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ABSTRACT

Structured State Space Models (SSMs) have emerged as alternatives to transform-
ers, addressing the challenges of processing long sequences. While SSMs are
often regarded as effective in capturing long-term dependencies, we theoretically
demonstrate that they suffer from a strong recency bias. Our empirical findings
reveal that this bias impairs the models’ ability to recall distant information and
introduces robustness issues. We conducted scaling experiments and discovered
that deeper structures in SSMs facilitate the learning of long contexts. However, our
theoretical analysis reveals that as SSMs increase in depth, they exhibit a tendency
toward over-smoothing, resulting in token representations becoming increasingly
indistinguishable. This over-smoothing phenomenon ultimately constrains the
scalability of SSMs to achieve improved performance. Collectively, these find-
ings highlight important limitations of SSMs and underscore the need for further
research to address these challenges in long-range sequence modeling.

1 INTRODUCTION

The evolution of sequence processing architectures has been witnessed over recent decades, progress-
ing from RNNs (Hochreiter & Schmidhuber, [1997; [Sutskever et al., [2014; |Cho et al., [2014} |Chol
2014) to transformers (Vaswani et al., 2017; Devlin et al., [2019; [Radford et al.| 2018;/2019; [Brown
et al.,[2020), and more recently proposed State Space Models (SSMs) (Gu et al.,|2021a; |Gu & Dao,
2023). Each step represents a leap in natural language processing, addressing the limitations of its
predecessors and introducing new capabilities.

SSMs (Gu et al., )2021a}; |Gu & Daol [2023; Dao & Gu,2024) have emerged as a compelling alternative
to transformers, addressing the challenges associated with processing long sequences. SSMs provide
advantages in two key areas. Firstly, they enable more efficient handling of long sequences. SSMs
operate in two modes: convolution and recurrence, each tailored for different aspects of language
model training and inference (Gu et al.,[2021b). In convolutional mode, SSMs assume visibility of
the entire sequence and utilize hardware-optimized convolutions to propagate information across all
tokens in parallel. This approach circumvents the need for calculating pairwise correlations inherent
in attention mechanisms, thereby accelerating training speed. In the recent Mamba model (Gu & Daol
2023)), convolution has been supplanted by a parallel scanning algorithm, facilitating more expressive
sequence-level mixing without sacrificing efficiency. Conversely, in recurrent mode, SSMs process
one token at a time while maintaining a compact recurrent hidden state that encodes the sequence
history. The outputs are sequentially decoded from this hidden state, eliminating the necessity to
store all past key-value pairs (Dat et al.,[2019), thus reducing memory usage during inference.

Furthermore, SSMs have been meticulously tailored to effectively capture long-range dependencies
and filter contextual information. These models are grounded in the HiPPO theory (Gu et al.| 2020),
which demonstrates that a first-order Ordinary Differential Equation (ODE) can encapsulate long-term
memory through a designated state matrix known as the HiPPO matrix. Subsequent research (Gu
et al., | 2021bza; \Gupta et al., 20225 |Gu et al., [2022a) has streamlined this state matrix to a diagonal
form, significantly enhancing computational efficiency while retaining the capability to model long-
range dependencies. More recently, Mamba (Gu & Dao| 2023)) introduced a selection mechanism that
selectively aggregates pertinent information from the context into the state, showcasing impressive
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performance in language modeling. Concurrently, another class of efficient sequential models,
coined as Linear Attention Models, has emerged, derived from streamlined attention mechanisms
(Katharopoulos et al., 2020; [Sun et al., 2023} |Peng et al.||2023; | Yang et al., 2023). Collectively, these
advancements can be interpreted through a unified lens as more structured SSMs (Dao & Gu, [2024).

However, despite the initial empirical successes of these models, recent findings indicate that SSMs
may not match transformers in their ability to recall information from long contexts (Arora et al.,
2023} [Poli et al.|[2024) or in handling more complex retrieval patterns (Park et al.,2024). Additionally,
it has been noted that Mamba continues to underperform compared to transformers at larger scales
(Waleffe et al.,[2024). These shortcomings, however, have yet to be systematically elucidated.

In this paper, we identify two fundamental limitations of SSMs in their ability to model complex long-
range dependencies. First, we argue that the long-term memory capabilities of modern SSMs may be
misinterpreted. Our analysis reveals that an SSM layer exhibits a strong recency bias, limiting tokens
to primarily interact with nearby context. This bias is intrinsic to SSMs and many linear attention
models, regardless of the employed content-informing techniques, such as the selection mechanism
introduced by Mamba (Gu & Daol [2023)). We further posit that the loss of long-range capabilities may
stem from the oversimplification of HiPPO-induced SSMs, trading efficiency off the performance. To
substantiate this claim, we perform a long-range retrieval task on an industrial-scale language model
(Jiang et al.,|2023) based on Mamba. Our test results indicate that Mamba catastrophically forgets
distant content once the context length surpasses its memory capacity. Furthermore, we raise a novel
robustness concern regarding SSMs with recency bias: our empirical outcomes show that Mamba is
more susceptible to perturbations on local tokens, making it vulnerable to adversarial attack, as these
local tokens can be easily manipulated to serve as backdoors.

Additionally, we conduct a series of scaling experiments with varying context lengths during the
pre-training of SSMs. Our results indicate that increasing the model’s depth is crucial for enhancing
its ability to utilize long contexts by expanding the receptive field. However, we observe that depth
scaling encounters a bottleneck, as performance begins to saturate with continued increases in
depth. To investigate this scalability issue theoretically, we analyze the feature dynamics across
SSM layers. Our findings reveal that SSMs inherently function as smoothening operators, leading to
over-smoothing in deep architectures (NT & Maehara, 2021} |Oono & Suzukil 2019;|Cai & Wang,
2020). As a result, token representations become increasingly uniform and indistinguishable with
each additional layer.

The primary contribution of this work lies in unveiling two critical issues inherent to SSMs that
have been overlooked in previous research. We provide new insights to systematically explain
the underlying mechanisms through rigorous theoretical analysis and controlled experiments. Our
theoretical framework encompasses a broad range of commonly used SSMs today. By elucidating
these two challenges, we hope to inspire future research aimed at addressing these issues.

2 PRELIMINARIES

In this work, we primarily focus on SSMs and their similar models working with discrete-time

sequences of tokens. We represent the a sequence of tokens as @ = [z - - :vT]T € RY, where
T is the total number of tokens. For vector-valued input sequences, SSMs process each channel
independently. Therefore, to simplify notation, we focus on scalar-valued sequences without loss of
generality. The impact of multi-channel inputs will be addressed in the relevant context.

SSMs learn to represent and forecast the next token by integrating past information. Formally, SSMs
can be viewed as a sequence-to-sequence transformation from inputs € R’ to outputs y € R”
through a memory state hy € R, which is iteratively updated with a linear recurrence. A general
form can be written as:

h; = Athi 1 + Aby(x:), yr =ce(hy), ho=0, VtelT], e

where ¢ € [T] denotes the time step. Intuitively, A; € RV*¥ extracts information from the previous
state hy_1 'l b; : R — RY projects every input token to the hidden space, A; € R controls how

'In most scenarios discussed in this paper, we assume real parameterization by default, as it is the standard
approach in the cases of our primary interest, such as language modeling (Gu & Dao} 2023)
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much information of the new token will be fused into the hidden memory, and ¢; : RY — R decodes
the hidden state at time ¢ to the final prediction. In all SSMs considered in this paper, it is necessary
to assume (Ay, by, ¢, Ay) only depends on the inputs at the time t. SSMs are trained end-to-end
to optimize for parameters {(A;, b;, ¢s, A¢) }4epr), for which different SSMs adopt various types of
instantialization. Below we list some representative examples.

S4,DSS, and S4D. The seminal works (Gu et al.|[2020; 2021b;|2022b) demonstrate that discretizing
time-invariant ODE h'(t) = Ah(t) + bx(t) with some special realization of matrix A can yield
an efficient recurrent network for long-sequence modeling. The follow-up works|Gu et al.| (202 1al)
together with|Gupta et al.| (2022)); |Gu et al.| (2022a)) simplifies A to be a diagonal matrix. Applying
the zero-order hold rule for discretization, as suggested by (Gupta et al.| (2022), we can summarize
this series of models in the form of Eq.

