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ABSTRACT

Recent advances in large language models (LLMs) and agent system designs
have empowered agents with unprecedented levels of capability. However, ex-
isting agent benchmarks are showing a trend of rapid ceiling-hitting by newly
developed agents, making it difficult to meet the demands for evaluating agent
abilities. To address this problem, we propose the Trajectory-based Validated-
by-Reproducing Agent-benchmark Complexity Evolution (TRACE) framework.
This framework takes an original task from an existing benchmark and encour-
ages agents to freely explore and evolve it into a new task with higher difficulty
while recording validatable agent trajectories. The framework proceeds in three
stages: (1) evolutionary proposal mining, which provides task evolution propos-
als through preliminary exploration and divergent thinking; (2) problem formation
and free exploration, where proposals are conceptualized into feasible problem
candidates and the agents then explore them freely while recording their execu-
tion trajectories; and (3) multi-level validation, which ensures that the evolved
tasks are accompanied by validatable and reproducible trajectories. Experiments
on the GAIA benchmark demonstrate that the TRACE framework consistently
enhances task complexity while improving the reliability of correctness through
validatable execution trajectories. In addition, our framework can successfully
adapt to and improve reasoning datasets represented by AIME-2024. This work
marks a paradigm shift from static, manually curated benchmarks to dynamic,
self-evolving evaluation systems, providing a sustainable and challenging runway
for agent development.
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Figure 1: Model performance comparison on the Pass@1 metric across four distinct difficulty levels
and evolution rounds under the TRACE framework. As the number of evolution rounds increases,
the performance of models shows a downward trend, demonstrating that our framework successfully
evolves more challenging tasks.
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1 INTRODUCTION

The paradigm of artificial intelligence is rapidly shifting towards autonomous agents capable of com-
plex reasoning Comanici et al. (2025); Huang & Yang (2025), planning Huang et al. (2024), and tool
utilization Qu et al. (2025); Wang et al. (2024a). This progress is starkly evident in the performance
on challenging agent benchmarks Mialon et al. (2023); Jimenez et al. (2023), which were once
considered formidable. For instance, on the GAIA benchmark which is designed to test real-world
assistant capabilities, top-performing agents have achieved scores exceeding 84% (GAIA Bench-
mark Team, 2025), rapidly closing the gap with the 92% human baseline. This rapid pace of de-
velopment, with leaderboards being refreshed almost weekly, signals an urgent challenge: the rapid
ceiling-hitting of existing evaluation benchmarks, posing a significant threat to continued progress.
When benchmarks become saturated, they lose their ability to differentiate between state-of-the-
art agents, obscure true limitations, and may misdirect research efforts towards “overfitting” to a
static set of problems rather than pursuing generalizable intelligence. However, the cost of manually
creating novel, complex, and reliable tasks is a labor-intensive, time-consuming, and expensive pro-
cess, which highlights an urgent need for an automated and scalable approach to agent benchmark
evolution.

However, evolving agent tasks presents unique challenges not found in conventional domains like
mathematical reasoning Hendrycks et al. (2021); Guo et al. (2025) or knowledge-based question an-
swering Yang et al. (2018). Agent tasks are defined by two key characteristics: (1) their procedural
nature, which emphasizes complex, multi-step interactions with dynamic real-world environments
(e.g., websites, APIs), and (2) their immense diversity, spanning from web navigation to software
operation. These characteristics render traditional task evolution methods, such as rule-based pa-
rameter mutation or scaling largely ineffective. For instance, rule-based changes Wu & Liu (2025);
Wang et al. (2024b) (e.g., altering a specific keyword in a search query) are often too brittle. In a dy-
namic web environment, such a minor change could break the task’s solvability entirely rather than
increasing its reasoning complexity. Similarly, merely scaling up a task Liu et al. (2025) (e.g., ask-
ing to book three flights instead of one) often increases repetition, rather than the core cognitive or
planning challenges. Thus, a new paradigm is required that moves beyond superficial modifications
to fundamentally enhance the procedural, logical and semantic complexity of agent tasks.

