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Abstract

Building upon score-based learning, new inter-
est in stochastic localization techniques has re-
cently emerged. In these models, one seeks to
noise a sample from the data distribution through
a stochastic process, called observation process,
and progressively learns a denoiser associated to
this dynamics. Apart from specific applications,
the use of stochastic localization for the problem
of sampling from an unnormalized target density
has not been explored extensively. This work con-
tributes to fill this gap. We consider a general
stochastic localization framework and introduce
an explicit class of observation processes, associ-
ated with flexible denoising schedules. We pro-
vide a complete methodology, Stochastic Local-
ization via Iterative Posterior Sampling (SLIPS),
to obtain approximate samples of this dynam-
ics, and as a by-product, samples from the target
distribution. Our scheme is based on a Markov
chain Monte Carlo estimation of the denoiser and
comes with detailed practical guidelines. We il-
lustrate the benefits and applicability of SLIPS
on several benchmarks of multi-modal distribu-
tions, including Gaussian mixtures in increasing
dimensions, Bayesian logistic regression and a
high-dimensional field system from statistical-
mechanics.

1. Introduction

We consider in this paper the problem of sampling from a
probability density known up to a normalization constant.
This problem finds its origin in various tasks, ranging from
Bayesian statistics (Kroese et al., 2011) to statistical me-
chanics (Krauth, 2006), including now generative modeling
(Turner et al., 2019; Grenioux et al., 2023a).
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Markov chain Monte Carlo (MCMC) samplers are among
the most common approaches for this task with a wide
span of applicability. In addition, under appropriate con-
ditions on the target, theoretical guarantees can be derived
(Dalalyan, 2017; Durmus & Moulines, 2017). However,
for complex distributions, simple MCMC algorithms have
some limitations. As a workaround, it has been suggested
to solve the problem progressively, targeting intermediate
smoothed distributions. The resulting algorithms include
Replica Exchange (Swendsen & Wang, 1986), Annealed
Importance Sampling (Neal, 2001) and Sequential Monte
Carlo (Del Moral et al., 2006). Nevertheless, these meth-
ods can still largely struggle in high-dimensional settings.
To address this issue, approximate inference methods such
as Variational Inference (VI) (Wainwright & Jordan, 2008)
have emerged, in connection with deep generative models
such as Variational Auto-Encoders (Rezende et al., 2014;
Kingma & Welling, 2014) or Normalizing Flows (Rezende
& Mohamed, 2015).

In contrast to “density-based sampling”, which is the set-
ting considered in the present work, generative modeling
assumes the availability of training samples and aims to
generate similar realizations. Henceforth, we refer to gen-
erative modeling as “data-based sampling” as opposed to
“density-based sampling”. Diffusion-based generative mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021) now constitute the state-of-the-art of data-based sam-
pling. In these models, noise is progressively added to
the training samples via a forward stochastic process. The
derivatives of the logarithm of the forward marginal densi-
ties, called scores, are learned via score matching techniques
(Hyvirinen & Dayan, 2005; Vincent, 2011), and new sam-
ples are obtained by simulating the backward process using
the learned scores. This approach to generative modeling
has been found to scale well with dimension in a large vari-
ety of applications (Rombach et al., 2022; Chen et al., 2021;
Nichol et al., 2022) and comes with theoretical guarantees
(Chen et al., 2023).

Extending diffusion-based model techniques to density-
based sampling proves challenging as it requires an effi-
cient estimator of the score without samples of the target.
Relying on the link made with stochastic optimal control
(Tzen & Raginsky, 2019; De Bortoli et al., 2021; Holdijk
et al., 2023; Pavon, 2022), several VI methods using deep
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neural networks have recently been proposed for this task
(Zhang & Chen, 2022; Berner et al., 2023; Vargas et al.,
2023a;c; 2024; Richter et al., 2023). On the other hand,
(Huang et al., 2024) take a non-parametric approach and
proposed a scheme based on a MCMC estimation of the
scores and therefore can potentially mitigate the numerical
bias intrinsic in using neural networks or more broadly any
parametric estimation method. This is also our approach.

Closely related to denoising diffusion models, Stochastic
Localization (SL) techniques have been first employed as a
tool to establish results in geometric measure theory (Eldan,
2013; 2020; 2022; Chen & Eldan, 2022), and more recently
have been proposed as a density-based sampling approach.
(Alaoui et al., 2022; Montanari & Wu, 2023) demonstrate
the potential of SL for specific challenging distributions
and (Ghio et al., 2023) provide a conjecture on the type of
distributions which can be efficiently sampled with these
techniques. (Montanari, 2023) provides a blueprint on us-
ing SL for density-based sampling but does not discuss a
practical strategy for an arbitrary target distribution.

Contributions. Building on these prior works, we bring
the following contributions.

* We investigate a general framework of SL that allows
to reflect on the role of the signal-to-noise scheduling
when using SL for sampling.

We identify the challenges in its practical implementa-
tion and propose a learning-free sampling methodology
using MCMC estimation, which requires few tuning.
We elucidate our algorithmic design with theoretical
and numerical considerations applicable to a certain
class of non log-concave distributions.

* We provide numerical evidence of the robustness of
the proposed approach in large dimension, beyond the
class of distributions amenable to theoretical guaran-
tees. Those results show that the proposed algorithm
is on par or superior to modern sampling methods in a
wide variety of settings.

The code to reproduce our experiments is available at
https://github.com/h2064/slips.

Notation. For any distribution p with finite first moment,
its expectation is denoted by m,, = [, zdyu(x). The den-
sity of the Gaussian distribution with mean m € R? and
covariance 33 € R4*? is denoted by x + N(z;m, Y).

2. Background on SL for sampling

Consider a target distribution 7 defined on (R?, B(R?)),
with B(R?) Borel sets of R% endowed with the Euclidean
norm. Using SL to sample from 7 consists in identifying

and simulating a stochastic process that converges almost
surely to a random variable distributed as 7 (Alaoui et al.,
2022; Montanari & Wu, 2023; Montanari, 2023). A specific
example is to consider, given X ~ 7, the stochastic process
(Y2)i>0. called the observation process, defined by

Y, =tX +oW;, ey

where (W;)¢>0 is a standard Brownian motion on R, in-
dependent from X, and ¢ > 0'. The time-rescaled Y, /t
converges almost surely to X as ¢ — oco. Moreover, if 7
admits a finite second order moment, we can show that the
2-Wasserstein distance between the distribution of Y; /¢ and
7 is bounded by +/d/t %, see Appendix B.2. Thus, for T
large, Y7 /T is approximately distributed according to 7.

Sampling from (Y})>0 using directly (1) cannot be done in
practice, precisely since it requires to first sample from 7.
Nevertheless, this issue can be overcome under the assump-
tion that 7 admits a finite first moment. Indeed, in this case,
(Y2)¢>0 solves the Stochastic Differential Equation (SDE),

dY; = u(Y3)dt + odB; , Yo =0, 2

where (B;);>o is a standard Brownian motion on R? and
uy(y) = Jpa vq(x|y)da for any y € R%, see (Liptser &
Shiryaev, 1977, Theorem 7.12.). The drift function u; in-
volves the conditional density of X given ¥; = y € R?
defined for x € R? as

qo(zy) o< m(z) , 3)
qi(xly) o< w(z)N(z5y/t,0%/t1g), t>0.

In the literature, the random conditional expectation
u (V) = E[X|Y;] is often referred to as the Bayes esti-
mator of X given Y; (Robbins, 1992; Saremi & Hyvérinen,
2019) or the optimal denoiser of Y; (Montanari, 2023; Ghio
et al., 2023). Moreover, if 7 has finite second moment, one
can show that the SDE (2) admits unique weak solutions
(Liptser & Shiryaev, 1977, Theorem 7.6. & Remark 7.2.7.),
see Appendix B.2. As a result, one can simulate (Y;).c[o,7]
for any 7' > 0 by integrating the SDE (2), while avoiding to
first sample from , if the drift function (u;);c[o,7) (or an
approximation of it) is known.

Yet, the challenge of this sampling approach lies in the
estimation of (u¢)¢c[o,7) Without samples from 7 available
a priori. At time ¢ = 0, we have uo(y) = m,. For any
t > 0, uy is linked to the score of the marginal distribution of
Y:, given by pi(y) = [pa N(y; tx, 0°t14)dn(x), following
Tweedie’s formula given in Appendix A,

w(y) = y/t + 0*Viogp(y) -

"Note that the authors originally considered o = 1.
2This bound will be referred to as the localization rate.
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Therefore, sampling via SL can be reduced to a score esti-
mation task, as noted by (Montanari, 2023), who also estab-
lishes a direct connection between the SL induced by the
process (1) and variance-preserving diffusions (Song et al.,
2021), see Appendix B. In data-based sampling, i.e., when
samples { X*}¥ | from 7 are at the disposal of the user, u;
can be estimated using a parameterized model through a
least-squares regression (Saremi & Hyvérinen, 2019; Mon-
tanari, 2023) following score matching techniques.

A few recent works started to discuss the density-based sam-
pling task using SL or diffusions (Montanari & Wu, 2023;
Huang et al., 2024; Vargas et al., 2023a). Here, we focus
on the SL formalism and propose in Section 4 a sampling
algorithm for arbitrary distributions based on a learning-free
estimator of the denoiser. Before, we provide in Section 3 a
working definition of SL with flexible denoising schedules.

3. SL with flexible denoising scheduling

Inspired by recent developments studying optimal noise
scheduling in diffusion models (Nichol & Dhariwal, 2021;
Kingma et al., 2021; Karras et al., 2022; Kingma & Gao,
2023), we consider a new class of explicit observation pro-
cesses associated with flexible denoising schedules.

3.1. A more general observation process

For a possibly finite time horizon Ty, € (0, 00], we now
consider the observation process (Y;*);¢[0,7;.,) defined by

Yo =at)X + oW, “

where (W3);>0 is a standard Brownian motion on R4, in-
dependent from X ~ 7, and a(t) = t'/2g(t) with the
following assumptions on g:

(a) g € CO([O’Tgen)vR-i-) N Cl((Ongen)vR+);
(b) g(t) ~ CtP/% ast — 0, for some 3 > 1, C' > 0;

(c) g is strictly increasing and lim; 7, g(t) = oo.

Under these assumptions, the observation process (4) veri-
fies Y* = 0 and Y,*/a(t) — X almost surely as ¢ — Tyen.
Moreover, by denoting 7* the distribution of Y;* /«(t), one
can show that for any ¢ € (0, Tgen), the localization rate is
now function of ¢(t):

Wa(m, mf) < oVd/g(t) , Q)

where W5 denotes the 2-Wasserstein distance. Proofs and
refinements in the case where 7 is a Gaussian distribution
are postponed to Appendix B.2. We recover the process (1)
discussed in Section 2 with g(¢) = t'/2 and Tye, = 0.

As in the previous section, sampling from the observation
process via (4) requires to first sample from 7. We again

Table 1: Stochastic Localization schemes.

SL scheme Hyper-parameters g(t)

tal/Q
tcxl/Z(l o t)—&2/2

Geom-oo(a1)
Geom(as, a2)

(1121
a; > 1,a >0

bypass this issue by introducing an equivalent SDE. In Ap-
pendix B.2, we indeed show that (Y;*);c(0,7;,,) Solves

AV = a(t)uf (Y,)dt + odB, , Y* =0,  (6)

where (By):>0 is a standard Brownian motion on R? and
the drift function u$* is defined for any y € R? by

u (y) = [pa vqf (x]y)da . (7

Here, the conditional density of X given Y; = y is

45 (zly) o< (), ®
g7 (xly) o< m(@)N(z3y/a(t), 0% /g(£)* 1a) , t € (0, Tyen) -

Assuming further that 7 has finite second moment and that
g satisfies technical conditions, (6) admits unique weak so-
lutions, see Appendix B.2. Then again, if u§* is known,
integrating (6) up to time T" € (0, Tgen) is equivalent to sam-
pling from (Y;*);cjo,77- Then, Y7 /a(T) is approximately
distributed according to 7 for any 7' close enough t0 Tiep.

The challenge still lies in the estimation of the drift func-
tion u{ which verifies u§(y) = m, at time ¢t = 0,
and which can be expressed, for any ¢t € (0,Tgen), us-
ing the score of the marginal distribution p¢(y) given by
P(y) = fpa N(y; (), 0%t 1g)dn(x). In Appendix B.2,
we indeed show that

ui (y) = y/a(t) + {o%t/a(t)}Viegpi(y) . )

recovering the previously mentioned link between score
estimation and denoiser estimation.

Moreover, the score of pf* can also be written as an expec-
tation over the same posterior distribution g; but with a
different observable

Vlogp$(y) = ﬁ Jpa Viogm(z)gy (x|y)dz . (10)

Hence, this suggests to consider an alternative expression
of the SDE defined in (6), involving the expectation given
in (10) instead of the denoiser function u °. We refer to
Appendix B.3 for more details. However, we experimentally
observed this approach was less stable than our original
method, which is why we decided to consider the SDE (6).

3Equation (10) and its consequence have been independently
derived in the concurrent works (Bortoli et al., 2024; Akhound-
Sadegh et al., 2024). Both have been publicly available almost at
the same time than the present paper.
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Figure 1: Display of log SNR for the localization schemes
Geom-oo (left) and Geom (right).

3.2. Hyper-parameter selection and SNR profile

At first sight, determining appropriate choices for g, o and
Ten, without introducing further complexity, can be chal-
lenging. Below, we propose interpretable choices, relying
on the analysis of the signal-to-noise ratio of the observation
process, which determines the speed at which the denoising
process localizes on the target distribution.

An intuitive definition of the Signal-to-Noise Ratio (SNR)
of the observation process (4) is, for any t € [0, Tgen),

SNR(t) — — s - B’ L [OL
E [Jlowi?] o*d

where RZ = [o, [l — m, ||* dr(z) is the scalar variance
of 7. The monotonicity of g ensures that the SNR is strictly
increasing on [0, Ty ), with lim;_,o SNR(¢) = 0 (no infor-
mation on 7 at all) and lim;_,7,, SNR(t) = oo (no noise
at all). Further, the scaling in time of the SNR schedule is
solely determined by the function g, which also controls the
time dependence in the localization rate (5). This observa-
tion leads us to fix ¢ = R, /v/d, assuming that R, is known,
to obtain a SNR profile SNR(#) = ¢*(t) independent of the
target distribution or the dimension*. In cases where the
scalar variance of the target 7 is unknown, an estimator RW
can be used instead.

The practical implementation of SL-based sampling requires
also the choice of an effective time horizon T' < T, up
to which we integrate the SDE (6), similarly to the maxi-
mum denoising time in diffusion models. It needs to be
close enough to Ty, to consider Y7 /a(T) as approxi-
mately distributed according to 7 and as small as possi-
ble to ensure computational efficiency. This trade-off is
accounted for by selecting 1" based on reaching a prede-
fined level of the logarithm of the SNR (log-SNR), which
is preferable to use in practice. Denoting by 7 a positive
log-SNR threshold, we set T' = T;,, where T, is such that
log SNR(T;,) = 2log g(T},) = . In practice, the choice of
1 does not have a significant impact on performance (see
Appendix D.3 Figure 7).