(S4) At = exp(AA), bt (mt) = b$t, C(ht) = CTht, At = A (2)

where (A, b, ¢, A) are learnable parameters. In particular, A is restricted to be a diagonal matrix and
can be complex valued. However, A must have negative real part (Gu et al., 2022a). A € (0,1] is
often interpreted as the time interval for discretization. We call this family of SSMs S$4 following the
naming convention in|Gu & Dao|(2023)).

Mamba. A recent breakthrough Mamba (Gu & Daol 2023)) introduces the selection mechanism
to extend S4. Instead of learning (A, b, c,A) in Eq. [2| as free parameters, Mamba conditions
(A, b, ¢, A) on the inputs, which enables each iterative step in Eq. |I|to filter useful token information
during the recurrence. Specifically, Mamba computes (A:b:, ¢, A;) as follows:

(Mamba) A; = exp(AtA), bt(wt) = (WBiEt)iEu Ct(h) = (Wth)Tht» Ay = U(WAwt)v 3)

where Wa € R,Wp € RN W € RY are learnable weights in addition to A, and o(-) denotes
softplus activation. When handling multi-dimensional token embeddings, W, Wg, W are ex-
tended on the input dimensionﬂ The resultant A, is then specified for each channel, while by, ¢; are
shared across channels. In language modeling, A has strictly negative real-valued diagonal, which
ensures A; € (0, l)N *N - Additionally, Mamba is integrated with the H3 architecture (Fu et al.,
2022), wherein the selective SSMs is working with a local convolution and sandwiched by two gated
connections.

Linear Attention. Concurrent with SSMs, there is another line of work streamlining attention
to linear time complexity. With slight abuse of terminology, we name all of them collectively as
Linear Attention Models (LAMs). We observe that many of them can be written in the form of Eq. [I]
such that in the remainder of this paper, we extend the definition of SSMs to include LAMs without
introducing ambiguity, as LAMs and SSMs are dual to each other (Dao & Gul|2024). We leave a full
summary to Appendix [A]

3 CAN SSM EFFECTIVELY REPRESENT LONG-RANGE DEPENDENCIES?

3.1 SSMS ARE LOCALLY BIASED

In this section, we investigate the ability of SSMs to learn long-range dependencies. Recent studies
find that SSMs seem more effective than transformers on this task (Gu et al.,[2020; Tay et al.,2020;
Li et al., 2022} |Gu & Dao, [2023)). However, in Sec. we theoretically show a negative result that
an SSM layer is inherent to local bias and loses long-term memory exponentially. In Sec. [3.2] we
empirically justify our claim by showing SSMs struggle to retrieve from distant context. We also
demonstrate that the local bias may lead to robustness issues in Sec. (3.3

To understand how information is propagated and long-range dependencies are modeled in SSMs, we
aim to uncover the relationship between the output at time ¢ € [T'] and the input token at time s < ¢.
We define the derivatives |0y /0x;| as the influential score to represent the importance of the s-th

“More rigorously, by zero-order hold, b should be parameterized as b = (AA) '(exp(—AA) — I)b.
However, the presented form is more commonly used in practice as in|Gu & Dao| (2023).
3Suppose the embedding dimension is D, then Wa € RP?, W € R™ X7 and so on.
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input token to the ¢-th output token. Note that |0y, /0x;| is well-defined for every s,¢ € [T as long
as (A¢.bg, cr, Ay) are all differentiable in terms of @. Intuitively, if |0y:/Ox| is larger, then the s-th
input token is more influential on the ¢-th output token, and vice versa.

Below we present a formal result regarding the influential score.

Theorem 3.1 (Recency of SSMs). Consider an SSM defined in Eq. with {(As, by, e, Ab) heerr)-
Assume that (i) the input space X C R™ is compact, (ii) {( Ay, by, ¢4, At)}te[T] are continuous and
have continuous derivatives, and (iii) A; € (0, 1)N*N are diagonal matrices for all t € [T). Let
Amaz = maXee[7],ne[N] (At)n,n. Then for arbitrary x € X and every s,t € [T] such that s < t,
|0y: /0xs| = O(exp(—r(t — s))) for some k = O(log(A,L.))-

max

The proof can be found in Appendix [C.1} The first 0.40
two assumptions are standard and always satisfied.

i i Mamba-130M
The third assumption also holds for most of SSMs 035 e
discussed in Sec. [2] Therefore, Theorem [3.1] ap- amba-1.
' ; 030 Pythia-160M

plies to numerous SSMs including but not limited to
S4 (Gu et all [2021a} [2022a)), Mamba (Gu & Dao 025
2023), RetNet (Sun et all2023), RWKV (Peng etal, o
2023), GLA (Yang et al.,[2023), HGRN2 (Qin et al. 53) 0.20
2024), Griffin (De et al., 2024), and Megalodon (Ma|

Pythia-1.4B

et al.,[2022; 2024). Theorem [3.1]states that influen- 015

tial scores between two tokens modeled by SSMs 0.10 |
are exponentially diminishing with respect to their

relative distance. The decay rate is determined by 0.05

the maximal values among all A,’s elements. The

closer A,,q2 1S to zero, the faster the influential scores 0.00 =, 200 400 600 800 1000
decay. The practical implication is that SSMs are fac- Token position

tually recency-biased models. Tokens farther away
are under-reaching and forgotten rapidly while the
information of closer tokens dominates the final out-
put. This can significantly limit their ability of fitting
complex long-range relationships.

Figure 1: Visualization of influential scores. The
y-axis represents the value of |0y;/dx,| and x-
axis denotes (t — s).

Empirical Validation. We empirically verify our theory by directly plotting the influential score
w.r.t. the relative distances in Fig. [T} The blue and orange curves in Fig. [T|successfully justify our
exponentially decaying bound in Theorem [3.1] In contrast, transformer-based architectures is free
from the strong recency bias, while demonstrating a well-known “lost-in-the-middle” pattern (Liul

et al.} [2024b).

Is decay a necessary and desirable design? One key observation from our theory is that the
parameterization of A; within the interval (0, 1) leads to strictly decaying dependencies among
tokens based on their relative distances. This design choice appears to be a standard practice, and

perhaps intentional, in several recently proposed SSMs (Gu & Daol, 2023} [Dao & Gul, 2024

et al.| 2024; [Yang et al., 2023} [Peng et al., 2024} De et al.| 2024; Ma et al., 2024; |Liu et al., 2024a;
[Yang et al., [2024). Interestingly, it has been demonstrated that this “intentional” decay of long-

range dependencies not only avoids degrading the perplexity of language models but also improves
generalization for length extrapolation. This observation aligns with the empirical success of soft
gating mechanisms adopted in traditional RNNs (Chol 2014} [Cho et al} 2014} [Gu et al} 2021b) and
the decaying patterns imposed on transformers (Raftel et al., [2020; |[Press et al.| 2021} |Sun et al.|
. We find the constraint A; € (0, 1)V *¥ is likely inherent to SSMs as it plays a critical role in
ensuring the numerical stability for length generalization during long-context recurrence
2022al, [Yang et all, 2023). Promoting the importance of local tokens could also lead to a nearly
correct bias, as natural language generation mostly utilizes recent contexts. However, as we will
detail in subsequent sections, this design comes with a significant drawbacks: it result in substantial
loss of long-distance information (Sec. 3.2) and may raise potential security concerns (Sec. [3.3). This
observation underscores that the validation perplexity may not fully capture all aspects of a model’s
capabilities and can be an inadequate metric for assessing long-range dependencies.
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Figure 2: Comparison between SSM and Transformer on the “Needle in a Haystack" benchmark. The left figure
shows the retrieval accuracy of the Mamba-Codestral-7B model, while the right figure presents the retrieval
accuracy of the Mistral-7B model. We present a heatmap where "full context length" refers to the total length
of the document, and "needle position" denotes the relative position of the statement to be retrieved within the
context. See more fine-grained visualization in Appendix@

3.2 LOSTIN THE DISTANCE: LONG-CONTEXT RETRIEVAL TEST

To assess the ability of large language models (LLMs) to effectively utilize long-context data, we
evaluate open-source SSM using the “Needle in a Haystack™ benchmark and compare its performance
with that of Transformer. In this benchmark, a randomly generated statement is embedded within the
middle of a long document, and the models are tasked with retrieving the statement. By varying the
insertion position of the statement, we measure the retrieval accuracy at each location, which reflects
the model’s positional bias. To enforce LLMs using the data within context, instead of recalling
information memorized by its model weights, we carefully design the statement with factual error.
See detailed examples in Appendix [D1]

We compare the retrieval accuracy of the Mamba-Codestral-7B model, a representative SSM capable
of handling long-context inputs of up to 256k tokens, with Mistral-7B 2023), which
utilizes a transformer architecture. As illustrated in Figure[2] the retrieval accuracy of the Transformer
remains stable regardless of the needle position. In contrast, the SSM achieves higher accuracy when
the needle is placed closer to the end of the context (i.e., larger needle position values), while its
accuracy drops when the needle is located near the beginning of the document. This indicates a
positional bias towards local tokens in the SSM.