To bridge this gap, we introduce TRACE (Trajectory-based Validated-by-Reproducing Agent-
benchmark Complexity Evolution). Departing from rigid, rule-based heuristics, TRACE leverages
the agentic capabilities of LLMs to drive task evolution through three specialized components. The
Evolutionary Proposer identifies diverse evolution directions via preliminary exploration; the Ex-
ploration Executor navigates real-world environments to materialize these proposals into recorded
execution trajectories; and the Trajectory Validator enforces logical coherence and reproducibility.
This ensures that evolved tasks are grounded in verifiable solution paths rather than relying solely
on final-answer correctness

The synergy between these agents facilitates a sophisticated workflow for task evolution. This pro-
cess commences with the Evolutionary Proposer, which takes an initial task. For instance, “What
is the name of Taylor Swift’s debut album?”, and explores its semantic space to identify potential
evolutionary forks. Rather than stopping at the answer, it delves into related artifacts like the music
video for the single “Teardrops on My Guitar,” generating a portfolio of distinct proposals. These
proposals represent diverse vectors for increasing complexity, such as connecting the video’s actor
to their filmography or tracing their career across different domains. Subsequently, the Exploration
Executor operationalizes these proposals through our core mechanism of proposal-guided trajec-
tory construction. It traverses the original solution path and, upon reaching a relevant state, can
dynamically and iteratively integrate compatible proposals. For example, it might first inject a pro-
posal to identify the actor in the video (Tyler Hilton) and the TV series he starred in (One Tree
Hill), then layer on a second proposal that pivots to his music career. Through such exploration, the
task evolves from a simple single-hop lookup into a multi-step reasoning process with cross-domain
dependencies, culminating in a far more sophisticated final question via reverse construction Trinh
et al. (2024); Fang et al. (2025); Sun et al. (2024); Gao et al. (2025), such as: “The male lead in
the music video for a song from Taylor Swift’s debut album is a multi-talented individual who also
starred in a long-running TV series that premiered in 2003. What is the title of this individual’s own
debut studio album?”
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Importantly, each step of this exploration is recorded as part of a reproducible execution trajectory,
which later serves as the basis for validation. Rather than producing only a more complex question,
the framework outputs both the evolved task and its accompanying trajectory, ensuring that the added
complexity remains transparent, validateable, and reproducible.

This architecture ensures both flexibility and integrity in task evolution. Flexibility stems from
the clear separation of the Evolutionary Proposer from the Exploration Executor, allowing tasks to
evolve along diverse dimensions—such as enhancing tool invocation, escalating logical difficulty, or
adopting combinatorial approaches—without relying on hard-coded templates. To ensure integrity,
the Exploration Executor outputs not merely the question, but a complete, reproducible trajectory
detailing the solution path, tool invocations, and execution results. This trajectory is then submitted
to the Trajectory Validator, which audits logical coherence and re-executes each step to verify repro-
ducibility. This robust quality assurance loop ensures that the generated benchmarks are certifiably
complex, solvable, and grounded in reality.

In essence, TRACE simulates the cognitive workflow of a human expert designing a benchmark,
effectively replacing the labor-intensive process of manual curation with an autonomous, agentic
workflow. Unlike prior approaches that rely on static rule-based approaches, our framework em-
powers agents to conduct free-form exploration within real-world environments (e.g., the live in-
ternet or OS shells), actively scavenging for authentic tasks and identifies connections to construct
grounded reasoning paths. Crucially, this exploration is rigorously directed by a bottleneck anal-
ysis mechanism. By diagnosing the specific limitations of a seed task, such as shallow tool usage
or insufficient logical depth, TRACE strategically steers the evolution to target these weaknesses.
This allows the framework to not merely generate harder text, but to structurally evolve tasks into
complex, tool-integrated challenges that mirror the uncurated nature of real-world problem solving.
The agent effectively transforming itself from a passive solver into an active benchmark architect
capable of uncovering novel capability frontiers.

Our contributions are threefold:

• We propose TRACE (Trajectory-based Validated-by-Reproducing Agent-benchmark
Complexity Evolution), a self-evolving benchmark framework that encourages agent ex-
ploration and records execution trajectories as first-class artifacts, ensuring transparency
and reproducibility in task evolution.

• We empirically validate TRACE on challenging benchmarks such as GAIA, demonstrating
that it consistently produces tasks of higher difficulty, on which prominent agent systems
exhibit significant performance degradation shown in Figure 1, thereby validating the ef-
fectiveness of our approach.

• Beyond “one-more-hop” edits, our experiments reveal a From Seed to Spark pattern: un-
der our TRACE framework, the model autonomously explores and evolves problems that
can shift into entirely different capability domains (e.g., from retrieval to math+coding),
thereby substantially increasing the diversity of evolved tasks. The evolved tasks exhibit
greater task diversity and require deeper reasoning depth, providing a robust methodology
for rigorously evaluating and advancing future AI agents.

