ U0 ∈ Rn×R×k.

with the tensor power method iteration Zt =:
(
I + µA∗A(X ∗ X⊤)

)∗t
∈ Rn×n×k. Moreover, this will result in the

feature that after the first few iterations, the tensor-column span of the signal term U t ∗Wt ∗W⊤
t becomes aligned with

the tensor-column span of X , and that the noise term U t ∗Wt,⊥ is relatively small compared to signal term in terms of the
norm, indicating that the signal term dominates the noise term.

For this, let us denote the difference between the power method and the gradient descent iterations by

Et := U t − Ũ t. (D.1)

For convenience, throughout this section, we will denote by M the tensor M := A∗A(X ∗ X⊤) ∈ Rn×n×k, so that
Ũ t = (I + µM)∗t ∗ U0 and Zt = (I + µM)∗t.

In the first result of this section, the following lemma, we show that Et can be made small via an appropriate initialization
scale.

Lemma D.1. Suppose that A : Sn×n×k → Rm satisfies RIP(2, δ1) and let t⋆ be defined as

t⋆ = min
{
j ∈ N : ∥Ũ j−1 − U j−1∥ > ∥Ũ j−1∥

}
. (D.2)

Then for all integers t such that 1 ≤ t ≤ t⋆ it holds that

∥Et∥ = ∥U t − Ũ t∥ ≤ 8(1 + δ1
√
k)
√
kmin {n,R} α3

∥M∥
∥U∥3(1 + µ∥M∥)3t. (D.3)

Proof. Similarly to the matrix case in (Stöger & Soltanolkotabi, 2021), in the tubal tensor case it can be shown that for
t ≥ 1, the difference tensor Et = U t − Ũ t can be represented as

Et = U t − Ũ t =

t∑
j=1

(I + µM)∗(t−j)Êj (D.4)

with Êj = µA∗A
(
U j−1 ∗U⊤

j−1

)
∗U j−1. To estimate ∥Et∥, we will first estimate each summand in (D.4) separately. First,

we can proceed with the following simple estimation

∥(I + µM)∗(t−j)Êj∥ ≤ ∥(I + µM)∥(t−j)∥Êj∥ ≤
(
1 + µ∥M∥

)(t−j)∥Êj∥.

Now, for ∥Êj∥, using the fact that the spectral norm of tubal tensors is sub-multiplicative, we get that

∥Êj∥ = µ∥A∗A
(
U j−1 ∗ U⊤

j−1

)
∗ U j−1∥ ≤ µ∥A∗A

(
U j−1 ∗ U⊤

j−1

)
∥ · ∥U j−1∥.
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Since operator A satisfies RIP(2, δ1), by Lemma G.3, A also satisfies S2NRIP(δ1
√
k), which provides the following

estimate
∥A∗A

(
U j−1 ∗ U⊤

j−1

)
∥ ≤ (1 + δ1

√
k)∥U j−1 ∗ U⊤

j−1∥∗ = (1 + δ1
√
k)∥U j−1∥2F .

All this together leads to

∥Et∥ = ∥U t − Ũ t∥ ≤ µ(1 + δ1
√
k)

t∑
j=1

(
1 + µ∥M∥

)(t−j)∥U j−1∥2F ∥U j−1∥. (D.5)

From here, we want to bound ∥Et∥ in terms of the initialization scale α and the data-related norm ∥M∥. For this, we first
use the fact that the tensor Frobenius norm above can be bounded as ∥U j−1∥F ≤

√
kmin {n,R}∥U j−1∥. Then since for

all 1 ≤ j ≤ t⋆ we have ∥Ũ j−1 − U j−1∥ ≤ ∥Ũ j−1∥, the spectral norm of U j−1 can be bounded as

∥U j−1∥ ≤ ∥Ũ j−1∥+ ∥U j−1 − Ũ j−1∥ ≤ 2∥Ũ j−1∥.

This gives us the following upper bound

∥Et∥ ≤ 8µ(1 + δ1
√
k)
√
kmin {n,R}

t∑
j=1

(1 + µ∥M∥)t−j∥Ũ j−1∥3. (D.6)

As for iterations of the tensor power method, it holds that

∥Ũ j−1∥ = ∥(I + µM)∗(j−1) ∗ U0∥ ≤ ∥(I + µM)∗(j−1)∥∥U0∥ ≤ (1 + µ∥M∥)j−1∥U0∥ = α(1 + µ∥M∥)j−1∥U∥,

we can proceed with (D.6) as follows

∥Et∥ ≤ 8µ(1 + δ1
√
k)
√
kmin {n,R}α3∥U∥3

t∑
j=1

(1 + µ∥M∥)t+2j−3.

Now, the sum on the right-hand side can be estimated as

t∑
j=1

(1 + µ∥M∥)t+2j−3 = (1 + µ∥M∥)t−1
t∑

j=1

(1 + µ∥M∥)2j−2 = (1 + µ∥M∥)t−1 (1 + µ∥M∥)2t − 1

(1 + µ∥M∥)2 − 1

= (1 + µ∥M∥)t−1 (1 + µ∥M∥)2t − 1

µ∥M∥(2 + µ∥M∥)
≤ (1 + µ∥M∥)3t

µ∥M∥
,

which gives us the final estimation for the norm of Et as follows

∥Et∥ ≤ 8(1 + δ1
√
k)
√
kmin {n,R} α3

∥M∥
∥U∥3(1 + µ∥M∥)3t

and finishes the proof.

The following lemma provides a lower bound for t⋆, indicating the duration for which the approximation in Lemma D.1
remains valid.

Lemma D.2. Consider tensors M := A∗A(X ∗X⊤) ∈ Rn×n×k and Ũ t := (I + µM)∗t ∗ U0. Let M ∈ Cnk×nk be
the corresponding block diagonal form of the tensor M with the leading eigenvector v1 ∈ Cnk, then

t⋆ ≥

 ln
(

∥M∥·∥U0
H
v1∥ℓ2

8(1+δ1
√
k)
√

kmin {n,R}α3∥U∥3

)
2 ln (1 + µ∥M∥)

 (D.7)
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Proof. Let Ũ t ∈ Cnk×Rk be the corresponding block diagonal form of tensor Ũ t. By the definition of the spectral tensor

norm, we have ∥Ũ t∥ = ∥Ũ t∥ and the definition of the matrix norm gives ∥Ũ t∥ ≥
∥∥Ũ t

H

v1
∥∥
ℓ2

. For the block diagonal

version of Ũ t, the following properties (see, e.g., (Liu et al., 2019)) holds

Ũ t = (I + µM)∗t ∗ U0 = (I + µM)∗t · U0 = (I + µM)
t
· U0. (D.8)

This allows us to proceed as follows

Ũ t
Hv1 =

(
(I + µM)

t
· U0

)H
v1 = U0

H(I + µM)t
H
v1 = (1 + µ∥M∥)tU0

Hv1,

where for the last equality we used the fact that block-diagonal matrix (I + µM) has the same set of eigenvectors as matrix

M. From here, we get ∥Ũ t∥ ≥
∥∥Ũ t

H

v1
∥∥
ℓ2

= (1 + µ∥M∥)t
∥∥U0

H
v1
∥∥
ℓ2

. Then, applying Lemma D.1, the relative error in

the spectral norm between Ũ t and U t can be estimated as

∥Ũ t − U t∥
∥Ũ t∥

≤ 8(1 + δ1
√
k)

√
kmin {n,R}α3

∥M∥ · ∥U0
H
v1
∥∥
ℓ2

∥U∥3(1 + µ∥M∥
∥∥)2t.

Setting the bound above to be smaller than 1 and solving for t, we get

t <

ln

(
∥M∥·∥U0

H
v1

∥∥
ℓ2

8(1+δ1
√
k)
√

kmin {n,R}α3∥U∥3

)
2 ln (1 + µ∥M∥)

.

Since t ∈ N with t ≤ t⋆ should be such that ∥Ũt−1−Ut−1∥
∥Ũt−1∥

< 1, we can choose t⋆ as the floor-value of the right-hand side
above.

To show that the tensor column subspaces of the tensor power method iterates and the gradient descent iterates are aligned
after the alignment phase, we use the largest principal angle between two tensor-column subspaces as the potential function
for analysis. Borrowing the idea from (Gleich et al., 2013), we will show that the power method iteration in the tensor
domain can be transformed to the classical subspace iteration in the frequency domain.

For this, consider the power method iterates Ũ t = (I + µM)∗t ∗ U0, the iterates Zt = (I + µM)∗t and the gradient
descent iterates U t represented as U t = Ũ t + Et = Zt ∗ U0 + Et. All these tensors have their counterparts in the Fourier
domain, which we will denote respectively as Ũ t, Zt and U t.

As before, consider M = A∗A(X ∗X⊤) ∈ Rn×n×k with its t-SVD M = VM ∗ΣM ∗W⊤
M and its Fourier domain

representative M ∈ Cnk×nk. We denote by L ∈ Rn×r×k the tensor column subspace spanned by the tensor columns
corresponding to the first r singular tubes, that is L := VM(:, 1 : r, :) ∈ Rn×r×k. Note that L is also the subspace spanned
by the tensor columns corresponding to the first r singular tubes of the tensor Zt ∈ Rn×n×k.

By Lt ∈ Rn×n×k we will donate the tensor-column subspace spanned by the tensor columns correspond-
ing to the first r singular tubes of the gradient descent iterates U t = Zt ∗ U0 + Et. More concretely,
for U t =

∑R
s=1 VUt

(:, s, :) ∗ΣUt
(s, s, :) ∗W⊤

Ut
(:, s, :) and the corresponding Fourier domain representation U t =

diag(Ut
(1), Ut

(2), . . . , Ut
(k)), where Ut

(j) =
∑

ℓ σ
(j)
ℓ v

(j)
ℓ w

(j)
ℓ

H
= U

(j)
Ut

Σ
(j)
Ut
W

(j)
Ut

H
, we define the corresponding new ten-

sors Lt := VUt
(:, 1 : r, :) ∈ Rn×r×k and their Fourier domain representations

Lt = diag(Lt
(1), Lt

(2), . . . , Lt
(k)) (D.9)

Lemma D.3. Consider the tensor iterates Zt = (I + µM)∗t with its block-matrix representation

Zt = bdiag(Zt) = diag(Zt
(1), Zt

(2), . . . , Zt
(k)). (D.10)

and the tensors

Et = U t − Ũ t ∈ Rn×R×k

U0 = αU ∈ Rn×R×k, α > 0.
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Assume that for each 1 ≤ j ≤ k, it holds that

σr+1(Zt
(j))∥U∥+ ∥Et∥

α
< σr(Zt

(j))σmin(V⊤
L ∗ U). (D.11)

Then for each 1 ≤ j ≤ k, the following two inequalities hold

σr
(
Ut

(j)
)
= σr

(
Zt

(j)U0
(j) + Et

(j)
)
≥ ασr(Zt

(j))σmin(V⊤
L ∗ U)− ∥Et∥, (D.12)

σr+1

(
Ut

(j)
)
= σr+1

(
Zt

(j)U0
(j) + Et

(j)
)
≤ ασr+1(Zt

(j))∥U∥+ ∥Et∥ (D.13)

Moreover, the principal angle between the tensor-column subspaces L and Lt is bounded as follows

∥V⊤
L⊥ ∗ VLt

∥ ≤ max
1≤j≤k

ασr+1(Zt
(j))∥U∥+ ∥Et∥

σr(Zt
(j))σmin

(
V⊤

L ∗ U
)
− ασr+1

(
Zt

(j))∥U∥ − ∥Et∥
(D.14)

Proof. For some t ∈ N, consider tensor Zt = (I + µM)∗t with its block-matrix representation

Zt = bdiag(Zt) = diag(Zt
(1), Zt

(2), . . . , Zt
(k)) =


Zt

(1)

Zt
(2)

. . .

Zt
(k)

 .

As we assume the symmetric tensor case scenario, the block-diagonal matrix representation Zt consists of symmetric
matrices Zt

(j) ∈ Cn×n. At the same time, according to (Gleich et al., 2013), the gradient descent tensors U t = Zt∗U0+Et

have their block-diagonal matrix representation

U t = Zt ∗U0+Et ⇔ ZtU0+Et =


Zt

(1)U0
(1)

Zt
(2)U0

(2)

. . .

Zt
(k)U0

(k)

+


Et

(1)

Et
(2)

. . .

Et
(k)

 .

(D.15)

Using Weyl’s inequality in each block, we have

σr
(
Zt

(j)U0
(j) + Et

(j)
)
≥ σr

(
Zt

(j)U0
(j)
)
− ∥Et

(j)∥ ≥ σr

(
(VL

(j))HZt
(j)U0

(j)
)
− ∥Et

(j)∥.

Now, for the singular value above we get the following estimation

σr

(
(VL

(j))HZt
(j)U0

(j)
)
= σmin

(
VL

(j)HZt
(j)V

(j)
L V

(j)
L

H
U0

(j)
)

≥ σmin

(
VL

(j)HZt
(j)VL

(j)
)
σmin

(
VL

(j)HU0
(j)
)

= σr(Zt
(j))σmin

(
VL

(j)HU0
(j)
)
≥ ασr(Zt

(j))σmin

(
VL

(j)HU (j)
)

= ασr(Zt
(j))σmin

(
V H
L

(j)
U (j)

)
≥ ασr(Zt

(j))σmin

(
V⊤

L ∗ U
)

where in the last line we used that for each tensor it holds in the Fourier domain VL(j)H = VT
L
(j).

To show inequality (D.13), we can use Weyl’s bounds and then the Courant-Fisher theorem, which leads to

σr+1

(
Zt

(j)U0
(j) + Et

(j)
)
≤ σr+1

(
Zt

(j)U0
(j)
)
+ ∥Et

(j)∥ ≤ σr+1

(
Zt

(j)U0
(j)
)
+ ∥Et∥

≤ σr+1

(
Zt

(j)
)
∥U0

(j)∥+ ∥Et∥ ≤ ασr+1

(
Zt

(j)
)
∥U∥+ ∥Et∥.

Now, for estimation of ∥V⊥
L ∗ VLt∥, let us recall that L is the tensor column subspace spanned by the tensor columns

corresponding to the first r singular tubes of tensor Zt = (I − µM)∗t ∈ Rn×n×k, and Lt is the tensor-column subspace

16



Implicit Regularization for Tubal Tensors via GD

spanned by the tensor-columns corresponding to the first r singular tubes of the gradient descent iterates U t = Zt ∗U0+Et,
and consider Fourier-domain representation (D.15) of U t. Here, for each 1 ≤ j ≤ k, the matrices Zt

(j)U0
(j) + Et

(j) can
be represented as

Zt
(j)U0

(j) + Et
(j)︸ ︷︷ ︸

Ã(j)

= Zt
(j)VL

(j)VL
(j)HU0

(j)︸ ︷︷ ︸
A(j)

+Zt
(j)VL⊥

(j)VL⊥
(j)HU0

(j) + Et
(j)︸ ︷︷ ︸

C(j)

. (D.16)

As the tensor-column space VL is r-dimensional, each of matrices VL(j) has rank r, see (Gleich et al., 2013). Since the
matrices Zt

(j) can be decomposed as

Zt
(j) = VL

(j)Σ
(j)
L VL

(j)H + VL⊥
(j)Σ

(j)

L⊥VL⊥
(j)H

we have that
Zt

(j)VL
(j)VL

(j)HU0
(j) = VL

(j)Σ
(j)
L VL

(j)HU0
(j). (D.17)

As U0
(j) ∈ Cr×R has rank r, VL(j)HU0

(j) has rank r, which means that the product above has rank r too. Due to (D.17),
we see that

Zt
(j)VL

(j)VL
(j)HU0

(j) = VL
(j)VL

(j)HZt
(j)VL

(j)VL
(j)HU0

(j),

which makes VL(j) to the column subspace of Zt
(j)VL

(j)VL
(j)HU0

(j). Considering the gap between the singular values
of for matrices A(j) and Ã(j) in (D.16), namely δ(j) = σr(A

(j))− σr+1(Ã
(j)), and using Wedin’s sin θ theorem (Wedin,

1972), for each 1 ≤ j ≤ k we get

∥VL⊥
(j)HVLt

(j)∥ ≤ ∥C(j)∥
δ(j)

.

To conduct a further estimation of ∥VL⊥
(j)HVLt

(j)∥, we analyze lower and upper bounds for the denominator and the
numerator above. We start with the denominator first

δ(j) = σr(A
(j))− σr+1(Ã

(j))

= σr(Zt
(j)VL

(j)VL
(j)HU0

(j))− σr+1(Zt
(j)U0

(j) + Et
(j)).

Using properties of singular values of the matrix product for the first term above and Weyl’s bound for the second term, we
get

δ(j) ≥ σr(Zt
(j))σmin

(
VL

(j)HU0
(j)
)
− σr+1

(
Zt

(j)U0
(j)
)
− ∥Et

(j))∥

≥ σr(Zt
(j))σmin

(
V⊤

L ∗ U0

)
− σr+1

(
Zt

(j)U0
(j)
)
− ∥Et∥. (D.18)

For the norm of C(j), the following upper bound can be established

∥C(j)∥ ≤ ∥Zt
(j)VL⊥

(j)VL⊥
(j)HU0

(j)∥+ ∥Et
(j)∥

≤ ∥Zt
(j)VL⊥

(j)VL⊥
(j)H∥∥U0

(j)∥+ ∥Et∥
≤ ασr+1(Zt

(j))∥U∥+ ∥Et∥ (D.19)

Now, combining bounds (D.18) and (D.19), one obtains that

∥V⊤
L⊥ ∗ VLt

∥ = max
1≤j≤k

∥VL⊥
(j)HVLt

(j)∥ ≤ max
1≤j≤k

ασr+1(Zt
(j))∥U∥+ ∥Et∥

σr(Zt
(j))σmin

(
V⊤

L ∗ U
)
− σr+1

(
Zt

(j)U (j)
)
− ∥Et∥

:

Using in the denominator the fact that σr+1

(
Zt

(j)U0
(j)
)
≤ ασr+1

(
Zt

(j)
)
∥U (j)∥ ≤ ασr+1

(
Zt

(j))∥U∥ finishes the proof
of this lemma.
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Further, we consider the gradient descent iterates with its t-SVD

U t =

R∑
s=1

VUt(:, s, :) ∗ΣUt(s, s, :) ∗W
⊤
Ut

(:, s, :)

and the corresponding Fourier domain representation U t = diag(Ut
(1), Ut

(2), . . . , Ut
(k)), where

Ut
(j) =

∑R
ℓ=1 σ

(j)
ℓ v

(j)
ℓ w

(j)
ℓ

H
= V

(j)
Ut

Σ
(j)
Ut
W

(j)H
Ut

and its signal-noise term decomposition

U t = U t ∗Wt ∗W⊤
t + U t ∗Wt,⊥ ∗W⊤

t,⊥.

We also define the corresponding new tensors

Lt =

r∑
s=1

VUt
(:, s, :) ∗ΣUt

(s, s, :) ∗W⊤
Lt

(:, s, :) (D.20)

N t =

R∑
s=r+1

VUt(:, s, :) ∗ΣUt(s, s, :) ∗W
⊤
Ut

(:, s, :) (D.21)

and their Fourier domain representations

Lt = diag(Lt
(1), Lt

(2), . . . , Lt
(k)), Lt

(j) =

r∑
ℓ=1

σ
(j)
ℓ v

(j)
ℓ w

(j)
ℓ

H
= V

(j)
Lt

Σ
(j)
Lt
W

(j)H
Lt

(D.22)

N t = diag(Nt
(1), Nt

(2), . . . , Nt
(k)), Nt

(j) =

R∑
ℓ=r+1

σ
(j)
ℓ v

(j)
ℓ w

(j)
ℓ

H
= V

(j)
N t

Σ
(j)
N t
W

(j)H
N t

(D.23)

Lemma D.4. Assume ∥V⊤
X⊥ ∗ VLt∥ ≤ 1

2 . Then it holds that

∥W⊤
L⊥

t
∗Wt∥ ≤ 2 max

1≤j≤k

σr+1

(
Ut

(j)
)

σr

(
Ut

(j)
) ∥V⊤

X⊥ ∗ VLt∥. (D.24)

Proof. Consider ∥WT
L⊥

t
∗Wt∥ = max1≤j≤k ∥WL⊥

t

(j)HWt
(j)∥. For each 1 ≤ j ≤ k, we can now exploit the results of

Lemma A.1 in (Stöger & Soltanolkotabi, 2021), to get that

∥(W⊤
L⊥

t
)(j)Wt

(j)∥ ≤
∥Σ(j)

N t
∥∥V H

N t

(j)VX
(j)∥

σmin

(
VX (j)Ut

(j)
) and σmin(VX

(j)Ut
(j)) ≥ σmin(Lt

(j))

2
.