*Note that our framework would be unchanged by taking o = 1
and defining g up to a multiplicative constant.

—° = Standard B Uniform discretization
==+ Geom(l,1) %  SNR-adapted discretization
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t/T

Figure 2: SNR-adapted vs uniform time discretization for
the schemes Standard and Geom(1, 1). The uniform dis-
cretization leads to larger log-SNR differences between
timesteps where the SNR increases rapidly.

Having reduced the set of hyper-parameters to tune, we
investigate two main settings for the denoising schedule
g(t). Their main characteristics are summarized in Table 1
and examples of corresponding log-SNR profiles are plotted
in Figure 1.

(a) Asymptotic geometric schedule (Geom-co), with
Tyen = 00 and g(t) = t*1/2 for a; > 1. This is a natural
extension of the observation process discussed in Section 2
for which oy = 1. We refer to it as the standard scheme.

(b) Non-asymptotic geometric schedule (Geom), with
Toen < 00 and g(t) = (t/Taen) /(1 — t/Tgen) 272,
for a; > 1 and as > 0. In practice, we only consider
Teen = 1. If a1 = g, the log-SNR profile is similar
to the one obtained in diffusion models via cosine noise
scheduling (Nichol & Dhariwal, 2021). Moreover, by taking
ag < a1, the profile becomes flatter near ¢ = 1, similarly
to the scheduling profiles presented in (Kingma et al., 2021;
Kingma & Gao, 2023). Following the framework of (Al-
bergo et al., 2023), {(1 — £)*2/2Y;},c(0.1) is a stochastic
interpolant between the Dirac mass at 0 and 7.

The possibility to adapt the denoising schedule has not yet
received attention in the application of SL for sampling. In
the following section, we detail the design of our algorithm
which adapts to any denoising schedule.

4. SLIPS sampling algorithm

In this section, we consider hyper-parameters o, 7' and a
denoising schedule g as given in Section 3.2 and expose
our strategy for SL-based sampling. As already mentioned,
sampling from 7 via SL consists in integrating the SDE
(6) to obtain a realization {Y;* }+c[o,7] and set Y. /a(T') as
an approximate sample from 7. However, the SDE inte-
gration faces two main hindrances. First, the drift function
(ug)¢eo,r) defined in (7) is not tractable in general. Second,
even if the drift function were known exactly, numerical
integration incurs unavoidable discretization errors. We
first tackle the latter issue in Section 4.1. We then present
a Monte Carlo-based approach to tackle the estimation of
ug' in Section 4.2. Finally, we present the key idea of our
algorithm SLIPS in Section 4.3.
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4.1. Handling the discretization error

Consider a time discretization of the interval [0, 7'] defined
by an increasing sequence of timesteps (¢x)1_, where ¢y >
0,tx =T and K > 1. We define a sequence of random
variables { f@i‘}fzo approximating (6), defined for any k €
{0,..., K — 1} by the recursion

Ve =Yt (V) +o/6kZea . (12)
where Yt"‘ =0, 0k = tgyr1 — te, wp = atpgr1) — aty)
and (Zy);_, is distributed according to the centered stan-
dard Gaussian distribution. Note that (12) results from an
Euler Maruyama (EM) discretization scheme applied to (6),
that corresponds for any k& € {0,..., K — 1} to the exact
integration of the SDE

AV = a(t)u (Y,2)dt + 0dBy , t € [ty, tiya) -

In practice, we rather start the integration from a timestep
to > 0 for reasons that we detail in the next section. We
also adopt a time discretization adapted to the variations of
the 1og-SNR on [tg, T]. Define Asng = {log SNR(T) —
log SNR(t9)}/K, and for any k € {0, ..., K}, choose tj
such that

log SNR(tk) = log SNR(to) + ASNR]C . (13)

This discretization defines smaller step-sizes when the vari-
ation of log SNR is high, i.e., where the denoising process
“accelerates” (see Figure 2). We observed that using uniform
discretization leads to significantly greater numerical errors
in our experiments, see Appendix D.

As described in the next section, we suggest to esti-
mate ug, (fft?:) by Monte Carlo methods. Denoting by
MC-Est(uf(Y)) an estimator of the drift function at time
t evaluated at Y, we come to consider the joint sequence

{(Ui,ﬁ?)}ﬁio given by

U = mMc-Est (ug (V) | (14)
Vi =Y +wilf + o\ 0k Zrs

where (t,)K_ is the SNR-adapted time discretization of
[to, T'] defined in (13). The initialization of Yt‘ff is crucial
and will be discussed in Section 4.3. We now detail our
Monte Carlo estimation scheme defining Ut‘;

4.2. Estimating the denoiser via MCMC

Monte Carlo estimation with posterior sampling. We
aim to build accurate estimators of the quantities

ug (V) = Jpa g (2]Y)da |

For ease of notation, we will denote the random posterior
density g, (-|Y,') by p. in this section and recall that for
any k € {0,..., K}

g () o ()N (a3 Vi falte), 02 /g(tr)?1a) . (15)

One possible approach is to estimate Uﬁ; with Importance
Sampling (IS), by choosing as instrumental distribution
N(f’tz/a(tk), 02/g(t1)? 14). However, IS is known to suf-
fer from large variance in high-dimension unless the pro-
posal is closely adapted to 7 (Ceriotti et al., 2012). This vari-
ance issue translates into sample-size requirements which
may grow exponentially with d, see e.g., (Chatterjee & Dia-
conis, 2018).

Instead, we propose to approximately sample from g, with
a MCMC algorithm, in the same fashion as (Huang et al.,
2024), and compute Ut‘z as the empirical mean of the ob-
tained samples. More precisely, given a Markov chain
{X7}M | targeting piy,, we define Ug = (1/M) Zfil 7.

In practice, we turn to the largely used Metropolis-Adjusted
Langevin Algorithm (MALA) (Roberts & Tweedie, 1996)
leveraging gradient-information of the target log-density.
Nonetheless, to justify the use of MCMC here, sampling
from py, has to be easier than the original problem of sam-
pling from 7. In particular, we establish in the next para-
graph, conditions ensuring that y, is log-concave, implying
a reasonable mixing time for MALA (Dwivedi et al., 2019).

Main issue in posterior sampling. To illustrate the main
challenge in the sampling of px, we focus on a particular
setting. In the same spirit as (Saremi et al., 2024, Theorem
1), we consider the following assumption on 7.

A0 (Log-concavity outside a compact). There exist R > 0
and T > 0 such that 7 is the convolution of u and
N(0,7214), where p is a distribution compactly supported
on B = B(m,, RVd), i.e., u(R?\ B) = 0.

This assumption can be equivalently formulated as follows:
for any random vector X ~ m, we have X = U + G,
where ||U — m,||> < dR? holds almost surely and G ~
N(0,721,) is independent of U. In this case, d(R? + 72)
is an upper bound on R2, defined as the scalar variance
of 7 in Section 3.2. In particular, this setting includes non
log-concave distributions such as Gaussian mixtures, see
Appendix C for more details. Under Assumption A0, we
obtain the following result whose formal statement is given
in Appendix E.

Theorem 1. Assume AO. There exists tq > 0 (explicit
in Appendix E), depending on g,d, R and T such that if
tr > tq, pr is strongly log-concave. In addition, i, is more
log-concave as k increases.
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Standard

=== Sample from the stochastic process

Y /a(t)

az* (-yg")

Log-time

Geometric(1,1)

Y /a(t)

=== Sample from the stochastic process

as* (-yf)

Log-time

Figure 3: Duality of log-concavity: distribution of Y,*/«(t) (up) and ¢f* (-|y;*) (down) for t € (0, Tyen), where yy* is a
realisation of the observation process (red line), for the standard scheme (left) and the Geom(1, 1) scheme (right). The target
distribution 7 is a mixture of two 1D-Gaussian distributions N(—2/3, (0.05)?) and N(4/3, (0.05)?) with respective weights
2/3 and 1/3, which density is given by the blue line. The heat map represents the likelihood of the distributions and the
green line on the right edge stands for the distributions taken at the time given by the dotted green line.

This result can be explained by the fact that, for large ¢,
the Gaussian term dominates the target term in the poste-
rior (15), since 02 /g(tx)? ~ 0 - which intuitively ensures
increasing log-concavity. On the other hand, if ¢, is close
to 0, then uy is expected to be close to 7, recalling that
g6 = m. In this case, for non log-concave target distribu-
tions satisfying A0, p is non log-concave for small ¢;. We
illustrate this behaviour in Figure 3 for a bimodal Gaussian
mixture: as depicted by the bottom row, the posterior distri-
bution starts multi-modal (non log-concave) and eventually
becomes unimodal (log-concave).

Therefore, for a wide variety of target distributions, our
MALA-based posterior sampling approach on the time in-
terval [to, T'] will fail at the very first steps if ¢( is chosen too
small. We now explain how to bypass this issue in SLIPS.

4.3. Duality of log-concavity is all you need

Initialisation of the integration. Following the previous
discussion, a reliable computation of our MCMC-based
estimator given Ut‘z requires to have t; > tq in order to
ensure log-concavity of the random posterior fif.

Thus, we aim to start the integration from a tg > t4. To
initialize the recursion (14) from ¢(, one needs to sample
the first iterate f@g‘ distributed according to pf; . Given that
f]{; is a reliable estimator of the denoiser since tg > %,
we can derive an approximation of the score V log pf; , via
Tweedie’s formula (9). We use this estimate to sample
from py via the Unadjusted Langevin Algorithm (ULA) 3
(Roberts & Tweedie, 1996). In this initialization procedure,
the successive evaluations of the score Vlogpf in ULA
can be computed by applying an inner loop of MALA on gj; .
This results in a Langevin-within-Langevin scheme, which
is presented in Algorithm 2, and detailed in Appendix F.

SWe do not use MALA since only the score of i, is available.

For efficient sampling, ULA however requires a condition of
log-concavity on p?o (Dalalyan, 2017; Durmus & Moulines,
2017). In Theorem 2, we prove that this property is actually
ensured for small values of ¢y under Assumption AO.

Theorem 2. Assume AO. There exists t,, > 0 (explicit in
Appendix E), depending on g,d, R and T such that if t < t,
pg is strongly log-concave.

We provide a formal version of this result in Appendix E.
Intuitively, when ¢ is small, the Gaussian noise in the ob-
servation process (4) overwhelms «(¢) X, which makes p¢*
log-concave. Note however that this log-concavity property
is not verified for large ¢ as p§* becomes as log-concave as
7 by the localization property, see (5). We illustrate this
behaviour in the upper row of Figure 3.

Duality of log-concavity. Ideally, we would like to have
(i) to > tq (to ensure that the estimation from ﬁf}i is correct)
and (ii) {p < ¢}, (to ensure that pf; is log-concave). Under
an additional assumption to AO, Theorem 3 demonstrates
that such £y can exist. A proof of this result is given in
Appendix E.

Theorem 3. Assume A0, with dR? /7% < 2. Then, tq < tp,
where tq and ty, are given in Theorem I and Theorem 2.

Note however that this extra assumption is restrictive and
could be slightly improved, as done for Gaussian mixtures in
Appendix E. Then, choosing t( boils down to finding a sweet
spot where py and ¢;; are both approximately log-concave.
Together, these requirements form what we call the ‘duality
of log-concavity’. In Figure 3, we show that ¢ can be found
for two different localization schemes when considering a
Gaussian mixture that does not fit the assumption made in
Theorem 3. Furthermore, we highlight in Appendix F.2 that
a sweet spot generally exists for a wider variety of target
distributions independently of the localization scheme.
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In practice, we ensure the log-concavity of g first, as the
Monte Carlo estimation of ug; is the starting point of the
SLIPS algorithm.

4.4. Implementation of SLIPS.

By combining all the previous observations made above, we
propose the Stochastic Localization via Iterative Posterior
Sampling (SLIPS) algorithm, summarized in Algorithm 1,
which we detail now.

The SLIPS algorithm has five inputs :

(a) the noising schedule in the observation process ¢ — «(t)
defined on a time interval [0, Tyen),

(b) the initial integration time in (6): tg € (0, Tyen),

(c) the final integration time in (6): T € (to, Tgen), OF €qUiV-
alently n > 0 by log-SNR correspondence,

(d) the number of discretization steps in (6): K > 1,

(e) the number of samples for posterior sampling M > 1.

The algorithm can be decomposed in two main parts : (i) its
initialization (summarized in Algorithm 2) and (ii) the run
of the discretized SDE (14) via posterior sampling.

(1) The initialization of SLIPS consists in approximately
sampling from py; . Since its score can be expressed via the
posterior distribution gj; , see (7) and (9), and gf; can itself
be sampled from with MCMC methods (see Section 4.2),
we propose to use a Langevin-within-Langevin procedure
: each step of the outer loop corresponds to an iteration of
the Langevin algorithm to sample from py; , and requires
local MALA steps to estimate the score by sampling from
the posterior ¢j;. The exact computations are detailed in
Appendix F. The final iterate of this algorithm is used as the
initialization of the second part of SLIPS.

(i1) Once the initialization of SLIPS is done, we turn to
the actual core part of SLIPS, which consists in running
the discretized SDE given in (14). At step k + 1 of this
recursion (corresponding to the time ¢ 1 in the initial SDE),
the denoiser term is approximated by running the MALA
algorithm on the posterior distribution g;; conditioned on
the k-th iterate of the recursion. Finally, the last iterate of
this recursion is considered as an approximate sample from
the target distribution.

Complexity of SLIPS. Note that running this procedure
is meant to produce one sample from the target distribu-
tion. In practice, one may want to produce several samples.
In this case, SLIPS can be easily parallelised by running
simultaneously independent realizations of the procedure
described above. Moreover, we emphasize that the initial-
ization of fftif is the most challenging step in SLIPS as pos-
terior sampling only gets easier afterwards, by Theorem 1.

The computational cost of this initialization, involving a
Langevin-within-Langevin procedure, remains however rea-
sonable thanks to a persistent initialization of the ULA and
MALA chains (see Appendix F). As such, only a few steps
of each is needed in practice (see Appendix H.4).

Limitation of SLIPS. We highlight that ¢y is the only
hyper-parameter in our algorithm that requires careful tun-
ing. However, Figure 10 and Figure 11 in Appendix F.2
highlight moderate sensitivity to this hyper-parameter.