2 RELATED WORK

Agent Benchmark In recent years, a variety of static agent benchmarks have been developed
to rigorously evaluate the autonomous problem-solving capability of LLM-based agents. GAIA
(Mialon et al., 2023) collects 466 human-centric questions requiring reasoning, multimodal under-
standing, web browsing, and tool use proficiency. The USACO benchmark (Shi et al., 2024) adapts
307 problems from the USA Computing Olympiad(USACO) with high-quality unit tests, reference
solutions, and official analysis to assess language models on complex algorithmic reasoning and
competitive programming challenges. MLE-bench (Chan et al., 2024) curates 75 real-world ML
engineering competitions from Kaggle, spanning data preparation, model training, and experiment
management, measuring agents’ end-to-end machine learning capabilities against human baselines.
SWE-bench (Jimenez et al., 2023) compiles 2,294 genuine software engineering issues from GitHub
repositories, tasking agents with generating code patches to resolve real bugs under authentic devel-
opment contexts.
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Beyond answer-verified benchmarks, a complementary line of work evaluates how agents solve
tasks, not merely whether they succeed. WebArena (Zhou et al., 2023) provides self-hosted web-
sites with executable scoring and reproducible trajectory replay, enabling both step- and task-level
analyses. Mind2Web (Deng et al., 2023) contributes human-demonstrated trajectories on real web-
sites with fine-grained metrics such as element accuracy and step success rate. Its multimodal exten-
sion (Pahuja et al., 2025) further annotates trajectories with multimodal signals and reports step-wise
metrics, highlighting process sensitivity in open-ended tasks. Existing works are essentially static
and pre-defined. these benchmarks face rapid saturation under the exponential progress of agents:
tasks once considered formidable are increasingly solved with near-human accuracy, diminishing
their power to differentiate emerging models. Moreover, the collection and curation of such datasets
incur substantial human labor cost, making it impractical to refresh benchmarks at a frequency that
matches model iteration cycles. As a result, existing benchmarks risk being quickly “outpaced” by
the systems they aim to evaluate, underscoring the need for a scalable, self-evolving alternative.

Benchmark Evolving Recent advances in benchmark evolution aim to address the rapid saturation
of static evaluation datasets. Benchmark Self-Evolving (Wang et al., 2024b) and AutoEvoEval (Wu
& Liu, 2025) represent predefined atomic operation-based approaches in NLP reasoning and multi-
choice QA. The former applies six reframing operations to modify contexts or questions, while the
latter employs 22 interpretable operations for close-ended tasks, enabling multi-round compositions
that mainly test robustness via structural and semantic perturbations. Both operate through surface-
level transformations, focusing on robustness rather than evolving underlying task complexity.

AdamMeme (Chen et al., 2025) adopts an agent-based framework to iteratively update meme
datasets, probing multimodal LLMs’ reasoning about harmfulness. Through multi-agent collabora-
tion, it refines challenging meme samples, exposing weaknesses in mLLM interpretations. However,
its methodology is confined to this single subdomain and does not generalize. EvoCodeBench (Li
et al., 2024) builds an automated pipeline that ingests real-world code repositories and updates the
benchmark at fixed intervals (e.g., every six months) to prevent data leakage. Unlike methods lever-
aging model feedback, it relies solely on curated data and rigid schedules.

TRACE pursues benchmark evolution through a fundamentally different paradigm. Rather than re-
lying on predefined operations or rigid update schedules, it leverages test-time exploration as a gen-
erative mechanism. Agents autonomously discover and construct harder tasks, producing both the
evolved problem and its execution trajectory. Trajectories undergo strict validation, ensuring tasks
are more complex, reproducible, and answer-validatable. TRACE enables self-evolving benchmark
without human intervention, introducing a trajectory-aware paradigm for scalable evaluation.

3 PRELIMINARY

3.1 AGENTIC WORKFLOW AS A DAG

In this section, we represent an agentic workflow W as a directed acyclic graph (DAG) G = (S, E),
where the node set S = {S1, S2, . . . , SN} corresponds to an ordered sequence of discrete LLM-
invoking steps, and the edge set E ⊆ S × S encodes data dependencies and control-flow con-
straints—specifically, an edge (Si, Sj) ∈ E signifies that the output of step Si is required as input
for step Sj . Each node can be abstracted as the quadruple below:

Si =
(
ci−1, ri, ai, oi

)
,

where

• Context ci−1: the interaction history up to step i−1 (previous actions and observations
together with fixed task/context).

• Reasoning in test-time ri: the agent’s latent reasoning state at step i (internal scratchpad/-
planning variables and intermediate choices that are not executed by the environment).

• Action ai: the external action/message emitted at step i conditioned on ci−1 and ri (e.g.,
a tool/API call with arguments, code to run, a retrieval query, or a user-visible response),
which is the only component actually executed outside the agent. This state-transit process
could be modeled as p(ai | ci−1, ri) = πa

(
ai | ci−1, ri

)
.

4
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• Observation oi: the feedback returned by the environment after executing ai (e.g., tool
outputs, retrieved documents, execution logs, state deltas, optionally a numeric score).