From here, we can proceed as follows

∥W⊤
L⊥

t
∗Wt∥ = max

1≤j≤k
∥WH

L⊥
t

(j)
Wt

(j)∥ ≤ 2 max
1≤j≤k

∥Σ(j)
N t

∥∥V H
N t

(j)VX
(j)∥

σmin(Lt
(j))

= 2 max
1≤j≤k

σr+1(Ut
(j))∥V H

N t

(j)VX
(j)∥

σr(Ut
(j))

≤ 2 max
1≤j≤k

σr+1(Ut
(j))

σr(Ut
(j))

∥V⊤
L⊥

t
∗ VX ∥

= 2 max
1≤j≤k

σr+1

(
Ut

(j)
)

σr
(
Ut

(j)
) ∥V⊤

X⊥ ∗ VLt
∥,

which concludes the proof.

Lemma D.5. Assume that ∥V⊤
X⊥ ∗ VLt

∥ ≤ 1
8 for some t ≥ 1, t ∈ N. Then for each 1 ≤ j ≤ k, it holds that

σr

(
U t ∗Wt

(j)
)
≥ 1

2
σr

(
U t

(j)
)

(D.25)

σ1(U t ∗Wt,⊥
(j)) ≤ 2σr+1(Ut

(j)). (D.26)
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Moreover, the principal angles between the tensor-column subspaces spanned by X and U tWt can be estimated as follows

∥VX⊥ ∗ VUtWt∥ ≤ 7∥V⊤
X⊥ ∗ VLt∥ (D.27)

∥U t ∗Wt,⊥∥ ≤ 2 max
1≤j≤k

σr+1(Ut
(j)). (D.28)

Proof. We assume that ∥V⊤
X⊥ ∗ VLt

∥ ≤ 1
8 , then due to Lemma D.4, we obtain that

∥W⊤
L⊥

t
∗Wt∥ ≤ 2 max

1≤j≤k

σr+1

(
Uj

(j)
)

σr

(
Uj

(j)
) ∥V⊤

X⊥ ∗ VLt
∥ ≤ 1

4
. (D.29)

Now, to estimate σr
(
U t ∗Wt

(j)
)

, we see that for each 1 ≤ j ≤ k, it holds that

σr

(
U t ∗Wt

(j)
)2

= σr

((
U t ∗Wt

(j)
)HU t ∗Wt

(j)
)
= σr

(
Wt

(j)HUt
(j)HUt

(j)Wt
(j)
)

(D.30)

Since Ut
(j)HUt

(j) = Lt
(j)HLt

(j) +Nt
(j)HNt

(j), we get that

σr

(
U t ∗Wt

(j)
)2

≥ σr

(
Wt

(j)HLt
(j)HLt

(j)Wt
(j)
)
= σr

(
Wt

(j)HLt
(j)
)2

≥ σr
(
Wt

(j)HWLt
(j)

)2
σr
(
Lt

(j)
)2 ≥ (1− ∥WL⊥

t
∗WT

t ∥2
)
σr
(
Ut

(j)
)2
,

where in the last line we used the definition of the principal angle between tensor column subspaces and the corresponding
properties in their Fourier domain slices, namely

σr
(
Wt

(j)HWLt
(j)

)2
= 1− ∥Wt

(j)HW⊥
Lt

(j)∥2 ≥ 1− max
1≤j≤k

∥Wt
(j)HW⊥

Lt
(j)∥2 = 1− ∥WL⊥

t
∗WT

t ∥2.

Due to our assumption ∥V⊤
X⊥ ∗ VLt

∥ ≤ 1
8 , we can see that in the Fourier domain, the subspaces spanned by V (j)

X⊥
t

and

V
(j)
Lt

= VLt
(j) are close enough. Then, decomposing Ut

(j) into two different ways, namely as

Ut
(j) =

R∑
ℓ=1

σ
(j)
ℓ v

(j)
ℓ w

(j)
ℓ

H
= Lt

(j) +Nt
(j)

and as
Ut

(j) = Ut
(j)Wt

(j)Wt
(j)H + Ut

(j)Wt,⊥
(j)Wt,⊥

(j)H,

according to Lemma H.1, one obtains for each 1 ≤ j ≤ k that

∥V (j)

X⊥
t

H
VUt

(j)Wt
(j)∥ ≤ 7∥V (j)

X⊥
t

H
V

(j)
Lt

∥

∥Ut
(j)Wt,⊥

(j)∥ ≤ 2σr+1(Ut
(j)),

where the last inequality is equivalent to σ1(U t ∗Wt,⊥
(j)) ≤ 2σr+1(Ut

(j)). According to the definition of principal angles
between tensor subspaces, this implies that

∥V⊤
X⊥ ∗ VUt∗Wt

∥ = max
j

∥V (j)

X⊥
t

H
VUt

(j)Wt
(j)∥ ≤ 7max

j
∥V (j)

X⊥
t

H
V

(j)
Lt

∥ = 7∥V⊤
X⊥ ∗ VLt

∥.

In the same way, ∥U t ∗Wt,⊥∥ = maxj ∥Ut
(j)Wt,⊥

(j)∥ ≤ 2maxj σr+1(Ut
(j)), which finishes the proof.

Lemma D.6. Consider a tensor T := X ∗X⊤ ∈ Sn×n×k
+ with tubal rank r ≤ n. Assume that measurement operator A is

such that
M = A∗A(T ) = T + E ∈ Sn×n×k

+
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and for for each 1 ≤ j ≤ k one has ∥E(j)∥ ≤ δλr(T (j)) with δ ≤ 1
4 . For the same M with its t-SVD M =

VM ∗ΣM ∗W⊤
M, let L ∈ Rn×r×k denote the tensor column subspace spanned by the tensor-columns corresponding to

the first r singular tubes, that is L := VM(:, 1 : r, :) ∈ Rn×r×k.

Then, in each Fourier slice j, 1 ≤ j ≤ k, it holds that

(1− δ)λ1(T
(j)) ≤ λ1(M

(j)) ≤ (1 + δ)λ1(T
(j)) (D.31)

λr+1(M
(j)) ≤ δλr(T

(j)) (D.32)

λr(M
(j)) ≥ (1− δ)λr(T

(j)), (D.33)

and
(1− δ)∥T ∥ ≤ ∥M∥ ≤ (1 + δ)∥T ∥ (D.34)

Moreover, the tensor-column subspaces of X and L are aligned, namely

∥V⊤
X⊥ ∗ VL∥ ≤ 2δ (D.35)

Proof. Consider tensor T := X ∗X⊤ ∈ Sn×n×k
+ . Due to the definition of tensor transpose and conjugate symmetry of

Fourier coefficients (Kilmer & Martin, 2011), the Fourier slices of T are defined as T (j) = X(j)X(j)H. That is, each face of
T is Hermitian and at least positive semidefinite. As we assume that for each j, 1 ≤ j ≤ k, one has ∥Et

(j)∥ ≤ δλr(T (j))
using Weyl’s inequality in each of the Fourier slices, we obtain the first three inequalities.

To show that the tensor subspace VX and VL are aligned, we use first the definition

∥V⊤
X⊥ ∗ VL∥ = max

1≤j≤k
∥V (j)

X⊥

H

V
(j)
L ∥ (D.36)

For the estimation of ∥V H
X⊥

(j)
V

(j)
L ∥ in each of the Fourier slices, we apply Wedin’s sinΘ theorem. For this, denote

L := VM(:, 1 : r, :) ∈ Rn×r×k and let V (j)
L denote the corresponding Fourier slices of L ∈ Rn×r×k. Since in the Fourier

space, it holds that M (j) = T (j)+E(j) and V (j)
L encompasses the first r eigenvectors of M (j), from Wedin’s sinΘ theorem,

we obtain

∥V (j)

X⊥

H

V
(j)
L ∥ ≤ ∥E(j)∥

ξ(j)
,

with ξ(j) := λr(T
(j))− λr+1(M

(j)). Using estimate (D.32), ξ(j) can be lower-bounded as

ξ(j) := λr(T
(j))− λr+1(M

(j)) ≥ λr(T
(j))− δλr(T

(j)) = (1− δ)λr(T
(j)).

Using the bound the the assumptions that ∥Et
(j)∥ ≤ δλr(T (j)) and δ ≤ 1

2 , we get

∥V (j)

X⊥

H

V
(j)
L ∥ ≤ δ

1− δ
≤ 2δ.

Coming back to equality (D.36), we obtain the stated bound for the principal angle between the two tensor column
subspaces.

Lemma D.7. Consider a tensor X ∗X⊤ ∈ Sn×n×k
+ with tubal rank r ≤ n. Assume that measurement operator A is such

that
M = A∗A(X ∗X⊤) = X ∗X⊤ + E

and for each, j, 1 ≤ j ≤ k, one has ∥E(j)∥ ≤ δλr(X
(j)X(j)H) with δ ≤ c1. Moreover, assume that for difference tensor

Et = U t − Ũ t it holds that

γ :=

α max
1≤j≤k

σr+1(Zt
(j))∥U∥+ ∥Et∥

min
1≤j≤k

σr(Zt
(j))

1

ασmin(V⊤
L ∗ U)

≤ c2κ
−2, (D.37)
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where c1, c2 > 0 are sufficiently small absolute constants. Then for the signal and noise term of the gradient descent (C.1),
we have

∥V⊤
X⊥ ∗ VUt∗Wt∥ ≤ 14(δ + γ) (D.38)

∥U t ∗Wt,⊥∥ ≤ κ−2

8
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U) (D.39)

and for each j, 1 ≤ j ≤ k, it holds that

σmin(U t ∗Wt
(j)) ≥ 1

4
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U) (D.40)

σ1(U t ∗Wt,⊥
(j)) ≤ κ−2

8
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U) (D.41)

Proof. To prove the above-stated properties, we will use Lemma D.3. Therefore, we start by checking the conditions of this
lemma. Sufficiently small c2 and the assumption γ ≤ c2κ

−2 allows for γ ≤ 1
2 . This means that

α max
1≤j≤k

σr+1(Zt
(j))∥U∥+ ∥Et∥

min
1≤j≤k

σr(Zt
(j))

1

ασmin(V⊤
L ∗ U)

≤ 1

2

and in each of the Fourier slices we have

σr+1(Zt
(j))∥U∥+ ∥Et∥

α
≤ 1

2
σr(Zt

(j))σmin(V⊤
L ∗ U),

fulfilling the assumption of Lemma D.3. Hence, from Lemma D.3, we conclude that

∥V⊤
L⊥ ∗ VLt

∥ ≤ max
1≤j≤k

ασr+1(Zt
(j))∥U∥+ ∥Et∥

ασr(Zt
(j))σmin

(
V⊤

L ∗ U
)
− ασr+1

(
Zt

(j))∥U∥ − ∥Et∥
(D.42)

≤
α max

1≤j≤k
σr+1(Zt

(j))∥U∥+ ∥Et∥

α min
1≤j≤k

σr(Zt
(j))σmin

(
V⊤

L ∗ U
)
− α max

1≤j≤k
σr+1

(
Zt

(j))∥U∥ − ∥Et∥
, (D.43)

and, moreover, together with Lemma D.5 and the assumption γ ≤ 1
2 we get

min
1≤j≤k

σr(Ut
(j)) ≥ α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U)− ∥Et∥ ≥ α

2
min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U) (D.44)

max
1≤j≤k

σr+1(Ut
(j)) ≤ α min

1≤j≤k
σrσr(Zt

(j))∥U∥+ ∥Et∥ ≤ αγ min
1≤j≤k

σr(Zt
(j))σmin(V⊤

L ∗ U) (D.45)

The last two inequalities, allow extend bound (D.42) as follows

∥V⊤
L⊥ ∗ VLt

∥ ≤ γ

1− γ
(D.46)

Now, consider the principal angle between X and Lt using its definition

∥V⊤
X⊥ ∗ VLt∥ = max

1≤j≤k
∥V (j)

X⊥

H
V

(j)
Lt

∥ = max
1≤j≤k

∥V (j)

X⊥V
(j) H

X⊥ − V
(j)
Lt
V

(j)H
Lt

∥

≤ max
1≤j≤k

∥V (j)

X⊥V
(j) H

X⊥ − V
(j)
Lt
V

(j)H
Lt

∥ ≤ max
1≤j≤k

∥V (j)

X⊥V
(j) H

X⊥ − V
(j)
L V

(j)H
L ∥+ ∥V (j)

L V
(j)H
L − V

(j)
Lt
V

(j)H
Lt

∥

≤ max
1≤j≤k

∥V (j)

X⊥V
(j) H

X⊥ − V
(j)
L V

(j)H
L ∥+ max

1≤j≤k
∥V (j)

L V
(j)H
L − V

(j)
Lt
V

(j)H
Lt

∥

= ∥V⊤
X⊥ ∗ VL∥+ ∥V⊤

L⊥ ∗ VLt
∥
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Using the last line above, and inequalities (D.35) and (D.46), we obtain

∥V⊤
X⊥ ∗ VLt

∥ ≤ 2(δ + γ).

From here, allowing δ and γ to be such that ∥V⊤
X⊥ ∗ VLt

∥ ≤ 1
8 , we can use Lemma D.5 to get

∥VX⊥ ∗ VUtWt
∥ ≤ 7∥V⊤

X⊥ ∗ VLt
∥ ≤ 14(δ + γ).

Furthermore, Lemma D.5 together with inequality (D.45) also results in

σ1(U t ∗Wt,⊥
(j)) ≤ 2σr+1(Ut

(j))

≤ 2 max
1≤j≤k

σr+1(Ut
(j))

≤ 2γα min
1≤j≤k

σr(Zt
(j))σmin(V⊤

L ∗ U)

≤ κ−2

8
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U)

and for the spectral norm of U t ∗Wt,⊥ we get

∥U t ∗Wt,⊥∥ ≤ 2 max
1≤j≤k

σr+1(Ut
(j)) ≤ κ−2

8
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U).

To conclude the proof, we see that Lemma D.5 together with inequality (D.44) provides for each j, 1 ≤ j ≤ k, the following
lower bound

σr

(
U t ∗Wt

(j)
)
≥ 1

2
σr

(
U t

(j)
)
≥ α

4
σr(Zt

(j))σmin(V⊤
L ∗ U) ≥ α

4
min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U).

The following lemma shows that for an appropriately chosen initialization, in the first new iteration, the tensor column
subspaces between the signal term U t ∗Wt and the ground truth tensor X become aligned. Moreover, for each 1 ≤ j ≤ k
there is a solid gap between the smallest singular values of the signal term and the largest singular values of the noise term.

Lemma D.8. Assume A : Sn×n×k → Rm satisfies the S2NRIP(δ1) for some constant δ1 > 0. Also, assume that

M := A∗A(X ∗X⊤) = X ∗X⊤ + E

with ∥E(j)∥ ≤ δλr(X
(j)X(j)H) for each 1 ≤ j ≤ k and δ ≤ c1κ

−2.

Denote by L the tensor-columns corresponding to the first r singular tubes in the t-SVD of M, that is, L := VM(:, 1 : r, :) ∈
Rn×r×k, and define the initialization U0 = αU with the coefficient α such that

α2 ≤ c∥X∥2

12k
√
min{n,R}κ2∥U∥3

(
2κ2∥U∥3

c3σmin(V⊤
L ∗ U)

)−48κ2

min {σmin(V⊤
L ∗ U), ∥U0

H

v1∥ℓ2} (D.47)

where v1 ∈ Cnk is the leading eigenvector of matrix M ∈ Cnk×nk.

Assume that learning rate µ fulfils µ ≤ c3κ
−2∥X∥−2, then after t⋆ iterations with

t⋆ ≍ 1

µmin1≤j≤k σr(X(j))2
ln

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)
(D.48)

it holds that

∥U t⋆∥ ≤ 3∥X∥ (D.49)

∥VX⊥ ∗ VUt⋆∗Wt⋆
∥ ≤ cκ−2. (D.50)
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and for each 1 ≤ j ≤ k, we have

σr

(
U t⋆ ∗Wt⋆

(j)
)
≥ 1

4
αβ (D.51)

σ1

(
U t⋆ ∗Wt⋆,⊥

(j)
)
≤ κ−2

8
αβ (D.52)

(D.53)

where β satisfies σmin(V⊤
L ∗ U) ≤ β ≤ σmin(V⊤

L ∗ U)

(
2κ2∥U∥

c3σmin(V⊤
L∗U)

)16κ2

.

Proof. For the proof of this lemma, we want to apply Lemma D.7. The first condition of Lemma D.7 is the following

γ :=

α max
1≤j≤k

σr+1(Zt
(j))∥U∥+ ∥Et∥

min
1≤j≤k

σr(Zt
(j))

1

ασmin(V⊤
L ∗ U)

≤ c2κ
−2,

By the definition of γ, it is sufficient to show that

max
1≤j≤k

σr+1(Zt
(j))∥U∥ ≤ c3

2κ2
min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U) (D.54)

and
∥Et∥ ≤ c3

2κ2
α min

1≤j≤k
σr(Zt

(j))σmin(V⊤
L ∗ U). (D.55)

Since for Zt = (I + µM)∗t the transformation in the Fourier domain leads to the blocks

Z
(j)
t = (Id + µM (j))t,

this means that inequality (D.54) is equivalent to

2κ2∥U∥
c3σmin(V⊤

L ∗ U)
≤

 1 + µ min
1≤j≤k

σr(M
(j))

1 + µ max
1≤j≤k

σr+1(M
(j))

t

,

which can be further modified as

ln

(
2κ2∥U∥

σmin(V⊤
L ∗ U)

)
≤ t ln

 1 + µ min
1≤j≤k

σr(M
(j))

1 + µ max
1≤j≤k

σr+1(M
(j))

 .

Hence, if we take t⋆ as follows

t⋆ :=

ln
(

2κ2∥U∥
σmin(V⊤

L ∗ U)

)/
ln

 1 + µ min
1≤j≤k

σr(M
(j))

1 + µ max
1≤j≤k

σr+1(M
(j))

 (D.56)

then condition (D.54) will be satisfied in each block in the Fourier domain. For convenience, we will further denote

ψ := ln

(
2κ2∥U∥

σmin(V⊤
L ∗ U)

)
. (D.57)

For the second part of Lemma D.7’s condition, inequality (D.55), we will use Lemma D.1. To apply this Lemma, the
condition t⋆ ≤ t⋆ needs to be satisfied. According to Lemma D.2

t⋆ ≥

 ln
(

∥M∥·∥U0
H
v1∥ℓ2

8(1+δ1
√
k)
√

kmin {n,R}α3∥U∥3

)
2 ln (1 + µ∥M∥)

 (D.58)
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For t⋆ ≤ t⋆ to hold, it will be sufficient to check, e.g., the following condition

ψ

ln
(

1+µmin1≤j≤k σr(M(j))

1+µmax1≤j≤k σr+1(M(j))

) ≤ 1

2
·
ln

(
∥M∥·∥U0

H
v1∥ℓ2

8(1+δ1
√
k)
√

kmin {n,R}α3∥U∥3

)
2 ln (1 + µ∥M∥)

.

