
High Dynamic Range Modulo Imaging
for Robust Object Detection

in Autonomous Driving

Kebin Contreras2 , Brayan Monroy1 , and Jorge Bacca1⋆

1 Universidad Industrial de Santander, Bucaramanga, Colombia
2 Universidad del Cauca, Popayán, Colombia

Abstract. Object detection precision is crucial for ensuring the safety
and efficacy of autonomous driving systems. The quality of acquired im-
ages directly influences the ability of autonomous driving systems to cor-
rectly recognize and respond to other vehicles, pedestrians, and obstacles
in real-time. However, real environments present extreme variations in
lighting, causing saturation problems and resulting in the loss of crucial
details for detection. Traditionally, High Dynamic Range (HDR) images
have been preferred for their ability to capture a broad spectrum of light
intensities, but the need for multiple captures to construct HDR images
is inefficient for real-time applications in autonomous vehicles. To ad-
dress these issues, this work introduces the use of modulo sensors for
robust object detection. The modulo sensor allows pixels to ‘reset/wrap’
upon reaching saturation level by acquiring an irradiance encoding image
which can then be recovered using unwrapping algorithms. The applied
reconstruction techniques enable HDR recovery of color intensity and
image details, ensuring better visual quality even under extreme lighting
conditions at the cost of extra time. Experiments with the YOLOv10
model demonstrate that images processed using modulo images achieve
performance comparable to HDR images and significantly surpass satu-
rated images in terms of object detection accuracy. Moreover, the pro-
posed modulo imaging step combined with HDR image reconstruction is
shorter than the time required for conventional HDR image acquisition.
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1 Introduction

Object detection is a critical component of autonomous driving. The ability
to accurately identify and respond appropriately to other vehicles, pedestri-
ans, and obstacles depends largely on the quality of the acquired images. High-
quality imaging is vital for enabling precise object detection, which is essential
for the safe operation of autonomous vehicles in both urban and highway en-
vironments [16]. One of the acquisition problems is saturation, which can be
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identified as areas where pixels have reached maximum intensity, losing impor-
tant information about the scene [6]. Addressing light saturation issues is crucial
for the accuracy of object detection systems. Figure 1 illustrates common chal-
lenges such as overexposure due to direct sunlight (a), reflections of artificial
nightlights (b) and loss of road details due to solar saturation (c), encountered
in autonomous driving environments. An alternative is the well-known High
Dynamic Range (HDR) imaging technique, which combines multiple exposure
images to capture a broader spectrum of light intensities [15]. This approach
effectively addresses the issues of underexposure and overexposure. However,
the time required to process these images makes them impractical for real-time
applications in autonomous driving [9].

A solution to address these challenges is the introduction of modulo sen-
sor technology, which employs an irradiance encoding scheme. This technology
allows pixels to ‘reset/wrap’ upon reaching saturation, thereby enabling con-
tinuous data recording. Although modulo images do not directly maintain the
integrity of color at the moment of capture, they preserve sufficient details to
enhance object detection. Furthermore, due to similarities with phase unwrap-
ping problems, certain unwrapping algorithms can be employed to obtain HDR
images during post-processing, which is crucial for achieving high visual quality
under variable lighting conditions [11,19]. This technology is especially valuable
in dynamic environments where lighting conditions can change rapidly and dra-
matically, providing a solution to preserve image information in cluttered areas.

To the best of our knowledge, this is the first work to introduce the modulo
sensor as an alternative for obtaining HDR images to enhance robust object
detection in autonomous driving. We specifically evaluate the performance of
object detection using YOLOv10 [14] models in various saturation scenarios and
demonstrate that modulo measurements outperform commercial images under
extreme conditions without the need for retraining. Furthermore, we propose to
adapt the Simultaneous Phase Unwrapping and Denoising (SPUD) algorithm for
direct HDR estimation from modulo images [10]. This approach significantly im-
proves object detection results without significantly increasing processing time,
making the modulo sensor a promising solution for autonomous driving systems.

(a) (b) (c)

Fig. 1: Challenges of sensor saturation in autonomous driving environments from
various databases: (a) BDD100K shows problems of overexposure due to direct sun-
light [17]; (b) Nighttime Driving depicts reflections from artificial night lights [4]; and
(c) KITTI demonstrates the loss of road details due to solar saturation [5].
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2 Background

Modulo Imaging. The image formation process in a modulo sensor involves
the use of a modulo operator to reset the intensity values upon reaching a specific
threshold of 2b. This imaging process can be mathematically modeled as follows

y = Qb(mod(x, 2b)) = Wb(x), (1)

where y represents the acquired modulo image, Qb(·) represents the quantization
process to b bits, x denotes the desired HDR image and mod(·) refers to the mod-
ulo operator. The implementation of this particular imaging process has been
explored with self-reset Analog-to-Digital Converter (ADC) [18] and with pro-
grammable sensors [11]. More recently, with the advancements of the Unlimited
Sampling Framework, it is now possible to implement it using modulo-ADCs in
continuous time, i.e., prior sampling [2]. Once the modulo image y is captured,
a recovery process is needed to get an estimation of the HDR image x. However,
this recovery process is an optional step since the object detection network can
be employed directly to raw modulo image.