After execution, the context is updated as ci = ci−1⊕(ai, oi), and edges (Si, Sj) arise when artifacts
from Si—typically oi or the updated context ci—are consumed by Sj ; tool-free steps are a special
case where ai is a user-facing message and oi may be empty.

3.2 EXPLORATION TRAJECTORIES FOR BENCHMARK EVOLUTION

Given the DAG formulation of an agentic workflow, we next define how exploration trajectories
serve as the foundation for benchmark evolution. An execution trajectory τ is a path through the
workflow DAG,

τ =
〈
S1, S2, . . . , ST

〉
,

where each Si is realized by the tuple (ci−1, ri, ai, oi). Unlike static benchmarks that only verify
the final output oT , we treat the entire trajectory τ as a first-class artifact: it captures the agent’s
reasoning, tool-use decisions, and environment feedback across all intermediate steps.

Formally, we denote the trajectory distribution under an agent policy π as

pπ(τ) =

T∏
i=1

πa(ai | ci−1, ri) p(oi | ai, ci−1),

where πa governs the action selection and the environment dynamics determine p(oi | ai, ci−1).

Trajectory as Evolutionary Material. Benchmark evolution proceeds by exploring alternative
trajectories τ ′ that diverge from the original trajectory τ . A proposal identifies a modification point
Sk and suggests a new branch (e.g., adding a constraint, substituting a tool, transferring to another
capability domain). The exploration process then unfolds as the agent executes along this modified
branch, yielding an evolved trajectory τ ′. The final benchmark task is reconstructed from τ ′, and its
complexity grows with the depth, diversity, and interdependence of such exploratory branches.

3.3 PROBLEM STATEMENT

We now formalize the benchmark evolution problem. Given a seed benchmark B0 = {(q, τ) | q ∈
Q0} comprising tasks paired with their original trajectories τ , the objective is to construct an evolved
benchmark B such that

Difficulty(B′) > Difficulty(B0), and ∀(q′, τ ′) ∈ B′ : τ ′ ∈ Tvalidatable.

Here, Tvalidatable denotes the set of trajectories satisfying the validity conditions defined above.
The TRACE framework addresses this objective through a three-stage pipeline: proposal mining,
proposal-guided exploration, and multi-level validation.

4 THE DESIGN DETAIL OF TRACE

TRACE is a multi-agent framework that not only generates tasks but also encourages free explo-
ration and records a complete, validatable trajectory. The system comprises complementary roles
that collaborate end-to-end: Evolution Proposer suggests evolutions from a seed task; Exploration
Executor does not solve a problem but defines one by turning a proposal into an actionable explo-
ration setup and conducting test-time search to produce an execution trajectory; and Trajectory Val-
idator verifies and replays the trace to ensure determinism, safety, and correctness. Crucially, the
product of evolution is not the problem alone, but the pair (evolved problem, validatable trajectory).
This pairing both grants the model an automatic route to discover harder variants and preserves an
auditable record of its own decision process, enabling reproducible, process-aware evaluation. For
the core concept of this section, we provide an example explanation in Figure 5.2.1.
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Original Task:
---------------------------------------------------
What was the volume in m^3 of the 
fish bag that was calculated in the 
University of Leicester paper "Can 
Hiccup Supply Enough Fish to 
Maintain a Dragon 2019’s Diet?

Solution Steps:
---------------------------------------------------
1. Searched '"Can Hiccup Supply 
Enough Fish to Maintain a Dragon’s 
Diet?"' on Google.
2. Open paper at 
https://journals.le.ac.uk/ojs1/index.p
hp/jist/article/view/733.
3. Clicked "PDF".
4. Found the calculations for the 
volume of the fish bag.

Answer:
---------------------------------------------------
“0.1777”

Bottleneck Analysis:
---------------------------------------------------------------
The bottleneck of this task should be web 
search and document understanding...

Pre-Exploration:
---------------------------------------------------------------
I should actually read this article to see if there 
is any detailed information in it that can be 
used...
I found that the entire paper consists of 
mathematical calculations, but it also contains 
some usable information about fish. This will 
force the agent to read the paper carefully and 

identify the necessary information on its own...

Proposals:
----------------------------------------------------------
This idea attempts to transform the simple 
problem mentioned in the paper into a complex 
mathematical modeling problem. We might as 
well use the fish data in the paper to create a 
scenario...
…

New Task Design:
----------------------------------------------------
The proposal intends to create a new 
mathematical modeling task...I need to 
read the paper to get the weight of the 
fish...

Evolved Task:
----------------------json-------------------
{
“new_task”: What is the total 

weight in kilograms of fish...
“solution_steps”:

[
{
“thought”: search the paper...
“tool calling”: 
google_search(paper_name)
“observation”: This paper 

investigates the feasibility of Hiccup...