Algorithm 1 SLIPS

Input: o, ¢y, n, K, MA

SetT =T, and o = R, /V/d, see Section 3.2

Set (t) K _o as the SNR-adapted disc. of [to, 71, see (13)

Initialize Y? with Algorithm 2

fork=0to K —1do
Define 6, = tx1+1 — tg,

: k1M

Simulate { X }52, W
Estimate the denoiser by Uy} =
Simulate Y |~ N(Y; + wkUtk,

end for

Output: Y;* /o(tx)

Wg = Oz(tk_;,_l) — Oé(tk)
~ i with MALA, see (15)

= (1/M) YL, Xk
0201 14)

Algorithm 2 Langevin-within-Langevin initialization

Input: «(to), to, o, N, M

Set Y (O ~ N(0, 0%tgI4) and XA = ot /2

forn=0to N —1do
Simulate {X; ")}j L~ g (-]Y ™) with MALA
Estimate the denoiser by U™ = (1/M) ZM X; ()
Set 3¢ (Y(M) = (a(to)U™ — Y ™) /(o 2t0), see (6)
Simulate Y "+ ~ N(Y (™) + A8 (Y(M), 2)1y)

end for

Output: Y(V)

5. Related work

Score-based sampling with VI. Building upon score-
based generative models and VI, recent works have pro-
posed deep-learning approaches for density-based sampling.
Those sampling schemes amount to discretized versions
of denoising processes with a parameterized drift function.
Two main settings may be distinguished. On one hand, the
VI framework is seen as a stochastic optimal control prob-
lem involving the time-reversal of the denoising process,
see e.g., (Zhang & Chen, 2022; Berner et al., 2023; Vargas
et al., 2023b;a). We refer to (Richter et al., 2023) for a
global overview of this approach and its extensions. On the
other hand, another line of work has proposed parameter-
ized extensions of Annealed Importance Sampling (AIS)
(Doucet et al., 2022; Geffner & Domke, 2023; Vargas et al.,
2024). Since SLIPS is learning-free, these algorithms are
not included in our numerical tests as it would be difficult
to draw comparisons at equal computational budget.
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Score-based sampling with Monte Carlo. Preliminary
study of Monte Carlo score estimation was done by (Huang
et al., 2021), followed by (Vargas et al., 2023b), who consid-
ered the Follmer diffusion (Follmer, 2005; 2006) bridging
8¢ to 7 in a finite-time setting. However, their method rely-
ing on IS does not scale well with dimension, and suffers
from numerical unstability. Note that it can be recasted
as a particular example of our scheme Geom(1,1), via the
stochastic interpolant analogy, see Section 3.2.

Closely related to this work, (Huang et al., 2024) recently
proposed Reverse Diffusion Monte Carlo (RDMC), a sam-
pling algorithm based on a Monte Carlo estimation of the
drift of the time-reversal of a variance preserving diffu-
sion. Many algorithmic choices in RDMC are similar to
SLIPS, turning to Langevin for the drift estimation and
using Langevin-within-Langevin for initialization. These
authors also discuss the choice of the initial integration time,
which plays a role similar to our ¢y. Notably, under Lips-
chitz assumption on the score, they derive an upper bound
on the overall complexity of RDMC, depending on this time.
The present work complements the approach of (Huang
et al., 2024). We formalize the crucial trade-off in choosing
to according to our notion of ‘duality of log-concavity’ (see
Section 4.3), which is only briefly mentioned in (Huang
et al., 2024). This focal point naturally arises from our nu-
merical tests in high-dimension that allows us to assess the
potential of SL-based sampling in practice, where (Huang
et al., 2024) remained mostly theoretical. A precise compar-
ison is provided in Appendix G.

Multi-Noise Measurements sampling. Recently, (Saremi
& Srivastava, 2022) exploited a non-Markovian stochastic
process to propose a novel data-based sampling scheme.
The Multi-Noise Measurements (MNM) process (Y™)M_,
is defined by Y = X + 0Z™ where 0 > 0, X ~ 7 and
Z™ are independently sampled from N(0,1;). Here, the
measurement Y"" plays the same role as the observation in
standard SL°. In (Saremi et al., 2024), the authors suggest to
use this process in the density-based setting by computing
Y 1:M sequentially through the sampling of Y™ conditioned
on Y5 ™m~1 They show that those conditional distributions
are increasingly log-concave, see (Saremi et al., 2024, The-
orem 1), making their Once-At-a-Time (OAT) algorithm
efficient. In contrast to our framework, (Saremi et al., 2024)
mainly assume that the score of the measurement process
is analytically available. Although a Monte Carlo-based ap-
proach is proposed to estimate the score in realistic settings,
results significantly degrade compared to the analytical case.
As we detail in Appendix G, this can be explained by the
fact that OAT faces but does not tackle the challenge of
‘duality of log-concavity’.

8Indeed, both denoising processes have the same localization
rate when M = T, see Appendix G for more details.

6. Numerical experiments

In this section, we compare SLIPS against SMC, AIS,
RDMC (Huang et al., 2024) and OAT (Saremi et al., 2024).
Note that we deliberately omit an exhaustive comparison
with standard MCMC methods, as they notoriously fail to
sample from multi-modal distributions, see Appendix H.1.
For SL.IPS, we consider three different SL schemes : Stan-
dard, Geom(1,1) and Geom(2,1). Except for RDMC, all the
algorithms are informed by the scalar variance R2 of the
target distribution (or an estimation). We tuned the hyper-
parameters of each algorithm with coarse grid searches of
similar size and similar computational budgets assuming
access to an oracle distance metric to the target distribution
(see details in Appendix H). For OAT, we estimated the
intermediate scores with IS.

Toy target distributions. We first discuss standard tar-
get distributions including the 8-Gaussians (d = 2), the
Rings (d = 2) and the Funnel (d = 10) distributions. De-
tails about their respective definitions are provided in Ap-
pendix H. Apart from Funnel, for which we provide results
based on the sliced Kolmogorov-Smirnov (KS) distance as
per (Grenioux et al., 2023b), we compare the samples ob-
tained with the algorithms against the ground truth using the
entropic regularized 2-Wasserstein distance. The first four
columns of Table 2 show that SLIPS is on par with most
of its competitors on those toy distributions.

Bayesian Logistic Regression. Beyond toy distributions,
we sample from the posterior of a Bayesian logistic regres-
sion model on two popular datasets : lonosphere (d = 34)
and Sonar (d = 61). More details on the design of the model
are available in Appendix H. We evaluate the quality of sam-
pling by computing the average predictive log-likelihood of
the obtained samples. The last two columns of Table 2 show
that, in these higher dimensions, SLIPS is slightly superior
to its counterparts, especially OAT and RDMC.

High-dimensional Gaussian Mixtures. As a challeng-
ing task, we seek to estimate the relative weight of a bi-
modal Gaussian mixture with modes N (z; —(2/3)14, %)
and N (z;(4/3)14,%), where ¥ = 0.051; and 1, is the
d-dimensional vector with all components equal to 1, and
respective weights 2/3 and 1/3. In our experiments, these
weights are computed as W and 1 — W, where W is a
Monte Carlo estimation of [, 1(_ 0ye(z)d7(z). Here,
we consider increasing values of d. Figure 4 (top) shows
that SLIPS recovers the relative weight of the target at a
1% accuracy, even in high dimensions, whereas the other
methods fail to give accurate estimates in most dimensions.
In Figure 4 (bottom), we also illustrate the superiority of
SLIPS to capture the local properties of the distribution
by displaying the sliced Wasserstein distance to the target
distribution. Due to high estimation error, AIS and SMC
results are omitted in Figure 4 and displayed in Appendix H.
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Table 2: Metrics when sampling toy distributions and posteriors from Bayesian logistic regression models. Bold font
indicates best results. The metric for 8-Gaussians and Rings (d = 2) is the entropic regularized 2-Wasserstein distance (with
regularization hyper-parameter 0.05) (the lowest, the best), the metric for Funnel (d = 10) is the sliced Kolmogorov-Smirnov
distance (the lowest, the best) and the metric for the Bayesian logistic regression on Sonar (d = 34) and Ionosphere (d = 61)
datasets corresponds to the average predictive posterior log-likelihood (the highest, the best).

ALGORITHM 8-GAUSSIANS ({) RINGS ({) FUNNEL ({) SONAR (1) IONOSPHERE (1)
AIS 1.10 £ 0.09 0.19 £0.02 0.037 £ 0.004 —111.04 £ 0.08 —87.92+0.13
SMC 0.99 +0.16 0.28 +0.06 0.035 £ 0.005 —111.02+0.13 —87.82£0.16
OAT (SAREMI ET AL., 2024) 0.91 £0.09 0.18 £0.02 0.105 £+ 0.005 —280.92+1.34 —205.49 £ 0.61
RDMC (HUANG ET AL., 2024) 1.01 £ 0.05 0.30 £ 0.01 0.082 £ 0.006 —129.88 +0.12 —109.84 +0.10
SLIPS STANDARD 0.76 = 0.05 0.19£0.01 0.024+0.003 —109.25 + 0.07 —86.65 £ 0.04
SLIPS GEoM(1,1) 0.74 +£0.12 0.20 £0.01 0.032 £ 0.002 —109.14+0.09 —-86.32+0.10
SLIPS GEOM(2,1) 0.75+0.10 0.22 +0.02 0.040 £ 0.007 —110.24 + 0.05 —86.78 £ 0.08
o 5 o Y- Laplace approximation /,X
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i % 4
= T

O

Mode weight estimation error (in %)

0
I

10!
sl
a

100
Lol
O

10~ 1
sl

Sliced Wasserstein Distance

10~2

10—3
o
-

(=)
w
(V)
[=>]
~

Dimension

gk OAT @ sLIPs Geom(l,l) *
O Rrbmc @ sLIPS Geom(2,1)

SLIPS Standard

Figure 4: Metrics when sampling a bimodal Gaussian mix-
ture with d growing. Top: Relative weight estimation error.
Bottom: Sliced Wasserstein distance.

Field system ¢* from statistical mechanics. Lastly, we
sample the 1D ¢* model, which was recently used as a
benchmark in (Gabrié et al., 2022). At the chosen tem-
perature, the distribution has two well distinct modes with
relative weight that can be adjusted through a ‘local-field’
parameter h. We discretize this continuous model with a
grid size of 100 (i.e., d = 100). We estimate the relative
weight between the two modes and compare the results with
a Laplace approximation.

@ sLIPS Geom(l,1)
SLIPS Geom(2,1)
%  SLIPS Standard

Figure 5: Estimation of the mode weight ratio of ¢* with
increasing h - Only SLIPS produced correct samples.

Figure 5 shows that the relative weight estimated by SLIPS
lie between the 0-th and 2-nd order Laplace approximations.
Due to high estimation error, the results from concurrent
algorithms are omitted in Figure 5. We refer to Appendix H
for more details on the setting of this numerical experiment.

7. Discussion

In this paper, we introduced a Stochastic Localization (SL)
scheme, that features flexible denoising schedule, in order
to sample from any unnormalized target density. Relying on
this framework, we proposed our algorithm, Stochastic Lo-
calization via Iterative Posterior Sampling (SLIPS) which
leverages Monte Carlo estimation of the SL denoiser. Its de-
sign notably reveals the so-called “duality of log-concavity”,
that can be seen as a trade-off between sampling from the
observation process and sampling from the SL posterior. For
various localization schemes, we illustrate the performance
of SLIPS in high-dimension. In future work, we would like
to derive more theoretical guarantees on the phenomenon of
duality, investigate improved designs of denoising schedule
and consider more challenging target distributions.
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Organization of the supplementary

The appendix is organized as follows. Appendix A summarizes general facts that will be useful for proofs. Appendix B
provides details on the Stochastic Localization (SL) frameworks introduced in Section 2 and Section 3. In Appendix C, we
derive detailed computations on the application of SL to Gaussian mixtures. Appendix D presents an implementation of SL
for sampling in the case where the score of the observation process is available. Appendix E dispenses theoretical results on
the phenomenon of “duality of log-concavity” highlighted in Section 4.2 and Section 4.3. In Appendix F, we detail the
implementation of our sampling algorithm called SLIPS and provide an ablation study of its hyper-parameters. A detailed
comparison between our approach and works from (Huang et al., 2024) and (Saremi et al., 2024) is given in Appendix G.
Finally, Appendix H provides more details on the numerical experiments presented in Section 6.

Notation. To alleviate the computations derived below, for a probability distribution z defined on R, and any measurable
function ¢ : R — R, we will denote the expectation [5, ¢(z)du(z) € R? by E[p(X)] and the covariance [, (o (x) —
w() (o) — u(e)) Tdu(z) € R¥*4 by Cov[p(X)], where X is a random vector distributed according to y. For any
T € (0,+o00], two functions f and g defined on [0,T") are said to be asymptotically equivalent if f(¢)/g(t) — 1 and
g(t)/f(t) — 1 ast — T. This is denoted by f(t) ~ g(t).

A. Preliminaries

Metrics. We recall that the 2-Wasserstein distance between two distributions ¢ and v is given by

x1 — xo||2dr(xg, 21) 2 T = p, M = v}/

W2 (,uv V) = inf{fRd xRd

where 7; denotes the i-th marginal of 7 for i € {0, 1}. While it is not tractable in general, we have an explicit expression when
comparing two Gaussian distributions. Consider p1 = N(my,~?I;) and v = N(my, 72 1), where (m;, my) € RY x R?
and (71,72) € (0,00)2. Then, following (Peyré et al., 2019, Equation 2.41), we have

Wa(p,v)? = [[my — my || + d(y1 —72)? . (16)

We also recall that the entropic regularized 2-Wasserstein distance between two distributions ¢ and v is defined by
Wo e (pt,v) = inf{ fpa, ga |21 — @o|?dm (0, 21) — H(7) : 1o = p,m = v}/2,
where € > 0 is a regularization hyper-parameter and 7 (7) = — [pu, ga 108 7(20, z1)d7m (o, 21) refers to as the entropy

of .

Finally, we recall that the Kolmogorov-Smirnov distance between two distributions x and v is defined by

KS(p,v) = sup |Fy(z) = F, ()] ,

zeRd

where I, (respectively F)) denotes the cumulative distribution function of j (respectively v).

Below, we provide a first result, known as the Tweedie’s formula, which gives the expression of the score of any distribution
that writes as a marginalization, and its derivative.

Lemma 4 (Tweedie’s formula and extension). Let p be a positive probability density on R?® such that for any y € R?
p(Y) = Jga p(ylx)q(2)da, where (z,y) — p(y|z) is a positive transition density on R x R, and q is a positive density on
R, Assume that for any x € R?, y s log p(y|z) is twice continuously differentiable and that, for any k € {1,2}, there
exists ¢y, : RT — Ry such that [y, or(x)q(z)dz < oo and for any (z,y) € R? x R%, we have HV’;p(y|x)H < oi(z).

For any y € RY, define the "posterior’ density x — p(zx|y) by p(z|y) = p(y|z)p(x)/p(y).