Modulo Recovery. Given that the modulo operator is a non-linear transfor-
mation, it is impractical to directly employ numerical optimization techniques to
reconstruct from the modulo image y. However, similar to the unwrapping prob-
lem, the spatial differences in the HDR image, ∆x, matches with the wrapped
spatial differences of the modulo image, expressed as ∆x = Mb(∆y), where
Mb(∆y) = Wb(∆y + 2b−1) − 2b−1 is a centered modulo operator to align nega-
tive values [7,12]. This assumption holds if the natural image discontinuities do
not exceed the threshold 2b−1, namely, ∥∆x∥∞ < 2b−1, also referred to as Itoh’s
condition [7]. Consequently, the HDR image recovery can be mathematically
formulated as the following optimization problem

x̂ ∈ argmin
x

∥∆x−Mb(∆y)∥22 + τR(x), (2)

where the regularization operator R(·) is introduced to exploit additional knowl-
edge about the structure of the HDR image x or to handle challenging recovery
scenarios due to the presence of noise [1,3,13]. In the subsequent section, we in-
troduce SPUD [10], a non-interactive method to solve Equation 2 under sparsity
assumption.

3 Methodology

In this section, we detail our proposed methodology consisting of a two-step
pipeline to process traffic images using modulo sensors: (A) Acquisition and Re-
covery with modulo sensors and (B) Object Detection on modulo images or over
HDR recovered images.
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Step A. Acquisition and Recovery with Modulo Sensors: The first
step consists of replacing the conventional CCD sensor with a modulo sensor to
acquire a modulo image y following Equation (1). Then, the acquired modulo
image y can be fed into a modulo recovery algorithm to restore the HDR image
x. We employ SPUD [10] which computes the HDR image recovery as follows

ρ = D(∆⊤Mb(∆y)),

x̂mn+n = D−1

(
T (ρ, τ)mn+n

2(2− cos(πm/M)− cos(πn/N))

)
.

(3)

In (3), M and N represent the dimensions of the image, D denotes the dis-
crete cosine transform (DCT) [10], and T is the hard-thresholding operator with
threshold parameter τ [10]. For simplicity, we denote the computation of Equa-
tion (3) by the reconstruction operator x̂ = SPUD(y, b, τ), effectively combining
noise reduction and image unwrapping in a single step.

Although new algorithms have been used to obtain HDR images from modulo
images [1,19], the effectivity of the SPUD is mainly attributed to its non-iterative
approach with an order of complexity of O (n log(n)). This method significantly
improves the quality of the restored HDR image with a low latency time, which
is crucial for real-time applications such as autonomous driving [10].

Step B. Object Detection on Modulo and Recovered Images: The
second step involves performing an autonomous driving task on the modulo
image and recovered HDR images. Consequently, a family of YOLOv10 detection
models is used to identify the classes present in the autonomous driving datasets
during the object detection task. This process can be represented as

C = YOLO(x̂, y, p), (4)

where C = {c(i)}Ni is the set of boundary boxes provided by the YOLOv10
detection model for N different objects detected in the input image, and p
is a boolean parameter indicating whether to use the restored HDR image
x̂ or the raw modulo image y. Here, each boundary box c is constructed as
c = [j1, k1, j2, k2, z], where (j1, k1) and (j2, k2) are the top-left and bottom-right
coordinates of the box, and z denotes the predicted object class. We evaluate
object detection using various configurations of the YOLOv10 model, including
the variants n, s,m, b, l, x, following an ascending order in terms of complexity
and the number of model parameters. The proposed two-step methodology is
summarized in Algorithm 1.