}
...
]
“answer”: “770.0”

}

Lightweight check:
-----------------------------------------------
Answer format check passed. Not 
open-ended answer...
Attached file check passed. No file 
needed in this task...

Reproducibility Check:
----------------------------------------------
Step 1 passed. Actual tool calling result 
is consistent with the observation.

Step 2 passed...

Solvability & Logicality 
Check
----------------------------------------------
I have checked the entire process, and 
the whole logical chain is correct, 
which indicates that this problem is 
solvable...

What is the total weight in 

kilograms of fish that Hiccup can 
transport in a single operation, 
utilizing a full set of identical, open-
topped cylindrical containers 
optimally designed and 
manufactured from a total of 5.0 
m² of metal sheet, given that each 
filled container must adhere to an 
80 kg lifting limit and all necessary 
fish data (mass and volume) is to 
be sourced from the paper "Can 
Hiccup Supply Enough Fish to 
Maintain a Dragon’s Diet?"

Original Task Evolution Proposer Exploration Executor Trajectory Validator Task Evolved

Figure 2: TRACE evolution pipeline. Starting from a GAIA Original Task, the Evolution Proposer
conducts bottleneck analysis and pre-exploration, drafting a concrete proposal to increase difficulty.
Crucially, the Evolution Executor constructs the evolved problem from its own trajectory: as it
runs ReAct (Thought→Action→Observation), it collects evidence (numbers, constraints, citations,
etc.) and uses this trajectory to parameterize and scaffold the new task, while simultaneously pro-
ducing a complete solution trace. A Multi-Level Validator then applies lightweight schema checks,
dynamic replay for reproducibility, and solvability/logic audits to ensure trace validity. The result is
an Evolved Task that preserves origina benchmark’s interface yet requires deeper reasoning (math +
coding), achieving a systematic benchmark-level difficulty increase.

4.1 STAGE 1: EVOLUTIONARY PROPOSAL MINING

The Evolution Proposer takes the description of an original task from an existing dataset, optionally
along with potential solution paths and answers as input, then outputs multiple evolutionary propos-
als with diversity. This is operationalized by an LLM agent acting as an expert intelligent agent task
designer. The agent is prompted with a comprehensive set of evolutionary strategies, encouraging
it to increase difficulty by lengthening the required evidence chain, complicating tool use, targeting
specialized domains, or escalating the core reasoning demands. To steer this creative process to-
ward generating sound and innovative challenges, the agent’s behavior is governed by a set of core
Guiding Principles. These principles grant the agent the autonomy to think divergently and even
pivot to entirely new scenarios if the original task has limited potential for evolution. Crucially, they
also enforce that all proposed modifications must lead to deterministic and validatable solutions,
preventing ambiguity. Ultimately, the Proposer consolidates its reasoning into a set of diverse and
actionable evolutionary proposals, each providing a clear, imperative instruction for how the task
should be modified.

4.2 STAGE 2: EXPLORATION AND TRAJECTORY RECORDING

The Exploration Executor operationalizes the Proposer’s ideas by turning a high-level proposal into
a feasible problem and by conducting test-time exploration that yields a validatable execution trace.
Starting from the seed task, the Executor follows the current solution path and performs step-wise
proposal injection: at an opportune step, it concretizes one evolutionary idea (e.g., adding a con-
straint, substituting a tool, transferring to another capability domain), creating a controlled “fork in
the road” that increases difficulty. The agent then explores along this branch with full tool access,
producing a trajectory that records reasoning, action, and observation. This process serves a dual
role: it provides the model with a validatable trace to discover harder variants of the seed problem
and captures the model’s own execution path for subsequent auditing and analysis. Following the
principle of inverse problem creation, the Executor’s primary creative act is not solving a problem,
but defining one. With the new, complex solution trace in hand, its final task is to formulate a new
problem description that fits this solution. Finally, the Executor ensures the evolved task adheres to
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Algorithm 1 TRACE Pseudo-code
Require: Proposer P , Executor E , Validators V , Tools T , Seeds Q0, retries R
Ensure: Evolved set Q∗ = {(q′, τ ′)}

1: Q∗ ← ∅; C ← Q0

2: while C ̸= ∅ do
3: q ← Select(C)
4: for r ← 1 to R do
5: ∆← ProposeMining(P, q)
6: τ ′ ← TaskEvolve(E , q,∆, T ) ▷ test-time exploration yields trajectory
7: q′ ← QuestionFormulation(τ ′) ▷ define the problem post hoc from τ ′

8: if Validate(V, q′, τ ′) then
9: Q∗ ← {(q′, τ ′)} ∪ Q∗; C ← C \ {q}; break

10: return Q∗

strict principles of authenticity, logical integrity, and solvability. It meticulously crafts the problem
to guarantee the final answer is a single, deterministic, and validatable value, free from ambiguity,
thereby producing a high-quality and challenging new task.