Then, we have for any y € R?
Vylogp(y) = /Rd Vylogp(ylx)p(z|y)de . (17)
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This is often referred to as the Tweedie’s formula (Robbins, 1992). We also have for any y € R?
V3logp(y) = [ V2 logp(ylop(ely)de + [V, lop(ulo){V, logplule)} plaly)ds (8)
Rd R

- {/Rd Vy 1ng(y|96)p($|y)d96} {/Rd v, logp(yla:)p(xIy)dﬂc}T .

For any y € RY, these two results can be reformulated as

Vylogp(y) = E[V, logp(y|X)], Vlogp(y) = E[V} log p(y| X)] + Cov[V, log p(y|X)] ,

where X is a random vector distributed according to the posterior distribution defined by dp¥ (x) = p(x|y)da.

Proof. First observe that for any = € R%, y +— p(y|) is twice continuously differentiable since p(y|z) = exp(log p(y|z)),
where y — log p(y|z) is twice continuously differentiable.

We begin with the proof of (17). By combining the assumptions of the lemma with the dominated convergence theorem, we

obtain that p € C2(R9, (0, 00)), and that for any y € R%, we have

Vyp(y) _ Vy JrapWle)g(@)de _ foa Vylogpylz)p(yla)q(z
p(y) Jpa P(yl2)q(z)dz Jra P(yl)g(z)dz

)dx
Vylogp(y) = = / , Vy log p(y|z)p(z|y)de ,
R

We now turn to the proof of (18). Note that we have V, log p(y) = p(y) ™" [za Vylog p(y|z)p(y|z)q(x)dz. Then, using
once again the dominated convergence theorem, we obtain that for any iy € R?,

Vilosp() =~ | Vlomp(ulapula)a@)ds + —2 |9, 10ap(ufa) (7, lozplule)} T plylo)ala)dr

 Vyly) {/Rd v, logp(y|x)p(y$)q($)dx}"r

p(y)?

=/ Vf,logp(ylw)p(xly)der/ Vy log p(ylx){Vy log p(yl)} " p(x|y)da
Rd Rd

e { L [ empienie])

1
p(y)
which gives the result. O

We now dispense a useful lemma to compute exact integration in SDEs with linear drift.

Lemma 5. Let T > 0. Consider the SDE defined on [0,T] by dY; = B:(Y; + b)dt + od By, where 3 is integrable on [0, T,
beR% ando > 0. Forany T >t > s > 0, the conditional density of Yy given Y, = ys, denoted by py|s(-|ys), verifies

Pe1s(Welys) = Ny exp(fs75 Budu)ys + (exp(f: Budu) — 1)b, 02 f: exp(2 fi Brdr)duly) .

Proof. Define (t) = exp(— fot Bydu). Consider the stochastic process Z; = v(t)Y;. By Ito’s formula, we have dZ; =
Bey(t)bdt + v(t)od By = —7(t)bdt + v(t)od B;. By integrating this SDE between s and ¢, we have

Y(B)Y; —7(s)Ys = {7(s) = 4()}b + o [y (u)dB,

and then
Y, = exp(fst Budu)Ys + (exp(f: Budu) —1)b+ o f; exp(fi Brdr)dB,, ,

which gives the result using ito’s isometry and the fact that Y is independent from (B, — Bs)iels,1)- O
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B. Details on Stochastic Localization and our extension

Vocabulary of Stochastic Localization (SL). For sake of clarity, we precise below some terms employed in our paper:

* Y,%: observation process,

¢ ¢: denoising schedule,

* ug : denoiser function,

o uf(Y,®): denoiser or Bayes estimator,

o ¢ (-|Y®) : random posterior density. In the geometric measure theory literature, this is referred to as the SL process.

B.1. Reminders and intuition on generalized stochastic localization

Connection between standard stochastic localization and diffusion models. Stochastic localization as defined in (1) is
equivalent to Variance-Preserving (VP) diffusion models (Song et al., 2021) under change of time. Indeed, if we define
®(t) = log(1 + o?t~1)/2 for any t > 0, with the convention that ®(0) = oo, and consider the Ornstein-Uhlenbeck process
(X+t)¢>0 solving the SDE

dX, = —X,ds+V2dB,, Xo~r, (19)

then, (Y3):>0 and (\/t(t 4 02) X (¢))t>0 have the same distribution by application of Dubins-Schwartz theorem (Montanari,
2023). In other words, the localization process (1) can be identified as a non-linear time-reversal transformation of the
noising VP process (19).

Comments on our framework. We recall that o(t) = t'/2g(t). We now justify the assumptions given on g in Section 3.1.

» Rationale behind (a) and (b): together, these requirements ensure that (i) « is continuously derivable at ¢ = 0, without
imposing this same condition on g and that (ii) we have «(0) = 0. With (i), the SDE defined in (6) does not have a
singularity at time ¢ = 0. With (ii), it allows to fix Y;* to a deterministic value. This is equivalent to full independence
with X, i.e., full noise looking at the expression of the SNR in (11), which is natural to start the denoising process.
Note that taking —g instead of g would be equivalent in the denoising procedure, since the SNR considers g(t)?.
Nonetheless, considering g with positive values is arbitrary and allows us to simplify our framework.

* Rationale behind (c): as ¢ — Ty, we would like to denoise increasingly the observation process, i.e., gaining
progressively information about X, such that we obtain complete denoising at the end of the process. Looking at the
expression of the SNR in (11), this requires to naturally take g(¢) — 0o as t — Tyeq and g strictly increasing, recalling
that g takes non negative values.

Note that it includes the case of standard stochastic localization by taking g(¢) = t1/2. In this case, all properties are verified:
in particular, consider C' =1 and 8 = 1 in (b).

B.2. Theoretical results.

Here, we provide details on the theoretical claims made in Section 3.1 on our extended framework of stochastic localization.
Link between score and denoiser function. The formula given in (9) is an immediate corollary of Lemma 4 applied

to the observation process defined in (4). Indeed, the conditional distribution of Y,* given X = x € R% is p?(-|x) =
N(a(t)z,o%t1,). Then, it comes that V,, log p¢ (y|z) = {a(t)z — y}/o*t, and we obtain the result using Lemma 4-(17).

Localization rate. We begin with the localization rate given in Equation (5). We define the following quantity LocR (t) =
o+/d/g(t). We emphasize that the assumption of finite second order moment on the target distribution, that is used below,

guarantees the proper definition of the 2-Wasserstein distance.
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Proposition 6. Assume that 7 has finite second order moment. Denote by 7t the probability distribution of Y,* /a(t) where
(V) t€(0,T,.,) S the stochastic observation process defined in (4). Then, for any t € (0, Tyen), we have

Wo(m, m¢") < LocR(t) .

Proof. Lett € (0, Tyen). Consider the following coupling (X, Y;*): (i) X ~ =, (ii) V* = a(t)X + ov/tZ, where
Z ~ N(0,1,). Denote X* = Y, /a(t). We have X = X + {0/g(t)} Z and X ~ 7. Therefore, it comes that

Wa(m,m)? <Elllo/g(t) Z|%] = od/g(t)* ,
which gives the result. O

In particular, we recover the localization rate of the standard setting given in Section 2 with g(¢) = ¢'/? and Toen = 00.
Note that this upper bound applies on general distributions that may be non log-concave, as considered in A0, and may be
improved by assuming further regularity. We notably show a strong refinement in the Gaussian case by a factor O(g(t)).

Proposition 7. Consider the target distribution given by © = N(m,~v? 13) where m € R? and v > 0. Then, as t — Tens

we have
0_2 >1/2
(147 ) | va
( 2g(t)?

Proof. In this setting, the distribution of the observation process at time ¢ is tractable, and we have

g

Walmr =a ~ 3900

LocR(t) .

p¢ = N(a(t)m, {a(t)?*y* + 0%t} 1) .
Then, we get that
7w = N(m, {y* +0?/g(t)*} 1a) .

In this particular, using (16), the 2-Wasserstein distance is given by

0_2 )1/2
1— (14 ——
< 72g(t)?

from which we deduce the result by a simple asymptotic equivalent. O

WZ(W/]T?):’V \/g»

Interestingly, the same bound applies on the denoiser uf (V;*) = [pq 2¢f* (2|Y,*). The proof relies on the same structure.

Proposition 8. Assume that 7 has finite second order moment. Denote by 5 the probability distribution of u (Y,%) where
(}/ta)te[o,ng,,) is the stochastic observation process defined in (4). Then, for any t € (0, T,.n), we have

Wo(m,7g") < LocR(t) .

Proof. Lett € (0,Tn). Consider the following coupling (X, Y®): () X ~ m, (i) Y = a(t)X + o/tZ, where
Z ~ N(0,13). Denote X = u{(Y,*). We have X;* ~ 7. Therefore, it comes that

Wa(m, )? < Ex xp[I1X7 — XIPP] = By g0 [IE[X|Y] = X|] = By g0 [JE[X |V fa(t)] - X7
Since conditional expectations are orthogonal projections in L2, we have
Wa(m,7)? < Ex yo IV /a(t) — X|°] = Elllo/g(t) Z|°] = 0*d/g(1)? ,
which gives the result. O
Similarly, we also show a strong refinement of Proposition 8 by a factor O(g(t)) in the Gaussian case.
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Proposition 9. Consider the target distribution given by m = N(m,v%1;) where m € R% and v > 0. Then, as t — Tyen,

we have
o2 >1/2
1—(1+ ———
( 72g(t)?

Proof. Here again, the distribution of the observation process at time ¢ is tractable, we have

Vd ~

WQ(TF’%?) =7

379 LocR(t) .

p = N(a(t)m, {a(t)*y* + ot} 14) . (20)

In particular, the score is tractable and given by

Vylogpi'(y) = m :
Using relation (9), we thus have
2 2
ui () = a(t)cz’(;;)’:- o2t” + a(t)z;t—i- o2 @h
Recalling that 7§ is the distribution of u{*(Y,%), by combining (20) and (21), it comes that
-1
7o =N (m,’yQ {1+ ’YZT} Id> .
In this particular, using (16), the 2-Wasserstein distance is given by
. o2 —1/2
Wo(m, 7)) =~ 1_(1+729(15)2) Vd
from which we deduce the result with a simple asymptotic equivalent. O

General remark on denoising in Stochastic Localization. In our presentation of standard stochastic localization where
the observation process is defined in (1), we take Y7 /T as approximate sample from 7, where Y7 is obtained by running the
(discretized) SDE (2) up to time T'. Yet, in standard stochastic localization, (Montanari, 2023) proposed to take the last
denoiser of the procedure ur(Yr) = [p4 2qr(z|Y7)dz. We highlight here that this is equivalent asymptotically.

» The two approaches have the same upper bound on their rate of convergence, see Proposition 6 and Proposition 8 in the
standard setting. Note that we also obtain the same rate asymptotically in the Gaussian case, see Proposition 7 and
Proposition 9.

* When T is large, the Gaussian term dominates the target term in the expression of the posterior ¢; given in (3). Noting
that 02 /T < 1, it comes that g7 (x|Y7) ~ dy;./r and therefore ur (Yr) ~ Yr /T.

As shown above, this equivalence also occurs in generalized stochastic localization. In addition to the similarity of results
in Proposition 6 and Proposition 8, we observe that, as 1" is large if Tgen = 00 or as T is close to Ty, otherwise, the
Gaussian term dominates the target term in the expression of the posterior ¢; given in (8). Since 02/g(T)? < 1, it comes
that ¢3(z|YF') = dya /a(r), and therefore, we have again ug. (Y1) ~ Y7 /a(T).

In the main document of our paper, we choose to consider the distribution of Y7 /o(T") rather than the the distribution of the
denoiser ug.(Y;%) as an approximation of the target distribution. This choice seemed to us to be easier to understand for
non-expert readers. In practice, we however align with the original methodology and compute the denoiser w3 (Y) instead
of Y /a(T). This allows to us to have a fair comparison with the approach from (Saremi et al., 2024), who also consider
such Bayes estimator for sampling.
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Markovian projection of the observation process. Following (Liptser & Shiryaev, 1977), we now turn to existence and
uniqueness results on the SDE (6), under assumptions on 7. These are corollaries of the general results: (Liptser & Shiryaev,
1977, Theorem 7.12), restated in Proposition 10, and (Liptser & Shiryaev, 1977, Theorem 7.6), restated in Proposition 12.

Proposition 10 (Theorem 7.12 in (Liptser & Shiryaev, 1977)). Let (Q, F,P) be a complete probability space on R, let
(Fi)i>0 be a nondecreasing family of sub-c-algebras and let W = (W, F)1>0 be a Wiener process. Let T > 0, o > 0.
Consider the Ito process Y = (Y3, Ft)telo,1) satisfying the following SDE

dY; = pidt + odW,, Yy =0,
where the stochastic process 3 = (B¢, Fi)iejo,) verifies ]P’(fOT 18] dt < o0) = 1.
Assume that fOTE[HBtH]dt < oo and define h : [0,T] x R? — R by
hi(y) = E[BiY: = y] -

Also define the stochastic process (W¢)e(o,1] as

Imi(mé%w@®>-

Then, W is a Wiener process and Y is a diffusion process satisfying the following SDE

AY; = hy(Yy)dt + odW, , Yo =0

Since the original result considers the case where ¢ = 1 and d = 1, we provide below the proof of Proposition 10 for
completeness.

Proof. Lett € [0,T]. We have that Y; = Yj + j;f Beds + o fg dW, = fot Bsds 4+ oW;. Hence, we get that

t
‘m:1/WKWﬁmm+m.
0

o
In particular, Wy =0. Using It6’s formula, we have that
2
d(exp(iz ' W,)) =iexp(iz' W)z dW, — @ exp(iz' Wy)dt .
Integrating this formula between s and ¢, where 0 < s < ¢ < T, we obtain that
PE— JR— t JE— JR—
exp(iz' (W —W,)) =1+iz" / exp(iz' (W, — Wy))dW,
Z'ZT t P o
+ — exp(iz' (Wy — W) [Bu — hu(Ye)]du
I A
5 exp(iz' (W, — W))du .
Using E[fst exp(iz" (W, — Wy))dW,,|Y,] = 0 and

e[/ exp(izT (W~ W.)[Ba m(va)ldaly.] =2 [ exp(izT (W — W)E[fu — hu(Va)ValdulYs] =0,

by definition of h,,, we get that

Elexp(iz' (W, — W))|[Y,] =1 — |
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Define f(t) = E[exp(iz" (W; — W))|Y:]. Since f(t) =1 — @ f; f(u)du, f is continuously differentiable on [s, #].
H 2 . . . . 2
Following our computations, we have f(¢) = —(||z||” /2) f(¢) with f(s) = 1, which implies that f(¢) = exp(—@(t—s)).

Consequently, W is a Wiener process with the filtration (Ft)te[o,)- By definition of W, this means that Y satisfies the
following SDE

AY; = hy(Yy)dt + odW, , Yo =0
O

Corollary 11. Assume that 7 has finite first order moment. Consider the observation process Y * defined in (4). Then it is a
solution to the SDE

AY® = a(t)uf (V,2)dt + odBy, Y& =0.