3.3 POTENTIAL RISK ON MODEL ROBUSTNESS

We conduct quantitative experiments to show the recency-biased nature of SSMs will lead to potential
hazards. The downstream task in this study is image classification on sequences of pixels
[2020), where W x H images are flattened to sequences of pixel tokens and fed to sequence models
for classification. We test a family of SSMs, including H3 2022), RWKV
2023)), and Mamba 2023), and compare them against a transformer baseline (Vaswani|
etall on CIFAR-10 dataset. To adapt SSMs for this task, we append a learnable class token
after the last token of the input sequence. The output state of this class token is then mapped to logits
using a classifier head. Experiment details are given in Appendix [D.2} In the following, two attack
patterns on the input data are introduced, which degrade the robustness of SSMs in this task.

Adversarial Attack. To assess the bias of SSMs towards corrupted data, we perturb the leading
and trailing tokens of input sequences with random noise. In unbiased models, perturbations in both
leading and trailing tokens cause similar performance drops. However, in locally biased models,

Table 1: Results of adversarial attack experiments on the CIFAR-10 dataset, evaluated using classifi-
cation accuracy. Each input sequence contains 1,024 tokens. Two corruption ratios (32/1024 and
96/1024) are applied to perturb the leading and trailing tokens, respectively.

Corrupted region (seq. length = 1024)

Models (no corrupt) [992:1024] [0:32] [928:1024] [0:96]

H3 0.654 0.569 ( 13.04%) 0.654 ({ 0.03%) 0.477 (4 27.07%) 0.650 (| 0.72%)
Transformer 0.580 0.535 () 7.81%) 0.447 (. 22.95%) 0.431 (] 25.76%) 0.370 ({ 36.32%)
RWKV 0.474 0.150 (] 68.35%) 0.466 (] 1.58%) 0.138 (4 70.88%) 0.460 (| 2.91%)
Mamba 0.674 0.126 (| 81.24%) 0.658 ({ 2.30%) 0.098 (| 85.46%) 0.647 (] 3.98%)

5
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Figure 3: Results of target attack experiments on CIFAR-10, where “horse” is the target class. (a)
and (b) present target attack success rates under two attack ratios. Lower success rates suggest higher
robustness in the corresponding attack regions.

where the class token is appended after the last input token, the trailing tokens are supposed to have
greater impacts on classification outcomes than leading tokens. Table[I]presents our experimental
results on the CIFAR-10 dataset under two corruption ratios. For each ratio, the same number of
leading and trailing tokens are corrupted with Gaussian noise. Among all the SSM family methods
compared, the performance drops caused by trailing token corruption are significantly larger than
those caused by leading token corruption. Notably, for Mamba, perturbing the last 32 out of 1024
tokens results in an 81.24% drop in classification accuracy, whereas corrupting the first 32 tokens only
reduces accuracy by 2.30%. In contrast, the transformer baseline shows relatively smaller impacts
from trailing token corruption. Instead, our experiments indicate that more informative features from
transformers tend to sink in the leading tokens, aligning with the observations in (2023).

Target Attack. Beyond degrading the performance of SSMs by attacking trailing tokens, we also
demonstrate that local bias creates a backdoor for target attacks. In this scenario, a target class is
selected, and pixel tokens from that class are used to replace those in images from other classes. The
attack succeeds when models mis-classify images from other classes as belonging to the target class.
Due to the local bias, trailing tokens are expected to be a more effective attack region for SSMs,
leading to a significantly higher attack success rate compared to leading tokens. Fig. [3|shows the
success rate comparisons across different attack regions and ratios. When trailing regions are replaced
with pixels from the target class, SSMs achieve much higher success rates than when leading regions
are attacked. This phenomenon is observed at both 25% and 47% attack ratios. By comparison, the
transformer model possesses greater robustness, maintaining similar success rates between attacks on
leading and trailing tokens.

Implications for Language Models. While our adversarial attack experiments are conducted on
image datasets, the findings have broader implications for language models. System prompts, which
are typically a group of confidential tokens prepended to user inputs, play a critical role in controlling
the behavior of language models and preventing undesirable outputs. However, our targeted attack
experiments reveal that SSM-based language models are particularly vulnerable to jailbreak attacks
(Perez & Ribeirol 2022}, [Zou et al},[2023). This is because SSMs prioritize recent information over
past tokens, making it easier to bypass system prompts by appending jailbreak instructions at the end
of the input. Moreover, our theoretical analysis suggests that fine-tuning LLMs with instructional
datasets or human feedback to enforce adherence to system prompts may not resolve this vulnerability,
as the recency bias remains inherent to SSM models regardless of weight configurations.

4 UNDERSTANDING SCALABILITY BOTTLENECK OF SSMS

4.1 NECESSITY AND LIMITS OF DEPTH SCALING

In Sec. 3.1] we have seen that the dependencies between tokens are exponentially decaying with
their relative distances in an SSM layer. Consequently, SSMs resemble localized kernels, similar
to those employed in various neural architectures such as Convolutional Neural Networks (CNNs)

(CeCun et al} [T998) and Graph Neural Networks (GNNs) (Kipf & Welling} 2016). It is a reasonable
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Figure 4: We empirically observe that deeper models become increasingly advantageous as the
context length grows. However, beyond a certain depth, the performance of SSMs begins to plateau
and eventually declines.

postulation that increasing the number of layers can extend the model’s receptive field (Goodfellow
et al.,[2016). We justify this hypothesis via a scaling-up experiment with various context lengths and
model architectures.

We pretrain Mamba using causal language modeling with two context lengths, {2048, 8192}. Besides,
we fix the number of layers at {16, 24, 32, 48, 64, 72} and vary the hidden dimension. We defer
more experiment details in Appendix The validation loss versus the number of parameters is
plotted in Fig. @ Under the 2048 context length, models of different configurations exhibit similar
performance, consistent with the findings of [Kaplan et al.| (2020). However, as the context length
increases, the scaling behavior across depth-width configurations begins to diverge. Notably, deeper
models outperform shallower ones, likely because deeper architectures can more effectively utilize
the extended context to meet the training objectives. Nevertheless, we observe that the performance
gain starts to saturate when we keep increasing the depth (cf. the 32-layer and 48-layer models).
When the depth of the model continues to increase, the validation perplexity starts to rise, indicating
a decline in performance (cf. the 64-layer and 72-layer models). In Mamba with a 2048 context
length, models with more than 48 layers perform worse than 16-layer models. Longer-context models
appear to be more tolerant of increased depth, whereas shorter-context models experience a rapid
performance degradation once the depth exceeds a certain threshold.

4.2 UNVEILING OVER-SMOOTHING IN SSMs

To explain the depth scaling bottleneck revealed in the previous section, we conduct a theoretical
and empirical investigation of the feature and state dynamics in SSMs. Our key finding is that token
embeddings, after being processed by SSM layers, tend to become increasingly similar, which leads
to a phenomenon commonly referred to as over-smoothing (NT & Maeharal [2021}|Cai & Wang] [2020;
Oono & Suzuki,2019). Over-smoothing occurs when token representations become indistinguishable,
rendering the state uninformative.

First of all, we warm up by studying continuous-time S4 with constant (A, b, ¢). Recall that a
continuous-time S4 layer can be described by a group of ODEs: h/(t) = Ah(t) + bx(t), y(t) =
c"h(t). Our analysis starts with the equivalence between convolution and S4 (Gu et al., 2021b).
This is, the analytic solution to the time-invariant ODE can be expressed as y(t) = | ¢' exp(A(t —
$))bz(s)ds. Now we analyze the filtering property of this convolution operator from the Fourier
domain perspective. We define a convolutional operator as a low-pass filter if it suppresses high-
frequency components (see Definition [C.3). We summarize the main finding in the following
proposition, whose formal version and proof are provided in Appendix [C.2.1}

Proposition 4.1 (Low-pass filtering of continuous S4). Consider a continuous-time S4 with pa-
rameters (A, b, c). Assume A is diagonal with all values negative. Then y(t) = [ ¢ exp(A(t —
$))bxz(s)ds defines a low-pass filter.