To check this condition let us first analyze the expression ln (1 + µ∥M∥)/ln
(

1+µmin1≤j≤k σr(M
(j))

1+µmax1≤j≤k σr+1(M(j))

)
first. Using

x
1+x ≤ ln(1 + x) ≤ x, we can upper bound the above expression as

ln (1 + µ∥M∥)

ln
(

1+µmin1≤j≤k σr(M(j))

1+µmax1≤j≤k σr+1(M(j))

) ≤ ∥M∥(1 + µmin1≤j≤k σr(M
(j)))

min1≤j≤k σr(M (j))−max1≤j≤k σr+1(M (j))
(D.59)

From here, applying the PSD of the tensor representatives in the Fourier domain and the assumptions δ ≤ 1
3 and µ ≤

c3κ
−2∥X∥−2 and Lemma D.6, we get

∥M∥(1 + min1≤j≤k σr(M
(j)))

min1≤j≤k σr(M (j))−max1≤j≤k σr+1(M (j))
≤ (1 + δ)∥T ∥

(1− 2δ)λr(T (j))

(
1 + c3(1 + δ)

(
λ1(X

(j))

κ∥X∥

)2
)

≤ κ2
(1 + δ)

(1− 2δ)
(1 + c3(1 + δ)) ≤ 8κ2,

in the last line, we used the bound on δ and that c3 can be taken small enough. This means

ln (1 + µ∥M∥)

ln
(

1+µmin1≤j≤k σr(M(j))

1+µmax1≤j≤k σr+1(M(j))

) ≤ 8κ2. (D.60)

Thus, to show that t⋆ ≤ t⋆, it is sufficient to tune the initialization factor α so that

ψ · 32κ2 ≤ ln

(
∥M∥ · ∥U0

H
v1∥ℓ2

8(1 + δ1
√
k)
√
kmin {n,R}α3∥U∥3

)
.

or using the notation for ϕ, this is equivalent to(
2κ2∥U∥

σmin(V⊤
L ∗ U)

)32κ2

≤ ∥M∥ · ∥U0
H
v1∥ℓ2

8(1 + δ1
√
k)
√
kmin {n,R}α3∥U∥3

Since ∥U0
H
v1∥ℓ2/α = ∥UH

v1∥ℓ2 , The last inequality is implied if

α2 ≤

(
2κ2∥U∥

σmin(V⊤
L ∗ U)

)−32κ2

∥M∥ · ∥UH
v1∥ℓ2

8(1 + δ1
√
k)
√
kmin {n,R}∥U∥3

,

or if we set α even smaller using the fact that (1 + δ1
√
k)
√
k ≤ (1 +

√
k)
√
k ≤ 2k and ∥M∥ ≥ 2

3∥X∥2 and set the
parameter α so that

α2 ≤

(
2κ2∥U∥

σmin(V⊤
L ∗ U)

)−32κ2

∥X∥2 · ∥UH
v1∥ℓ2

24k
√
min {n,R}∥U∥3

.

Hence t⋆ ≤ t⋆ is satisfied and applying Lemma D.7, we get

∥Et⋆∥ ≤ 8(1 + δ1
√
k)
√
kmin {n,R} α3

∥M∥
∥U∥3(1 + µ∥M∥)3t⋆ (D.61)
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Moreover, using ∥M∥ ≥ 2
3∥X∥2 from Lemma D.6 with δ ≤ 1/3 and (1 + δ1

√
k)
√
k ≤ 2k , we get

∥Et⋆∥ ≤ 12k
√

min {n,R} α3

∥X∥2
∥U∥3(1 + µ∥M∥)3t⋆

Hence, using that Zt
(j) = (Id + µM (j))t inequality (D.55) will be implied if

12k
√

min {n,R} α3

∥X∥2
∥U∥3(1 + µ∥M∥)3t⋆ ≤ c3

2κ2
α min

1≤j≤k
σr

(
(Id + µM (j))t⋆

)
σmin(V⊤

L ∗ U),

which is equivalent to

α2 ≤ c3
∥X∥2σmin(V⊤

L ∗ U)

12k
√
min {n,R}κ2∥U∥3

(1 + µλr(M
(j)))t⋆

(1 + µ∥M∥)3t⋆
, (D.62)

for all j. To proceed further, let us analyze the last factor from above using the definition of t⋆. Note that

(1 + µλr(M
(j)))t⋆

(1 + µ∥M∥)3t⋆
= exp

(
t⋆ ln

(
1 + µλr(M

(j))

(1 + µ∥M∥)3

))
≥ exp

(
−3t⋆ ln

(
(1 + µ∥M∥)3

))
Now, using the definition of t⋆, that is t⋆ =

⌈
ψ/ ln

(
1+µmin1≤j≤k σr(M

(j)

1+µmax1≤j≤k σr+1(M(j))

)⌉
and inequality (D.60), we get

exp
(
−3t⋆ ln

(
(1 + µ∥M∥)3

))
≥ exp

(
−48ψκ2

)
=

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)−48κ2

(D.63)

Inserting this into inequality (D.62), we get

α2 ≤ c3
∥X∥2σmin(V⊤

L ∗ U)

12 k
√
min {n,R}κ2∥U∥3

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)−48κ2

. (D.64)

For such α, we have shown that inequality (D.55) holds, and the condition of Lemma D.7 is fulfilled, which gives us

∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ 14(δ + γ) ≤ cκ−2, (D.65)

where the last inequality follows from our assumption that δ ≤ c1κ
−2 and µ ≤ c3κ

−2∥X∥−2 and from setting the constants
c1 and c3 small enough.

Moreover, for each 1 ≤ j ≤ k, from Lemma D.7 it follows that

σmin(U t ∗Wt
(j)) ≥ 1

4
αβ, (D.66)

σ1(U t ∗Wt,⊥
(j)) ≤ κ−2

8
αβ. (D.67)

where β := min1≤j≤k σr(Zt
(j))σmin(V⊤

L ∗ U).

In the remaining part, we will show that t⋆, β and ∥U t⋆∥ have the properties stated in the lemma.

Let us start with t⋆. Using the same inequalities for ln(1 + x) as above and Lemma D.6, one can show

ln

 1 + µ min
1≤j≤k

σr(M
(j))

1 + µ max
1≤j≤k

σr+1(M
(j))

 ≥
µ min

1≤j≤k
σr(M

(j))

1 + µ min
1≤j≤k

σr(M
(j))

− µ max
1≤j≤k

σr+1(M
(j)) ≥ 2

3
µ min

1≤j≤k
σr(X

(j))2

and at the same time

ln

 1 + µ min
1≤j≤k

σr(M
(j))

1 + µ max
1≤j≤k

σr+1(M
(j))

 ≤ ln

(
1 + µ min

1≤j≤k
σr(M

(j))

)
≤ µ min

1≤j≤k
σr(M

(j))
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≤ µ(1 + δ) min
1≤j≤k

σr(X
(j))2 ≤ 4/3µ min

1≤j≤k
σr(X

(j))2

which shows that, on the one hand,

1

ln
(

1+µmin1≤j≤k σr(M(j))

1+µmax1≤j≤k σr+1(M(j))

) ≤ 2

3µ
max
1≤j≤k

1

σr(X(j))2
=

2

3µmin1≤j≤k σr(X(j))2

and on the other hand

1

ln
(

1+µmin1≤j≤k σr(M(j))

1+µmax1≤j≤k σr+1(M(j))

) ≥ 3

4µmin1≤j≤k σr(X(j))2
,

which shows the desired properties of t⋆.

Now, we consider β := min1≤j≤k σr(Zt⋆
(j))σmin(V⊤

L ∗ U). By the definition of Zt
(j) and inequality (D.60), we get(

1 + µσr(M
(j))
)t⋆

= exp
(
t⋆ ln(1 + µσr(M

(j)))
)
≤ exp

(
t⋆ ln(1 + µ∥M∥)

)
≤ exp

2ψ max
1≤j≤k

ln (1 + µ∥M∥)

ln
(

1+µσr(M(j))

1+µσr+1(M(j))

)
 ≤ exp(16ψκ2) =

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)16κ2

. (D.68)

Since this holds for all j, we have

β ≤ σmin(V⊤
L ∗ U)

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)16κ2

.

Finally, we come to the properties of U t⋆ . By the representation U t⋆ = Zt⋆ ∗ U0 + Et⋆ , we get

∥U t⋆∥ ≤ α∥Zt⋆∥∥U∥+ ∥Et⋆∥.

From (D.55), we get

∥Et∥ ≤ c3
2κ2

α∥Zt∥σmin(VL
HU) ≤ c3

2κ2
α∥Zt∥σmin(VL

H)σmax(U) ≤ α∥Zt∥∥U∥,

which allows us to proceed as follows

∥U t⋆∥ ≤ 2α∥Zt⋆∥∥U∥ ≤ 2α(1 + µ∥M∥)t⋆∥U∥,

= 2α ln
(
t⋆(1 + µ∥M∥)

)
∥U∥ ≤ 2α∥U∥

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)16κ2

≤ 2∥X∥

√√√√ c3σmin(V⊤
L ∗ U)

12 k
√

min {n,R}κ2∥U∥

(
2κ2∥U∥

c3σmin(V⊤
L ∗ U)

)−8κ2

≤ 3∥X∥,

where for the second inequality above we used (D.68) and in the last one an upper bound on α from (D.64) has been applied.

The results in Lemma D.8 hold for any initialization U . Below, we will use the fact that U is a tensor with Gaussian entries.
This yields the following lemma, which shows that with initialization scale α > 0 chosen sufficiently small, the properties
stated in Lemma D.8 hold with high probability.

Lemma D.9. Fix a sufficiently small constant c > 0. Let U ∈ Rn×R×k be a random tubal tensor with i.i.d. N (0, 1
R ) entries,

and let ϵ ∈ (0, 1). Assume that A : Sn×n×k → Rm satisfies the S2NRIP(δ1) for some constant δ1 > 0. Also, assume that

M := A∗A(X ∗X⊤) = X ∗X⊤ + E
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with ∥E(j)∥ ≤ δλr(X
(j)X(j)H) for each 1 ≤ j ≤ k, where δ ≤ c1κ

−2. Let U0 = αU where

α2 ≲


ϵmin{n,R}∥X∥2

k2n3/2κ2

(
2κ2kn3/2

c3 min{n,R}3/2ϵ

)−24κ2

if R ≥ 3r

ϵ∥X∥2

k2n3/2κ2

(
2κ2kn3/2

c3r1/2ϵ

)−24κ2

if R < 3r

.

Assume the step size satisfies µ ≤ c2κ
−2∥X∥2. Then, with probability at least 1− p where

p =

{
k(C̃ϵ)R−r+1 + ke−c̃R if R ≥ 2r

kϵ2 + ke−c̃R if R < 2r

the following statement holds. After

t⋆ ≲


1

µmin1≤j≤k σr(X(j))2
ln

(
2κ2

√
n

c3ϵ
√

min{n;R}

)
if R ≥ 3r

1
µmin1≤j≤k σr(X(j))2

ln
(

2κ2√rn
c3ϵ

)
if R < 3r

iterations, it holds that

∥U t⋆∥ ≤ 3∥X∥ (D.69)

∥VX⊥ ∗ VUt⋆∗Wt⋆
∥ ≤ cκ−2. (D.70)

and for each 1 ≤ j ≤ k, we have

σr

(
U t⋆ ∗Wt⋆

(j)
)
≥ 1

4
αβ (D.71)

σ1

(
U t⋆ ∗Wt⋆,⊥

(j)
)
≤ κ−2

8
αβ (D.72)

(D.73)

where

β ≲


ϵ
√
k

(
2κ2

√
n

c3ϵ
√

min{n;R}

)16κ2

if R ≥ 3r

ϵ
√
k

r

(
2κ2

√
rn

c3ϵ

)16κ2

if R < 3r

and

β ≳

ϵ
√
k if R ≥ 3r

ϵ
√
k

r
if R < 3r

.

Proof. By Lemma I.3, we have that ∥U∥ ≲

√
kmax{n,R}

R
=

√
kn

min{n;R}
with probability at least 1 −

O(ke−cmax{n,R}). Also, by Lemma I.4, we have that ∥UH
v1∥ℓ2 = ∥U⊤ ∗ V1∥F ≍

√
k with probability at least

1 − O(ke−cR). Since U ∈ Rn×R×k has i.i.d. N (0, 1
R ) entries and V⊤

L ∗ VL = I , by rotational invariance,
V⊤

L ∗ U ∈ Rr×R×k also has i.i.d. N (0, 1
R ) entries. Hence, the lower bound on σmin(V⊤

L ∗ U) in Lemma I.2 applies. If
r ≤ R ≤ 2r, we have

σmin(V⊤
L ∗ U) ≥ ϵ

√
k√
rR

≳
ϵ
√
k

r
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with probability at least 1− kϵ2. If 2r < R < 3r, we have

σmin(V⊤
L ∗ U) ≥ ϵ

√
k(
√
R−

√
2r − 1)√

R
≥ ϵ

√
k(R− (2r − 1))

√
r(
√
R+

√
2r − 1)

≳
ϵ
√
k

r

with probability at least 1− k(Cϵ)R−2r+1 − ke−cR. If R ≥ 3r, we have

σmin(V⊤
L ∗ U) ≥ ϵ

√
k(
√
R−

√
2r − 1)√

R
= ϵ

√
k

(
1−

√
2r−1
R

)
≳ ϵ

√
k

with probability at least 1− k(Cϵ)R−2r+1 − ke−cR.

Therefore, the above bounds on ∥U∥, ∥UH
v1∥ℓ2 , and σmin(V⊤

L ∗ U) all hold simultaneously with probability at least 1− p
where

p =

{
k(C̃ϵ)R−r+1 + ke−c̃R if R ≥ 2r

kϵ2 + ke−c̃R if R < 2r
.

Provided that all three of these bounds hold, one can substitute these into Lemma D.8 to obtain the desired result.

E. Analysis of Convergence Stage
In this section, we will prove that after passing the spectral stage, U t ∗ U⊤

t goes into the convergence process towards
the ground truth tensor X ∗ X⊤ in the Frobenius norm. For this, we will first show that in each of the tensor slices
σmin(V⊤

X ∗ U t+1
(j)) grows exponentially, see Lemma E.1, whereas the noise terms ∥U t+1 ∗Wt+1,⊥

(j)∥, 1 ≤ j ≤ k, grow
slower, see Lemma E.3. Moreover, in Lemma E.5, we show that the tensor column spaces of the signal term U t ∗Wt and
the ground truth X stay aligned. With this, and several auxiliary lemmas in place, we show that

Lemma E.1. Assume that the following conditions hold

µ ≤ c∥X∥−2κ−2

∥U t∥ ≤ 3∥X∥
∥V⊤

X⊥ ∗ VUt∗Wt
∥ ≤ cκ−1

and
∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥ ≤ cσ2
min(X ). (E.1)

Moreover, assume that V⊤
X ∗ U t has full tubal rank with all invertible t-SVD-singular tubes. Then, for each j, 1 ≤ j ≤ k, it

holds that

σmin(V⊤
X ∗ U t+1

(j)) ≥ σmin(V⊤
X ∗ U t+1 ∗Wt

(j)) ≥ σmin(V⊤
X ∗ U t

(j))
(
1 +

1

4
µσ2

min(X )− µσ2
min(V

⊤
X ∗ U t

(j))
)
.

Proof. Consider the tensor V⊤
X ∗ U t+1 ∗Wt. Using the definition of U t+1 in terms of U t, we can rewrite it as

V⊤
X ∗ U t+1 ∗Wt = V⊤

X ∗
(
I + µA∗A(X ∗X⊤ − U t ∗ U⊤

t )
)
∗ U t ∗Wt.

This representation leads to the following representation of the RHS above in the Fourier domain

V
(j) H
X (Id + µ

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)
(j)
)
U

(j)
t W

(j)
t := H(j).

Note that here
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)
(j) can not be represented as an independent slice of measurements of

X(j)X(j)H − U
(j)
t U

(j)H
t as it involved the information about all the slices 1 ≤ j ≤ k.

Due to our assumptions on ∥U t∥ and the tensor spectral norm property, we get

∥V (j) H
X U

(j)
t ∥ ≤ ∥U (j)

t ∥ ≤ ∥U t∥ ≤ 3∥X∥.
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This in turn is leading to
µ ≤ c∥X∥−2κ−2 ≤ c̃∥V (j) H

X U
(j)
t ∥−2.

This property of µ together with the nature of W (j)
t and V (j)

X coming along from the signal-noise-term decomposition (C.1)
leads to the fulfilled conditions of Lemma H.2. Applying Lemma H.2 to the matrix H(j), the smallest singular value of
matrix H(j) can be estimated as

σmin(H
(j)) ≥

(
1+µσ2

min(X
(j))−µ∥P (j)

1 ∥−µ∥P (j)
2 ∥−µ2∥P (j)

3 ∥
)
σmin(V

(j) H
X U

(j)
t )
(
1−µσ2

min(V
(j) H
X U

(j)
t )
)
. (E.2)

with

∥P (j)
1 ∥ ≤ 4∥U (j)

t W
(j)
t ∥2∥V (j)

X⊥VU(j)
t W

(j)
t
∥2

∥P (j)
2 ∥ ≤ 4

∥∥∥(A∗A(X ∗X⊤ − U t ∗ U⊤
t )
)
(j) −X(j)X(j)H + U

(j)
t U

(j)H
t

∥∥∥
∥P (j)

3 ∥ ≤ 2∥X(j)∥2∥U (j)
t W

(j)
t ∥2.

Further, we will make the above bounds for ∥P (j)
i ∥, i ∈ {1, 2, 3}, more precise using information about the tensor setting.

First of all since ∥U (j)
t W

(j)
t ∥ ≤ ∥U (j)

t ∥ ≤ ∥U t∥ ≤ 3∥X∥, we get ∥P (j)
1 ∥ ≤ 36∥X∥2∥V (j)

X⊥VU(j)
t W

(j)
t
∥2. Moreover,

since V (j)

X⊥VU(j)
t W

(j)
t

= V⊤
X ∗ VUt∗Wt

(j) and ∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ cκ−1 due to the assumption, it follows that for each

j, 1 ≤ j ≤ k, it holds that ∥V (j)

X⊥VU(j)
t W

(j)
t
∥ ≤ cκ−1. This allows for the following estimation

∥P (j)
1 ∥ ≤ 36∥X∥2cκ−1 ≤ 1

4
σ2
min(X ),

where the last inequality follows from the fact that c > 0 is small enough.

Before proceeding with ∥P (j)
2 ∥, consider

(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t ) = (A∗A)(X ∗X⊤ − U t ∗ U⊤

t )−
(
X ∗X⊤ − U t ∗ U⊤

t

)
.

The RHS from above has the following slices in the Fourier domain

(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j) −
(
X(j)X(j)H − U

(j)
t U

(j)H
t

)
,

the norm of which (due to assumption (E.1) and the definition of the tensor spectral norm) can be bounded as

∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j) −
(
X(j)X(j)H − U

(j)
t U

(j)H
t

)
∥ ≤ ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥ ≤ cσ2
min(X ).

This leads to the following estimation
∥P (j)

2 ∥ ≤ 4cσ2
min(X )

To further assess ∥P (j)
3 ∥, we take into account that matrix W (j)

t is an orthogonal matrix and the assumption ∥U t∥ ≤ 3∥X∥,
which allows for the next bound

∥P (j)
3 ∥ ≤ 2∥X(j)∥2∥U (j)

t W
(j)
t ∥2 ≤ 2∥X∥2∥U (j)

t ∥2 ≤ 2∥X∥2∥U t∥2 ≤ 18∥X∥4.