Proof. Consider T' € (0, Tgen). We recall that Y,* = a(t) X + oWj. Then, (Y;*);e[o,1) is an [to process satisfying the SDE
= Btdt + O'dBt, Yoa =0 5

where ; = &(t)X. Note that 8 is well defined on [0, T'] due to the assumptions (a) and (b) considered on g and that we
immediately have P( foT |6¢]] dt < 00) = 1. Moreover, since « is strictly increasing on [0, T, |¢| = ¢ and we get that

/0 E[[|6:/l1dt = E[|1 X / a(t)dt = E[| X} {o(T) — a(0)} .

Since E[|| X||]] < oo by assumption on 7, we thus have fo [[|B¢]l]dt < co. By defining hy(y) = [pa &(t)zqp (x|y)de =
a(t)u$(y), we finally obtain the result by applying Proposition 10. O

Proposition 12 (Theorem 7.6 & Remark 7.2.7. in (Liptser & Shiryaev, 1977)). Let T > 0, o > 0. Consider the following
SDE

dY; = hy(Yy)dt + odW;, Yo =0, (22)
where P(fOT |he(Yy)||? dt < o0) = 1. Then, (22) admits at most one weak solution.

The proof of this result lies in the fact that the distributions of solutions to the SDE (22) have the same density with respect
to the distribution of the Brownian motion. We refer to (Liptser & Shiryaev, 1977) for the complete proof.

Corollary 13. Assume that T has finite second order moment and that t — ¢(t)? is integrable at time t = 0. Then, the SDE
defined in (6) by

AY = a(t)ud (V)dt + odB, , Y =0,

has a unique weak solution.

Proof. Consider T' € (0, Tyen). Since m has its first order moment that is finite, we have existence of solutions by Corollary 11.
Consider a solution Y and denote h; = &(t)us. We have ||h,(Y,2)||> = &(t)? |E[X|Y,2]|)° < &()2E[|X|* |v,2] by
Jensen’s inequality. Then, using this inequality, we obtain that

Elfy [he(Y)P dt) = [y Ellhe (V) IP1dt < [ a(t)*EIE[IX | |[v,elldt = B[ X|] fi a(t)?dt

Combining the assumptions on 7 and «, it comes that E[ fOT (| e (Y;)||? dt] < oo using the inequality above, and therefore
]P’(foT [he(Y,®)||* dt < o00) = 1. We finally obtain the result by applying Proposition 12. O

We emphasize that the extra assumption made on « in Corollary 13 is verified for the localization schemes Geom and
Geom-oo presented in Section 3.2.
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B.3. Alternative denoising approach to SLIPS

We note here the score of the observation process can be expressed via an expectation over the posterior of the model, in a
different manner than (9). Define vf*(y) = [z Vo log w(x)gf* (z|y)dax, where ¢f* is the posterior density given in (8).

Lemma 14. Consider the observation process defined in (4) with marginal distribution at time t given by pg*. Assume that
log 7 is continuously differentiable on R and that there exists ¢ : RY — Ry such that [, p(2)N(2;0, 0%tl4)dz < oo and
for any (z,y) € R x RY, we have |V, 7({z 4+ y}/a(t))|| < ¢(2). Then, we have for any y € R?

Vylogpf(y) = v (y)/a(t) .

Proof. We recall that p*(y) = [pu N(y; a(t)2, 0%t I)dm(x). Then, by change of variable z = a/(t)x — y, we have

P (y) /Rd m({z + y}/a(t))N(z;O,JZt Iy)dz,

where the multiplicative constant does not depend on 3. For any y € R?, denote by G (-|y) the density defined up to a
normalizing constant by G (z|y) oc 7({z + y}/a(t))N(2;0, 0%t 1;). By combining the assumptions of the lemma with the
result of Lemma 4-(17) for this new expression of pg¥, we obtain that

Vylogsf (o) = [ Vylogm({z + ) /al0)df (-l
1 ~o
= L, Vioan({z+ ) /al0)it (ly)as

1
= — Vg logm(x)qy (x|y)dx ,
5 L, Vo) aly

where we re-applied the change of variable z = «/(t)x — y in the last equality. [
Therefore, the SDE (6) is strictly equivalent to the SDE

Ay = 2B{ye + Ztop (Vo) hdt + 0dBy , Y =0
Hence, to simulate from the observation process in a learning-free fashion, we can adopt a similar strategy to SLIPS, that
rather involves the SDE derived above. Given a SNR-adapted discretization (¢)%_, of a time interval [to, T'], where o > 0
and K > 1, it amounts to consider a sequence {(Y;*, V/*)}_,, where V% is a Monte Carlo estimator of v{* (Y;) and Y
is obtained by solving the SDE

\ & e o2
AV, = 89V + 2V, Ydt + 0dBy ,t € [th, tria] - (23)

In theory, this approach leads to the same level difficulty in the Monte Carlo estimation as SLIPS, since the involved
random poster densities are the same. In particular, this formulation does not bypass the “duality of log-concavity” explained
in Section 4.3. The main difference with the approach presented in the main of our paper however lies in the integration
of the SDE (23), which is not tractable at first sight. By combining the result of Lemma 5 and the use of the stochastic
Exponential Integrator scheme (Durmus & Moulines, 2015), we show in Appendix D.1 how to solve this SDE for our
localization schemes. We emphasize that this implementation is also available in our code.

Unfortunately, we found in our early experiments that this approach suffered from numerical unstability and showed higher
variance than SLIPS. We think that this is due to the evaluation of V log 7 in our MC estimation for the early steps of the
algorithm, and could be overcome by using the SLIPS recursion given in (14) instead. We leave this study for future work.
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C. Detailed computations for Gaussian mixtures

In this section, we consider the special case where 7 is a mixture of N Gaussians with weights (w;)Y_;, means (m;)}¥ ; and
covariance matrices (2 I4)X¥ ;. Under this assumption, p* can be explicitly written for any y € R? and ¢ € (0, Tyen) as

N
P (y) =Y wiN(y; a(t)my, t(g*(1)y] +0°)1a) -
=1

This means that the distribution of the observation process is itself a mixture of Gaussians with the same weights as 7 but
with means («(t)m;)¥ ; and covariance matrices (£(g2(t)y? + o) 14)}¥ ;. This elementary result is obtained by applying
the rule of linear combination of independent Gaussian random variables. The score of the observation process can also be
computed by noticing that for all y € R?

wrn Viegp(y) 2N witT g* (W + 02) "My — a(t)ymi)N(y; a(t)my, t(g? ()72 + 02) 1a)
Vlogpi(y) = ey SN wiN(y; a(t)ymy (g2 (12 + 02) 1) '

One can also compute the posterior distribution ¢f* for any ¢ € (0, Tyen) and 2,y € R% as

N
g (zly) o< Y wiN(z;my, 47 1a)N(y; Vig(t)z, ot 1y)
=1

N 2
_ . “IN(z;m;, 72 x‘L 7
= Y Vi) MmN (L o)

5 a(t)dN<m y <2+ o’ >I>N x( Vio® >(mi+yg<t>>( 1o’ )1
=2 wi i~y \ %t Sy S vl Il e ;
£ o)\ " @) 2+ @2t )\ 2 Vier) \o?+ 27 )

=m

i =(17y.4)?

This shows that the posterior is itself a mixture of Gaussian distributions with weights (wg', ;)i¥, where wf’, ; =
el N -a a N : : a 2 N

Wy i/ > =, Wi, ;, means (mg', ;);*, and covariance matrices ((7Vf, ;)° La);Z:-

Additionally, we can derive tight expressions for the constants R and 7 introduced in A0 in the case where 7 is a Gaussian
mixture parameterized by N = 2, w; = 1 —wy = w, withw € (0,1), my = —m; = aly’, witha > 0,and y; = 72 = 7,
with v > 0. In this case, 7 verifies AO, where (i) x4 is a mixture of two Dirac masses at —a 14 and +a 1, with respective
weights w and 1 — w and (ii) 7 = ~y. Moreover, for any random vector U ~ p, it holds almost surely that

U —mg| = |U = a(1l — 2w) 14]| < 2max(w,1 — w)avd .

Therefore, we obtain that R = 2max(w, 1 — w)a in AO. Note also that 7, defined as the distribution of X — m, where
X ~ m,is still a Gaussian mixture that verifies AQ with same constants R and 7.

In the experiments conducted in Section 6, Appendix D and Appendix F.2, we will consider a rolling example given by
the target distribution 7 where w = 1/3, a = 1.0 and 72 = 0.05. In this case, we have R = 4/3 and 72 = 0.05 and the
corresponding density is defined as

z€R?— 2N (2;-214,0.051;) + N (253 14,0.051) . (24)

We recall that d(R? + 72) is an upper bound on the scalar variance of this target distribution.

"We recall that 1,4 stands for the d-dimensional vector with all components equal to 1.

22



Stochastic Localization via Iterative Posterior Sampling

D. Sampling via Stochastic Localization in an ideal setting

The goal of this section is to validate the claims from Section 4.1 about the minimization of the integration error. In this
section, we work under the assumption that the score V log p¢* is a known function and do not consider any MCMC method
at all (even for the initialization). This setting removes entirely the estimation error that we deal with in Section 4.2 to
solely focus on the integration error. For the initialization, we now consider an arbitrary to > 0 with Y, distributed as
N(0, 0%ty I4) (the best estimation that we have at the beginning of the SDE). We will clarify 4 different points in this section.

(a) Exploring Exponential Integration (EI) based schemes for SDE discretization;
(b) Analyzing the impact of the SNR-adapted discretization on the integration error;
(c) Exploring the limits of the Gaussian approximation Y;>' ~ N(0, o2ty ly);

(d) Exploring the impact of the computational budget.

In the numerical examples presented below, we consider the target distribution defined in (24) where d = 10. We compute
the exact score using the analytical formulas from Appendix C. We choose to display two complementary results based on
(i) the empirical Sliced Wasserstein distance (Bonneel et al., 2015; Nadjahi et al., 2019), which tells how local information
on 7 is recovered, and (ii) the error in estimating the weight of the first mode, which tells about global properties of the
estimation. Moreover, for any SL scheme «, the values of ¢y and 7" will be taken so that the log-SNR evaluated at times %,
and ?x has the same value (the initial log-SNR is taken as —4.0 and the last log-SNR is taken as 5.0). This enables fair
comparison across different schedules.

D.1. Exploring new integration schemes

By exploiting the relation given in (9) between the denoiser function and the score of the observation process, which is now
assumed to be tractable, the SDE (6) is equivalently defined on [to, T by

Ay, = S0V + 0%tV logp (V) }dt + 0dB, , Y§* = 0. (25)
Through this formulation, we have fully removed the problem of score estimation, but the issue of discretization error still
remains to sample from (Y,*);¢[¢,,7) With (25). Due to the divergence of the coefficient ¢ + é(t)/a(t) at time 0 (and time
Tgen in the finite-time setting), we propose to use the stochastic Exponential Integrator (EI) scheme (Durmus & Moulines,
2015) in this setting. Consider a time discretization of the interval [to, T defined by an increasing sequence of timesteps
(t/c)szo where tir = T and K > 1. Then, the EI scheme applied on the SDE (25) amounts to define a sequence of random
variables {Y,*}/_, obtained by exactly integrating the SDE defined for any k € {0,..., K — 1} by

AV = SV + 0.V log pgt (V) bt + 0dB, , ¢ € [th, tira) -

Although the exact integration is not guaranteed for a general schedule « as defined in Section 3.1, our specific design of the
denoising schedule g(t) = t~'/2a(t) in the schemes Geom and Geom-oo provides tractable computations following the
result of Lemma 5. We treat these cases separately below.

EI scheme combined with Geom-oco localization scheme. In this setting, we recall that g(t) = t®1/2, Then, we have

Oé(t) o Oél+1

alt) 2t

Note that &(t)/a(t) — 0 as t — 0. Following Lemma 5, the sequence {ﬁ(z}szo obtained by the EI scheme is defined by
the recursion

aj+1 a1
> r1) ° e tpg1) ° 2 s lit1
Y;}fﬂ - (tk Yo+ e — 10t Viogpf (Vi) + o ot (te ) — ) Zhy1 -
where (Z k)kK:I is distributed according to the standard centered Gaussian distribution. In the standard case, i.e., a1 = 1,

this simplifies as
ﬁ(;+l = t’;;i'l f/t?: + {t];':l - 1}02th10gp?k (f/t?:) + 04/ t];;:l (tk+1 — tk;)ZkJrl .
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EI scheme combined with Geom localization scheme. In this second setting, we recall that g(t) = t*1/2(1 — t)~@2/2

(Tyen = 1). Then, we have
O{(t) o +1 i [}
alt) 2t 2(1—t)

Note that &«(t)/a(t) — 0 ast — 0 and t — 1. Following Lemma 5, the sequence {ﬁi‘}kK:O obtained by the EI scheme is

defined by the recursion
ap+1 1 ag
- t z —¢ T
ve - k+1 k v
k41 ti 1— tk+1 k

ag+1 g
trt1 2 11—t 2 9 -
—_ _ -1 t V1 * (Ye

+{( T ) (1—tk+1> }U k ngtk( tk)

ag+1

o tk+21 —a —a
oF1(—a1, —ag, 1 — ay, tg)t, " — oF1(—a1, —ag, 1 — oy, tep1)t 1 Ziy

" VL (1= tyy)

where 5F; denotes the hypergeometric function, see (Olver, 2010, Chapter 15), and (Z, k)le is distributed according to the

standard centered Gaussian distribution.

When (ay, as) = (1, 1), this simplifies as

Cra t 1—t; \ivra
tht1 :( ];:1)(1 tkil)2Ytk
— 1 (e} ~a
i {(tk+1)(1£t£il)2 — 1}02thlogptk(Ytk)

trg1(ter1—tr)

+ 0‘\/ k1 10g(t:j—1) + Tt Ziy1 -

1—tpq1

When (aq, az) = (2, 1), this simplifies as

t 3 — 15
Vo, = (el (Agl)bye
t 3, 14, 1 -
() () E — 1)020,V log pf (V)

top1/te—1\1 Jtptteyr
+ otgaa( - Ik TR 17541 .

When (a1, az) = (1,2), this simplifies as

o tey1\1 —tr \2va
}/tk+1 :( };: )2(11t::’1)2}/;k
+{(%5)3 ($525) — 1304,V log pf, (Vi)

)} k41 -

t
- \/(tk+1 — i) {3,y + B2} + 22 log (72—
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Figure 6: Sliced Wasserstein distance between the true samples from pj’ and the empirical distribution of f’tf: obtained by
EI scheme combined with uniform time discretization (green) and SNR-adapted discretization (red) for the Standard (left)
and Geom(1,1) (right) schemes.
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Figure 7: Impact of ¢, with different schedules measured with the relative weight estimation error and the sliced Wasserstein
distance. Left: Impact of ¢, in the standard scheme. Right: Impact of ¢y and (Tyen — T') in the Geom(1,1) scheme.