The assumption therein is always satisfied when real parameterization is adopted (Gu et al., 2022a)).
Proposition states that S4 is inherently a low-pass filter regardless of how (A, b, ¢) are trained.
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Figure 5: Visualization of feature smoothness across layers in a 1.4B pre-trained Mamba and Pythia.
The y-axis represents the average differences among tokens.

Therefore, the high-frequency components of input signals are being constantly removed at each
layer. Presumably, stacking many S4 layers might cause over-smoothing when all high-frequency
components are suppressed to zero.

Now we consider a more general scenario when SSMs work on discrete-time regime and
(Ay, by, cp, Ay) are time-varying or even data-dependent. Formally, we prove the following result
showing the sharpness of input signals will be reduced as well:

Theorem 4.2 (Over-smoothing of SSMs). Consider an SSM specified in Eq. with
{(Ambt,CuAt)}te[T]- Assume an input space X C RT such that for every x € X, (i)
(At)nnt+A¢ < 1foreveryn € [N]andt € [T, (i) minger) by (x4 )n < 0and maxyei) b(:)n >
0 for every n € [N]. Let Apin = Minye(1) ne[N](At)n,n. Then for any x € X and the memory
states {h; : t € [T'|} generated by the SSM, we have:

= bl < (1= AT ma (o)~ bu(e)] o)

min

Proof can be found in Appendix We first justify our assumptions here. (A;),, + A <lisa
generic condition to ensure the recurrence of SSMs is non-expansive, which is crucial to guarantee
memory states stay numerically stable. The second assumption requires the data to be well-distributed
and centered around the origin, which can be easily satisfied by normalization techniques. We
find that prevalent SSM models such as (Gu & Dao, [2023; Peng et al., 2023} |De et al.,|2024; |Qin
et al.| [2024)) can easily achieve these two assumptions. Moreover, if (A;), , + A; = 1 is always
true letting each recurrent update be conservative (Peng et al.| 2023} |Ma et al.,[2022), then we can
remove the second assumption as well (see Theorem|[C.5)). Theorem 4.2 examines the relationship
between the pairwise distances of memory states and encoded tokens within the sequence. This result
indicates that the pairwise discrepancies among memory states are diminished by a factor less than
one, suggesting that the memories undergo smoothing following the application of an SSM in Eq.
[1l We infer that if the memory is losing its discriminative capacity, the intermediate hidden feature
space will similarly collapse.

Delving deeper, the decay rate is intricately linked to both the context length and the minimal value
within {A,,t € [T]}. As the context length increases, it requires more time to effectively mix all
tokens. This can be understood from the message-passing perspective (Gilmer et al., [2017): the
message of the first token needs to go through the whole sequence to be mixed with the last token.
When A,,;,, approaches one, the decay rate is maximized, as the entire SSM essentially performs a
uniform pooling over the entire sequence, which smoothens the signal via a box-like filter. It is worth
noting that the smoothing nature of SSMs is intuitive; one can conceptualize the recurrent operation
of SSMs as performing a running average of the encoded token signals.

Empirical Validation. We adopt a pairwise distance between tokens to quantify the sharpness
of asignal: £(x) = m ( Dizjllei — z;[3) /(> ll=:l|3). £(x) being small means the token
representations are close to each other and become less discriminative. In Fig. [5a] b; is above h;

among all Mamba blocks. This suggests the sharpness of input signals is consistently higher than the
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sharpness of the memory state output from Mamba, verifying our Theorem[d.2] In addition, Fig. [5b]
and[5c|show the sharpness of Mamba mixer and Mamba block output, which tends to decrease rapidly
in deeper layers. We also provide a comparison with transformers. Although transformers suffer
from over-smoothing in theory (Dong et al.||2021} [Shi et al., [2022} [Wang et al.,2022), we observe
that transformers have a slower decay of feature sharpness. See more discussions in Appendix [B]

5 DISCUSSIONS

In this section, we provide further discussions on our results while deferring the remaining parts to
Sec. [B]due to page limit. We also propose initial solutions to enhance SSMs based on our theories.

Revisiting HiPPO theory. HiPPO established in (Gu et al., |2020), extended by |Gu et al.| (2021bj
2022b) is the theoretical foundation of SSMs. Consider a signal = and its reconstruction 3*) up to
time ¢. To optimally memorizes the history of 2 using ), HIPPO minimizes ||x<; — y| La(w(®)

w.r.t. a measure w(*) supported on (—oo, t]. The solution is to project the history of a before time
t onto IV basis functions (e.g. Legendre polynomials), which yields a time-continuous coefficient
vector h(t), and y*) can be synthesized by linearly combining the N basis using h(t). |Gu et al.
(2020) shows that the evolution of h(t) follows an ODE h/(t) = A(t)h(t) + b(t)z(t). In particular,
Gu et al.| (2020) chooses a uniform measure over the past history w(*) = [0, t] /¢, which places no
approximation bias over the time horizon in contrast to an earlier work (Voelker et al.,[2019). As
a result, A(t) in Eq. || can be written in a closed form: A(t) = —Apippo/t, Where Apippo is @
time-independent constant called the HIPPO matrix. Its various forms have been used as initialization
in subsequent works including S4 (Gu et al.,|2021a) and Mamba (Gu & Daol [2023)). While HiPPO
theory seems to guarantee the long-rangeness for SSMs, the actual form of A(¢) employed in S4 and
Mamba drops the normalizer 1/t. |Gu et al.[(2022b)) shows that this change causes a warp of measure
from uniform to w(®(s) o exp(s — t)I(co,t]. We note that this warped measure assigns more
importance to recent history, and thus, our Theorem [3.1does not contradict HiPPO theory but also
matches the findings in|Gu et al.|(2022b). We also point out that when adopting the diagonalized form
of Apippo (Gu et all[2021a; Gupta et all[2022; |Gu et al.l[2022a)), the unitary matrices decomposed
from Ap;ppo 1 Sometimes not applied to b; and ¢,, which introduces a disconnect between HiPPO
theory and its practical implementation. Our paper directly studies the discrete-domain SSMs and
aligns with the parameterization used in practice.

Another less-discussed property of SSMs is their approximation power for a broad family of operators.
In|Gu et al.|(2021b)), SSMs are shown to possess expressiveness that encompasses both convolutions
and RNNs. It is worth noting that the original HiPPO-based SSM is not necessarily a low-pass filter.
Rather, it is the successive simplifications in the parameterization of A; that impart the smoothing
characteristics of SSMs (see Proposition .T).

The effect of selection mechanism. Traditional S4 architectures operate as linear time-invariant
systems. To introduce more non-linearity, Mamba (Gu & Daol, [2023)) proposes modeling (b;, ¢;, A;)
as a function of inputs, a mechanism known as selection. This is motivated by the selective copying
synthetic task, wherein A; and b; need to adapt based on content to filter relevant information
for memory updates. Despite this adaptation, Theorem still holds in scenarios involving the
selection mechanism, meaning selective SSMs like Mamba may continue to suffer from recency bias.
In the meantime, Theorem 2] also applies to Mamba, suggesting that the selective SSMs do not
demonstrate higher expressiveness in filtering signals and perform similarly to linear S4 as low-pass
filters (Proposition[4.1)). Nevertheless, we note that selection can alleviate these issues by adaptively
controlling the values in A;. Manifesting in our theory, the selection mechanism can potentially make
the upper bound A,,,,,. closer to one and the lower bound A,,;,, closer to zero. However, parameter
A in Eq. E]is initialized with negative integers (Gu et al., |2022a)), which exacerbates the bound in
Theorem 3.1 by accelerating the decay rate of the influence score.

Mitigating Recency and Over-smoothing. Results in Theorem and Theorem can be
interpreted in conjunction. To relieve the smoothening rate, one might aim to minimize the values
in A;. However, this could inadvertently enhance the locality of SSMs, as a decrease in A, may
occur. A practical implication of this relationship is that the values in A; should be as diverse as
possible to simultaneously mitigate the artifacts of recency and over-smoothing.
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Although Apin =~ 0 and A,,,, ~ 1 could the- Cumulative Distribution of (A — Amin)
oretically occur simultaneously, our empirical
findings show that these values are largely con-
centrated within a narrow range. To illustrate
this, we visualize the distribution of (A,,az —
Aqnin) across different channels in Fig. @ Each
bin represents the proportion of channels whose
memory state satisfies (Ayqx — Amin) being
smaller than the corresponding threshold on the
x-axis. Notably, over 60% of channels exhibit
(Apmaz — Amin) values smaller than 0.5, indi-
cating that most channels cannot simultaneously
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Figure 6: Cumulative histogram of (Amaes — Amin)-

One promising solution is to maintain one com-
ponent in A; as a constant 1, another as a con-
stant 0, and others freely learnable. This approach ensures that one dimension in the state memory
consistently focuses on the current token, counteracting over-smoothing by preventing mixing with
previous tokens. Simultaneously, another dimension exclusively retains information from past tokens,
avoiding locality issues by preserving the complete history.