4.3 STAGE 3: MULTI-LEVEL VALIDATION OF TRAJECTORIES

The final stage of our framework is the Trajectory Validator, an autonomous agent that rigorously
assesses the quality of evolved tasks. Its method is a step-by-step audit of the solution trace, employ-
ing multi-level validation. For each step in the provided solution, the Validator first performs a static
analysis, assessing the logical soundness of the thought and verifying that the corresponding code
is a faithful implementation of that reasoning. Crucially, this static analysis is complemented by a
dynamic execution check to ensure reproducibility. The Validator executes the code from each step
itself and compares its own generated output against the observation recorded in the trace. A task
only passes this check if the results are semantically equivalent, confirming that the solution is not
just logically sound on paper but also practically reproducible. This validation is part of a broader
audit that also examines problem integrity, determinism of the answer, and whether the evolved task
represents a genuine increase in difficulty. Only tasks that satisfy all criteria, which contains correct-
ness, reproducibility, and increased complexity, are accepted into the final evolved dataset, ensuring
a high standard of quality.

Given the inherent randomness of large language model sampling and the loosely coupled nature
of our multi-agent system, the generation process can occasionally produce evolved tasks with for-
matting errors or logical flaws, which consequently fail the rigorous validation stage. To address
this, we employ an iterative strategy: multiple evolution attempts are made for tasks in the dataset,
but once a task is successfully evolved and validated, it is removed from the candidate pool. This
approach allows us to progressively work through the dataset, ensuring that computational resources
are focused on tasks yet to be evolved, continuing until a desired proportion of the original dataset
has been successfully enhanced.

To further guard against superficially modified but still easy items, we introduce a trajectory-agnostic
solver as an auxiliary validator. This solver does not see the generation trajectory; it operates purely
under a ReAct (Yao et al., 2023) paradigm and enjoys tool-use parity with the main executor (same
multi-modal access, web browsing, and coding). We run the solver under budgeted attempts; if it re-
liably solves the evolved task within resource limits, the item is flagged as insufficiently challenging
and is rejected or sent back for re-evolution. Only tasks that resist this blind, tool-equipped solver
proceed, providing an empirical difficulty floor independent of the authored trace. Our pipeline
pseudocode can be referred to as Algorithm 1.

7
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5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Benchmark. We evaluate TRACE on the GAIA benchmark (Mialon et al., 2023), a diverse suite
of human-centric tasks requiring reasoning, multimodal understanding, web browsing, and tool
use. Our experimental setup includes three variants: the original GAIA dataset (ROUND 0), the
first round of evolved tasks generated by TRACE (ROUND 1), and the second round of evolution
(ROUND 2). A key property of our design is that the evolved tasks inherit GAIA’s evaluation format
without modification, enabling a seamless transition from the original benchmark to progressively
harder variants.

Baseline. As the baseline, we report model performance on the original GAIA benchmark across
the established difficulty levels (LEVEL 1, LEVEL 2, LEVEL 3). These results serve both as a refer-
ence for the starting point of task complexity and as a comparison against performance degradation
observed on the evolved datasets.

Metric. We adopt GAIA’s official evaluation, measuring accuracy by Pass@1 through its original
answer-verification evaluation. By reusing GAIA’s metrics directly, we ensure that improvements
or degradations observed across rounds can be attributed purely to the increase in task complexity,
rather than confounding changes in evaluation methodology.

Beyond accuracy, we further track the average token length per task as a proxy for test-time com-
putation and reasoning effort. Concretely, for each model and each round, we fix decoding hyperpa-
rameters and compute the mean number of generated tokens over all questions. Intuitively, the more
tokens a model needs to produce before committing to an answer, the longer it must stay in the loop
to perform additional reasoning steps, tool calls, and self-corrections.

Implementation Details. For all reported scores from baseline on ROUND 0 to evolved sets
ROUND 1–2, we use a unified solver instantiated with inspect_eval ReAct Agent. The agent is
capped at 100 interaction turns per task, operates with the same tool-use affordances as other agents,
and has no access to any generation trajectories or validator outputs. Importantly, this solver is used
only for evaluation and is independent of the validation pipeline.

To guarantee the effect of benchmark evolution isolating from model/back-end variance, all evo-
lution stages in TRACE use a single back-end, Qwen3-Coder-480B-A35B (Yang et al., 2025), with
matched capabilities across agents. Concretely, the Proposer, the Exploration Executor, and the
Multi-level Validator are instantiated on the same back-end, receive the same tool-use capability.