D.2. Studying the impact of the SNR-adapted time discretization

In Section 4.1, we suggested to take a SNR-adapted time discretization by (t;)5_ such that
log SNR(tk) = log SNR(tO) + AsnrkK

with to > 0 and Agng = (log SNR(T') — log SNR(¢9))/ K. Figure 6 shows that the SNR-adapted discretization efficiently
reduces the integration error for both schedules Geom and Geom-oo. Note, the impact on the schedule Geom(1,1) is more
moderated as the uniform initialization already splits the curve into moderated log-SNR increments (see Figure 2) because
of a slower rate near t.

D.3. Studying the impact of the Gaussian approximation in the initialization

In this section only, we replace the target distribution considered in (24) by the mixture of two Gaussian distributions
N(=3119,%) and N(3 119, %), where ¥ = 0.051;(, with weights respectively given by 2/3 and 1/3. Therefore, 7 has
non-zero mean and high variance, which provides a challenging setting for our Gaussian approximation at initialization
given by Y& ~ N(0, 02to14). Without information on the target, this is the best estimation that we have when ¢ is close to
0. Figure 7 shows that only high values of ¢, (i.e. above 10~2) degrades the performance in our localization schemes. This
underlines the need of running the Langevin-within-Langevin correction procedure of this approximation as explained in
Section 4.3. Additionally, note that Figure 7 (right) shows that taking (Tgen — 7") low in the finite time setting does not
degrade performance, which was not obvious from the log-SNR shape near Ty, in Figure 1.

D.4. Studying the impact of the number of discretization steps

The bottom row of Figure 8 shows that, in the ideal case where the score is known, using the SNR-adapted discretization
makes all the different schemes equivalent®. Moreover, we see that the sampling error quickly stabilizes with medium
budgets which highlights that the integration error was successfully minimized.

8We recall that we choose to and 7T so that the starting and ending levels of SNR are the same across different schemes.
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Figure 8: Impact of the computational budget K with different schemes - The sampling error is computed either with the
Sliced Wasserstein distance (left) or the relative weight error (right).

E. Theoretical results on the duality of log-concavity

In this section, we detail the results on log-concavity provided in Section 4.2 and Section 4.3. For sake of readability, those
are stated with a general o > 0. Our first result provides uniform upper bounds on the Hessian of the log-density of the
observation process and its corresponding log-posterior density.

Lemma 15. Assume A0. Lett € (0, T,,). We recall that p$ stands for the marginal distribution at time t of the observation
process defined by (4), while g stands for the corresponding posterior density. Under regularity assumptions on 7 detailed
in the proof of the lemma, we have for any (z,y) € R? x R? that

2 2
Vilogpf (v) < G()Ta s where G(t) = Griitomy — armerrem (26)
V2log ¢2 (ly) < Co(t) T, where Cy(t) = 4B% — 1, — 987 27)

In particular, (4 is a strictly decreasing function on (0, Tgen).

Proof. We begin by proving (26). Consider the stochastic process (Yta)te[O,Tgen)’ given in (4), and defined by Y,* =
a(t)X + oW, where X ~ 7 and (W});>0 is a standard Brownian motion. Due to A0, X can be writtenas X = U + G
where U ~ y, with y compactly supported on B = B(m,, Rv/d), and G ~ N(0, 72 1,). In particular, it holds almost surely
that ||U — m,||> < dR2. We thus have the following decomposition

pi(y) = Jgpf(ylu)dpu(u) ,

where p¢(-|u) is the conditional density of Y, given U = u € B defined as
P (ylu) = N(y; a(t)u, {a(t)*r® + 0*} 1a) - (28)

Then, it comes that

1

—y+a(t)u I
a(t)?72 4+ o2t 4

Vy log pf (ylu) = O V3 log pf(ylu) = —

We now make the technical assumption that for any k € {1, 2}, there exists ¢, » : B — Ry such that [; ¢, (u)dpu(u) < oo

and for any (u,y) € B x R?, we have | VEp§* (y|u)|| < ¢pr(u). By combining this assumption with the result of Lemma 4-
(18), we obtain that

Cov[U]Y] .

=Y+ a(t)U
Vi log py* (V") = — tId + Cov {t()

a(t)?r2 4 o2 a(t)?r2 + o2t
1 a(t)?

. I
a(t)?12 4 o2t at (a(t)?72 4+ o2t)
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Since |U — m,||* < dR2, we have Cov[U|Y;*] < dR%1,°. Then, we obtain the bound (26) as V2 log p¢ is continuous
and p is positive on RY,

We now prove (27). We recall from (8) that ¢ (z|y) oc m(2)N(x;y/a(t), 02 /g(t)? 14). Therefore

g(t)?
Sl

V3 log gff (X[Y,*) = Vi logm(X) —

In particular, we have m(z) = [5 N(z;u, 72 1g)dp(uw).

We now make the technical assumption that for any k € {1, 2}, there exists g 5 : B — R such that [ ¢q & (u)du(u) < oo
and for any (u,z) € B x R?, we have ||VEN(x;u,7214)|| < ¢p.(u). Then, by using again the result of Lemma 4-(18),
we obtain that

1 1
Vilogn(X) = ——la+t ﬁCOV[U‘X} ,
Since ||U — m,||> < dR2, we also have Cov[U|X] < dR21,;'°. We obtain (27) with similar reasoning as before. O

Note that the upper bounds obtained in Lemma 15 can be made tighter in the case where the target distribution is a Gaussian
mixture, as shown in Lemma 16.

Lemma 16. Leta > 0, v > 0 and w € (0, 1). Consider the target distribution 7 defined as the mixture of the Gaussian
distributions N(—a 14,~v% 1) and N(+a 14,72 14), with respective weights w and 1 — w. Then for any (z,y) € R? x R?,
we have

a 2(12 . o a T
v32J lng?(y) = (a(t)272+¢722t§§)(1+c0shg(t,y)) ldlg - a(t)zfy12+¢72t Lq , with g(tﬂ y) = j(tgz)7§/+¢:2dt + log(% - 1)(29)
« CL2 2 ; (IIT
Vilog i (vly) = serrrenn ey Lala — 52 la — %3 Lo, with f(t,2) = 2224 4 log(5, — 1) (30)

In particular, tighter expressions of (, and (, can be obtained in Lemma 15 by replacing R by R/{2 max(w,1 —w)} < R.

The proof of this result is inspired from the derivation of (Saremi et al., 2024, Eq. (4.6)).

Proof. As explained in Appendix C, 7 verifies A0, where 7 = y and y is a mixture of two Dirac masses at —a 14 and a 14
with respective weights w and 1 — w, whose density is given by p(u) = wl_g1,(u) + (1 — w)lg1, (uw).

We recall that the stochastic process (Y,*)c[0,1,.,)> given in (4), is defined by V;* = a(t)X + oW, where X ~ 7 and
(W3)s>o is a standard Brownian motion. Due to A0, X can be written as X = U + G where U ~ g and G ~ N(0,72 1,).

We begin by proving (29). Following the first part of the proof of Lemma 15, we have

1 a(t)?

Vi logpf(y) = — I
y 108 Py (y) at)2~2 4 o2t a+t (a(t)292 + o2t)

5 Cov[U,],

where U, is a random vector distributed according to p§'(+|y), the conditional distribution of U given Y,* = y € R?, whose
density is given by

py (uly) o< p(u)p (ylu) ,

where p¢* (y|u) is defined in (28). Therefore, we obtain that

2 2
P2 (uly) o< wexp (— ly + a(t)ald| >1a1d<u>+<1—w>exp< ly — alt)ald| >1a1d<u>.

2{a(t)?y% + o2t} ~2{a(t)24? + o2t}

w1 (t,y) w2 (t,y)

Note that this upper bound may be loose, since it does not depend on .
'Note that this upper bound may be loose, since it does not depend on z.
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Hence, p$*(-|y) is a mixture of two Dirac masses at —a 1,4 and a 14 with respective weights wy (¢, y) = w1 (¢, y)/{w1(t,y) +
wa(t,y)} and Wa(t, y) = wa(t,y)/{wi(t,y) + wa(t,y)}. Therefore, we get that

Cov[U,] = IE[UyUyT | - E[U,JE[U,]"
= 1 (t,y)a®1ql] + Dot y)a’lal) — (Do(t,y) — 1 (t,y))%a’141)
= {1 — (@2(t,y) — @1 (t,y))*}a’Laly -

In particular, we have

~—

wa(t,y) —wi(t,y) _ exp(logws(t, y)) — exp(logwa(t,y))
wa(t,y) +wi(t,y)  exp(logwa(t,y)) —exp(logwi(t,y)) ’

Qf)g(t, y) —wy (t’ y) =

where log wq (t,y) = —% + log(w) and log wa(t,y) = —% + log(1 — w). Then, it comes that

1= (@a(t,y) —wn(t,y))* = 1 — tanh (log wa(t, y) g log wl(t,y)>
2

1 + cosh(log wa(t, y) — logwi(t, y)) -

Moreover, we get that

20(t)ay 14 1
log wa(t, y) — log ws (t,y) = a(t)(zzyzﬂzt g ~1)

Denote g(t,y) = logws(t,y) — logwi (¢, y). We finally obtain (29) by combining previous computations.

We now prove (30). Following the second part of the proof of Lemma 15, we have

g(t)*
,}/2

1 1
Vi log ¢i' (z|y) = _?Id - I+ ?COV[Uz] )

where U, is a random vector distributed according to i(-|z), the conditional distribution of U given X = x € R%, whose
density is given by
p(ulz) oc N(a u,y* Ta)p(u) -

Therefore, we obtain that

o +atal® | , e — a1l
p(ule) ocwesp |~ ) Lo, () 4+ (1= w)exp | I ) L, ().

w1 (t,x) wa (t,x)

Hence, p(+|x) is a mixture of two Dirac masses at —a 1,4 and a 1, with respective weights w; (¢, x) = w1 (¢, ) /{w1 (¢, ) +
wa(t, )} and Wa(t, x) = we(t, x)/{w1(t, x) + wa(t, x)}. Therefore, we get that

Cov([U,] = E[U, U, | — E[U,]JE[U,]"
=1 (t, 2)a’1aly + Wa(t, 2)a’141y — (Wa(t, x) — 1 (¢, 2))%a* 141y
= {1 — (wa(t, ) — w1 (t,2))*}a’141, .
Similarly to the computations derived above, we obtain that

2

1 — (a(t,z) — Wi (t,z))? = 1+ cosh f(t,x)

where

2ax "1 1
ft,x) =logws(t,z) — logwy(t,z) = # + log < - 1> ,
0% w
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which finally leads to (30).

We now derive tighter expressions for , and (, in this setting. Since 2/(1 + cosh) < 1 and 141} < dI4, we have

a(t)2a?d I,

V§ Ing?(y) < a(t)2y2+o2t)? Id )

1
a(t)?y2+o2t
2

2
VZlog g (aly) < LA Ta— L 1o — 21,

In this particular setting, we recall that R = 2 max(w, 1 — w)a, see Appendix C, and thus, the upper bounds on the Hessians
derived above are equivalent to

2 (t)2dR? 1
Vy logpf‘(y) < (a((t)é)272+0'2t)2 Is — a2 2102t I y
dR?

Vi log g7 (zly) < 4

2
Id—ﬁld—%ld,

where R = R/{2max(w,1 — w)} < R. Therefore, we can obtain tighter expressions of ¢, and ¢, in Lemma 15 by
replacing R by R. O

We provide below a result, that combines formal versions of Theorem 1 and Theorem 2.

Proposition 17. Assume AO. Denote by g~ the inverse function of the denoising schedule g.

IfdR? > 12, define

lp = g ! (ﬁ) and tq = gt (Uix/dff;—fz) 7

otherwise, define t;, = Ty, and tq = 0. Then,

(a) foranyy € RY, ¢ (-|y) is strongly log-concave for t € (tq, Tyen) and gets more log-concave as t increases,

(b) py is strongly log-concave fort € (0,tp).

Proof. Consider the expressions of ¢,, and ¢, given above. Note that they are well defined in the case where dR? > 72 since
g is a bijection from [0, T, ) to R.. We begin with the proof of the result (a). Let ¢ € (0, Tyen). Following Lemma 15-(27),
for any y € RY, ¢&(-|y) is strongly log concave if

o(dR? — 12)

C(t) <0 = g(t)* > - =t >t

T

Moreover, g;* gets more log-concave as ¢ increases as (4 is a strictly decreasing function, see Lemma 15. We now give the
proof of the result (b). Let ¢ € (0, Tyen). Following Lemma 15-(26), pf* is strongly log concave if

a(t)?dR?

— T <]l = gt)?dR?* -1 <? = t<t,.
a(t)27'2+02t g()( T) o p

(1) <0 =
]

Hence, this result shows that the condition dR? > 72 is restrictive on the log-concavity of the marginal distribution and the
posterior of the localization model. In terms of Gaussian mixtures, this condition can be interpreted as having the distance
between the modes that is larger than the variance of the modes. We now restate Theorem 3 and give its proof.

Proposition 18. Assume A0, where dR? < 272. Then, tq < t,,, where tq and t,, are defined in Proposition 17.
Proof. If dR* < 72, this result is directly obtained since tq = 0 and ¢;, = Tyen. Assume that dR? > 72. We have

dR?> — 72 < 1
T4 dR? — 72

ty <tp, = = (dR*-7%)? <1 <= dR* <277,
which gives the result. O
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Hence, Proposition 18 shows that a sweet spot for the hyper-parameter ¢y in SLIPS exists under a restrictive condition on
R and 7 in Assumption A0, enabling the duality of log-concavity. Elaborating on the result of Lemma 16, this condition
may be slightly alleviated in the case of an unbalanced Gaussian mixture as proved in Proposition 19.

Proposition 19. Let a > 0, v > 0 and w € (0,1). Consider the target distribution 7 defined as the mixture of
the Gaussian distributions N(—a 14,v%14) and N(4+a 14,72 14), with respective weights w and 1 — w. Assume that
dR? < 272 x 4max(w, 1 — w)?. Then, the duality of log-concavity is ensured to exist in SLIPS.

Proof. This result can be seen as an extension of Proposition 17 and Proposition 18, in the case where R is replaced by
R/{2max(w,1 — w)}, see Lemma 16. O

F. Details on SLIPS algorithm
F.1. Details on the implementation of SLIPS

Langevin-within-Langevin initialization. Consider a timestep ¢o well chosen such that p; and gy are both approximately
log-concave. The goal of our initialization is to sample from pf at lowest cost. Thanks to log-concavity of py; , we may
consider to apply ULA to sample from this distribution. Given N > 1 and a step-size A > 0, this amounts to consider a
sequence of random variables {Y(") N, defined by the following recursion

ym+l) — y(n) 4y log pg (Y(n)) +V2AZ D 31)

where {Z(")}_ are independently distributed according to the standard centered Gaussian distribution. We recall that the
score V log pg: is however not tractable but can be re-expressed with (9) such that for any y € R?, we have

Viogpfy (y) = {a(to)uf, (y) — y}/o*to ,

where ug (y) is the expectation of the posterior i (-|y) given in (8). Although this term is intractable too, it can be estimated
by approximately sampling from ¢f; via MALA, since gf; is also ensured to be approximately log-concave.