Theorem [.2] also highlights the importance of context-length scaling to mitigate the over-smoothing
issue. As the smoothing rate decreases with increased context length, lengthening training sequences
not only relieves over-smoothing but also maximizes the utility of hardware efficiency of SSMs. This
is also evidenced by Fig. ] where models with longer training contexts have better tolerance of
deeper architectures.

6 OTHER RELATED WORK

Despite the remarkable empirical success of SSMs in various long-range applications
2024} [Zhu et all [2024; [Zhang et al. [2024), their theoretical properties and limitations remain
underexplored. |Arora et al.| (2023) leverages associative recall tasks to theoretically analyze the
expressiveness of convolutional SSMs, while advocating for input-dependent kernels.
separates the representation capacity of transformers and SSMs via coping tasks. Recent
work by Merrill et al.| (2024) identifies failure modes of SSMs in state-tracking problems through
circuit complexity theory. (2020) characterize the expressivity of SSMs using linear controlled
differential equations, and reveal structural similarities between selective SSMs and
attention mechanisms. While these works provide valuable insights consistent with our findings,
none directly examine the long-range modeling capability of SSMs. | Ben-Kish et al.|(2024)) points out
that the product of gating matrices (formalized in our Lemma [C.I)) exhibits locality issues, potentially
hindering their ability to model long-range dependencies. However, their analysis lacks a quantitative
justification. [Wang & Xue|(2024)) presents similar theoretical results revealing exponentially decaying
long-range dependencies. Nevertheless, their analysis does not consider input-dependent parameters
(A¢, by, e, At), which is a common feature in modern SSMs (Gu & Dao} 2023} [Yang et al., 2023).
We defer more comparison with Wang & Xue|(2024) to Appendix B} To our best knowledge, none of
any earlier works reveals the smoothening nature of SSM operators.

7 CONCLUSION

In this study, we uncover two critical limitations of SSMs. First, we demonstrate that SSMs exhibit
a strong recency bias, which significantly impairs their ability to capture long-range dependencies
and recall distant information, and even raises robustness concerns. Furthermore, our findings
indicate that increasing the depth of SSMs leads to over-smoothing, causing token representations to
become indistinguishable and obstructing potential performance gains. We stress the necessity for
future research to tackle these challenges, ultimately enhancing the effectiveness of SSMs in natural
language tasks.

10
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A UNIFIED FORMULATION OF SSMS

Gated Linear Attention. We present GLA (Yang et al.,|2023) below, which generalizes several
extant LAMs:

(GLA) At = dlag(a(wt)), bt(wt) = k(act), Ct(ht) = q(wt)Tht, At = v(wt), (5)

where a : R — (0,1)" converts input to gating logits, k,q : R — RY, v : R — R are linear
mappings playing roles similar to key, query, value matrices in transformers (Vaswani et al., [2017).
When the inputs are multi-dimensional, we share o across channels while assigning each channel
with a separate k, q,v and extending their input dimension accordingly. Linear Attention (LA)
(Katharopoulos et al., [2020) can be regarded as GLA with constant A;, while RetNet (Sun et al.,
2023) can be formulated as GLA with input-independent A, (Liu et al.| [20244).

Griffin. The recurrent unit in Griffin (De et al., 2024) can be re-formulated as a kind of SSMs:

A, = diag (a(0)), by(a,) = diag (i(x1)), ci(he) = hyy A, = diag (\/1 - a(act)z), ©6)

where i(x;) = sigmoid(W,x; + b, ) is an input gate, c is computed in log-space: log a(x;) =
—¢& softplus(T) ® sigmoid(Wya; + b,), © is Hadamard product, ¢ is a constant, and T, W,
b,, W,, b, are learnable parameters. In particular, the dimension of h; in Griffin is equal to the
dimension of x;. If we consider single-channel x;, then A;, b;, and A, are all scalar-valued.

RetNet. The SSM formulation of RetNet (Sun et al.l [2023)) is similar to that of GLA, with the
distinction of A;.

Ay =~I, bi(xy) = k(x), ci(hy) = ‘I(ﬂ?t)Thu Ay = v(xy), @)
where v € [0, 1] is a scalar, and the other symbols retain the same meaning as in GLA.
RWKYV. We demonstrate that RWKYV (Peng et al.,|2023)) can also be reformulated into the structure
of SSMs:

exp(—w¢)I

exp(—wy) + exp(k(z))

A = , bt(wt) = v(azt), (®)

exp(k(z:))
exp(—w¢) + exp(k(w¢))

Ct(ht) = q(wt)Thn Ay = 9

Another view suggests RWKV can be seen as a state of ratio form of two SSMs: h; = £t =

(exp(—w)a—1 + exp(k(@:))v(@:)) / (exp(—w)bi—1 + exp(k(:))). i

B DEFERRED DISCUSSIONS

Does hungry hungry hippos help? The key innovation of Hungry Hungry Hippos (H3) (Fu et al.,
2022) lies in the introduction of self-gating connections and locally shifting convolutions to improve
in-context recall for state space models (SSMs). This design has quickly become a standard backbone
for various SSMs (Gu & Dao, [2023} [Beck et al., 2024). However, we question its effectiveness in
addressing the local rangeness issue in SSMs. The gating mechanism operates at the token level,
which impacts the bound in Theorem only by a constant factor. Additionally, the introduced
convolutions typically use small kernels, which are insufficient to mitigate the exponentially decaying
relevance between tokens. As we empirically show in Fig. [2] while Mamba with H3 performs
adequately in associative recall tasks when the state size is sufficiently large, a locality bias begins to
emerge as the number of key-value pairs exceeds the model’s memory capacity. This highlights the
limitations of the architecture in handling long-range dependencies under constrained memory.

Does gradient vanish in SSMs? Vanishing gradients refer to a challenge in RNNs, where
backpropagation-based learning is impeded due to gradient magnitudes decaying exponentially
over time. The diminishing dependencies among distant tokens are a fundamental cause of this
issue (Bengio et al.l [{1994)). SSMs were initially proposed to address this limitation by explicitly
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modeling long-range dependencies, as highlighted in (Gu et al} 2020} 2021b). Subsequent work,
such as Mamba, extends this approach by adopting their initialization alongside newly proposed
selection mechanisms, which are widely believed to enhance these capabilities. Our Theorem [3.1]
lies in theoretically challenging this assumption. We demonstrate that modern SSMs still suffer from
the recency bias, which not only undermines their ability to capture long-term dependencies but also
potentially exacerbates the vanishing gradient problem.

Connection with over-squashing theory in GNNs. The influential score defined in Sec. [3:1]is
also used for over-squashing analysis in Graph Neural Networks (GNNs) to identify information
bottleneck (Topping et al.| 2021} Di Giovanni et al., [2023). The sensitivity analysis inTopping et al.|
demonstrates similar exponentially decaying dependencies among graph nodes, dependent
on the underlying graph topology. We postulate that propagating information from long distances
remains challenging for SSMs because the model needs to encapsulate all history information into a
fixed-dimension hidden vector, which is also observed as one major problem with RNNs

let all [1994; [Alon & Yahav}, 2020} [Sutskever et al., 2014} [Cho et al.| 2014} [Cho|, [2014).