For a fair comparison, the only moving part is the LLM back-end; all prompts, decoding configs,
tool access, and budgets remain the same. Concretely, we evaluate four LLMs: Kimi K2 (Team
et al., 2025), DeepSeek-V3.1 (DeepSeek-AI et al., 2025), Gemini-2.5-Flash (Google DeepMind,
2025), and GPT-5-Mini (OpenAI, 2025). We report per-level and per-round accuracies together
with relative deltas from ROUND 0.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

5.2.1 LONGER REASONING, LOWER PASS@1 ON EVOLVED TASKS

To assess the generality of our evolutionary framework, we compare model performance before and
after evolution on two benchmarks: GAIA and AIME-2024. In both cases, models exhibit clear
performance degradation on the evolved tasks.

GAIA Table 1 illustrates the performance changes of different models on tasks from tasks from
the original GAIA dataset and two evolutionary stages. ‘Level’ refers to the difficulty labels of the
original Gaia dataset, while ‘Mixed’ denotes the overall pass@1 we measured after combining data
from two rounds of evolution. We did this because the tasks before and after evolution often differ
significantly, to the extent that they can even be treated as independent problems. Experimental
results indicate that, in most cases, different models experience a significant performance degrada-
tion on the new data, demonstrating the effectiveness of our evolution framework. For instance,
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Table 1: Model Evaluation Results Pass@1 on GAIA benchmark

Models Level 1 Level 2 Level 3 Total

Evo.←Orig. ∆ Evo.←Orig. ∆ Evo.←Orig. ∆ Evo.←Orig. ∆

ROUND 1

Deepseek-v3.1 0.200←0.509 (-0.309) 0.279←0.419 (-0.140) 0.200←0.231 (-0.031) 0.247←0.418 (-0.171)
Gemini-2.5-flash 0.200←0.471 (-0.271) 0.163←0.232 (-0.069) 0.000←0.115 (-0.115) 0.151←0.291 (-0.140)
KIMI-K2 0.250←0.377 (-0.127) 0.186←0.233 (-0.047) 0.100←0.077 (+0.023) 0.192←0.255 (-0.063)
GPT-5-Mini 0.250←0.566 (-0.316) 0.279←0.465 (-0.186) 0.200←0.192 (+0.008) 0.260←0.455 (-0.213)

ROUND 2

Deepseek-v3.1 0.200←0.509 (-0.309) 0.222←0.419 (-0.197) 0.000←0.231 (-0.231) 0.188←0.418 (-0.229)
Gemini-2.5-flash 0.040←0.471 (-0.431) 0.194←0.232 (-0.038) 0.125←0.115 (+0.010) 0.130←0.291 (-0.161)
KIMI-K2 0.080←0.377 (-0.297) 0.250←0.233 (+0.017) 0.125←0.077 (+0.048) 0.174←0.255 (-0.081)
GPT-5-Mini 0.160←0.566 (-0.406) 0.139←0.465 (-0.326) 0.375←0.192 (+0.183) 0.174←0.455 (-0.281)

MIXED

Deepseek-v3.1 0.200←0.509 (-0.309) 0.253←0.419 (-0.166) 0.117←0.231 (-0.231) 0.218←0.418 (-0.200)
Gemini-2.5-flash 0.111←0.471 (-0.360) 0.177←0.232 (-0.055) 0.056←0.115 (-0.059) 0.141←0.291 (-0.150)
KIMI-K2 0.156←0.377 (-0.221) 0.215←0.233 (-0.018) 0.111←0.077 (+0.034) 0.183←0.255 (-0.072)
GPT-5-Mini 0.200←0.566 (-0.366) 0.215←0.465 (-0.250) 0.278←0.192 (+0.086) 0.218←0.455 (-0.237)

Table 2: Token length results on the GAIA-TRACE benchmark.
Metric GPT-5-Mini KIMI-K2

Evo. ← Orig. ∆ Evo. ← Orig. ∆

Avg. Length (Round 1) 4898.2← 2864.5 (+2033.7) 6609.0← 3389.6 (+3219.4)
Avg. Length (Round 2) 6275.7← 2864.5 (+3411.2) 8454.7← 3389.6 (+5065.1)

the Gemini-2.5-flash model experienced a 43.1% drop in pass@1 accuracy for Level 1 problems
following the second evolutionary round.

As shown in Table 2, average answer length increases for GPT-5-mini and KIMI-K2 substantially as
the benchmark evolves, while Pass@1 concurrently degrades. This joint trend indicates that TRACE
is not merely introducing noise, but is making tasks genuinely harder in a way that forces models
into longer, more demanding reasoning trajectories.