Algorithm 1 Object Detection with Modulo Images (ODMI)
1: Input: HDR image x, boolean p, color depth b, optimization parameter τ
2: y ←Wb(x) ▷ Simulation of modulo sensor Equation (1)
3: x̂← SPUD(y, b, τ) ▷ HDR image reconstruction Equation (3)
4: C ← YOLO(x̂, y, p) ▷ Calculation of boundary boxes Equation (4)
5: Return: C ▷ Set of boundary boxes
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4 Simulation and Results

This section evaluates the robustness of ODMI compared to standard digital
cameras. Our main goal is to analyze the object detection performance under
varying saturation conditions for different versions of the YOLOv10 detection
model without retraining. For this, we emulated the acquisition of modulo im-
ages, the reconstruction of the HDR image from modulo images using the SPUD
algorithm [10], and the acquisition of a saturated image in the KITTI database.
Specifically, to simulate the different saturation conditions, we normalize the
HDR image xraw to the range [0, 2b], with b = 8, and introduce a saturation
factor α, which scales the HDR image to x = αxraw. The saturation scenario for
a standard camera is modeled as

xsat = min(x, 2b), (5)

where xsat is the saturated image, and α is the saturation factor that adjusts
the image intensity to simulate different levels of light exposure. We evaluate the
performance of different imaging methodologies from low to extreme saturation
scenarios, by selected α values of 1.5, 2, 3, and 4. For emulating the modulo
camera and HDR image reconstruction, we use Equation (1) and Equation (3),
respectively, using the same scaled HDR image x as input.

Dataset. The proposed methodology was evaluated using the KITTI dataset
[5], which is a benchmark in object detection focused on autonomous driving.
This dataset contains 7,481 images, each with dimensions of 1242×375, and cap-
tures urban scenes featuring a variety of objects, including vehicles, pedestrians,
cyclists, miscellaneous objects, sitting people, trams, trucks, and vans, making
it a significant challenge for vision-based object detection systems.

Model. The YOLOv10 model family, with configurations n, s,m, b, l, and x
between 2.3M to 29.5M parameters, was used to assess object detection effective-
ness. These models consist of a CNN backbone with detection layers and anchor
boxes for predicting object-bound boxes. Additionally, the integration of partial
self-attention modulo enhances feature extraction and localization accuracy [14].

Metrics.The object detection performance for all scenarios (image-saturated,
modulo sensor, recovery, and ideal HDR) was evaluated using: Intersection over
Union (IoU), the F1-score, and Accuracy. These metrics are standard bench-
marks that enable an objective comparison of the performance of different YOLO-
v10 variants under diverse image manipulation conditions. In the experiment,
100 testing images from the KITTI database were selected to represent different
saturation conditions. The experiments were conducted on a computer equipped
with an AMD Ryzen 7 5700X 8-Core Processor running at 3.40 GHz, 64.0 GB
of RAM, and an NVIDIA GeForce RTX 4070 GPU with 12 GB of VRAM.

The analysis of the different image techniques under varying levels of light
saturation is presented in Table 1. The models evaluated, from best to worst
performance, are x, l, b,m, s, n, in relation to the number of trainable parameters
described in Table 2. As the value of α increases, the IOU, F1-Score, and accuracy
metrics decrease due to the loss of information in saturated areas, as shown in
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Table 1: Quantitative Evaluation of Saturated, Modulo and Recovery imaging tech-
niques with four saturation levels (α 1.5, 2, 3, 4) The best result is in bold and the
second is underlined.

Model
YOLOv10 Method IOU (α) F1-Score (α) Accuracy (α)

1.5 2 3 4 1.5 2 3 4 1.5 2 3 4

n

Saturated 58.9 55.3 53.4 50.6 37.8 37.0 35.2 35.2 29.8 28.5 28.5 25.0
Modulo 60.2 58.4 56.2 53.2 40.0 40.1 38.6 36.7 29.8 29.0 29.0 28.4
Recovery 61.0 59.3 57.4 53.0 41.1 40.0 39.7 39.7 30.2 28.7 26.8 26.8

Ideal HDR 62.1 42.0 32.0

s

Saturated 56.6 55.1 44.4 34.5 36.5 34.3 23.6 16.6 27.3 25.6 16.3 11.5
Modulo 61.8 60.1 57.6 54.3 42.2 39.3 36.0 31.1 31.5 29.6 26.7 23.0
Recovery 62.0 61.8 60.1 54.2 41.6 41.3 39.3 35.1 31.6 32.0 29.6 26.0

Ideal HDR 62.6 42.1 32.1

m

Saturated 61.8 60.7 58.7 56.8 40.8 42.3 40.5 40.5 38.7 38.1 37.7 36.1
Modulo 65.4 64.3 64.0 63.6 43.5 43.0 42.6 42.7 40.0 38.7 36.7 35.1
Recovery 65.4 64.2 63.5 63.5 44.2 43.6 43.5 43.1 41.1 40.0 39.8 39.0

Ideal HDR 65.8 45.9 41.2

b

Saturated 65.4 65.0 64.8 64.7 43.5 43.2 42.6 41.8 39.8 38.7 37.9 35.7
Modulo 67.3 67.1 66.7 66.4 44.4 43.6 42.6 41.8 41.1 40.7 39.6 38.6
Recovery 68.3 68.0 67.3 67.0 49.3 49.0 48.3 48.1 42.2 41.2 40.3 40.1