Inserting the newly obtained estimates for ∥P (j)
i ∥, i ∈ {1, 2, 3}, into (E.2), we get

σmin(H
(j)) ≥ (1 + µσ2

min(X
(j))− µ

4
σ2
min(X )− 4µcσ2

min(X )− 18µ2∥X∥4)·

· σmin(V
(j) H
X U

(j)
t )
(
1− µσ2

min(V
(j) H
X U

(j)
t )
)

≥ (1 + µσ2
min(X )− µ

4
σ2
min(X )− 4µcσ2

min(X )− 18µ2∥X∥4)σmin(V
(j) H
X U

(j)
t )
(
1− µσ2

min(V
(j) H
X U

(j)
t )
)
.

Now, according to the assumption on µ, we get

µ2∥X∥4 ≤ µcκ−2∥X∥−2∥X∥4 = µc
σ2
min(X )

∥X∥2
∥X∥−2∥X∥4 = cµσ2

min(X )
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Taking c small enough allows for the following estimation

σmin(H
(j)) ≥ σmin(V

(j) H
X U

(j)
t )
(
1 +

1

2
µσ2

min(X )
)(
1− µσ2

min(V
(j) H
X U

(j)
t )
)

= σmin(V
(j) H
X U

(j)
t )
(
1 +

1

2
µσ2

min(X )
(
1− µσ2

min(V
(j) H
X U

(j)
t )
)
− µσ2

min(V
(j) H
X U

(j)
t )
)

Now, since σmin(V
(j) H
X U

(j)
t ) ≤ σmin(U

(j)
t ) ≤ ∥U t∥ ≤ 3∥X∥, we have that

µσ2
min(V

(j) H
X U

(j)
t ) ≤ µ9∥X∥2 ≤ 9cκ−2 ≤ 1

2

due to the fact that c > 0 can be chosen small enough. The last part of Lemma’s proof follows from
σmin(V⊤

X ∗ U t+1
(j)) ≥ σmin(V⊤

X ∗ U t+1 ∗Wt
(j)) and σmin(V⊤

X ∗ U t+1 ∗Wt
(j)) = σmin(H

(j)), which completes
the argument.

The next two lemmas will allow us to show that in each of the Fourier slices the noise term part of the gradient descent
iterates is growing slower than its signal term part.

Lemma E.2. Assume that µ ≤ cmin
{

1
10∥X∥−2, ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥−1
}

and ∥U t∥ ≤ 3∥X∥. Moreover,

suppose that V⊤
X ∗U t has full tubal rank with all invertible t-SVD-tubes and ∥V⊤

X⊥ ∗ VUt∗Wt
∥ ≤ cκ−1 with a sufficiently

small contact c > 0. Then, the principal angle between VX⊥ and VUt+1∗Wt
can be bounded as follows

∥V⊤
X⊥ ∗ VUt+1∗Wt∥ ≤ 2∥V⊤

X⊥ ∗ VUt∗Wt∥+ 2µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )∥.

In particular, it holds that ∥V⊤
X⊥ ∗ VUt+1∗Wt

∥ ≤ 1/50.

Proof. By the definition of U t+1, we have

U t+1 ∗Wt =
(
I + µA∗A(X ∗X⊤ − U t ∗ U⊤

t )
)
∗ U t ∗Wt ∈ Rn×r×k,

which allows for the following representation in the Fourier domain

U t+1 ∗Wt
(j) =

(
Id + µA∗A(X ∗X⊤ − U t ∗ U⊤

t )
(j)
)
U t ∗Wt

(j) ∈ Cn×r, 1 ≤ j ≤ k.

Consider the SVD decomposition U t ∗Wt
(j) = VUt∗Wt

(j)ΣUt∗Wt
(j)WH

Ut∗Wt
(j) and denote by Z(j) the matrix

Z(j) :=
(
Id + µA∗A(X ∗X⊤ − U t ∗ U⊤

t )
(j)
)
VUt∗Wt

(j) ∈ Cn×r.

Since by assumption U t ∗Wt
(j) has full rank (due to full-rankness of V⊤

X ∗U t, see Lemma C.1), matrix Z(j) has the same
column space as U t+1 ∗Wt

(j) and the principal angle between tensor subspaces VX⊥ and VUt+1∗Wt
can be computed

via Z(j) as

∥V⊤
X⊥ ∗ VUt+1∗Wt

∥ = max
1≤j≤k

∥V (j)H

X⊥ V
(j)
Ut+1∗Wt

∥ = max
1≤j≤k

∥V (j)H

X⊥ V Ut∗Wt
(j)∥ = max

1≤j≤k
∥V (j)H

X⊥ VZ(j)∥.

Now, we will consider each of the terms ∥V (j)H

X⊥ VZ(j)∥ separately and bound them as follows

∥V (j)H

X⊥ VZ(j)∥ ≤ ∥V (j)H

X⊥ VZ(j)ΣZ(j)WH
Z(j)∥∥(ΣZ(j)WH

Z(j))
−1∥ =

∥V (j)H

X⊥ Z(j)∥
σmin(Z(j))

. (E.3)

Using the definition of Z(j), the norm in the numerator above can be estimated as

∥V (j)H

X⊥ Z(j)∥ ≤ ∥V (j)H

X⊥ VUt∗Wt
(j)∥+ µ∥V (j)H

X⊥ A∗A(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥

≤ ∥V (j)H

X⊥ V
(j)
Ut∗Wt

∥+ µ∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥

≤ ∥V⊤
X⊥ ∗ VUt∗Wt

∥+ µ∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )∥.
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Using again the definition of Z(j) and Weyl’s inequality, the denominator in (E.3) can be estimated from below as follows

σmin(Z
(j)) ≥ σmin(VUt∗Wt

(j))− µ∥
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
(j)
)
VUt∗Wt

(j)∥

≥ 1− µ∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥ ≥ 1− µ∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )∥

≥ 1− µ(∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥+ ∥(X ∗X⊤ − U t ∗ U⊤

t )∥)

≥ 1− µ
(
∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥+ ∥X∥2 + ∥U t∥2
)

≥ 1− µ
(
∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥+ 10∥X∥2
)
≥ 1

2
,

where the last inequality follows from the assumption on µ. Now, we can come back to the estimation of ∥V⊤
X⊥∗VUt+1∗Wt

∥,
which due to the combination of the above-carried estimated reads as

∥V⊤
X⊥ ∗ VUt+1∗Wt∥ ≤ 2∥V⊤

X⊥ ∗ VUt∗Wt∥+ 2µ∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )∥

providing the first result from the Lemma. The second bound stated in the Lemma follows from our assumption on
∥V⊤

X⊥ ∗ VUt∗Wt∥ and µ and the fact that the constant c is chosen small enough to make ∥V⊤
X⊥ ∗ VUt+1∗Wt∥ ≤ 1

50 .

Lemma E.3. Assume that µ ≤ c1 min
{

1
10∥X∥−2, ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥−1
}

and ∥U t∥ ≤ 3∥X∥. More-

over, suppose that tensor V⊤
X ∗ U t+1 ∗ Wt has all invertible t-SVD-tubes and that ∥V⊤

X⊥ ∗ VUt∗Wt
∥ ≤ c1κ

−1, with
absolute constant c1 > 0 chosen small enough. Then, it holds that

∥U t+1 ∗Wt+1,⊥
(j)∥ ≤

(
1− µ

2
∥U t ∗Wt,⊥

(j)∥2 + 9µ∥V⊤
X⊥ ∗ VUt∗Wt

(j)∥∥X∥2

+ 2µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
∥U t ∗Wt,⊥

(j)∥

for each j, with 1 ≤ j ≤ k.

Proof. First, we will consider tensor U t+1 ∗ Wt+1,⊥ splitting it into two different parts, and then will conduct the
corresponding norm estimations of each Fourier slices.

To begin with, note that for the tensor-column space of X , that is VX , it holds that VX ∗ V⊤
X + VX⊥ ∗ V⊤

X⊥ = I (see,
for example, (Liu et al., 2019)). Using this, we can represent U t+1 ∗Wt+1,⊥ as follows

U t+1 ∗Wt+1,⊥ = VX ∗V⊤
X ∗U t+1 ∗Wt+1,⊥+VX⊥ ∗V⊤

X⊥ ∗U t+1 ∗Wt+1,⊥ = VX⊥ ∗V⊤
X⊥ ∗U t+1 ∗Wt+1,⊥ (E.4)

where the last equality follows from Lemma C.1 due to the property V⊤
X ∗ U t+1 ∗Wt+1,⊥ = 0.

Now, we split the term VX⊥ ∗V⊤
X⊥ ∗U t+1 ∗Wt+1,⊥ into two parts using Wt ∗W⊤

t +Wt,⊥ ∗W⊤
t,⊥ = I , which leads

to

VX⊥ ∗V⊤
X⊥ ∗U t+1∗Wt+1,⊥ = VX⊥ ∗V⊤

X⊥ ∗U t+1∗Wt∗W⊤
t ∗Wt+1,⊥+VX⊥ ∗V⊤

X⊥ ∗U t+1∗Wt,⊥∗W⊤
t,⊥∗Wt+1,⊥

(E.5)
To estimate the norm of VX⊥ ∗ V⊤

X⊥ ∗ U t ∗Wt+1,⊥ in each slice in the Fourier domain, we will use the above-given
representation and estimate each of the summands individually. Let us start with the second one. Its jth slice in the Fourier
domain reads as

(VX⊥ ∗ V⊤
X⊥ ∗ U t+1 ∗Wt,⊥ ∗W⊤

t,⊥ ∗Wt+1,⊥)
(j) = V

(j)

X⊥V
(j)H

X⊥ U
(j)
t+1W

(j)
t,⊥W

(j),H
t,⊥ W

(j)
t+1,⊥.

Due to the orthogonality of the columns of V
(j)

X⊥ , it holds that ∥V (j)

X⊥V
(j)H

X⊥ U
(j)
t+1W

(j)
t,⊥W

(j),H
t,⊥ W

(j)
t+1,⊥∥ =

∥V (j)H

X⊥ U
(j)
t+1W

(j)
t,⊥W

(j),H
t,⊥ W

(j)
t+1,⊥∥. In the Fourier domain, this allows us to focus on jth slices of the last one

V
(j)H

X⊥ U
(j)
t+1W

(j)
t,⊥W

(j),H
t,⊥ W

(j)
t+1,⊥ := G

(j)
2 .
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Due to the definition of the gradient descent iterates U t+1, we have the following representation for its blocks U (j)
t+1 in the

Fourier domain
U

(j)
t+1 =

(
Id + µ

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j))

U
(j)
t

To upper bound the norm ofG(j)
2 , we want to apply Lemma H.3. Due to the assumptions in this lemma that V⊤

X ∗U t+1 ∗Wt

has full tubal rank with all invertible t-SVD-tubes and ∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ cκ−1 in addition to the conditions on µ and
the decomposition of gradient descent iterates into the signal and noise term, the conditions of Lemma H.3 are satisfied
for the choice Y1 = U

(j)
t+1 and Y = U

(j)
t and Z as Z =

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j)

. This allows to upper-bound the
norm of G(j)

2 as follows

∥G(j)
2 ∥ ≤ ∥U (j)

t W
(j)
t,⊥∥

(
1− µ∥U (j)

t W
(j)
t,⊥∥

2 + µ∥
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

)
+ µ2

(
∥U (j)

t W
(j)
t ∥2 + ∥

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

)
∥U (j)

t W
(j)
t,⊥∥

3

Using now the fact that for each j it holds that

∥
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥ ≤ ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥

and that ∥U (j)
t ∥ ≤ ∥U t∥ ≤ 3∥X∥, we can proceed with the bound for the norm of G(j)

2 as below

∥G(j)
2 ∥ ≤ ∥U (j)

t W
(j)
t,⊥∥

(
1− µ∥U (j)

t W
(j)
t,⊥∥

2 + µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)

+ µ2
(
9∥X∥2 + ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥
)
∥U (j)

t W
(j)
t,⊥∥

3

Further, using the assumption µ ≤ c1 min
{

1
10∥X∥−2, ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥−1
}

, we get

∥G(j)
2 ∥ ≤ ∥U (j)

t W
(j)
t,⊥∥

(
1− µ∥U (j)

t W
(j)
t,⊥∥

2 + µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
+
µ

2
∥U (j)

t W
(j)
t,⊥∥

3

= ∥U (j)
t W

(j)
t,⊥∥

(
1− µ

2
∥U (j)

t W
(j)
t,⊥∥

2 + µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
.

Now, let us return to the first summand in (E.5), that is V⊤
X ∗ U t+1 ∗ Wt ∗ W⊤

t ∗ Wt+1,⊥. Using again the fact that
VX ∗ U t+1 ∗Wt+1,⊥ = 0 allows us to rewrite it as

V⊤
X ∗ U t+1 ∗Wt ∗W⊤

t ∗Wt+1,⊥ = −V⊤
X ∗ U t+1 ∗Wt,⊥ ∗W⊤

t,⊥ ∗Wt+1,⊥ (E.6)

Moreover, for the same summand, the corresponding jth slice in the Fourier domain reads as

V
(j)H

X⊥ U
(j)
t+1W

(j)
t W

(j)H
t W

(j)
t+1,⊥ := G

(j)
1 .

Due to relation (E.6) in the tensor domain, in the Fourier domain it holds that

V
(j)H
X U

(j)
t+1W

(j)
t W

(j)H
t W

(j)
t+1,⊥ = −V (j)H

X U
(j)
t+1W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1,⊥,

which allows to represent W (j)H
t W

(j)
t+1,⊥ as

W
(j)H
t W

(j)
t+1,⊥ = −

(
V

(j)H
X U

(j)
t+1W

(j)
t

)−1

V
(j)H
X U

(j)
t+1W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1,⊥.

Note that the matrix on the RHS above is invertible due to the assumption that V⊤
X ∗ U t+1 ∗Wt has full tubal rank with all

invertible t-SVD-tubes. From here, G(j)
1 can be represented as

G
(j)
1 = V

(j)H

X⊥ U
(j)
t+1W

(j)
t

(
V

(j)H
X U

(j)
t+1W

(j)
t

)−1

V
(j)H
X U

(j)
t+1W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1,⊥.
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According to Lemma H.3, the norm of G(j)
1 can be bounded from above as

∥G(j)
1 ∥ ≤ 2µ

(
∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥U (j)

t W
(j)
t ∥2 + ∥

(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

)
·

· ∥V (j)H

X⊥ V
U

(j)
t+1W

(j)
t
∥∥U (j)

t W
(j)
t,⊥∥

≤ 2µ
(
∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥U (j)

t ∥2 + ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
· ∥V (j)H

X⊥ V
U

(j)
t+1W

(j)
t
∥∥U (j)

t W
(j)
t,⊥∥

≤ 2µ
(
∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥U (j)

t ∥2 + ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
· ∥V⊤

X⊥ ∗ VUt+1∗Wt
∥∥U (j)

t W
(j)
t,⊥∥

Due to ∥V⊤
X⊥ ∗ VUt+1∗Wt

∥ ≤ 1
50 from Lemma E.2, the fact that ∥U (j)

t ∥ ≤ ∥U t∥, and our assumption that ∥U t∥ ≤ 3∥X∥,
the norm of G(j)

1 can be further bounded as

∥G(j)
1 ∥ ≤ µ

(
9∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥X∥2 + ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥
)
∥U (j)

t W
(j)
t,⊥∥

= µ
(
9∥(V⊤

X⊥ ∗ VUt∗Wt
)(j)∥∥X∥2 + ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥
)
∥U (j)

t W
(j)
t,⊥∥.

Since due to representation (E.4), it holds that ∥
(
U t+1 ∗Wt+1,⊥

)
(j)∥ = ∥

(
VX⊥ ∗ U t+1 ∗Wt+1,⊥

)
(j)∥, combining the

inequalities for ∥G(j)
1 ∥ and ∥G(j)

2 ∥ together with U (j)
t W

(j)
t,⊥ =

(
U t ∗Wt,⊥

)
(j) leads to the final result

∥
(
U t+1 ∗Wt+1,⊥

)
(j)∥ ≤

(
1− µ

2
∥
(
U t ∗Wt,⊥

)
(j)∥2 + 9µ∥(V⊤

X⊥ ∗ VUt∗Wt
)(j)∥∥X∥2

+ 2µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
∥
(
U t ∗Wt,⊥

)
(j)∥.

The next lemma shows that the tensors Wt and Wt+1 span approximately the same tensor column space.

Lemma E.4. Assume that the following conditions hold

∥U t∥ ≤ 3∥X∥, (E.7)

µ ≤ c∥X∥−2κ−2 (E.8)

∥V⊤
X⊥ ∗ VUt∗Wt∥ ≤ cκ−1 (E.9)

∥U t ∗Wt,⊥
(j)∥ ≤ 2σmin(U t ∗Wt

(j)), (E.10)

∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥ ≤ cσ2

min(X ). (E.11)

Then it holds that

∥W⊤
t,⊥∗Wt+1∥ ≤ µ

(
1

4800σ
2
min(X )+∥U t∗Wt∥∥U t∗Wt,⊥∥

)
∥V⊤

X⊥ ∗VUt∗Wt
∥+4µ∥(A∗A−I)(X ∗X⊤−U t∗U⊤

t )∥

and σmin(W⊤
t ∗Wt+1

(j)) ≥ 1
2 , 1 ≤ j ≤ k.

Proof. To bound the norm of W⊤
t,⊥ ∗Wt+1, we will rewrite W⊤

t,⊥ ∗Wt+1 in the Fourier domain with the help of Fourier
slices of V⊤

X ∗ U t. First, note that due to the decomposition of the gradient iterates into the noise and signal term, it holds
V⊤

X ∗U t+1 = V⊤
X ∗U t+1∗Wt+1∗W⊤

t+1. This allows us to represent the corresponding jth Fourier slices of V⊤
X ∗U t+1 as

V
(j)H
X U

(j)
t+1 = V

(j)H
X U

(j)
t+1W

(j)
t+1W

(j)H
t+1 , which means that for each j, the matrices V (j)H

X U
(j)
t+1 and V (j)H

X U
(j)
t+1W

(j)
t+1W

(j)H
t+1

have the same kernel, and therefore U (j)H
t+1 V

(j)
X spans the same subspace as W (j)

t+1W
(j)H
t+1 U

(j)H
t+1 V

(j)
X . Due to this and the

following representation of the matrices

U
(j)
t = U

(j)
t W

(j)
t W

(j)H
t + U

(j)
t W

(j)
t W

(j)H
t (E.12)

U
(j)
t+1 = U

(j)
t+1W

(j)
t+1W

(j)H
t+1 + U

(j)
t+1W

(j)
t+1W

(j)H
t+1 , (E.13)
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we can apply Lemma H.4 to estimate the norm of WH
t,⊥W

(j)
t+1 taking Y1 = U

(j)
t+1 and Y = U

(j)
t and Z as

Z(j) :=
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j)

.

This gives us the following estimate

∥WH
t,⊥W

(j)
t+1∥ ≤ µ

(
1 + µ

∥Z(j)∥∥U (j)
t W

(j)
t ∥

σmin(V
(j)H
X U

(j)
t+1)

)
∥U (j)

t W
(j)
t ∥∥U (j)

t W
(j)
t,⊥∥∥V

(j)H
X V

U
(j)
t W

(j)
t
∥ (E.14)

+ µ
∥Z(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

σmin(V
(j)H
X U

(j)
t+1)

∥U (j)
t W

(j)
t,⊥∥.