Building upon this relation, at each step n € {0, ..., N — 1}, we propose to approximate V log pg" (Y(”)) in the recursion
(31) with a MCMC-based estimator of u§’ (Y (™)) obtained by sampling from ¢! (-|Y"("™)). This results in the Langevin-
within-Langevin procedure summarized in Algorithm 2. We finally highlight three main choices in the design of this
algorithm: (i) we choose the Gaussian approximation Y (%) ~ N(0, 0%t I4) for ULA initialization, relying on the study
conducted in Appendix D.3; (ii) consequently, we set the step-size A to be slightly smaller than the variance of this
distribution, i.e., A\ = 0%ty /2; (iii) the MALA-based posterior sampling is initialized with the best estimation of u% (Y("))
that we have, i.e., Y (") /a(tg), recalling that Y, /a(t) and u{* (Y,*) have the same localization behaviour, see Appendix B.2.

Algorithmic technicalities. We now present three algorithmic subtleties featured in SLIPS.

(a) The step-size of MALA used to sample from the posterior is adapted. Using the acceptance ratio of the Metropolis-
Hasting filter, we geometrically decrease (respectively increase) the step-size when the acceptance ratio is below (respectively
above) a target ratio of 75%;

(b) The last MCMC samples obtained when sampling the posterior at step k& will be the first samples when sampling at step
k + 1. This persistent trick is motivated by the fact that the posterior is expected to change little from one iteration to the
next. This behaviour is notably illustrated in Figure 3 (bottom row).

(c) Lastly, as mentioned and justified in Appendix B.2, we use the estimated denoiser Uq‘% at the final integration timestep T’
as an approximate sample from 7 rather than Y7 /a(T') to align with related work.

F.2. Ablation study

In this section, we investigate the impact of the different hyper-parameters of SLIPS. Similarly to Appendix D, we run our
study by applying our algorithm on the unbalanced bimodal Gaussian mixture defined in (24) with d = 10. This section will
clarify three points:

(a) The behaviour of SLIPS within the assumptions of Theorem 3;

(b) The existence of a “sweet spot” for ¢ outside the assumptions of Theorem 3 and the impact of the estimation of R;

(c) The tuning of hyper-parameters in the Langevin-within-Langevin initialization (see Algorithm 2).
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Behaviour of SLIPS within the restrictive assumptions. In this part only, we consider the case of a mixture of two
Gaussian distributions in dimension 5 given by N(—(2/3)a 15, 7%I5) and N(+(4/3)a 15, 7215), where 72 = 0.1 and
a > 0 is not fixed, with respective weights 2/3 and 1/3. By varying a, we vary R, recalling that R = (4/3)a, see
Appendix C. In Figure 9, we run SLIPS with different schemes while setting ¢y as the mean value between ¢, and ¢,
derived in Proposition 17, in accordance with Theorem 3 (left), or derived by combining the results of Proposition 17
and Proposition 19, which is less restrictive (right). When pf* and ¢;* are both log-concave independently of ¢, i.e., when
dR?/7? < 1 for the general case (see Proposition 17) or dR? /72 < 16/9 in the refined Gaussian mixture setting (see
Lemma 16), we always set to = 1072, This choice ensures that the Gaussian approximation which corresponds to the
initialization of the Langevin-within-Langevin algorithm is accurate (see Figure 7 for details). This figure shows that
choosing t( according to Proposition 17 leads to accurate sampling below the threshold and degraded (or equal) performance
above this threshold.

Existence of a sweet spot for duality outside of the restrictive assumptions. Given the target distribution described
in (24) with d = 10, we have that R = 4/3 and 72 = 0.05, which means that R?d/72 ~ 350. Hence, the distribution at
stake does not fit the additional assumption of Theorem 3, or even the refined assumption of Proposition 19. However,
Figure 10 shows that there still exists a sweet spot for ¢ in this case. Moreover, we observe in Figure 11 that a poor
estimation of I?; shifts the sweet spot. This makes sense as the sweet spot likely corresponds to a SNR level. Recalling that
log SNR(t) = 2log(g(t)) + log(R2 /(c%d)), if ¢ > Ry /V/d (i.e., we overestimate R, ) the log-SNR is shifted downwards
and the resulting t, should be larger (as we see in the right column of Figure 11); if ¢ < R, /v/d (i.e., we underestimate
Ry), the resulting ¢y should be smaller (as we see in the left column of Figure 11).

Choice of hyper-parameters in the Langevin-within-Langevin initialization. Figure 12 shows that only a few steps in
the Langevin-within-Langevin algorithm (see Algorithm 2) are needed to reach a stationary sampling error.

@ Standard == = General threshold (Th. 3) @ Standard == = Tight threshold (Prop. 19)
@ Geom(l,1) === Full log-concavity threshold @ Geom(l,1) === Full log-concavity threshold
A Geom(2,1) A Geom(2,1)

8 -

= 0.025 + .

<

Z I

A 0.020 o .

£ |

8 0.015 +

w

P I

2 0.010 4

< . 1

= 0.005 I I
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] 1

= 0.000 - I 1
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R2d/T? R2d/72

Figure 9: Sliced Wasserstein distance depending on the ratio R?d/72. Left: R?d/7? = 2 is the threshold of duality
of log-concavity in Theorem 3 (general case). Right: R?d/7? = 32/9 is the threshold of duality of log-concavity in
Proposition 19 (refinement). In both cases, the grey line corresponds to the threshold where the log-concavity conditions
start to be restrictive on the marginal distribution of the observation process and the corresponding posterior distribution.
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Figure 12: Sliced Wasserstein distance depending on the number of Langevin-within-Langevin steps.
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G. Details on related work

In this appendix, we provide further details on related works, highlighting similarities and identifying the main limitations.

G.1. Reverse Diffusion Monte Carlo (Huang et al., 2024)

Given T' > 0, the authors consider the denoising process (Y3 );c[o,7) that is solution to the following SDE

dY; = {Y; +2Vlogpr—¢(Y:)} + V2dB, , Yo ~pr , (32)

where (B;);>0 is a Brownian motion in R? and p; is the intractable marginal distribution defined for any s > 0 and any
y € R¥by ps(y) = [pa N(y;e 5z, (1—e %) I)d7(x). Under mild conditions on 7 (Cattiaux et al., 2023), (Y;);e[o,r) is the
time-reversed process of the standard Ornstein-Uhlenbeck process defined in (19) and corresponds to a Variance-Preserving
diffusion model (Song et al., 2021). For any ¢ € [0, T}, given X ~ 7, we therefore have

V,=e TDX 4/1—e2T-t)7 )

where Z is distributed according to the standard centered Gaussian distribution. In this case, in a similar fashion to the SL
posterior given in (8), the conditional density of X given Y; = y € R can be defined as

@ (x|y) o< w(z)N(z; el "ty (2T —1)1,), t € [0,T)

and the denoiser function as u;(y) = [ 2g:(x|y)dz. Similarly to our framework, the random vector u;(Y;) can be seen as
the denoiser of Y;. Following Tweedie’s formula given in Lemma 4, the denoiser function is related to the score of pp_; for
any t € [0,T) by

y e_(T_t)
VIongft(y) = _1 — 672(T7t) + 1_ 672(T7t) ut(y) .

Therefore, the SDE (32) describing the denoising process is strictly equivalent to the following SDE

672(T7t) +1 267(T7t)
av; = {e_Q(T_t) Vit g ut(Yt)} dt +v/2dBy, Yo ~ pr . (33)
This last SDE has to be compared with the SDE describing our observation process in (6): in both cases, the drift involves
the denoiser function, which is not tractable in practice. Here, the target distribution is approximated by the distribution of
Yr, while it is approximated by the distribution of Y% /a(T") in our framework.

The approach of (Huang et al., 2024) to sample from the SDE (33), while handling the estimation of the denoiser u,, is close
to ours. Indeed, after discretizing this SDE with a certain time discretization (¢, )%_, of [0, T, they propose to estimate the
denoiser at time ¢, with a Markov Chain Monte Carlo estimation. To do so, at each step ?, they approximately sample
from the random posterior ¢y, (- |)7t . ) with ULA (while we use MALA), where YQ . 18 the k-th realization of their discretized
process. Besides this, they also propose a Langevin-within-Langevin initialization to approximately sample from pr, that
involves the corresponding posterior qy. Although they briefly discuss the difficulty of this initialization by considering
the log-Sobolev constants of pr and qg, their analysis lacks readability and does not emphasize any crucial trade-off on T’
(which corresponds to our #g).

Their scheme can nonetheless be analyzed as a localization scheme under the scope of what we call “duality of log-concavity”,
see Section 4.3. Assume that 7 verifies A0 and is not log-concave. Since we have go(z|y) oc m(z)N(x; ey, (e*T —1)1y),
one can show that

(a) if T is large: g will be close to 7 (not log-concave), while pr will be close to N(0,1;) (log-concave),

(b) if T"is small: gy will localize as a Dirac mass (log-concave), while pr will be close to 7 (not log-concave).
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Figure 13: Sampling the 8-Gaussians distribution via RDMC with different values of 7.

Therefore, the setting of 7" is crucial in RDMC to ensure a proper initialization via Langevin-within-Langevin algorithm.
However, the authors claim that setting 7" large would only incur computational waste and that RDMC shows insensitivity
to 7T, aside from the case where T is too close to 0''. As explained above, these claims are not realistic, since sampling from
the posterior ¢y becomes as hard as sampling from 7 when T’ is large. We illustrate this fundamental limitation in Figure 13.

In contrast, we pay a particular attention to point out the importance of our hyper-parameter ¢, throughout our analysis, with
practical and theoretical perspectives. Finally, we highlight that RDMC relies on a uniform time discretization (while we
propose a SNR-adapted discretization), and do not use persistent initialization of their Markov chains in posterior sampling.

G.2. Multi-Noise Measurements sampling (Saremi & Srivastava, 2022; Saremi et al., 2023; 2024)

Given M > 1, the Multi-Noise Measurements (MNM) model introduced by (Saremi & Srivastava, 2022) defines a sequence
of random variables (Y™)M_, as

Y™ =X +02™,

where X ~ 7, 0 > 0and (Z™)M_, are independently distributed according to the standard centered Gaussian distribution.
This non-Markovian stochastic process can be seen as a denoising process. The rationale behind this formulation is that
simulating an increasing number of equally noised measurements of a sample from 7 helps to obtain more information on
this sample, and finally approximate it. We now explain how it can be interpreted as a non-Markovian analog to the standard
localization scheme given in (1).

For any m € {1,..., M}, the conditional density of X given the m-tuple Y™ = y;.,, € (R?)™ is defined as
qm(x‘ylm) o8 ﬂ'(ZL’)N(IE, Y1:ms 0_2/m Id) )

where 7., denotes the empirical mean of the noised measurements, i.e., 1., = (1/m) Z:’;l y;. By defining w,, (y1.m) =
fRd %G (2|y1.m )d, one can derive the Bayes estimator of X given Y1 as the random vector u,, (Y }™) (Saremi &
Srivastava, 2022). Interestingly, this denoiser shares the same rate of convergence as the denoiser of standard stochastic
localization given in Proposition 8 when ¢ = m. Indeed, (Saremi et al., 2024, Proposition 2) states that for any target
distribution 7, we have Wy (7, 7,,) < o1/d/m, where 7, denotes the distribution of u,, (Y1™). In other words, the MNM
denoiser localizes to X with the same localization rate as the standard SL denoiser, defined in Section 2, by taking 7" = M.

To sample from 7, the MNM approach consists in first sampling Y™ and then computing the denoiser u; (Y 1), in the
same fashion as in the SL framework. Recently, (Saremi et al., 2024) proposed to tackle the sampling of the M -tuple Y !+
by first simulating Y'! and then sequentially sampling Y™ given Y1~ for m € {2,..., M} using a Monte Carlo Markov
Chain method - in this case, Underdamped Langevin Algorithm (Sachs et al., 2017). At step m, the Langevin procedure
then involves pointwise evaluations of the conditional score of the distribution of Y™ given Y'1™~! (or simply the score of
the distribution of Y7 when m = 1). This introduces the Once-At-a-Time (OAT) algorithm. The interest of such method
lies in the fact that, under Assumption A0 that may include multi-modal distributions, the distributions to sample from are
increasingly log-concave with m, see (Saremi et al., 2024, Theorem 1). Hence, the most challenging step of this approach
lies in the sampling of Y1, in the same spirit as in SLIPS.

See (Huang et al., 2024, Appendix F.4).
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In their work, (Saremi et al., 2024) mainly consider the case where the scores are analytically available. To handle realistic
settings, they implement an IS estimator, see (Saremi et al., 2024, Section 4.2.1), but their numerical results show that its
performance significantly degrades compared to setting of perfect knowledge of the score, see (Saremi et al., 2024, Appendix
H). We include this approach in our numerical benchmark. Alternatively, for high-dimensional settings, they propose an
estimator based on posterior sampling, see (Saremi et al., 2024, Appendix F.2.), in the same fashion as in SLIPS. However,
they do not pay attention to the limitation of this approach, in particular at the initialization of their algorithm. Indeed,
while (Saremi et al., 2024, Theorem 1) suggests to take o very large to ensure that the distribution of Y'! is approximately
log-concave (i.e., taking ¢y small in SLIPS), the corresponding posterior becomes unfortunately closer to 7, and then hard
to sample with standard MCMC methods when 7 is not log-concave. This fundamental constraint is well illustrated in
(Saremi et al., 2024, Figure 7, left), where the posterior sampling approach is shown to systematically fail for an arbitrary
choice of o, independently of the computational budget allocated to the MCMC sampling. Therefore, the combination of
OAT with posterior sampling requires a trade-off on the hyper-parameter o, similarly to ¢y in SLIPS, that reflects once
again the “duality of log-concavity”.

H. Details on numerical experiments

H.1. The failure of MCMC methods when targeting multi-modal distributions

As we show in Figure 14, local MCMC samplers such as MALA, HMC, NUTS or ESS tend to produce Markov chains that
get trapped in modes while our methodology SLIPS generates samples reaching both modes.
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Figure 14: Samples from the Gaussian mixture defined in Section 6 (d = 8) obtained using different algorithms. Here, we
display the first two coordinates of n = 128 samples. For SLIPS, we used the values of ¢y and ) given in Table 5, K = 10
discretization steps and nycme = 16 MCMC steps. On the other hand, the standard MCMC algorithms produce 3 chains,
each one being of size K X nycmce X n for fairness of comparison on the number of target density evaluations; we only
display the n last MCMC samples of each chain. The chains were initialized in N(0, 0214). For HMC, we grid-searched an
optimal trajectory length in [4, 8, 12, 16] which ended up being 8 (the step-size was automatically tuned). For ESS, we used
N(0, 0% 1,) as a prior.
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Table 3: Hyper-parameter grids used for SLIPS on different targets.