Connection with over-smoothing theory in GNNs and transformers. Over-smoothing issues
were first identified in GNNs [2018}; [NT & Maeharal 2021}, [Oono & Suzukil 2019;

& Wang| [2020; [Wu et al] 2022} 2024b)) and later explored in transformers (Dong et al., 2021},
ang et al., [2022; |Shi et al., 2022; [Wu et all, [2024a}, [Geshkovski et al., [2023). In both cases,

over-smoothing manifests as feature representations becoming increasingly uniform with greater
model depth. To the best of our knowledge, our work is the first to uncover this phenomenon in
SSMs. In GNNs, the over-smoothing effect typically follows a linear decay rate governed by the
second-largest eigenvalue of the adjacency matrix: O(\%), where L denotes the number of layers
(Oono & Suzukil [2019; [Cai & Wang], [2020). More closely related to our setting,
analyzes the convergence rate of feature smoothness in causal attention, demonstrating a rate of
O((1 — AT . YE/T) where A,,;, is the minimal value in attention maps. In comparison, our result
in Theorem |4.2|shows a rate of O((1 — AT . L), indicating that the smoothening speed of SSMs is
faster than that of transformers. Our Fig. P|supports this claim, as the transformer-based architecture
exhibits a mild decrease of sharpness at deeper layers, whereas SSMs show a constantly steeper
decay slope. Moreover, due to the inherent locality of SSMs (Theorem [3.1)), achieving effective
long-range interactions necessitates deeper architectures. In contrast, transformers, which allow
arbitrary long-range interactions among tokens, do not have the same requirement. This distinction is
partially supported by the observation that modern SSMs often adopt architectures that are roughly
twice as deep as transformers. Consequently, depth-scaling limitations are more critical for SSMs
than for transformers.

Comparison with Wang & Xue (2024). The most relevant prior work to our study in SSM
recency is perhaps [Wang & Xue| (2024), in which their Theorem 3.13 reveals the exponentially
decaying memory for SSMs. Distinct from their findings, our primary contribution lies in analyzing
nonlinearity and input-dependent mechanisms widely adopted in modern SSMs 2023}
[Yang et all, 2023} [Arora et all, [2023). To the best of our knowledge, our work presents the first
counterargument showing that even with input-dependent SSMs, effective context filtering may not
be achieved. Instead, these mechanisms impose a strict recency bias, inheriting the limitations of
linear SSMs as previously highlighted by Wang & Xue|(2024)). Notably, [Wang & Xue| (2024) only
addresses nonlinear activations after performing linear SSMs (i.e., S4), with the state transition matrix
A, being independent of inputs. Our analysis, however, considers both A; and b; as input-dependent,
aligning with settings in Mamba and other follow-up works. The approach in{Wang & Xue|(2024))
does not naturally extend to this case, as they assume the linearity of the sequence mixer (cf. Eq. 9 in
Wang & Xuel|(2024)). Furthermore, we conduct a finer-grained analysis, quantitatively relating the
decay rate to the specific values within the input-dependent gating matrix A;.

C PROOFS

C.1 EXPONENTIALLY DECAYING DEPENDENCY WITH RELATIVE DISTANCE

In this section, we extend and prove Theorem [3.1]in a more general case where inputs and parameters
are all complex-valued. Below we by default assume that A, € CVN*N b, : C — CVN, ¢, : CV — C,
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and A; € R. First of all, we present the following auxiliary lemma, reformulating SSM recurrence in
an explicit parallel form.

Lemma C.1 (Parallel form). For any {(A¢, by, ct, A¢) he[r) and x € CT, y € CT computed via an
SSM defined in Eq. [I]is equal to:

he = i ( IT a4 ) Asbo(xs) + Asbi(mr), Yy = co(he), Ve [T]. (10)

s=1 \r=s+1

Proof. Proof by induction. First let us examine the base case when ¢t = 1: h; = A;bi(xy),
indicating that Eq. [[0]holds trivially. Now we make inductive hypothesis that Eq. [[0]holds for some
t € [T — 1]. Then for time step t + 1 € [T

hit1=A1h+ Arb (Te41)

= A (2_: < H A, > Asbs(xs) +Atbt($t)> + Ary1bei1(Tit1)

s=1 \r=s+1
t

1
(At+1 : H A ) A b iEs) + At+1Atbt(iBt) + At+1bt+1(33t+1)

HHM

r=s+1
— t+1 t+1
= < H Ar) Agb, ( H A, > Aeby(xy) + App1bepr (Te41)
s=1 \r=s+1 r=t+1

M&

t+1
( H A ) A b (L‘S) +At+1bt+1({l}t+1)

s=1 r=s+1

which also satisfies Eq. [I0] Then we conclude the proof by induction. O

A remark of Lemma[C.1] Lemmal|C.I|provides an alternative perspective on how SSMs compute
the outputs. The predicted value for the ¢-th token is obtained via decoding a weighted aggregation
over representations of all past tokens. The encoding and decoding stage is element-wise independent
of the context. Whereas, the “weight” associated with each past token in the summation reflects the
pairwise relationship, playing a similar role to attention weights in transformers (Dao & Gul [2024;
Al et al.,[2024)). The weight corresponding to one past token is calculated as the cumulative product
HT A, where r € [s + 1, t] traverses from the past token (at time s) to the target token (at time t).
Assume A; € (0, 1)V >N which is satisfied by most of SSMs discussed in Sec. [2} we can show that
(T —si1 Ar)nn < (HT o4 A,,A)n,n forany s < s’ < tand n € [N]. By this interpretation, SSMs
assign strictly higher “attention” to the nearer tokens than the further tokens.

Below we formally state and prove the complex version of Theorem [3.1] Theorem [3.1]is a straightfor-
ward corollary of Theorem[C.2]

Theorem C.2 (Recency of SSMs). Consider an SSM defined in Eq. || Iwzth {(Ag, b, e, Ag) hepm
Assume that:

(i) The input space X C CT is compact.
put sp p

(ii) {(A¢, by, ¢, At) }eeir) and { (%‘2; , ggi , g;t, , ‘gﬁtf ) }te[T] are continuous.
(iii) Ay is diagonal and 0 < |(Ay¢)pn| < Lforallt € [T],n € [N].

Let Ayae = maxye[r)ne(N]|(At)n,n|. Then for arbitrary x € X and every s,t € [T] such that
s <t

0y
oz,

< Cexp (7’€(t - 5)) s

for some constant C' > 0 independent of t and s, and r = log(A;;L ).

max
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Proof of Theorem[3.1] First of all, we note that by compactness of input space (Assumption (1)) and

O0A; 0Ob, Ocy 9A
Oxy ) Oz’ Oxy ' Oxyt

continuity (Assumption , (A¢, by, e, Ay) and ( ) are all bounded by some
constant for every ¢ € [T].

By Lemma|[C.I] Eq. [T]can be expressed in the closed form as follows:

=1 r=i1+1
t—1 t
— Zexp ( Z log Ar> Asbi(x;) + Arby ()
i=1 r=i+1
s—1 t t—1 t
— Zexp ( Z log AT> Abi(x;) +Zexp < Z log Ar> Abi(x;) +Ab (),
=1 r=i+1 1=s r=i+1

where the second equality is by simply rewriting the cumulative product as an exponential of
cumulative summation of logarithms. The logarithmic terms are well defined and constantly negative
due to Assumption We decompose h; into three components, where the first term, denoted
as ug, depends on x only through {A,,}f,zs, the second term, denoted as v, only relies on x4 via
{A;b;}t_,, while the remaining part is independent of .

Now we tackle each component separately. First, we simplify Qu;/0x as:

g:f = 3i [Zexp( Z log A, )A b; (mz)l

r=i+1

— 0
= 2 (9[1;3 (exp (T;l lOg Ar>> A,bL(.’I},)

o1 i ‘ dlog A
= Zexp( Z 10gAr> ( Z awr> Aibi(x;)
i=1 s

i=s?

r=i+1 r=i+1
s—1 t 8A
— -1 i b
— Zexp ( Z log Ar> (AS . > A;bi(x;),
=1 r=i+1
where the last steps follow from the basic chain rule. Then we can bound its ¢; norm by:
Oy i, 1 0A,
H ZZ exp Z log A, . (Ar aws) Aibi(i)n (11)
n=11=1 r=i+1 n,n n,n
N s—1
< Ci Z Zexp < Z 10g|(Ar)n’n) (12)
n=11=1 r=i+1
s—1
< Ci1N Z exp (log Apaz (t — 7)) (13)
i=1
_ o NI (I loifl’f“(s =) ep (log Apan(t — 1)) (14)
_ ClNeXp (log Amaw (t B 3)_)1_ exXp (10g Amaw (t — 1))
Amam - 1
CiN
< or o (Clog A (- 9)). (15)

We elaborate on the derivation step by step. Eq. [T1]is due to triangular inequality. To obtain Eq.
., we note that A1, 0A, /0xs, A;, b; are all element-wisely bounded, thus, we can extract their
uniform upper bound C’1 > 0 out of the summation Eq. [I3|can be derived by applying the supremum
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Az over all {|(At)n nl}eerr)nev)- Eq. [14] .follows from the summation of geometric series. And
finally, inequality in Eq. E]holds by dropping a negative term.