To proceed further with the upper bound above, we will first show that in each Fourier slice it holds that

σmin
(
V

(j)H
X U

(j)
t+1

)
≥ 1

2
σmin(U

(j)
t W

(j)
t ), 1 ≤ j ≤ k. (E.15)

First, note that

σmin
(
V

(j)H
X U

(j)
t+1

)
≥ σmin

(
V

(j)H
X U

(j)
t+1W

(j)
t+1

)
= σmin

(
V

(j)H
X (Id + µZ(j))U

(j)
t W

(j)
t+1

)
= σmin

(
V

(j)H
X (Id + µZ(j))V

U
(j)
t W

(j)
t+1
V H

U
(j)
t W

(j)
t+1

U
(j)
t W

(j)
t+1

)
≥ σmin

(
V

(j)H
X (Id + µZ(j))V

U
(j)
t W

(j)
t+1

)
· σmin

(
V H

U
(j)
t W

(j)
t+1

U
(j)
t W

(j)
t+1

)
≥
(
σmin

(
V

(j)H
X V

U
(j)
t W

(j)
t+1

)
− µ

∥∥V (j)H
X Z(j)V

U
(j)
t W

(j)
t+1

∥∥) · σmin
(
V H

U
(j)
t W

(j)
t+1

U
(j)
t W

(j)
t+1

)
.

Due to our assumption (E.9) on the principal angle ∥V⊤
X⊥ ∗VUt∗Wt

∥ and the properties of the tensor slices, we have that

σmin

(
V

(j)H
X V

U
(j)
t W

(j)
t+1

)
≥ σmin

(
V⊤

X ∗ VUt∗Wt+1

)
=

√
1−

∥∥∥V⊤
X ∗ VUt∗Wt+1

∥∥∥2 ≥ 3

4
,

where that last inequality can be guaranteed by choosing c > 0 small enough. Thus, to show that relation (E.15) holds we
need to demonstrate that µ

∥∥V (j)H
X Z(j)V

U
(j)
t W

(j)
t+1

∥∥ be bounded from above by 1
4 . For this, we will proceed as follows

µ
∥∥V (j)H

X Z(j)V
U

(j)
t W

(j)
t+1

∥∥ ≤ µ
∥∥Z(j)

∥∥ ≤ µ
∥∥Z(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )

∥∥+ µ
∥∥X(j)X(j)H − U

(j)
t U

(j)H
t ∥. (E.16)

By the definition of Z(j), for the first summand from above we have∥∥∥Z(j) − (X(j)X(j)H − U
(j)
t U

(j)H
t )

∥∥∥ =
∥∥∥(A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )

∥∥∥
=
∥∥∥(I − A∗A

)
(X ∗X⊤ − U t ∗ U⊤

t )
(j)
∥∥∥

≤
∥∥∥(I − A∗A

)
(X ∗X⊤ − U t ∗ U⊤

t )
∥∥∥

and for the second summand, it holds that

∥X(j)X(j)H − U
(j)
t U

(j)H
t ∥ ≤ ∥X ∗X⊤ − U t ∗ U⊤

t ∥ ≤ ∥X∥2 + ∥U t∥2.

This allows us to proceed with inequality (E.16) as

µ
∥∥V (j)H

X Z(j)V
U

(j)
t W

(j)
t+1

∥∥ ≤ µ
∥∥(I − A∗A

)
(X ∗X⊤ − U t ∗ U⊤

t )
∥∥+ µ(∥X∥2 + ∥U t∥2)

≤ µ
∥∥(I − A∗A

)
(X ∗X⊤ − U t ∗ U⊤

t )
∥∥+ 10µ∥X∥2) ≤ µcσ2

min(X ) + 11µ∥X∥2 ≤ 1

2
,
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where in the first line we used assumption (E.7), and in the second assumption(E.11). The third inequality above follows
from our assumption on µ and sufficiently small constant c > 0. This, in turn, shows that relation (E.15) holds and we can
proceed with (E.14) in the following manner

∥WH
t,⊥W

(j)
t+1∥ ≤ µ

(
1 + 2µ

∥Z(j)∥∥U (j)
t W

(j)
t ∥

σmin(U
(j)
t W

(j)
t )

)
∥U (j)

t W
(j)
t ∥∥U (j)

t W
(j)
t,⊥∥∥V

(j)H
X V

U
(j)
t W

(j)
t
∥

+ 2µ
∥Z(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

σmin(U
(j)
t W

(j)
t )

∥U (j)
t W

(j)
t,⊥∥.

Now, using assumption (E.10) and the definition of Z(j), we have

∥WH
t,⊥W

(j)
t+1∥ ≤ µ∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥U (j)

t W
(j)
t ∥∥U (j)

t W
(j)
t,⊥∥

+ 4µ∥
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j) − (X(j)X(j)H − U

(j)
t U

(j)H
t )∥

+ 4µ2∥
(
A∗A(X ∗X⊤ − U t ∗ U⊤

t )
)(j)∥∥U (j)

t W
(j)
t ∥2∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥

≤ µ∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥∥U (j)

t W
(j)
t ∥∥U (j)

t W
(j)
t,⊥∥

+ 4µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥

+ 4µ2∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )∥∥U

(j)
t W

(j)
t ∥2∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥.

In the last inequality, we used the tensor norm as the maximum norm in each Fourier slice. Note that, similarly to one of the
estimates above, we get

∥A∗A(X ∗X⊤ − U t ∗ U⊤
t )∥ ≤ ∥X ∗X⊤ − U t ∗ U⊤

t ∥+ ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥

≤ ∥X∥2 + ∥U t∥2 + cσ2
min(X ) ≤ 11∥X∥2 (E.17)

where the last line holds due to the assumption ∥U t∥ ≤ 3∥X∥ and that c is small enough.

Now, since µ ≤ c∥X∥−2κ−2, ∥U (j)
t W

(j)
t ∥ ≤ ∥U t∥ ≤ 3∥X∥ and ∥U (j)

t W
(j)
t,⊥∥ ≤ ∥U t∥ ≤ 3∥X∥, constant c > 0 can

be chosen so that 4µ · 11∥X∥2 ≤ 1
4800σ

2
min(X ), together with (E.17) and (E.11) we can proceed with the estimation of

WH
t,⊥W

(j)
t+1 as

∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ µ

(
1

4800σ
2
min(X ) + 9∥X∥2

)
∥V (j)H

X⊥ V
U

(j)
t W

(j)
t
∥+ 4µcσ2

min(X ).

Using the assumption µ ≤ c∥X∥−2 and choosing c > 0 small enough, we obtain that ∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ 1

2 . Note that this

implies that σmin(W⊤
t ∗Wt+1

(j)) =
√
1− ∥W (j)H

t,⊥ W
(j)
t+1∥2 ≥ 1

2 , which finishes the proof.

Lemma E.5. Assume that the following conditions hold

∥U t ∗Wt,⊥
(j)∥ ≤ 2σmin(U t ∗Wt

(j)), (E.18)
∥U t∥ ≤ 3∥X∥, (E.19)

∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ c̃ (E.20)

µ ≤ c∥X∥−2κ−2 (E.21)

∥U t ∗Wt,⊥∥ ≤ cκ−2∥X∥ (E.22)

∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥ ≤ cσ2

min(X ). (E.23)

Then the angle between the column space of the signal term U t ∗Wt and column space of X stays sufficiently small from
one iteration to another, namely

∥V⊤
X⊥ ∗ VUt+1∗Wt+1

∥ ≤
(
1− µ

4
σ2

min(X )
)
∥V⊤

X⊥ ∗ VUt∗Wt
∥

+ 150µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥+ 500µ2∥X ∗X⊤ − U t ∗ U⊤

t ∥2.
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Proof. To estimate the principal angle ∥V⊤
X⊥ ∗ VUt+1∗Wt+1

∥, we first investigate the tensor-column subspace of U t+1 ∗
Wt+1. By the definition of U t+1 and Wt ∗W⊤

t +Wt,⊥ ∗W⊤
t,⊥ = I, we have

U t+1 ∗Wt+1 =
(
I + µ(A∗A)(X ∗X⊤ − U t ∗ U⊤

t )
)
∗ U t ∗Wt+1

= (I + µZ) ∗ U t ∗Wt ∗W⊤
t ∗Wt+1 + (I + µZ) ∗ U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗Wt+1.

where we use notation Z := (A∗A)(X ∗X⊤−U t ∗U⊤
t ). This allows to represent jth slice of U t+1 ∗Wt+1 in the Fourier

domain as

U
(j)
t+1W

(j)
t+1 = (Id + µZ(j))U

(j)
t W

(j)
t W

(j)H
t W

(j)
t+1 + (Id + µZ(j))U

(j)
t W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1.

with Z(j) = (A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j). Because of this representation and decomposition (E.12), to bound the
principal angle between U t+1 ∗Wt+1 and X , we want to apply inequality (H.5) from Lemma H.4, but for this we first
need to check whether for

P (j) := U
(j)
t W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1

(
V H

U
(j)
t W

(j)
t

U
(j)
t W

(j)
t W

(j)H
t W

(j)
t+1

)−1

V H

U
(j)
t W

(j)
t

the following applies
∥µZ(j) + P (j) + µZ(j)P (j)∥ ≤ 1.

For convenience, we denote B(j) := µZ(j) + P (j) + µZ(j)P (j). Using the triangular inequality and submultiplicativity of
the norm, we bet the first simple bound on the norm of B(j)

∥B(j)∥ ≤ µ∥Z(j)∥+ (1 + µ∥Z(j)∥)∥P (j)∥ (E.24)

Note that P (j) can be rewritten as

P (j) = U
(j)
t W

(j)
t,⊥W

(j)H
t,⊥ W

(j)
t+1

(
W

(j)H
t W

(j)
t+1

)−1(
V H

U
(j)
t W

(j)
t

U
(j)
t W

(j)
t

)−1

V H

U
(j)
t W

(j)
t

,

which allows for the following estimate of its norm

∥P (j)∥ ≤ ∥U (j)
t W

(j)
t,⊥∥∥W

(j)H
t,⊥ W

(j)
t+1∥

∥∥∥(W (j)H
t W

(j)
t+1

)−1∥∥∥∥∥∥(V H

U
(j)
t W

(j)
t

U
(j)
t W

(j)
t

)−1∥∥∥∥V H

U
(j)
t W

(j)
t

∥

≤
∥U (j)

t W
(j)
t,⊥∥∥W

(j)H
t,⊥ W

(j)
t+1∥

σmin(W
(j)H
t W

(j)
t+1) · σmin(U

(j)
t W

(j)
t )

.

From here, using assumption (E.18) and a lower bound on σmin(W
(j)H
t W

(j)
t+1) from Lemma E.4, we get

∥P (j)∥ ≤ 4∥W (j)H
t,⊥ W

(j)
t+1∥. (E.25)

Using this and the definition of Z(j), we have

∥B(j)∥ ≤ µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥+ 4
(
1 + µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤

t )
(j)∥
)
∥W (j)H

t,⊥ W
(j)
t+1∥. (E.26)

Due to the assumption on µ, we can bound µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥ as follows

µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥ ≤ µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥
≤ µ∥(I − A∗A)(X ∗X⊤ − U t ∗ U⊤

t )∥+ µ∥X ∗X⊤ − U t ∗ U⊤
t ∥

≤ µ(cσ2
min(X ) + 10∥X∥2) ≤ 1

where in the two last inequalities we use assumptions (E.23), (E.19) and (E.21) with the fact for the learning rate constant
c > 0 can be chosen sufficiently small.
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This, in turn, allows us to proceed with inequality (E.26) as

∥B(j)∥ ≤ µ∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥+ 8∥W (j)H
t,⊥ W

(j)
t+1∥. (E.27)

Now, applying the bound on ∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ ∥W⊤

t,⊥ ∗ Wt+1∥ from Lemma E.4 and similar transformation for

∥(A∗A)(X ∗X⊤ − U t ∗ U⊤
t )

(j)∥ as above, we come the following result in (E.27)

∥B(j)∥ ≤ µ∥X ∗X⊤ − U t ∗ U⊤
t ∥+ µ

(
1

600σmin(X )2 + 8∥U t ∗Wt∥∥U t ∗Wt,⊥∥
)
∥V⊤

X⊥ ∗ VUt∗Wt
∥

+ 33µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥

To show that this bound above can be made smaller than one, we use assumptions (E.22), (E.23) and that ∥U t ∗Wt∥ ≤
∥U∥ ≤ 2∥X∥, which leads to

∥B(j)∥ ≤ µ∥X ∗X⊤ − U t ∗ U⊤
t ∥+ µ

(
1

600σmin(X )2 + 8c
σmin(X )

κ2
· 3∥X∥

)
∥V⊤

X⊥ ∗ VUt∗Wt
∥+ 33µcσ2

min(X )

≤ µ10∥X∥2 + µc
1

300
σ2

min(X ) + 33µcσ2
min(X ) ≤ 1,

with the last inequality following from the assumption on µ. In such a way, we check the conditions of Lemma H.4 to be
able to apply inequality (H.5). This gives
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U

(j)
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(j)
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(j)
t W

(j)
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)2

.

Applying again assumption (E.18) and a lower bound on σmin(W
(j)H
t W

(j)
t+1) from Lemma E.4 as for (E.25), in addition to

(E.22), we get

∥V (j)H

X⊥ V
U
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(j)
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.

Now, making
(
1 + µ∥Z(j)∥

)
≤ 3 by choosing c > 0 small enough and using the properties of the terms involved, the above

inequality gets the following view
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)2
. (E.28)

To proceed further with (E.28), we will first do several auxiliary estimates. We start by bounding the norm ∥W (j)H
t,⊥ W

(j)
t+1∥.

Since it holds that ∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ ∥W⊤

t,⊥ ∗Wt+1∥, from Lemma E.4, one gets

∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ µ

(
1

4800σ
2
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∥V⊤

X⊥ ∗ VUt∗Wt∥

+ 4µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
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1
4800σ

2
min(X ) + 3cσ2
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∥V⊤
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2400µσ
2
min(X )∥V⊤

X⊥ ∗ VUt∗Wt
∥+ 4µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥ (E.29)
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where we use in the second inequality that ∥U t ∗Wt∥ ≤ ∥U t∥ ≤ 3∥X∥ and ∥U t ∗Wt,⊥∥ ≤ cκ−2∥X∥ by assumption,
and in the last line that c > 0 can be chosen small enough. Using this estimate, let us bound from above the squared term in
(E.28) as follows

µ∥Z(j)∥+ 12∥W (j)H
t,⊥ W

(j)
t+1∥ ≤ µ∥Z(j)∥+ µ

σ2
min(X )

200
∥V⊤

X⊥ ∗ VUt∗Wt
∥+ 48µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
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≤ µ∥X(j)X(j)H − U
(j)
t U
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t ∥+ µ

σ2
min(X )

200
∥V⊤

X⊥ ∗ VUt∗Wt∥

+ 49µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥.

From here, using Jensen’s inequality, we obtain

(µ∥Z(j)∥+ 12∥W (j)H
t,⊥ W
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4
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2002
∥V⊤

X⊥ ∗ VUt∗Wt
∥2

+ 3 · 492µ2∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥2.

Now, we can come back to bounding (E.28) proceeding as follows

∥V (j)H
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U

(j)
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∥
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4µ

300
σ2

min(X ) +
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2002
κ−4c̃ · cµσ2
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where for the last inequality we used assumptions (E.23), (E.20) and (E.21), and the properties of the tubal tensor norm.
Now choosing constant c > 0 sufficiently small, we obtain that

∥V (j)H

X⊥ V
U

(j)
t+1W

(j)
t+1

∥ ≤
(
1− µ

4
σ2

min(X )
)
∥V⊤

X⊥ ∗ VUt∗Wt∥+ 200µ2∥X ∗X⊤ − U t ∗ U⊤
t ∥2

+ 150∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥.

Since the right-hand side of the above inequality is independent of j, we obtain the lemma statement.

The following lemma shows that under a mild condition the technical assumption

∥U t+1∥ ≤ 3∥X∥

needed in the lemmas above holds.

Lemma E.6. Assume that ∥U t∥ ≤ 3∥X∥, µ ≤ 1
27∥X∥−2 and that linear measurement operator A is such that

∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥ ≤ ∥X∥2

Then for the iteration t+ 1, it also holds ∥U t+1∥ ≤ 3∥X∥.

Proof. Consider the gradient iterate

U t+1 = U t + µA∗A(X ∗X⊤ − U t ∗ U⊤
t ) ∗ U t

= U t + µ(X ∗X⊤ − U t ∗ U⊤
t ) ∗ U t + µ(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t ) ∗ U t

= (I − µU t ∗ U⊤
t ) ∗ U t + µX ∗X⊤ ∗ U t + µ(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t ) ∗ U t.
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To estimate the norm of U t+1, we will bound each summand above separately. Due to the assumption on µ and the norm of
U t, we have µ ≤ 1

27∥X∥−2 ≤ 1
3∥U t∥−2. This allows us to estimate the tensor norm of (I − µU t ∗U⊤

t ) ∗U t via the norm
of matrix block representation in the Fourier domain. Namely, assume that matrix U t has the SVD U t = V ΣWH. Then for
matrix (I − µU t ∗ U⊤

t ) ∗ U t, we have

(I − µU t ∗ U⊤
t ) ∗ U t = V ΣWH − µV ΣWHWΣV HV ΣWH = V ΣWH − µV Σ3WH = V (Σ− µΣ3)WH.

From here, since µ ≤ 1
27∥X∥−2 ≤ 1

3∥U∥−2 and ∥U t∥ = ∥U t∥, it holds that

∥(I − µU t ∗ U⊤
t ) ∗ U t∥ = ∥U t∥ − µ∥U t∥3 = ∥U t∥(1− µ∥U t∥2). Besides, from the submultiplicativity of the

tensor norm and the triangle inequality, we obtain that

∥U t+1∥ ≤ (1− µ∥U t∥2 + µ∥X∥2 + µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥)∥U t∥ (E.30)

≤ (1− µ∥U t∥2 + 2µ∥X∥2)∥U t∥, (E.31)

where in the last line we used the assumption on ∥(A∗A−I)(X ∗X⊤ −U t ∗U⊤
t )∥. By combining inequality (E.31) with

the assumption µ ≤ 1
27∥X∥2 ≤ 1

3∥U∥2 , we obtain that ∥U t+1∥ ≤ 3∥X∥ , which finishes the proof.

The following lemma shows that U t ∗Wt ∗W⊤
t ∗U⊤

t converges towards X ∗X T , when projected onto the tensor column
space of X .