MIXTURE OF GAUSSIANS AND BAYESIAN ¢* MODEL OTHERS
n {5.0} {5.7,6.1} {5.0,5.7}
STANDARD {0.03,0.05,0.1,0.2,0.4} {0.8,1.0,1.2,1.4,1.8}  {0.1,0.2,0.4,1.0,1.2}
Geom(1.1) n {5.0} {5.7,6.1} {4.6,5.0}
’ to {0.03,0.05,0.1,0.15,0.25} {0.30,0.35,0.40,0.45} {0.1,0.15,0.20}
GEOM(2.1) n {5.0} {5.7,6.1} {4.6,5.0}
’ t {0.15,0.20,0.25,0.35,0.45} {0.40,0.45,0.50,0.55} {0.30,0.35,0.45}

H.2. Algorithms and hyper-parameters

Using the information from R, and adapting the algorithms. As our definition of o in SLIPS requires to have an
estimate of R, (see Section 3.2), we informed other algorithms with such knowledge when possible. More precisely, we use
A0 and consider the approximation R2 = d(R? + 72) where R and 7 are assumed to be known.

» For SMC and AIS, we use a starting distribution pg as the centered Gaussian with variance R%2d1y;
* For OAT, we use o as per (Saremi et al., 2024, Equation 4.3) by setting 02 = R%d — 72 (ensuring log-concavity);

* For RDMC, we do not include this information as the authors do not give any heuristic on 7" with respect to the variance
of the target distribution.

Moreover, the implementations of the algorithms were slightly adjusted from their general definition. SMC and AIS use a
MALA kernel (which leaves the target distribution invariant) as transition kernel. Additionally, RDMC also uses a MALA
kernel for posterior sampling instead of ULA. This reduces the estimation bias and also enables automatic tuning of the
Langevin step-size by leveraging the acceptance ratio (here we adapt the step-size to maintain the acceptance ratio at 75%).
Still on RDMC, we drop the first 50% of the MCMC samples to ignore the warm-up period in the estimation. We also ignore
the warm-up period with the same proportion in SLIPS. In SLIPS, we reuse the step-size from the MCMC sampling of
qt,, when sampling ¢z, , and we also initialize the chains of the later with the last samples of the chain from the former.
This is an intuitive initialization when looking at the bottom row of Figure 3 as the modes of the posterior seem to be stable
and ¢y, is expected to be close to gy, , .

Estimating the scores in OAT. In OAT, denoting p(y) the likelihood of the measurement process Y = X + o7 with
X ~ mand Z ~ N(0,1;), the score can be written using the following identity from (Saremi et al., 2024, Appendix F) :
Vlogp(y) = 0 ' Ezq(.|y:0) [Z] Where the posterior ¢(-|y) is defined by ¢(z]y) o m(y + 0z)N(z;0,14). This means that

the score V log p(y) can be estimated with the following IS estimator V log p(y) ~ o1 Zfil w; Z; where Z; "% N(0,14)
andw; = w(y +0Z;)/ Zj\;l m(y + 0Z;). We reduce the variance of this estimator by applying the antithetic trick.

Selecting the hyper-parameters of the algorithms. For each algorithm, we search its hyper-parameters within a
predetermined grid. The selection is based on the metrics which will be later detailed. The metrics were computed by
comparing 4096 samples against true samples. We globally fixed the computational budget by setting the SDE discretization
of SLIPS as K = 1024. Moreover, we define the number of MCMC steps of SLIPS, denoted by L, to be equal to 32
except with the mixture of Gaussian in high dimensions where it is equal to 48, 64 and 96 in dimensions 32, 64 and 128
respectively and in the ¢* experiments were it is set to 64. The selected hyper-parameters for each algorithm are summarized
in Table 4. Below, we detail how the grids were built for each one.

* The SMC and AIS algorithms define a sequence of annealed distributions py, for k € {0,..., K} from pg (defined
above) to px =  as py, x exp((1 — B) log po + Bk log 7)) where (B;)E_ is a linear schedule of size K between 0
and 1. Both algorithms used N = 4096 particles;

e The RDMC algorithm has a single hyper-parameter 7° which we search within the grid T €
{—1og0.99, — log 0.95, — log 0.9, — log 0.8, — log 0.7} given in (Huang et al., 2024, Appendix F.1). However, we
also find that large 7" may not work systematically (see Figure 13). We use 16 steps of (Huang et al., 2024, Algorithm
3) with 4 MCMC chains. The chains are initialized with an IS approximation of the posterior powered by 128 particles.
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The SDE is discretized over K steps and the expectation leading to the drift is estimated with L Langevin steps. The
initial sample is distributed according to N(0, (1 — exp(—2T")) I), the best estimation of pr that we have, and the
initial step-size is taken according to its variance ;

 The OAT algorithm has its parameter M set as | K /2] and uses as many MCMC steps per noise level as SLIPS or
RDMC. This choice of K ensures that the computational complexity of OAT is on par with the other algorithms.
The Langevin steps are done using the underdamped Langevin algorithm as suggested by the authors. Its step-size is
searched in {0.03, 1.0} and the efficient friction is searched in {0.0625,0.05} as recommended by the authors. These
prescriptions were extracted from (Saremi et al., 2024, Appendix G). The OAT algorithm has slightly shorter grid sizes
because of its prohibitive computational cost;

* The SLIPS algorithm is declined in three flavors depending on the choice of the schedule «.. Since the choice of ¢ is
sensitive to the accuracy of the estimation of R, (different values of R, will shift the log-SNR upwards or downwards),
we decided to search the hyper-parameters in different areas depending on the target distribution. Those grids can be
found in Table 3. The values for t; were chosen by approximate equal log-SNR spacing in [—3.5, —1.0] for Gaussian
mixtures and Bayesian logistic regression, in [—1.0, 0.2] for ¢* and [—2.0, 0.0] for the others. The values for 1 were
chosen to be around 5.0.

Table 4: Hyper-parameters selected for the experiments for each algorithm and target density.

TARGET RDMC OAT SLIPS STANDARD SLIPS GEOM(1,1) SLIPS GEOM(2,1)
TIME T STEP-SIZEJ  FRICT. v 7 to n to n to

8-GAUSSIANS —1log(0.80) 0.05 0.03 5.7 0.60 5.7 0.35 5.0 0.35
RINGS —log(0.80) 0.0625 1.0 4.6 1.20 4.6 0.10 4.6 0.30
FUNNEL —log(0.90) 0.05 0.03 5.0 1.00 4.6 0.30 4.6 0.40
MIXTURE (d = 8) —log(0.70) 0.0625 0.03 5.0 0.40 5.0 0.25 5.0 0.45
MIXTURE (d = 16) —1og(0.70) 0.0625 0.03 5.0 0.20 5.0 0.15 5.0 0.35
MIXTURE (d = 32) —10g(0.70) 0.05 0.03 5.0 0.10 5.0 0.10 5.0 0.25
MIXTURE (d = 64) —1og(0.70) 0.0625 0.03 5.0 0.05 5.0 0.05 5.0 0.20
IONOSPHERE —log(0.95) 0.0625 0.03 5.0 0.03 5.0 0.03 5.0 0.15
SONAR —log(0.95) 0.0625 0.03 5.0 0.03 5.0 0.03 5.0 0.15
¢* (b=0) —log(0.95) 0.0625 0.03 5.7 0.80 5.7 0.30 5.7 0.40
#* (b = 0.025) —log(0.95) 0.0625 1.0 5.7 1.80 5.7 0.35 6.1 0.45
¢t (b = 0.05) —log(0.70) 0.05 1.0 6.1 1.00 5.7 0.30 5.7 0.40
¢* (b= 0.075) —log(0.70) 0.0625 0.03 5.7 1.80 5.7 0.35 5.7 0.40
¢* (b=0.1) —log(0.90) 0.05 0.03 5.7 1.40 5.7 0.45 5.7 0.40
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H.3. Target distributions and metrics

8 Gaussians, Rings and Funnel distributions and their respective metrics.

(a) The 8 Gaussians distribution consists of 8 equally weighted Gaussian distributions with mean m; = 10 X
(cos(2mi/8),sin(2mi/8)) for i € {0,...,7} and covariance 0.7I,. This distribution satisfies A0 with R = 10//2
and 72 = 0.7.

(b) The Rings distribution is the inverse polar reparameterization of a distribution p, which has itself a decomposition
into two univariate marginals p, and pg: p, is a mixture of 4 Gaussian distributions N(i + 1,0.15%) with i € {0,...,3}
describing the radial position and py is a uniform distribution over [0, 27|, which describes the angular position of the
samples. This distribution satisfies A0 with R = 4/ V2 and 7 = 0.15.

(c) The Funnel distribution (Neal, 2003) has its density given by x1.19 + N(z1;0, 02I10)N(22.10; 0, exp(x1)119) where
02 = 9. We approximate R by the maximum scalar standard deviation of the distribution, i.e., R = 2.12, and set 7 = 0.

For 8 Gaussians and Rings, we evaluate the quality of sampling by approximating the entropy-regularized 2-Wasserstein
distance defined in Appendix A, with regularization € = 0.05 via POT library (Flamary et al., 2021). Regarding the Funnel,
we evaluate the quality of sampling using the Kolmogorov-Smirnov distance, see Appendix A, and adopt the sliced version
from (Grenioux et al., 2023b, Appendix D.1).

Bayesian Logistic Regression models. Consider a training dataset D = {(z;, yj)}jj‘il where z; € R% and y; € {0,1}
forall j € {1,..., M}. We evaluate the likelihood of a pair (z,y) as given by p(y|z; w,b) = Bernoulli(y; o(z”x + b))
where w € R? is a weight vector, b € R is an intercept and o is the sigmoid function. Given a prior distribution p(w, b), we
sample from the posterior distribution p(w, b|D) x p(D|w, b)p(w,b) = H;Vil p(y;lx;;w, b)p(w, b). The prior is built as
p(w,b) = N(w;0,1;)N(b; 0, (2.5)2). In our experiments, we approximate R by the maximum scalar standard deviation of
the prior distribution, i.e., R = 2.5/+/d + 1 and set 7 = 0. The quality of the samples are obtained by computing the mean
predictive log-likelihood (i.e., computing p(w, b| Dies) With Dies a separate test dataset).

High dimension Gaussian mixture. We consider the mixture of two Gaussian distributions defined in (24). Following
the computations of Appendix C, we set R = 4/3 and 72 = 0.05. Complementary to the estimation error on the relative
weight given in the main paper, we also report the Sliced Wasserstein distance (Bonneel et al., 2015; Nadjahi et al., 2019)
on Figure 15 (left). This figure shows that SLIPS also recovers the local structure of the target distribution quite well.
Moreover, Figure 15 (right) shows that SMC and AIS are unable to scale with dimension and collapse into a single mode.
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Figure 15: Left: Sliced Wasserstein distance computed on bimodal Gaussian mixtures with increasing dimension. Right:
Estimation error when computing the relative weight of the corresponding two modes.
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Figure 16: Modes of the ¢* distribution (qﬂ in shades of red and ¢” in shades of blue) for different values of h (corresponding
to the transparency levels). The time interval [0, 1] on the z-axis is discretized into a grid of size d = 100, which corresponds
to the dimensionality of the samples.

The ¢* distribution. The ¢* model is a toy model defined as a continuous relaxation of the Ising model that serves the
study of phase transitions in statistical mechanics. Following (Gabrié et al., 2022), we consider a version of the model
discretized on a 1-dimensional grid of size d = 100. One configuration is therefore a d-dimensional vector (¢;)L ;. We
additionally clip the field to O at both extremities by defining the extra ¢y = ¢44+1 = 0. The negative log-density of the
distribution writes

d+1 d
Iy () = —f (“d > (65— dima) idz +h¢l> . (34)

i=1

We chose parameter values for which the system is bimodal, @ = 0.1 and inverse temperature 5 = 20, and vary the value of
h. We denote by w the statistical occurrence of configurations such that ¢4/ > 0 and w_ the statistical occurrence of
configurations such that ¢4/ < 0. At h = 0, the measure is invariant under the symmetry ¢ — —@, such that we expect
w4 = w—. For h > 0, the negative mode dominates. We plot the two modes on Figure 16.

When d is large, the relative probability of the modes can be estimated by a Laplace approximations at O-th and 2-nd order.
Denoting by cb}j_ and ¢" the local maxima of (34), these approximations yield respectively,

wo (") w— (M) x |detHh(¢}i)|7l/2
wy T om(@h) T we T ma(gh) x | det Hy(¢)[71/2

where Hj, is the Hessian of the function ¢ — In7;,(¢). In our experiments, we considered R = 4.5 and 7 = 1072 by
running MALA chains started in each mode : 72 is set as the variance within the modes while R corresponds to the distance
between the modes and 01g¢. In this setting, we observed that SMC and AIS suffered from mode collapse, while OAT
and RDMC produced degenerate samples; in contrast, our methodology SLIPS recovers accurate samples from the target
distribution, with correct relative weight, as shown in Figure 5.

H.4. Empirical complexity of SLIPS

The results of Figure 17 (d = 32) show that under a much lower computational budget (X = 20 here) than in Section 6
(K = 1024), SLIPS maintains the same performance, while still outperforming its competitors. Moreover, these results
demonstrate that SLIPS has very reasonable execution times (below 1 minute to obtain 8192 samples) making it completely
practical. Lastly, Figure 17 emphasizes that, even using high computational budgets, competitors cannot solve such multi-
modal tasks in high-dimension. Note that those observations stay valid in problems with lower dimension (see Figure 18
where d = 4).
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Figure 17: Metrics when sampling from the Gaussian mixture defined in Section 6 (d = 32) using different algorithms. Top:
Weight estimation error. Bottom: Sliced Wasserstein Distance. Left: Metric depending on the number of target density
evaluations. Right: Metric depending on wall time. The computational budgets are computed by evolving K linearly from
20 to 90. The number of MCMC steps is fixed at 32. The computations were run on the same Nvidia V100 GPU.
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Figure 18: Metrics when sampling from the Gaussian mixture defined in Section 6 (d = 4) using different algorithms. Top:
Weight estimation error. Bottom: Sliced Wasserstein Distance. Left: Metric depending on the number of target density
evaluations. Right: Metric depending on wall time. The computational budgets are computed by evolving K linearly from
20 to 90. The number of MCMC steps is fixed at 16. The computations were run on the same Nvidia V100 GPU. The
computational budgets were aligned to match SLIPS’s.

40