Ideal HDR 70.0 51.2 43.6

l

Saturated 65.1 63.0 57.1 47.8 44.6 42.3 33.0 24.8 34.3 32.1 23.3 17.6
Modulo 69.4 68.7 65.4 58.8 53.3 53.3 46.2 38.4 41.6 40.9 36.0 28.5
Recovery 69.9 69.9 68.4 60.6 52.7 52.5 50.3 42.2 42.0 41.8 36.1 31.9

Ideal HDR 71.3 56.3 45.5

x

Saturated 65.5 63.1 57.8 48.8 44.9 42.2 35.4 27.1 34.3 31.4 25.9 19.3
Modulo 71.0 70.0 67.9 62.3 54.8 54.1 51.7 43.9 44.1 42.4 41.2 33.6
Recovery 72.0 71.2 70.7 67.9 56.1 55.7 52.1 48.1 45.2 45.1 42.2 36.2

Ideal HDR 72.9 62.3 50.2

Figure 2. Specifically, for α = 3, it is possible to detect a person in HDR,
Modulo, and Recovery images, whereas detection is not possible in the Saturated
image. For α = 4 and α = 5, the detection model fails to detect objects in the
Saturated image, while Modulo and Recovery images still allow object detection,
as reflected in the numerical results in Table 1. Notice that the metric in Table 1
for the ideal HDR image is constant for different α values because the HDR image
is not affected by α and does not suffer from saturation since we assume perfect
recovery of the HDR image. This analysis shows that Modulo and Recovery
image offer better spatial information and robust object detection under high
saturation compared to the Saturated image. The Ideal HDR image, unaffected
by saturation, serves as a reference for evaluation as it represents the ideal scene.
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Fig. 2: Comparison of imaging techniques under varying levels of light saturation. Each
column stands for; Ideal HDR, Saturated, Modulo, and Recovery. Each row shows the
results for different values of the saturation factor α, ranging from 1.5 to 4.

Ideal HDR Saturated Modulo Recovery

α = 1.5

α = 2

α = 3

α = 4

α = 5

By simulating the processes of saturation, modulo sensor, reconstruction, and
ideal HDR, we can compare the inference times between different methodologies.
For the Saturated and Modulo cases, we assume an ideal camera with an acqui-
sition time of 33 ms, incorporating the inference time of the YOLOv10 models.
For the Recovery case, the inference time includes the SPUD algorithm time of
5.1 ms ± 1.9 ms, using different of α value (1.5, 2, 3, 4). For ideal HDR images,
we assume three captures of 33 ms each to obtain the final HDR image. This
approach follows the standard procedure of using three images taken at different
exposure times to create an HDR image presented in [8]. Table 2 summarizes the
parameters and inference times for each model. As YOLO complexity decreases,
the parameters and inference times is reduced. Recovery time from a modulo
image is generally lower than the time for ideal HDR images using the conven-
tional multiple exposure time technique. The Recovery time encompasses both
image reconstruction and YOLO detection, whereas the remaining time refers
exclusively to detection.
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Table 2: Comparison of computational time employing YOLOv10 models.

Model
YOLOV10

No. Parameters
[M]

Time
[ms]

Saturated/Modulo Recovery Ideal HDR

n 2.3 M 56.18 ± 0.2 62.95 ± 0.3 122.85 ± 0.1
s 7.2 M 57.23 ± 0.1 65.34 ± 0.4 123.97± 0.2
m 15.4 M 59.32 ± 0.2 68.23 ± 0.5 126.17 ± 0.1
b 19.1 M 59.87 ± 0.3 71.34 ± 0.3 128.17± 0.3
l 24.4 M 63.56 ± 0.3 73.49 ± 0.3 131.68 ± 0.4
x 29.5 M 65.84 ± 0.7 79.25 ± 0.5 136.34 ± 0.5

5 Conclusion

This work proposes the use of modulo sensor combined with the SPUD recon-
struction algorithm to enhance object detection in autonomous driving under
high illumination conditions. Our results show a significant improvement over
standard cameras, which are often affected by saturation issues. SPUD recon-
structed images closely approximate HDR quality for object detection, demon-
strating that phase unwrapping with modulo sensors achieves comparable re-
sults. Additionally, HDR recovery from modulo images is processed faster than
multi-exposure HDR images, which benefits real-time processing in dynamic en-
vironments. The most complex version of the YOLOv10 model x) performed
best, followed by versions l, b,m, s, and n, highlighting the advantage of in-
creased model complexity for dynamic imaging. Interestingly, the object de-
tection quality of the saturated images decreases significantly compared to the
modulo sensor, confirming the effectiveness of this new sensor in preserving detail
and maintaining higher object detection accuracy.
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