Lemma E.7. Assume that the following conditions hold

∥U t∥ ≤ 3∥X∥ (E.32)

µ ≤ c · 1√
nk

· κ−2∥X∥−2 (E.33)

σmin(U t ∗Wt) ≥
1√
10
σmin(X ) (E.34)

∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ cκ−2 (E.35)

and
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F
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Ut∗Wt
∗ (A∗A− I)(Yt)

∥∥
F
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∥∥(A∗A− I)(Yt)

∥∥} ≤ κ−2∥Yt∥F

with Yt := X ∗X⊤ − U t ∗ U⊤
t . Then it holds that
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t,⊥ ∗ U⊤

t ∥F (E.36)

as well as
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t ∥F (E.37)

and
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t+1)∥F ≤
(
1− µ

200
σ2

min(X )
)
∥V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F

+ µ
σ2

min(X )

100
∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t ∥F (E.38)

Proof. We start by proving the first inequality (E.38). For this, let us decompose V⊤
X⊥ ∗ U t ∗ U⊤

t as follows

V⊤
X⊥ ∗ U t ∗ U⊤

t = V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ VX ∗ V⊤
X + V⊤

X⊥ ∗ U t ∗ U⊤
t ∗ VX⊥ ∗ V⊤

X⊥ ,

then using the triangle inequality and submultiplicativity of the Frobenius and the spectral norm, we obtain

∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∥F ≤ ∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ VX ∥F + ∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ VX⊥∥F
≤ ∥V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t ) ∗ VX ∥F + ∥V⊤

X⊥ ∗ U t ∗ U⊤
t ∗ VX⊥∥F

≤ ∥V⊤
X ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F + ∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ VX⊥∥F , (E.39)
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where in the second line, we used the orthogonality of the decomposition. Now, we will work additionally on bounding the
norm of V⊤

X⊥ ∗ U t ∗ U⊤
t ∗VX⊥ to obtain (E.38). Here, we will use the orthogonal decomposition with respect to Wt and

Wt,⊥, which leads to

∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∗ VX⊥∥F ≤ ∥V⊤
X⊥ ∗ U t ∗Wt ∗W⊤

t ∗ U⊤
t ∗ VX⊥∥F + ∥V⊤

X⊥ ∗ U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t ∗ VX⊥∥F
≤ ∥V⊤

X⊥ ∗ U t ∗Wt ∗W⊤
t ∗ U⊤

t ∗ VX⊥∥F + ∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t ∥F

Now, for the first term above, we get

∥V⊤
X⊥ ∗ U t ∗Wt ∗W⊤

t ∗ U⊤
t ∗ VX⊥∥F = ∥V⊤

X⊥ ∗ VUt∗Wt ∗ V
⊤
Ut∗Wt

∗ U t ∗Wt ∗W⊤
t ∗ U⊤

t ∗ VX⊥∥F

=

k∑
j=1

∥V⊤
X⊥ ∗ VUt∗Wt

∗ V⊤
Ut∗Wt

∗ U t ∗Wt ∗W⊤
t ∗ U⊤

t ∗ VX⊥
(j)∥F

=

k∑
j=1

∥V (j)H

X⊥ V
(j)
Ut∗Wt

V
(j)H
Ut∗Wt

U
(j)
t W

(j)
t W

(j)H
t U

(j)H
t V

(j)

X⊥∥F

=

k∑
j=1

∥V (j)H

X⊥ V
(j)
Ut∗Wt

(
V

(j)H

X⊥ V
(j)
Ut∗Wt

)−1

V
(j)H

X⊥ V
(j)
Ut∗Wt

V
(j)H
Ut∗Wt

U
(j)
t W

(j)
t W

(j)H
t U

(j)H
t V

(j)

X⊥∥F

≤ max
1≤j≤k

∥V (j)H

X⊥ V
(j)
Ut∗Wt

∥ max
1≤j≤k

∥∥∥∥(V (j)H

X⊥ V
(j)
Ut∗Wt

)−1
∥∥∥∥ k∑

j=1

∥V (j)H

X⊥ V
(j)
Ut∗Wt

V
(j)H
Ut∗Wt

U
(j)
t W

(j)
t W

(j)H
t U

(j)H
t V

(j)

X⊥∥F

=
∥V⊤

X⊥ ∗ VUt∗Wt
∥

σmin(V⊤
X⊥ ∗ VUt∗Wt)

k∑
j=1

∥V (j)H

X⊥ V
(j)
Ut∗Wt

V
(j)H
Ut∗Wt

U
(j)
t W

(j)
t W

(j)H
t U

(j)H
t V

(j)

X⊥∥F

=
∥V⊤

X⊥ ∗ VUt∗Wt
∥

σmin(V⊤
X⊥ ∗ VUt∗Wt

)

k∑
j=1

∥V (j)H

X⊥ U
(j)
t W

(j)
t W

(j)H
t U

(j)H
t V

(j)

X⊥∥F

=
∥V⊤

X⊥ ∗ VUt∗Wt∥
σmin(V⊤

X⊥ ∗ VUt∗Wt
)
∥VX⊥ ∗ U t ∗Wt ∗W⊤

t ∗ U⊤
t ∗ VX⊥∥F

=
∥V⊤

X⊥ ∗ VUt∗Wt
∥

σmin(V⊤
X⊥ ∗ VUt∗Wt

)
∥VX⊥ ∗ U t ∗ U⊤

t ∗ VX⊥∥F

=
∥V⊤

X⊥ ∗ VUt∗Wt
∥

σmin(V⊤
X⊥ ∗ VUt∗Wt

)
∥VX⊥ ∗ (X ∗X⊤ − U t ∗ U⊤

t ) ∗ VX⊥∥F

≤
∥V⊤

X⊥ ∗ VUt∗Wt
∥

σmin(V⊤
X⊥ ∗ VUt∗Wt)

∥VX⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F ≤ 2∥VX⊥ ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F

where in the last line we used the assumption (E.35). Them, using just established bound together with (E.39), we get

∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∥F ≤ 3∥V⊤
X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F + ∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t ∥F .

To get inequality (E.37), we use the orthogonal decomposition of X ∗X⊤ −U t ∗U⊤
t with respect to VX and VX⊥ , which

leads to

∥X ∗X⊤ − U t ∗ U⊤
t ∥F = ∥V⊤

X ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F + ∥V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F

= ∥V⊤
X ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F + ∥V⊤
X⊥ ∗ U t ∗ U⊤

t ∥F
≤ 4∥V⊤

X ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F + ∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t ∥F .

Inequality (E.38) follows from the two inequalities proved here and Lemma 9.5 in (Stöger & Soltanolkotabi, 2021). The
building stones for this are the properties of the tubal tensor Frobenius norm. Namely, the Frobenius norm of any tubal
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tensor T can be represented as the sum of Frobenius norms of each slice in the domain, that is

∥T ∥F =

k∑
j=1

∥T (j)∥F

and ∥T ∥F ≤
√
n · k∥T ∥. Besides, the Frobenius norm of the product of two tensors T and P can be bounded as below

∥T ∗P∥F =

k∑
j=1

∥T (j)P (j)∥F ≤ max
1≤j≤k

∥T (j)∥
k∑

j=1

∥P (j)∥F ≤ ∥T ∥∥P∥F .

Now, we have collected all the necessary ingredients to prove the main result of this section, which shows that after a
sufficient number of interactions, the relative error between U t ∗ U⊤

t and X ∗X⊤ becomes small.

Theorem E.1. Suppose that the stepsize satisfies µ ≤ c1
√
kκ−4∥X∥−2 for some small c1 > 0, and A : Sn×n×k → Rm

satisfies RIP(2r + 1, δ) for some constant 0 < δ ≤ c1
κ4

√
r

. Set γ ∈ (0, 12 ), and choose a number of iterations t∗

such that σmin(U t∗ ∗ Wt∗) ≥ γ. Also, assume that ∥U t∗ ∗ Wt∗,⊥∥ ≤ 2γ, ∥U t∗∥ ≤ 3∥X∥, γ ≤ c2σmin(X )

κ2 min{n,R}
, and

∥V⊤
X⊥ ∗ VUt∗∗Wt∗

∥ ≤ c2κ
−2 for some small c2 > 0. Then, after

t̂− t∗ ≲
1

µσmin(X )2
ln

(
min

{
1,

κr

k(min{n,R} − r)

}
∥X∥
γ

)
additional iterations, we have

∥U t̂ ∗ U
⊤
t̂
−X ∗X⊤∥F

∥X∥2
≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥−21/16.

Proof. First, we set

t1 = min
{
t ≥ t∗ : σmin(V⊤

X ∗ U t) ≥ 1√
10
σmin(X )

}
,

and then aim to prove that over the iterations t∗ ≤ t ≤ t1, the following hold:

• σmin(V⊤
X ∗ U t) ≥ 1

2γ
(
1 + 1

8µσmin(X )2
)t−t∗

• ∥U t ∗Wt,⊥∥ ≤ 2γ
(
1 + 80µc2

√
kσmin(X )2

)t−t∗

• ∥U t∥ ≤ 3∥X∥

• ∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ c2κ
−2.

Intuitively, this means that over the range t∗ ≤ t ≤ t1, the smallest singular value of the signal term V⊤
X ∗ U t grows at a

faster rate than the largest singular value of the noise term U t ∗Wt,⊥.

For t = t∗, these inequalities hold due to the assumptions of this theorem. Now, suppose they hold for some t between t∗
and t1. We’ll show they also hold for t+ 1.
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First, note that we have:

∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥

=∥(A∗A− I)(X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U⊤

t − U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t )∥

≤∥(A∗A− I)(X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U⊤

t )∥+ ∥(A∗A− I)(U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤
t )∥

(a) ≤δ
√
kr∥X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U⊤
t ∥+ δ

√
k∥U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤

t ∥∗

≤δ
√
kr
(
∥X ∗X⊤∥+ ∥U t ∗Wt ∗W⊤

t ∗ U⊤
t ∥
)
+ δ

√
k∥U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤

t ∥∗

=δ
√
kr
(
∥X∥2 + ∥U t ∗Wt∥2

)
+ δ

√
k∥U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤

t ∥∗
≤δ

√
kr
(
∥X∥2 + ∥U t∥2

)
+ δ

√
k∥U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤

t ∥∗
(b) ≤δ

√
kr
(
∥X∥2 + 9∥X∥2

)
+ δ

√
k(min{n,R} − r)∥U t ∗Wt,⊥ ∗Wt,⊥ ∗ U⊤

t ∥

≤10δ
√
kr∥X∥2 + δ

√
k(min{n,R} − r)∥U t ∗Wt,⊥∥2

≤10δ
√
krκ2σmin(X )2 + δ

√
k(min{n,R} − r)∥U t ∗Wt,⊥∥2

(c) ≤10c1
√
kκ−2σmin(X )2 + 4δ

√
k(min{n,R} − r)γ2

(
1 + 80µc2σmin(X )2

)2(t−t∗)

(d) ≤10c1
√
kκ−2σmin(X )2 + 8δ

√
k(min{n,R} − r)γ7/4σmin(X )1/4

(e) ≤40c1
√
kκ−2σmin(X )2.

In inequality (a), we used the fact that A satisfies RIP(2r + 1, δ) (and hence, RIP(r + 1, δ) and RIP(2, δ)), and thus, by
Lemmas G.2 and G.3, also satisfies S2SRIP(r, δ

√
kr) and S2NRIP(δ

√
k). Inequality (b) uses the assumption ∥U t∥ ≤ 3∥X∥

and the fact that U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗U⊤

t has tubal rank at most min{n,R} − r. In inequality (c), we used the assumption

δ ≤ c1
κ4

√
r

along with the second bulleted inequality assumed by the inductive step. Inequality (d) holds due to the

definitions of t1 and t∗ and the fact that t∗ ≤ t ≤ t1. Finally, inequality (e) holds due to the assumption γ ≤ c2σmin(X )
κ2 min{n,R} .

If c1 is chosen small enough, the above bound is less than ∥X∥. Then, along with our other assumptions, we can use
Lemma E.6 to obtain ∥U t+1∥ ≤ 3∥X∥.

Next, we can use Lemma E.1 along with the bound σmin(V⊤
X ∗ U t) ≤ 1√

10
σmin(X ) to obtain

σmin(V⊤
X ∗ U t+1) ≥ σmin(V⊤

X ∗ U t+1 ∗Wt+1)

≥ σmin(V⊤
X ∗ U t)

(
1 +

1

4
µσmin(X )2 − µσmin(V⊤

X ∗ U t)
2

)
≥ σmin(V⊤

X ∗ U t)

(
1 +

1

4
µσmin(X )2 − 1

10
µσmin(X )2

)
≥ σmin(V⊤

X ∗ U t)

(
1 +

1

8
µσmin(X )2

)
≥ 1

2
γ

(
1 +

1

8
µσmin(X )2

)t−t∗

·
(
1 +

1

8
µσmin(X )2

)
=

1

2
γ

(
1 +

1

8
µσmin(X )2

)t−t∗+1

Since σmin(V⊤
X ∗ U t+1 ∗ Wt+1) = σmin(V⊤

X ∗ U t+1), which is positive by the above bound, all the singular tubes of
V⊤

X ∗ U t+1 ∗Wt+1 are invertible. Hence, we can apply Lemma E.3 to obtain
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∥U t+1 ∗Wt+1,⊥
(j)∥ ≤

(
1− µ

2
∥U t ∗Wt,⊥

(j)∥2 + 9µ∥V⊤
X⊥ ∗ VUt∗Wt

(j)∥∥X∥2

+ 2µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥
)
∥U t ∗Wt,⊥

(j)∥

≤
(
1− µ

2
· 4γ2

(
1 + 80µc2

√
kσmin(X )2

)2(t−t∗)

+ 9µc2κ
−2∥X∥2

+ 2µ · 40c1
√
kκ−2σmin(X )2

)
∥U t ∗Wt,⊥

(j)∥

≤
(
1− µ

2
· 4γ2

(
1 + 80µc2

√
kσmin(X )2

)2(t−t∗)

+ 9µc2σmin(X )2

+ 80c1µ
√
kκ−2σmin(X )2

)
∥U t ∗Wt,⊥

(j)∥

≤
(
1 + 80c1µ

√
kκ−2σmin(X )2

)
∥U t ∗Wt,⊥

(j)∥

≤
(
1 + 80c1µ

√
kσmin(X )2

)
∥U t ∗Wt,⊥

(j)∥

≤ 2γ
(
1 + 80c1µ

√
kσmin(X )2

)t−t∗+1

,

where we have used the inductive assumption that the inequalities hold for t along with the fact that κ = ∥X∥/σmin(X ) ≥ 1.

Next, we will bound the term using Lemma E.5

∥V⊤
X⊥ ∗ VUt+1∗Wt+1∥

≤
(
1− µ

4
σ2

min(X )
)
∥V⊤

X⊥ ∗ VUt∗Wt
∥+ 150µ∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤

t )∥+ 500µ2∥X ∗X⊤ − U t ∗ U⊤
t ∥2

≤
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 150µ · 40c1
√
kκ−2σmin(X )2 + 500µ2 · (∥X∥2 + ∥U t∥2)

≤
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 6000µc1
√
kκ−2σmin(X )2 + 500µ2 · (∥X∥2 + 9∥X∥2)2

=
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 6000µc1
√
kκ−2σmin(X )2 + 50000µ2∥X∥4

≤
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 6000µc1
√
kκ−2σmin(X )2 + 50000µ · c1κ−4∥X∥−2 · ∥X∥4

=
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 6000µc1
√
kκ−2σmin(X )2 + 50000µ · c1κ−4∥X∥2

=
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 6000µc1
√
kκ−2σmin(X )2 + 50000µ · c1κ−4κ2σmin(X )2

=
(
1− µ

4
σ2

min(X )
)
c2κ

−2 + 56000µc1
√
kκ−2σmin(X )2

Here, we have again used the inductive assumptions along with the fact that κ = ∥X∥/σmin(X ). If we choose c1 sufficiently
small, we will have ∥V⊤

X⊥ ∗ VUt+1∗Wt+1
∥ ≤ c2κ

−2.

Therefore, the four bullet points hold for t+ 1, and thus, the induction is complete.

With the above bullet points in mind, we note that

1√
10
σmin(X ) ≥ σmin(V⊤

X ∗ U t1) ≥
1

2
γ

(
1 +

1

8
µσmin(X )2

)t1−t∗

,

and so,

t1 − t∗ ≤
log

(
2

γ
√
10
σmin(X )

)
log

(
1 +

1

8
µσmin(X )2

) ≤ 16

µσmin(X )2
log

(
2

γ
√
10
σmin(X )

)
,
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where we have used the inequality 1
log(1+x) ≤

2
x for 0 < x < 1. Furthermore, we can bound the norm of the signal term at

iteration t1 by

∥U t1 ∗Wt1,⊥∥ ≤ 2γ
(
1 + 80µc2

√
kσmin(X )2

)t1−t∗

≤ 2γ

(
2√
10

· σmin(X )

γ

)1280c2

≤ 2γ

(
2√
10

· σmin(X )

γ

)1/64

≤ 3γ63/64σmin(X )1/64

≤ 3γ7/8σmin(X )1/8,

where we have used the previous bound on t1 − t∗, the fact that c2 > 0 can be chosen to be sufficiently small, and the fact
that σmin(X ) ≥ γ.

Next, we set

t2 = t1 +

⌊
300

µσmin(X )2
ln

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)⌋

t3 = min
{
t ≥ t1 :

(√
k(min{n,R} − r) + 1

)∥∥∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t

∥∥∥
F
≥ ∥X ∗X⊤ − U t ∗ U⊤

t ∥F
}

t̂ = min{t2, t3}.

We now aim to show that over the range t1 ≤ t ≤ t̂, the following inequalities hold:

• σmin(U t ∗Wt) ≥ σmin(V⊤
X ∗ U t) ≥

1√
10
σmin(X )

• ∥U t ∗Wt,⊥∥ ≤
(
1 + 80µc2

√
kσmin(X )2

)t−t1
∥U t1 ∗Wt1,⊥∥

• ∥U t∥ ≤ 3∥X∥

• ∥V⊤
X⊥ ∗ VUt∗Wt

∥ ≤ c2κ
−2

• ∥V⊤
X ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F ≤ 10
√
kr
(
1− 1

400µσmin(X )2
)t−t1 ∥X∥2

For t = t1, the first four bullet points follow from what we previously proved via induction. The last one holds since we
trivially have

∥V⊤
X ∗ (X ∗X⊤ − U t1 ∗ U

⊤
t1)∥F ≤

√
kr∥V⊤

X ∗ (X ∗X⊤ − U t1 ∗ U
⊤
t1)∥

≤
√
kr∥X ∗X⊤ − U t1 ∗ U

⊤
t1∥

≤
√
kr∥X ∗X⊤∥+

√
kr∥U t1 ∗ U

⊤
t1∥

≤
√
kr∥X∥2 +

√
kr∥U t1∥2

≤ 10
√
kr∥X∥2.

Now suppose all the bullet points hold for some integer t ∈ [t1, t̂− 1]. Again, we aim to show they all hold for t+ 1. In a
similar manner as done before, we can bound ∥(A∗A− I)(X ∗X⊤ −U t ∗U⊤

t )∥ ≤ 10δ
√
kr∥X∥2 + δ

√
k(min{n,R} −

r)∥U t ∗Wt,⊥∥2, and then continue as follows
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∥(A∗A− I)(X ∗X⊤ − U t ∗ U⊤
t )∥

≤10δ
√
kr∥X∥2 + δ

√
k(min{n,R} − r)∥U t ∗Wt,⊥∥2

≤10 · c1
κ4

√
r
·
√
kr · κ2σmin(X )2 + δ

√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t−t1)

∥U t1 ∗Wt1,⊥∥
2

≤10c1
√
kκ−2σmin(X )2 + δ

√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t−t1)

· 9γ7/4σmin(X )1/4

≤10c1
√
kκ−2σmin(X )2 + 9δ

√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t2−t1)

γ7/4σmin(X )1/4

≤10c1
√
kκ−2σmin(X )2 + 9δ

√
k(min{n,R} − r)

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)O(c2)

γ7/4σmin(X )1/4

≤40c1
√
kκ−2σmin(X )2

where we have used the bounds δ ≤ c1
κ4

√
r

, ∥X∥ = κσmin(X ), ∥U t1 ∗ Wt1,⊥∥ ≤ 3γ7/8σmin(X )1/8, along with the
inductive assumptions and the definition of t1.