Similarly, we rewrite Jv;/Ox as below:

g’vt _ lz exp < Z log A'r) Aibi(wi)]

r=i+1
_ N O0(Aibi(z:))
= zZzgexp <rzl;rllogA > .
_ O(Asbs(zs))
= exp (rgrllogA ) . ,

by which we can yield the following upper bound on its ¢; norm:

8'Ut 6(Asba(me)n)
2] =55 )| o2
1 n=1 r=s+1 n,n
< Oy Zexp ( > 1og|(Ar)n,n|> (16)
n=1 r=s+1
< NCsyexp ( log AL (t — s)) , (17)

where Eq. [16]is obtained by applying uniform upper bound C5 > 0 over (A bs(x,),)/02;|. Eq.
is induced by leveraging the supremum A, 4, over all {|(A¢)n n|}re[r)nen-

Combining Egs. [[5]and[T7] we have:

N
H gz: 1 (A;ilr — + NCg) exp ( log AL (t — S)) ) (18)
Finally, we conclude the proof based on Eq. [T8}
Oye| _|0ci(he) " Ohe| _ || Ocu(ho) || || ORs
ox, Oh; ox, Ohy ox, ||,

N
< C’3 <A_61111 =+ NCQ) exp ( log Amax( S)) ’

= Cexp (—k(t—9))

where we use Holder inequality in the first equation and upper bound ||Jc;(h:)/Oh: ||~ again via
constant C's > 0 due to continuity (c;(h;) is a composition of a series of continuous functlons as in
Assumptlonm This is as desired after letting C' > 0 absorb all constants and x = log A O

maw

C.2 OVER-SMOOTHING IN SSMs
C.2.1 Low-PASS FILTERING PROPERTIES

In this section, we formally state and prove Propositiond.T] To begin with, we define low-pass filters
as below:

Definition C.3 (Low-pass Filter). Suppose z(t) : C — C is absolutely integrable. Then the Fourier
transform Z(w) : C — C exists and Z(w) £ [ 2(t) exp(—iwt)dt. We say z(t) is an (€, Q)-low-pass
filter for some 0 < € < 1 and Q2 > 0if | Z(w)| < e for every |w| > Q. Furthermore, we say z(t) is a
low-pass filter if for every 0 < € < 1, there exists > 0 such that z(t) is an (e, Q)-low-pass filter.

Note that our definition of low-pass filters focuses on its effect on removing high-frequency compo-
nents. By Definition [C.3] it is equivalent to say a system performs low-pass filtering if and only if
the responses converge to zero as the frequency increases. Fixing € > 0 small enough, we can say a
(e, Q)-low-pass filter has cut-off frequency at |w| =
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Now we present a formal version of Proposition[d.T]as below, which quantifies the cut-off frequency
of a filter induced by continuous-time S4. Note that Proposition [C.4] holds for complex-valued
(A, b, c). Below we assume A € CV*N b € CV, ¢ € CV by default.

Proposition C.4 (Formal version of Propositiond.1). Consider a continuous-time S4 with parameters
(A,b,c). Assume A € CN*N js diagonal and its diagonal values have negative real parts. Then
t) = [ exp(A(t — s))bx(s)ds is an (e, O(1/e€))-low-pass filter for any € > 0 sufficiently small.

Proof. First of all, let us rewrite the filter induced by S4 as below:

N
= Z cpby, exp(A,, i t).
n=1

Then we apply Fourier transform on z(t):

N
Z(w) = /z(t)efi“tdt = /chbn exp(A, nt) exp(—iwt)dt
n=1

N
= Z cnb, /exp(Anmt) exp(—iwt)dt
n=1

N
> cnbn / exp((Ap.n — iw)t)dt
=1

cnbn

)

I
[]= 1

iw—A,,

3
Il
-

where the last integral converges due to R(A,, ,) < 0. Then we can upper bound the magnitude of
Z(w) as:

ch n
1Z(w)| =

N
We consider € > 0 small enough, thus, it is sufficient to consider the scenario when |w| > A,,42 =
maxy,c(n] |An,n|- In this regime, we have:

N
1 [[bll2]|cl|2
< nbn < ’

where the last two inequalities are due to Holder’s inequality. It is sufficient to set:

[B]l2l<]l2
€
to let | Z(w)| < e for every |w| > € hold. O

N
z : cn n
iw —

n=1

Q= + Amaxv

C.2.2 GENERALIZED SMOOTHENING PROPERTIES

In this section, we define generalized smoothening operators as those that narrow distances between
token features. We provide the following results that formalize this point. Theorem [C.5|below extends
the result of Theorem [4.2]to include the case when (Ay)n.n + A; = 1 for every n € [N],t € [T,
which is more aligned with|Ma et al.[(2022; 2024); |Peng et al.|(2023)) in practice.

Theorem C.5 (Complete version of Theorem @.2). Consider an SSM specified in Eq. [I| with
{(As, b, e, Ar) e (7] Assume an input space X C RT such that for every © € X, either of the
following conditions is satisfied:

(i) (Ap)nn+ Ay =1foreveryn € [N]andt € [T), or
(ii) (At)nn + Ay < 1 for every n € [N],t € [T, and mingeir) bi(z:), < 0 and

maxye(7) by (x¢)n > 0 for everyn € [N].
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Let Apin = minger) ne(n](At)nn. Then for any & € X and the memory states {h, : t € [T]}
generated by the SSM, we have:

max |hy — b < (1AL 1)tr§1&>;]|\bt(mt)—bs(azs)llw,

t,s€[T) min

Proof. To simplify the proof, we first only consider the dynamics of one channel in the memory state.
We denote oy = (A¢)nn» 2t = be(xt)n, and s; = by, for some n € [N]. Additionally, we define
the following two quantities:

m = min z;, M = max z;
te[T) te[T)

When Assumptionholds, we know that m < 0 and M > 0. Suppose z; = pm + (1 — p)M for
some p € [0, 1]. Furthermore, let ¢ = 1 — p. Now we consider the following dynamics with so = 0:

s =aysp—1 + Dz, te [T, (19)
Next, we can show the result below (proved later):

Lemma C.6. We have the following inequality for Eq. |19
(1 - Amznq)m + At ! qM < St = Afnznpm + (1 - Amznp)M7 vt € [T]v

min

if either of the following conditions holds:

(i) ap + Ay =15
(ii) ap + Ay < landm <0< M.

Note that the two conditions in Lemma[C.6 corresponds to Assumptions ()] and [(iD)]in Theorem [C.3]
respectively. Thus we can upper and lower bound the minimum and maximum of memory states
{s¢ : t € [T} through:

ra > 1-A AL
m tIél[le}] St trg[ITI“l]( mznq)m +

=(1 Amm q)m + AT=Long,

min

mzn

as we are moving the convex combination towards the smaller end (i.e., 1 — Amm q>1-— Afmil qQ),
and similarly,

M’ 2 max s; < max AU}
te[T] te[T]

A?rnn pm + (]‘ - Amm p)

. T—1 t—1
as we are now relaxing the convex combination towards the larger end (i.e., 1 — A} ~-p > 1— A" p)
Henceforth, we can upper bound:

minPT + (1 - Amznp)M

M~ A'rmnpm + (1 - Ammp) (1 - Ammq)m - A'rnn:%qM
(1 - Az;nnl)(M - m)»

using the fact that p + ¢ = 1.
Now we can apply the above result to all memory channels. Assigning each channel with m,, =
minser) b (T1)n, Mp = maxe(q) by (1), and M;,, m;, accordingly, where n € [N]. We can yield:

max, [y = Bl < Hel?g](M

n mn)
t,s€[T]

< 1— A1 (M, —m,
max (1= Ay ) (M —ma)
(1 — Aﬁml) max (M,, — my)
ne[N]
1—AT-1 b —minb
= ( mm)érel% (?é?ﬁ +(@:) — min t(iL’t))

1—AT-1 b — bs(xs

( mm) 7{2%{] tglea[},}] ( t(mt) (w ))
1= A1) max ||by(z:) — bs(zs)| .

( ) t753§] || t( t) (m )”oo

min

where we exchange the two maximum in the last step. O
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Finally, we prove an auxiliary result we used before. This result generalizes Lemma 3 in[Wu et al.
(20244a)) in the scenario when oy + Ay < land m < 0 < M.

Proof of Lemma|C.6] We first prove the side that is “less than”. Note that the desired inequality
trivially holds for the base case s;. Then we conduct the following inductive steps. Suppose the
desired inequality holds for some r € [T' — 1], namely:

sp < A;;-rllpm +(1- A;;-}lp)M.