Next, we note that if σmin(V⊤
X ∗ U t) ≤ 1

2σmin(X ), then we can use Lemma E.1 along with the inductive assumptions to
obtain

σmin(U t+1 ∗Wt+1) ≥ σmin(V⊤
X ∗ U t+1)

≥ σmin(V⊤
X ∗ U t+1 ∗Wt)

≥ σmin(V⊤
X ∗ U t)

(
1 +

1

4
µσmin(X )2 − µσmin(V⊤

X ∗ U t)
2

)
≥ σmin(V⊤

X ∗ U t)

(
1 +

1

4
µσmin(X )2 − µ · 1

4
σmin(X )2

)
= σmin(V⊤

X ∗ U t)

≥ 1√
10
σmin(X )

Alternatively, if σmin(V⊤
X ∗ U t) ≥ 1

2σmin(X ), then we can again use Lemma E.1 along with the inductive assumptions and
the fact that µ ≤ c1κ

−2∥X∥2 for sufficiently small c1 to obtain

σmin(U t+1 ∗Wt+1) ≥ σmin(V⊤
X ∗ U t+1)

≥ σmin(V⊤
X ∗ U t+1 ∗Wt)

≥ σmin(V⊤
X ∗ U t)

(
1 +

1

4
µσmin(X )2 − µσmin(V⊤

X ∗ U t)
2

)
≥ 1

2
σmin(X )

(
1− µσmin(U t)

2
)

≥ 1

2
σmin(X )

(
1− µ∥U t∥2

)
≥ 1

2
σmin(X )

(
1− 9µ∥X∥2

)
≥ 1

2
σmin(X )

(
1− 9c1κ

−2
)

≥ 1√
10
σmin(X )

In either case, we have σmin(U t+1 ∗Wt+1) ≥ σmin(V⊤
X ∗ U t+1) ≥ 1√

10
σmin(X ).
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Again, since σmin(V⊤
X ∗ U t+1 ∗ Wt) ≥ 1√

10
σmin(X ) > 0, we have that V⊤

X ∗ U t+1 ∗ Wt has full tubal rank with all
invertible t-SVD singular tubes. Hence, by Lemma E.3, we again can bound

∥U t+1 ∗Wt+1,⊥∥ ≤
(
1 + 80µc2

√
kσmin(X )2

)t+1−t1
∥U t1 ∗Wt1,⊥∥ .

In the exact same way as before, we can use Lemma E.6 to establish ∥U t+1∥ ≤ 3∥X∥, and use Lemma E.7 to establish
∥V⊤

X⊥ ∗ VUt+1∗Wt+1∥ ≤ c2κ
−2.

To bound ∥V⊤
X ∗ (X ∗X⊤ − U t+1 ∗ U⊤

t+1)∥F , we will aim to use Lemma E.7. By the inductive assumptions, we already
have ∥U t∥ ≤ 3∥X∥, σmin(U t ∗Wt) ≥ 1√

10
σmin(X ), and ∥V⊤

X⊥ ∗VUt∗Wt∥ ≤ c2κ
−2. To derive the remaining condition

of Lemma E.7, we first split

∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U ∗ U⊤)∥F

=∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U t ∗WtW⊤

t ∗ U⊤
t − U t ∗Wt,⊥W⊤

t,⊥ ∗ U⊤
t )∥F

≤∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U⊤
t )∥F + ∥V⊤

X ∗ (I − A∗A)(U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t )∥F .

To bound the first term, we note that X ∗X⊤ − U t ∗Wt ∗W⊤
t ∗ U⊤

t is tubal-symmetric with tubal rank at most 2r, so
we can write it as the sum of two tubal-symmetric tensors Z1,Z2 ∈ Sn×n×k with tubal rank at most r, and then apply
Lemma G.4 to obtain

∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U⊤
t )∥F = ∥V⊤

X ∗ (I − A∗A)(Z1 +Z2)∥F
≤ ∥V⊤

X ∗ (I − A∗A)(Z1)∥F + ∥V⊤
X ∗ (I − A∗A)(Z2)∥F

≤ δ(∥Z1∥F + ∥Z2∥F )

≤ δ
√
2∥Z1 +Z2∥F

= δ
√
2∥X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U⊤
t ∥F

≤ δ
√
2∥X ∗X⊤ − U t ∗ U⊤

t ∥F

For the second piece, we use the symmetric t-SVD to write U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t =
∑

i Vi ∗ si ∗ V⊤
i . Then, we can

bound

∥V⊤
X ∗ (I − A∗A)(U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t )∥F =

∥∥∥∥∥V⊤
X ∗ (I − A∗A)

(∑
i

Vi ∗ si ∗ V⊤
i

)∥∥∥∥∥
F

≤
∑
i

∥∥∥V⊤
X ∗ (I − A∗A)

(
Vi ∗ si ∗ V⊤

i

)∥∥∥
F

≤
∑
i

δ
∥∥∥Vi ∗ si ∗ V⊤

i

∥∥∥
F

=
∑
i

δ ∥si∥2

= δ
∥∥∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t

∥∥∥
∗

≤ δ
√
k(min{n,R} − r)

∥∥∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t

∥∥∥
F

≤ ∥X ∗X⊤ − U t ∗ U⊤
t ∥F ,

where we have used the fact that U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t has tubal rank ≤ min{n,R} − r along with the definition of t3.
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Hence,

∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U ∗ U⊤)∥F

≤∥V⊤
X ∗ (I − A∗A)(X ∗X⊤ − U t ∗Wt ∗W⊤

t ∗ U⊤
t )∥F + ∥V⊤

X ∗ (I − A∗A)(U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t )∥F
≤δ

√
2∥X ∗X⊤ − U t ∗ U⊤

t ∥F + δ∥X ∗X⊤ − U t ∗ U⊤
t ∥F

≤cκ−2∥X ∗X⊤ − U t ∗ U⊤
t ∥F ,

where we have used the assumption that δ ≤ c1
κ4

√
r
≤ cκ−2.

Similarly, we can bound

∥V⊤
Ut∗Wt

∗ (I − A∗A)(X ∗X⊤ − U t ∗ U t)∥F ≤ cκ−2∥X ∗X⊤ − U t ∗ U⊤
t ∥F ,

and
∥(I − A∗A)(X ∗X⊤ − U t ∗ U t)∥ ≤ cκ−2∥X ∗X⊤ − U t ∗ U⊤

t ∥F .
Then, by Lemma E.7, we have

∥V⊤
X⊥(X ∗X⊤ − U t+1 ∗ U⊤

t+1)∥F ≤
(
1− µ

200
σ2

min(X )
)
∥V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F

+ µ
σ2

min(X )

100
∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t ∥F

By the inductive assumption,

∥V⊤
X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤

t )∥F ≤ 10
√
kr
(
1− 1

400µσmin(X )2
)t−t1 ∥X∥2.

Also, using the inductive assumption and the bound from the previous part, we can bound

∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t ∥F ≤
√
k(min{n,R} − r)∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t ∥

≤
√
k(min{n,R} − r)∥U t ∗Wt,⊥∥2

≤
√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t−t1)

∥U t1 ∗Wt1,⊥∥
2

≤
√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t−t1)

· 9γ7/4σmin(X )1/4

Since t ≤ t2, we have

t− t1 ≤ t2 − t1 ≤ 300

µ
√
kσmin(X )2

ln

(
5

18
κ1/4

√
r

min{n,R} − r

∥X∥7/4

γ7/4

)
,

and thus,

∥U t ∗Wt,⊥ ∗W⊤
t,⊥ ∗ U⊤

t ∥F ≤
√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t−t1)

· 9γ7/4σmin(X )1/4

≤ 5

2

√
kr
(
1− µ

400
σmin(X )2

)t−t1
∥X∥2.

Combining these inequalities yields

∥V⊤
X⊥(X ∗X⊤ − U t+1 ∗ U⊤

t+1)∥F ≤
(
1− µ

200
σ2

min(X )
)
∥V⊤

X⊥ ∗ (X ∗X⊤ − U t ∗ U⊤
t )∥F

+ µ
σ2

min(X )

100
∥U t ∗Wt,⊥ ∗W⊤

t,⊥ ∗ U⊤
t ∥F

≤
(
1− µ

200
σ2

min(X )
)
· 10

√
kr

(
1− 1

400
µσmin(X )2

)t−t1

∥X∥2

+ µ
σ2

min(X )

100
· 5
2

√
kr
(
1− µ

400
σmin(X )2

)t−t1
∥X∥2

≤ 10
√
kr

(
1− 1

400
µσmin(X )2

)t+1−t1

∥X∥2
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Hence, by induction, the five bullet points hold for t+ 1.

If t̂ = t2, then, we can use Lemma E.7, the previous bullet points, and the definition of t2 to bound

∥X ∗X⊤ − U t̂ ∗ U
⊤
t̂
∥F ≤ 4∥V⊤

X⊥ ∗ (X ∗X⊤ − U t̂ ∗ U
⊤
t̂
)∥F + ∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F

≤ 40
√
kr

(
1− 1

400
µσmin(X )2

)t̂−t1

∥X∥2 + 5

2

√
kr

(
1− 1

400
µσmin(X )2

)t̂−t1

∥X∥2

=
85

2

√
kr

(
1− 1

400
µσmin(X )2

)t̂−t1

∥X∥2

≲
√
kr

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)−3/4

∥X∥2

≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥11/16

If instead we have t̂ = t3, then

∥X ∗X⊤ − U t̂ ∗ U
⊤
t̂
∥F

≤4∥V⊤
X⊥ ∗ (X ∗X⊤ − U t̂ ∗ U

⊤
t̂
)∥F + ∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F

≤4∥X ∗X⊤ − U t̂ ∗ U
⊤
t̂
∥F + ∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F

≤4(
√
k(min{n,R} − r) + 1)∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F + ∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F

=4(
√
k(min{n,R} − r) + 5)∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥F

≤4(
√
k(min{n,R} − r) + 5)

√
min{n,R} − r∥U t̂ ∗W t̂,⊥ ∗W⊤

t̂,⊥ ∗ U⊤
t̂
∥

≤4(
√
k(min{n,R} − r) + 5)

√
min{n,R} − r∥U t̂ ∗W t̂,⊥∥

2

≤4(
√
k(min{n,R} − r) + 5)

√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t̂−t1)

∥U t1 ∗Wt1,⊥∥2

≤4(
√
k(min{n,R} − r) + 5)

√
k(min{n,R} − r)

(
1 + 80µc2

√
kσmin(X )2

)2(t̂−t1)

· 9γ63/32σmin(X )1/32

≲k(min{n,R} − r)

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)O(c2)

γ63/32σmin(X )1/32

≲k(min{n,R} − r)

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)O(c2)

γ21/16γ21/32
∥X∥1/32

κ1/32

≲k(min{n,R} − r)

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)O(c2)

γ21/16
(

∥X∥
min{n,R}κ3

)21/32 ∥X∥1/32

κ1/32

≲
k(min{n,R} − r)

min{n,R}21/32

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)O(c2)

γ21/16κ−2∥X∥11/16

≲k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥11/16.

So in either case, we have

∥X ∗X⊤ − U t̂ ∗ U
⊤
t̂
∥F ≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥11/16,

and thus,

∥X ∗X⊤ − U t̂ ∗ U
⊤
t̂
∥F

∥X∥2
≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥−21/16.

48



Implicit Regularization for Tubal Tensors via GD

Finally, by the definition of t̂, we have that

t̂− t∗ ≤ t2 − t∗

≤ (t2 − t1) + (t1 − t∗)

≤ 300

µ
√
kσmin(X )2

ln

(
5

18
κ1/4

√
r

k(min{n,R} − r)

∥X∥7/4

γ7/4

)
+

16

µσmin(X )2
log

(
2

γ
√
10
σmin(X )

)
≲

1

µσmin(X )2
ln

(
min

{
1,

κr

k(min{n,R} − r)

}
∥X∥
γ

)

F. Proof of Main Result
Now that our analyses of the spectral stage and the convergence stage are complete, we are ready to combine these pieces to
obtain the proof of our main result. Since A satisfies RIP(2r + 1, δ), by Lemma G.2, A also satisfies S2SRIP(2r,

√
2krδ).

Hence, E := (I − A∗A)(X ∗X⊤) satisfies

∥E∥ = ∥(I − A∗A)(X ∗X⊤)∥ ≤
√
2krδ∥X ∗X⊤∥ ≤

√
2kr · cκ−4r−1/2 · ∥X∥2 = c

√
kκ−2σmin(X )2.

Then, by applying Lemma D.9, with ϵ = 1
C̃
e−3c̃, we have that with probability at least 1 − k(C̃ϵ)R−2r+1 − ke−c̃R =

1− ke−3c̃(R−2r+1) − ke−c̃R ≥ 1− ke−3c̃· 13R − ke−c̃R = 1−O(ke−c̃R), after

t∗ ≲
1

µσmin(X )2
ln

(
2κ2

√
n

c̃3
√

min{n;R}

)
iterations, we have

∥U t⋆∥ ≤ 3∥X∥ (F.1)

∥VX⊥ ∗ VUt⋆∗Wt⋆
∥ ≤ cκ−2. (F.2)

and for each 1 ≤ j ≤ k, we have

σr

(
U t⋆ ∗Wt⋆

(j)
)
≥ 1

4
αβ (F.3)

σ1

(
U t⋆ ∗Wt⋆,⊥

(j)
)
≤ κ−2

8
αβ (F.4)

(F.5)

where (since R ≥ 3r and ϵ is a constant),

√
k ≲ β ≲

√
k

(
2κ2

√
n

c̃3
√
min{n;R}

)16κ2

.

By choosing

α ≲
4c2σmin(X )

κ2 min{n,R}
√
k

(
2κ2

√
n

c̃3
√
min{n,R}

)−16κ2

,

we have

γ =
1

4
αβ ≲

c2σmin(X )

κ2 min{n,R}
.

Also, κ−2

8 αβ = 1
2κ2 γ ≤ 2γ holds. Therefore, we can apply Theorem E.1, which gives us that after

t̂− t∗ ≲
1

µσmin(X )2
ln

(
min

{
1,

κr

k(min{n,R} − r)

}
∥X∥
γ

)
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iterations beyond the first phase, we have

∥U t̂ ∗ U
⊤
t̂
−X ∗X⊤∥F

∥X∥2
≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥−21/16.

The total amount of iterations is then bounded by

t̂ = t∗ + (t̂− t∗)

≲
1

µσmin(X )2
ln

(
2κ2

√
n

c̃3
√
min{n,R}

)
+

1

µσmin(X )2
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(
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{
1,

κr

k(min{n,R} − r)

}
∥X∥
γ

)

≲
1
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(
2κ2

√
n
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√
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{
1,

κr

k(min{n,R} − r)

}
∥X∥
γ

)

≲
1

µσmin(X )2
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(
2κ2

√
n

c̃3
√
min{n,R}
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{
1,

κr

k(min{n,R} − r)

}
4∥X∥
αβ

)

≲
1

µσmin(X )2
ln

(
C1κn

min{n,R}
·min

{
1,

κr

k(min{n,R} − r)

}
∥X∥
kα

)
,

where we have used the choice of γ = 1
4αβ and the fact that β ≳

√
k. Finally, the error is bounded by

∥U t̂ ∗ U
⊤
t̂
−X ∗X⊤∥F

∥X∥2
≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8γ21/16∥X∥−21/16

≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8(αβ)21/16∥X∥−21/16

≲ k5/4r1/8κ−3/16(min{n,R} − r)3/8k21/32

(
2κ2

√
n

c̃3
√
min{n,R}

)21κ2 (
α

∥X∥

)21/16

≲ k61/32r1/8κ−3/16(min{n,R} − r)3/8

(
C2κ

2
√
n√

min{n,R}

)21κ2 (
α

∥X∥

)21/16

,

as desired.

Remark: One could obtain similar results for the cases where r ≤ R < 2r and 2r ≤ R < 3r by choosing the parameter
ϵ ∈ (0, 1) appropriately.

G. Restricted Isometry Property
In this section, we show that a measurement operator which satisfies the standard restricted isometry property also satisfies
two other variants of the restricted isometry property - a fact which we used in our analysis of the convergence stage.

We say that a measurement operator A : Sn×n×k → Rm satisfies the spectral-to-spectral Restricted Isometry Property of
rank-r with constant δ > 0 (abbreviated S2SRIP(r, δ)) if for all tensors Z ∈ Sn×n×k with tubal-rank ≤ r,

∥(I − A∗A)(Z)∥ ≤ δ∥Z∥.

We say that a measurement operator A : Sn×n×k → Rm satisfies the spectral-to-nuclear Restricted Isometry Property with
constant δ > 0 (abbreviated S2NRIP(δ)) if for all tensors Z ∈ Sn×n×k with tubal-rank ≤ r,

∥(I − A∗A)(Z)∥ ≤ δ∥Z∥∗.

Lemma G.1. Suppose that A : Sn×n×k → Rm satisfies RIP(r + r′, δ) with 0 < δ < 1. Then, for any Z,Y ∈ Sn×n×k

with rank(Z) ≤ r and rank(Y) ≤ r′, we have

|⟨(I − A∗A)(Z),Y⟩| ≤ δ∥Z∥F ∥Y∥F .
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Proof. Let Y ′ = ∥Z∥F

∥Y∥F
Y so that ∥Y ′∥F = ∥Z∥F . Note that Z +Y ′ ∈ Sn×n×k and Z −Y ′ ∈ Sn×n×k both have tubal

rank ≤ r+ r′. Then, by using the identities ∥a+ b∥2 − ∥a− b∥2 = 4 ⟨a, b⟩ and ∥a+ b∥2 + ∥a− b∥2 = 2∥a∥2 + 2∥b∥2
(which both hold over any inner product space) along with the fact that A satisfies RIP(r + r′, δ), we have:

〈
(I − A∗A)(Z),Y ′〉 = 〈Z,Y ′〉− 〈A∗A(Z),Y ′〉

=
〈
Z,Y ′〉− 〈A(Z),A(Y ′)

〉
=
〈
Z,Y ′〉− 1

4
∥A(Z +Y ′)∥22 +

1

4
∥A(Z −Y ′)∥22

≤
〈
Z,Y ′〉− 1

4
(1− δ)∥Z +Y ′∥2F +

1

4
(1 + δ)∥Z −Y ′∥2F

=
〈
Z,Y ′〉− 1

4

(
∥Z +Y ′∥2F − ∥Z −Y ′∥2F

)
+

1

4
δ
(
∥Z +Y ′∥2F + ∥Z −Y ′∥2F

)
=

1

2
δ
(
∥Z∥2F + ∥Y ′∥2F

)
= δ∥Z∥F ∥Y ′∥F

In a similar manner,
〈
(I − A∗A)(Z),Y ′〉 ≥ −δ∥Z∥F ∥Y ′∥F . Hence,

∣∣〈(I − A∗A)(Z),Y ′〉∣∣ ≤ δ∥Z∥F ∥Y ′∥F . Then,
since Y is a scalar multiple of Y ′, we have

|⟨(I − A∗A)(Z),Y⟩| = ∥Y∥F

∥Y′∥F

∣∣〈(I − A∗A)(Z),Y ′〉∣∣ ≤ ∥Y∥F

∥Y′∥F
δ∥Z∥F ∥Y ′∥F = δ∥Z∥F ∥Y∥F .

Lemma G.2. Suppose that A : Sn×n×k → Rm satisfies RIP(r + 1, δ1), where 0 < δ1 < 1. Then, A also satisfies
S2SRIP(r,

√
krδ1).

Proof. Suppose Z ∈ Sn×n×k has tubal-rank r. Since (I − A∗A)(Z) is symmetric, its t-SVD is of the form

(I − A∗A)(Z) = V(I−A∗A)(Z) ∗Σ(I−A∗A)(Z) ∗ V⊤
(I−A∗A)(Z).

Now, define V = V(I−A∗A)(Z)(:, 1, :) ∈ Rn×1×k and let s ∈ R1×1×k be defined by s(1, 1, ℓ) = 1√
k
e
√
−12πjℓ where

j = arg maxj′ |Σ̂(1, 1, j′)|. With this definition, one can check that
∣∣∣〈(I − A∗A)(Z),V ∗ s ∗ V⊤

〉∣∣∣ = ∥(I −A∗A)(Z)∥.

Then, since A satisfies RIP(r + 1, δ1) and rank(Z) ≤ r and rank(V ∗ s ∗ V⊤) = 1, by Lemma G.1, we have

∥(I − A∗A)(Z)∥ =
∣∣∣〈(I − A∗A)(Z),V ∗ s ∗ V⊤

〉∣∣∣
≤ δ1∥V ∗ s ∗ V⊤∥F ∥Z∥F
= δ1∥Z∥F
≤ δ1

√
kr∥Z∥.

Since the bound ∥(I −A∗A)(Z)∥ ≤ δ1
√
kr∥Z∥ holds for any Z ∈ Sn×n×k with tubal rank ≤ r, we have that A satisfies

S2SRIP(r,
√
krδ1).

Lemma G.3. Suppose that A : Sn×n×k → Rm satisfies RIP(2, δ2) where 0 < δ2 < 1. Then, A also satisfies
S2NRIP(

√
kδ2).

Proof. Since A satisfies RIP(2, δ2), by Lemma G.2 for r = 1, A satisfies S2SRIP(1,
√
kδ2). Now, suppose that Z ∈

Sn×n×k. Since Z is symmetric, it has a t-SVD in the form

Z =

n∑
i=1

Vi ∗ si ∗ V⊤
i .
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Then, since each term Vi ∗ si ∗ V⊤
i is symmetric with tubal rank 1, we have

∥(I − A∗A)(Z)∥ =

∥∥∥∥∥(I − A∗A)

(
n∑

i=1

Vi ∗ si ∗ V⊤
i

)∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

(I − A∗A)
(
Vi ∗ si ∗ V⊤

i

)∥∥∥∥∥
≤

n∑
i=1

∥∥∥(I − A∗A)
(
Vi ∗ si ∗ V⊤

i

)∥∥∥
≤

n∑
i=1

√
kδ2

∥∥∥Vi ∗ si ∗ V⊤
i

∥∥∥
=

n∑
i=1

√
kδ2 ∥si∥

≤
√
kδ2∥Z∥∗

Since the bound ∥(I−A∗A)(Z)∥ ≤
√
kδ2∥Z∥∗ holds for any Z ∈ Sn×n×k, we have that A satisfies S2NRIP(

√
kδ2).

Lemma G.4. Suppose A : Sn×n×k → Rm satisfies RIP(2r, δ3), where 0 < δ3 < 1, and V ∈ Rn×r×k satisfies V⊤∗V = I .
Then, for any Z ∈ Sn×n×k with rank(Z) ≤ r, we have∥∥∥V⊤ ∗ [(I − A∗A)(Z)]

∥∥∥
F
≤ δ3∥Z∥F .

Proof. Let Z ∈ Sn×n×k, and let Y = V⊤∗[(I−A∗A)(Z)]

∥V⊤∗[(I−A∗A)(Z)]∥F
∈ Rr×n×k. Trivially, ∥Y∥F = 1, and so, ∥V ∗ Y∥2F =

⟨V ∗Y ,V ∗Y⟩ =
〈
Y ,V⊤ ∗ V ∗Y

〉
= ⟨Y ,Y⟩ = ∥Y∥2F = 1. Then, by using Lemma G.1, we have that

∥∥∥V⊤ ∗ [(I − A∗A)(Z)]
∥∥∥
F
=
〈
V⊤ ∗ [(I − A∗A)(Z)] ,Y

〉
= ⟨[(I − A∗A)(Z)] ,V ∗Y⟩
≤ δ3∥Z∥F ∥V ∗Y∥F
= δ3∥Z∥F

H. Properties of Aligned Matrix Subspaces
In this section, we collect some properties of matrices and their subspaces, useful for the proof of the results in the tensor
Fourier domain.

Lemma H.1. ((Stöger & Soltanolkotabi, 2021)) For some orthogonal matrix X ∈ Cn×r and some full-rank matrix
Y ∈ Cn×R consider XHY = V ΣWH, and the following decomposition of Y

Y = YWWH + YW⊥W
H
⊥ (H.1)

with its SVD decomposition Y =
∑R

i=1 σiuiv
H
i and the best rank-r approximation Yr =

∑r
i=1 σiuiv

H
i . Then if the distance

between the column subspace of Yr and the subspace spanned by the columns of X is small enough, that is ∥XH
⊥VYr

∥ ≤ 1
8 ,

then the decomposition (H.1) follows some low-rank approximation properties, namely

∥XH
⊥VYW ∥ ≤ 7∥XH

⊥VYr∥ (H.2)
∥YW⊥∥ ≤ 2σr+1(Y ). (H.3)
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Lemma H.2. For a matrix X ∈ Cn×r, r ≤ n, with its SVD-decomposition X = VXΣXW
H
X and some a full-rank matrix

Y ∈ Cn×R, consider V H
X Y = V ΣWH, and the following decomposition of Y

Y = YWWH + YW⊥W
H
⊥ . (H.4)

Let matrix H ∈ Cr×r be defined as
H = V H

X (Id + µZ)YW

with some Z ∈ Cn×n, parameter µ ≤ 1√
3
∥V HY ∥−2 and ∥V H

⊥ VYW ∥ ≤ c2 with sufficiently small constants c1, c2 > 0.
Then H can be represented as follows

H = (Id + µΣ2
X − µP1 + µP2 + µ2P3)VXYW (Id− µWHY HVXV

H
X YW )

with matrices P1, P2, P3 ∈ Cr×r such that

P1 : = V H
X Y Y

HVX⊥V H
X⊥VYW (V VYW )−1(Id− µV H

X Y Y
HVX)−1

P2 : = V H
X (Z −XXH + Y Y H)VYW (V H

X VYW )−1(Id− µV H
X YWWHY HVX)−1

P3 : = Σ2
XV

H
X YW (Id− µWHY HVXV

H
X YW )−1WHY HVX

with

∥P1∥ ≤ 4∥YW∥2∥VX⊥VYW ∥2

∥P2∥ ≤ 4∥Z −XXH + Y Y H∥
∥P3∥ ≤ 2∥X∥2∥YW∥2.

Moreover, it holds that

σmin(H) ≥
(
1 + µσ2

min(X)− µ∥P1∥ − µ∥P2∥ − µ2∥P3∥
)
σmin(V

H
X Y )

(
1− µσ2

min(V
H
X Y )

)
.

Proof. The proof of this Lemma follows from Lemma 9.1 in (Stöger & Soltanolkotabi, 2021) by using an independent matrix
Z ∈ Cn×n instead of the matrix A∗A(XXH − Y Y H), omitting the assumption ∥Y ∥ ≤ 3∥X∥ and updating respectively
the transformation steps.

Lemma H.3. For a matrix X ∈ Cn×r, r ≤ n with its SVD-decomposition X = VXΣXW
H
X and some full-rank matrix

Y ∈ Cn×R and Y1 = (Id + µZ)Y consider V H
X Y = V ΣWH, V H

X Y1 = V1Σ1W
H
1 , and the following decomposition of Y

and Y1

Y = YWWH + YW⊥W
H
⊥ .

Y1 = Y1W1W
H
1 + Y1W1,⊥W

H
1,⊥.

Assume that V H
X Y1W is invertible, which also implies that Y1W is has full-rank, and that ∥V H

X⊥VY1W ∥ ≤ 1
50 and µ ≤

min
{

1√
3
∥V H

X⊥YW⊥∥−2, 19∥X∥−2
}

and moreover, µ is small enough so that 0 ⪯ Id− µV H
X⊥YWWHY HVX⊥ ⪯ Id.

Consider two matrices

G1 : = −V H
X⊥Y1W (V H

X Y1W )−1V H
X Y1W⊥W

H
⊥W1,⊥

G2 : = V H
X⊥Y1W⊥W

H
⊥W1,⊥.

Then these matrices can be represented as

G1 = µV H
X⊥VY1W (V H

X VY1W )−1M1V
H
X⊥YW⊥W

H
⊥W1,⊥

with M1 := V H
X (ZVX⊥ −XXHVX⊥) and

G2 =
(
Id− µM2 + µM3)V

H
X⊥YW⊥(Id− µWH

⊥Y
HYW⊥)− µ2(M2 −M3)V

H
X⊥YW⊥W

H
⊥Y

HYW⊥

)
·

·WH
⊥W1,⊥
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with M2 = V H
X⊥YWWHY HVX⊥ and M3 := V H

X⊥(Z − (XXH − Y Y H))VX⊥ . Moreover, the norm of G1 and G2 can be
bounded respectively as

∥G1∥ ≤ 2µ(∥V H
X⊥VYW ∥∥YW∥2 + ∥Z − (XXH − Y Y H)∥)∥V H

X⊥VY1W ∥∥YW⊥∥,

∥G2∥ ≤ ∥YW⊥∥
(
1− µ∥YW⊥∥2 + µ∥Z − (XXH − Y Y H)∥

)
+ µ2

(
∥YW∥2 + ∥Z − (XXH − Y Y H)∥

)
∥YW⊥∥3.

Proof. The proof of this Lemma follows from Lemma 9.2 in (Stöger & Soltanolkotabi, 2021) by changing the matrix
A∗A(XXH − Y Y H) to the independent matrix Z ∈ Cn×n and taking into account the respective changes without having
the condition ∥Y ∥ ≤ 3∥X∥.

Lemma H.4. For a matrix X ∈ Cn×r, r ≤ n with its SVD-decomposition X = VXΣXW
H
X and some full-rank matrix

Y ∈ Cn×R and Y1 := (Id + µZ)Y consider V H
X Y = V ΣWH, V H

X Y1 = V1Σ1W
H
1 , and the following decomposition of Y

and Y1

Y = YWWH + YW⊥W
H
⊥ ,

Y1 = Y1W1W
H
1 + Y1W1,⊥W

H
1,⊥.

Then it holds that

∥WH
⊥W1∥ ≤ µ

(
1 + µ

∥Z∥∥YW∥
σmin(V H

X Y )

)
∥YW∥∥YW⊥∥∥V H

X⊥VYW ∥+ µ
∥Z − (XXH − Y Y H)∥

σmin(V H
X Y )

∥YW⊥∥ (H.5)

Moreover, if for P := YW⊥W
H
⊥W1(V

H
YWYWWHW1)

−1V H
YW the following applies

∥µZ + P + µZP∥ ≤ 1,

then it holds that

∥V H
X⊥VY1W1

∥ ≤ ∥V H
X⊥VYW ∥

(
1− µ

2
σ2

min(X) + µ∥YW⊥∥
)
+ µ∥Z − (XXH − Y Y H)∥

+ (1 + µ∥Z∥) 2∥WH
⊥W1∥∥YW⊥∥

σmin(WHW1)σmin(YW )
(H.6)

+ 57

(
µ∥Z∥+ (1 + µ∥Z∥) ∥WH

⊥W1∥∥YW⊥∥
σmin(WHW1)σmin(YW )

)2

Proof. The proof of inequality (H.5) follows from the first part of the proof of Lemma B.3 in (Stöger & Soltanolkotabi,
2021). For this one needs to change the matrix A∗A(XXH − Y Y H) in (Stöger & Soltanolkotabi, 2021) to an independent
matrix Z ∈ Cn×n and take into account the above-given decomposition of matrices Y and Y1 and lack of assumptions on µ
and the norm of matrix Z. Inequality (H.6) follows from the proof of Lemma 9.3 in (Stöger & Soltanolkotabi, 2021).

I. Random Tubal Tensors
In this section, we derive bounds on the minimum and maximum singular values as well as the Frobenius norm of a random
tubal tensor with i.i.d. Gaussian random entries. In our analysis of the spectral stage, we applied these lemmas to the small
random initialization.

We start with the following proposition from Rudelson and Vershynin (2009), which bounds the smallest singular value of
an r ×R random real Gaussian matrix.

Proposition I.1 ((Rudelson & Vershynin, 2009)). Let G ∈ Rr×R with r ≤ R have i.i.d. N (0, 1) entries. Then, for every
ϵ > 0, we have

σmin(G) ≥ ϵ(
√
R−

√
r − 1)

with probability at least 1− (Cϵ)R−r+1 − e−cR. The constants C, c > 0 are universal.
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Also, the following proposition from Tao and Vu (2010) bounds the smallest singular value of an r × r random complex
Gaussian matrix.

Proposition I.2 ((Tao & Vu, 2010)). Let G ∈ Rr×r have i.i.d. CN (0, 1) entries. Then, for every ϵ > 0, we have

σmin(G) ≥ ϵ√
r

with probability at least 1− ϵ2.

Using these propositions, we can obtain a bound on the smallest singular value of an r × R random complex Gaussian
matrix, provided that r ≤ R.

Lemma I.1. Let G ∈ Cr×R with r ≤ R have i.i.d. CN (0, 1) entries. Then, for every ϵ > 0, we have

σmin(G) ≥

ϵ(
√
R−

√
2r − 1) if R > 2r

ϵ√
r

if r ≤ R ≤ 2r

with probability at least {
1− (Cϵ)R−2r+1 − e−cR if R > 2r

1− ϵ2 if r ≤ R ≤ 2r
.

The constants C, c > 0 are universal.

Proof. First, suppose R > 2r. Let G = UΣV H be the SVD of G where U ∈ Cr×r and V ∈ CR×R are unitary and
Σ ∈ Rr×R. Then, the following real 2r × 2R matrix has a real SVD of[

Re {G} − Im {G}
Im {G} Re {G}

]
=

[
Re {U} − Im {U}
Im {U} Re {U}

] [
Σ 0
0 Σ

] [
Re {V } − Im {V }
Im {V } Re {V }

]T
.

By using the fact that for any A ∈ Rp×q with p ≤ q, σmin(A)2 = min
x∈Rp

∥x∥2=1

∥ATx∥22, we have

σmin(G)2 = σmin

([
Re {G} − Im {G}
Im {G} Re {G}

])2

= min
x∈R2r

∥x∥2=1

∥∥∥∥∥
[

Re {G}T Im {G}T

− Im {G}T Re {G}T

]
x

∥∥∥∥∥
2

2

= min
x∈R2r

∥x∥2=1

[∥∥∥[Re {G}T Im {G}T
]
x
∥∥∥2
2
+
∥∥∥[− Im {G}T Re {G}T

]
x
∥∥∥2
2

]

≥ min
x∈R2r

∥x∥2=1

∥∥∥[Re {G}T Im {G}T
]
x
∥∥∥2
2
+ min

x∈R2r

∥x∥2=1

∥∥∥[Im {G}T Re {G}T
]
x
∥∥∥2
2

= σmin

([
Re {G}
Im {G}

])2

+ σmin

([
− Im {G}
Re {G}

])2

= 2σmin

([
Re {G}
Im {G}

])2

,

where the last line follows since reordering the rows of a matrix or flipping the sign of some rows doesn’t change the singular
values.

Since G ∈ Cr×R has i.i.d. CN (0, 1) entries,
√
2

[
Re {G}
Im {G}

]
∈ R2r×R has i.i.d. N (0, 1) entries. Therefore, by Proposi-

tion I.1, we have that

σmin(G) ≥ σmin

(√
2

[
Re {G}
Im {G}

])
≥ ϵ(

√
R−

√
2r − 1)
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with probability at least 1− (Cϵ)R−2r+1 − e−cR, as desired.

Next, suppose r ≤ R ≤ 2r. Let Gr×r be an r × r submatrix of G. Then,

σmin(G)2 = min
x∈Cr

∥x∥2=1

∥GHx∥22 ≥ min
x∈Cr

∥x∥2=1

∥GH
r×rx∥22 = σmin(Gr×r)

2.

Hence, by Proposition I.2, we have
σmin(G) ≥ σmin(Gr×r) ≥

ϵ√
r

with probability at least 1− ϵ2.

Using the above lemma, we can bound the smallest singular value of an r ×R× k tubal tensor.

Lemma I.2. Let G ∈ Rr×R×k with r ≤ R have i.i.d. N (0, 1
R ) entries. Then, for every ϵ > 0, we have

σmin(G) ≥


ϵ
√
k(
√
R−

√
2r − 1)√

R
if R > 2r

ϵ
√
k√
rR

if r ≤ R ≤ 2r

with probability at least {
1− k(Cϵ)R−2r+1 − ke−cR if R > 2r

1− kϵ2 if r ≤ R ≤ 2r
.

Proof. Since the entries of G are i.i.d. N (0, 1
R ), the entries of G̃ are i.i.d. CN (0, k

R ). Hence, each scaled slice
√

R
k G̃

(j)
∈

Cr×R for j = 1, . . . , k has i.i.d. CN (0, 1) entries. By Lemma I.1, each scaled slice satisfies

σmin

(√
R
k G̃

(j)
)

≥

ϵ(
√
R−

√
2r − 1) if R > 2r

ϵ√
r

if r ≤ R ≤ 2r

with probability at least {
1− (Cϵ)R−2r+1 − e−cR if R > 2r

1− ϵ2 if r ≤ R ≤ 2r
.

Then, by taking a union bound, we have that

σmin(G) = min
1≤j≤k

σmin

(
G̃

(j)
)

≥


ϵ
√
k(
√
R−

√
2r − 1)√

R
if R > 2r

ϵ
√
k√
rR

if r ≤ R ≤ 2r

with probability at least {
1− k(Cϵ)R−2r+1 − ke−cR if R > 2r

1− kϵ2 if r ≤ R ≤ 2r
.

The following proposition bounds the operator norm of an r ×R random Gaussian matrix.

Proposition I.3 ((Vershynin, 2018)). Let U ∈ Cn×R have i.i.d. CN (0, 1) entries. Then, with probability at least
1−O(e−cmax{n,R}), we have

∥U∥ ≲
√

max{n,R}.

Using the above proposition, we can bound the norm of an n×R× k random Gaussian tubal tensor.
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Lemma I.3. Let U ∈ Rn×R×k have i.i.d. N (0, 1
R ) entries. Then, with probability at least 1−O(ke−cmax{n,R}), we have

∥U∥ ≲

√
kmax{n,R}

R
.

Proof. Since the entries of U are i.i.d. N (0, 1
R ), the entries of Ũ are i.i.d. CN (0, k

R ). Hence, each scaled slice
√

R
k Ũ

(j)
∈

Cr×R for j = 1, . . . , k has i.i.d CN (0, 1) entries. By Proposition I.3, each scaled slice satisfies∥∥∥∥√R
k Ũ

(j)
∥∥∥∥ ≲

√
max{n,R}

with probability at least 1−O(e−cmax{n,R}). Then, by taking a union bound, we have that

∥U∥ = max
1≤j≤k

∥∥∥∥Ũ (j)
∥∥∥∥ ≲

√
kmax{n,R}

R

with probability at least 1−O(ke−cmax{n,R}).

Lemma I.4. Let U ∈ Rn×R×k have i.i.d. N (0, 1
R ) entries. Then, for any fixed V1 ∈ Rn×1×k with ∥V1∥ = 1, we have

∥U⊤ ∗ V1∥F ≍
√
k

with probability at least 1−O(ke−cR).

Proof. Since the entries of U are i.i.d. N (0, 1
R ), the entries of Ũ are i.i.d. CN (0, k

R ), and thus, the entries of Ũ
⊤

are

also i.i.d. CN (0, k
R ). Then, for each slice j = 1, . . . , k, each entry of the matrix-vector product Ũ⊤

(j)

Ṽ
(j)

1 ∈ CR is i.i.d.

CN (0, k
R∥Ṽ

(j)

1 ∥2F ). Hence, the quantity

2R

k

∥∥∥∥Ũ⊤
(j)

Ṽ
(j)

1

∥∥∥∥2
F∥∥∥∥Ṽ(j)

1

∥∥∥∥2
F

has a χ2(2R) distribution. It follows that ∥∥∥∥Ũ⊤
(j)

Ṽ
(j)

1

∥∥∥∥2
F

≍ k

∥∥∥∥Ṽ(j)

1

∥∥∥∥2
F

holds with probability at least 1−O(e−cR). By taking a union bound over all j = 1, . . . , k, we get that

∥∥∥U⊤ ∗ V1

∥∥∥2
F
=

1

k

∥∥∥Ũ⊤ ⊙ Ṽ1

∥∥∥2
F
=

1

k

k∑
j=1

∥∥∥∥Ũ⊤
(j)

Ṽ
(j)

1

∥∥∥∥2
F

≍
k∑

j=1

∥∥∥∥Ṽ(j)

1

∥∥∥∥2
F

=
∥∥∥Ṽ1

∥∥∥2
F
= k ∥V1∥2F = k,

i.e., ∥U⊤ ∗ V1∥F ≍
√
k with probability at least 1−O(ke−cR).
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