Then we show that for time step r + 1 € [T,

Sr4+1 = A7'+157' + Ar-{-lz’r—i—l

< A (Apppm+ (1= Ajip) M) + Ay M (20)
< Ay (A npm+ (1= Al ip) M) + (1 — Ay)M 1)
< Avin (Aimpm + (1= A750p) M) + (1 = Apin) M (22)
= A inpm + (1 = A7 )M,

where we substitute the upper bounds of s; (by the inductive hypothesis) and z; in Eq. Eq.
holds because either A, 1 =1 — A, (by Assumption[[D) or A, <1— A3 and M > 0 (by
Assumption [(iD)), Eq. 22]is satisfied as we are lowering down the coefficient for the smaller end in the
convex combination. This concludes the proof by induction.

The proof for the “greater than” side follows from a symmetric argument. We provide a brief proof
for completeness. The base case s; trivially satisfies the desired inequality. Consider an inductive
step where s, for some r € [T — 1] also satisfies the desired inequality. Then we have:

Sr41 = Ar—i—lsr + Ar+1zr+1
> A1 (L= AL Ygm+ Al gM)) + Ay am

min min
> Apgr (1= Al b )gm + Al LgM)) + (1= Apy)m

= (1 - A:m'nq)m + A:nion7

which concludes the proof by induction. O

D EXPERIMENT DETAILS

D.1 NEEDLE IN A HAYSTACK TEST

Our experiments of testing positional bias for Mamba in Sec. are based on an open-source project
LLMTest _NeedleInAHaystack El To validate the retrieval capability of the models while
preventing them from relying on memorized information stored in their model weights, we carefully
design the inserted statements to contain factual errors. Several examples of such statements are
provided in Figure[/| For instance, we insert the statement, “The capital of France is Madrid.” and
then test the model’s retrieval ability by asking the question, “What is the capital of France?” While
the correct answer, Paris, is likely memorized by the LLM, if the model “correctly” outputs Madrid
based on the context provided, it demonstrates that the model is successfully using the contextual
information rather than relying on pre-existing knowledge. This approach ensures that the evaluation
focuses on the model’s ability to retrieve and process information from the input context. We also
add an instruction “ignore the fact, only use information in the context to answer the questions” to
facilitate this behavior. We provide the fine-grained visualization result in Figure 8]

D.2 CIFAR-10 IMAGE CLASSIFICATION

Here we present experiment details in Sec. [3.3] where we conduct image classification on the
CIFAR-10 dataset to study locality bias in SSMs. Specifically, 32 x 32 RGB images in the dataset

*nttps://github.com/gkamradt/LLMTest_NeedleInAHaystack
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Inserted Statement: The capital of France is Madrid. Question: What is the capital of France?

Inserted Statement: The telephone was invented by Elon Musk. Question: Who invented the telephone?

Inserted Statement: The largest planet in our solar system is Earth. Question: What is the largest planet in our solar system?
Inserted Statement: The country known for the Great Wall is Brazil. Question: What country is known for the Great Wall?

Figure 7: An illustration of our synthetic data.
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Figure 8: Detailed comparison between SSM and Transformer on the “Needle in a Haystack"
benchmark. The upper figure shows the retrieval accuracy of the Mamba-Codestral-7B model, while
the lower figure presents the retrieval accuracy of the Mistral-7B model. We present a heatmap where
"full context length" refers to the total length of the document, and "needle position" denotes the
relative position of the statement to be retrieved within the context.

are flattened into sequences with a shape of (1024, 3), where 1024 represents the sequence length
and 3 corresponds to the RGB channels of the pixel tokens. These pixel tokens are then projected
into H-dimensional features via a linear projection, which are then input into SSM or transformer
mixers. In addition to pixel tokens, we insert a class token at the last position of the input sequence.
The output state of the class token will be processed by a one-layer classifier head to generate the
final logits.

Note that while the ViT architecture (Dosovitskiy et al.| 2020) places the class token at the first
position of the input sequence, this design is incompatible with SSMs, which rely on causal sequence
modeling. In SSMs, the class token must be positioned last to aggregate features from the entire
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Table 2: Extended results of adversarial attack experiments on the CIFAR-10 dataset. Classification
accuracy is used as the metric.

Corrupted region (seq. length = 1024)

Models (no corrupt) | [1014:1024] [0:10] | [768:1024] [0:256] | [512:544] [480:576]
H3 0.654 0.629 0.654 0.394 0.639 0.603 0.543
Transformer 0.580 0.571 0.500 0.249 0.263 0.498 0.347
RWKV 0.474 0.194 0.470 0.107 0.448 0.405 0.392
Mamba 0.674 0.348 0.664 0.099 0.597 0.515 0.446

sequence. We position the class token as the last token to establish long-range dependencies between
global image features and the leading pixel tokens. Alternative methods for aggregating features
across the entire sequence, such as mean pooling (Gu et al.,|2021aj Tay et al., 2020) or placing the
class token in the middle of the sequence (Zhu et al.||2024), work more robustly in general but do not
fit the needs for our arguments on locality.

In addition, our image classification setup differs from Tay et al.|(2020), where an 8-bit pixel intensity
lookup table is used as the token embedder. Instead, we employ a linear projection to map RGB pixel
colors into H-dimensional features.

For a fair comparison, the same hyperparameters are used across all models: learning rate = 0.001,
weight decay = 0.1, number of layers = 3, feature dimension ' = 32, and number of states = 64.
Each model is trained for 100 epochs. The models and training pipelines are built on |Arora et al.
(2023). No perturbations are imposed on the input sequences in the training stage.

Adversarial Attack. To introduce perturbations to test data for adversarial attack, we first define
a corruption length K, which is small relative to the entire sequence length. We then replace the
leading and trailing K tokens with random Gaussian noise. In our experiments, K is set to 32 and 96,
corresponding to one row and three rows of pixels, respectively. Table[2]shows more results under
other corruption regions.

Target Attack. For the target attack experiments, a target class is first selected. For each image
from the other classes, an image from the target class is randomly sampled, and its leading and trailing
pixels are used to replace the corresponding pixels in the original image. We test two attack ratios:
256/1024 and 480/1024. Replacing fewer than 256 pixels generally does not result in considerable
success rates based on our trials. In our main text, we show success rates when “horse” is the target
class. Similar patterns are also observed across other classes. Fig. [0]shows the average success rates
obtained by setting each class as the target.

0.6
° Attack region
5 [0:256]
0 0.4 [0:320]
8 [704:1024]
3 .
2 0 [768:1024]
2
<

0.0

H3 Mamba RWKV Transformer

Figure 9: Overall success rate of our target attack experiments on CIFAR-10, calculated by averaging
the attack success rates obtained when each class is individually set as the target class.

D.3 SCALING LAW WITH VARYING DEPTH
In this section, we elaborate on experiment details for Sec. We perform casual language modeling
(Radford et al., [2018)) with Mamba and report the validation perplexity. For each curve in Fig. @]

we fix the depth of the model and vary the number of parameters from 140M to 550M by adjusting
the hidden dimension accordingly. The depth is chosen from {16, 24, 32, 48, 64, 72}. All other
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model configurations keep the default values: the memory state size N = 16, the intermediate SSM
dimension is two times the hidden dimension, and the intermediate rank for predicting time step A
is the hidden dimension divided by 16. We adopt Dat aComp-LM as our training
corpus for its high data quality. The evaluation set is created by holding out a subset of 10M tokens
from the training data. We follow the training recipe provided in Appendix E.2.1 of (2023),
which roughly follows the Chinchilla scaling laws (Hoffmann et al., 2022)) to allocate the number of
tokens for each model size. We test two block sizes {2048, 8192}. During training, we fix the number
of tokens in one training batch (# sequences x sequence length) as 0.5M. The number of training
steps is computed by the total number of tokens divided by batch size (# tokens / # tokens in one
batch). We use AdamW as the optimizer with gradient clip value 1.0, weight decay 0.1, and linear
learning warmup with cosine decay to le-5, following|Gu & Dao|(2023). The peak learning rate is 5x
the GPT3 values (Brown et al,[2020) for different model sizes. We summarize the hyperparameters
in Tab.

# Params  Training steps Peak LR  Batch Size (in tokens) # Tokens

100-250M 4800 3e-3 0.5M 2.5B
250-400M 13500 1.5e-3 0.5M 7B
400-550M 20000 1.25e-3 0.5M 10B

Table 3: Summary of training settings for varying-sized Mamba.
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