AIME-2024 Table 3 presents the performance of three reasoning models(DeepSeek-R1-Distill-
Qwen-7B, DeepSeek-R1-Distill-Qwen-32B, Qwen3-235B-A22B) of different scales on the AIME-
2024 benchmark, as well as its second and fourth evolutionary benchmarks. Average Acc. refers
to the average accuracy over 10 test runs on the benchmark, while Average Length denotes the
average number of tokens in the chain-of-thought generated by the model. We can observe that after
four rounds of evolution, the model’s performance on the benchmark has significantly declined,
and the token count has noticeably increased. For instance, the Average Acc. of the Qwen3-235B-
A22B model decreased by 22.33%, and the average token count increased by over 8000. These
experimental data demonstrate the significant change in the difficulty of the benchmark questions.

5.2.2 FROM SEED TO SPARK.

In some instances, the evolved items produced by TRACE remain within the original capability
domain (e.g., web browsing with multimodal reading), where difficulty increases primarily through
denser evidence requirements, longer tool chains, or tighter formatting constraints. By contrast, the
exemplar showcased here manifests an inspired emergence: beginning with a seed that is essentially
a single-hop retrieval question, the evolution pipeline kindles a spark that reframes the problem into
a quantitative modeling task requiring math + coding + calculus, as is shown in Table 4. This is not
a superficial “one more hop” edit; it is a capability transposition—from locating a cited scalar to
constructing variables and constraints, deriving Vtotal(r), optimizing via calculus. Mechanistically,
this shift arises because the proposal and executor grant the agent substantial freedom, encouraging
exploration beyond the original capability domain. The final Trajectory Validator, with its multi-
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Table 3: Model Evaluation Results on AIME-2024 benchmark

Models DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Qwen-32B Qwen3-235B-A22B

Evo.←Orig. ∆ Evo.←Orig. ∆ Evo.←Orig. ∆

ROUND 2

Average Acc. 0.4933←0.5667 (-0.0734) 0.6233←0.7300 (-0.1067) 0.9033←0.9400 (-0.0367)
Average Length 14853.4←16890.5 (-2037.1) 10556.7←9912.8 (+643.2) 21808.9←19265.0 (+2543.9)

ROUND 4

Average Acc. 0.3933←0.5667 (-0.1734) 0.5333←0.7300 (-0.1967) 0.7167←0.9400 (-0.2233)
Average Length 21092.7←16890.5 (+4202.2) 15140.4←9912.8 (+5227.6) 27283.2←19265.0 (+8018.2)

Table 4: Inspiration Emerges: Original vs. Evolved Task by TRACE.
Aspect GAIA (Original, Round 0) Evolved by TRACE (Round 2 ex-

emplar)

Source / Prompt “What was the volume in m3 of
the fish bag that was calculated in
the University of Leicester paper
“Can Hiccup Supply Enough Fish
to Maintain a Dragon’s Diet?””

“What is the total weight in kilo-
grams of fish that Hiccup can trans-
port in a single operation, utiliz-
ing a full set of identical, open-
topped cylindrical containers opti-
mally designed and manufactured
from a total of 5.0 m² of metal
sheet, given that each filled con-
tainer must adhere to an 80 kg
lifting limit and all necessary fish
data (mass and volume) is to be
sourced from the paper "Can Hic-
cup Supply Enough Fish to Main-
tain a Dragon’s Diet?"”

Capability Domain Web browsing + factual retrieval Mathematical modeling + coding
+ web browsing

Trajectory Abstract Single-hop lookup → cite and ex-
tract a scalar value

Multi-step derivation: formalize
geometric constraints → derive ob-
jective Vtotal(r) → apply calculus
to optimize (find critical points) →
solve for (r⋆, h⋆) under constraints

Difficulty Change Low–moderate High

level replay-and-check design, enforces format and tool-call consistency and ensures reproducibility
and correctness, admitting only well-formed, validatable items.

Candidly, this seed-to-spark transformation exceeded our expectations. It demonstrates that TRACE
can induce benchmark-level difficulty gains not only by deepening existing reasoning chains, but by
rearticulating the task’s background and assessed capability domain through trajectory-grounded,
proposal-driven autonomous exploration and self-validation. More cases are shown in Figure 9-16
in our Appendix.

6 CONCLUSION

We introduced TRACE, a framework that simulates the workflow of human experts to autonomously
evolve benchmarks, effectively replacing labor-intensive manual curation. By leveraging bottle-
neck analysis to direct free-form exploration in real-world environments, TRACE enables agents
to structurally evolve saturated tasks into complex, trajectory-validated challenges. Empirically,
this approach systematically raises difficulty barriers on benchmarks like GAIA, revealing model
limitations often obscured by static tests. Ultimately, TRACE advocates a paradigm shift towards
sustainable, self-evolving evaluation, ensuring that benchmarks remain rigorous, reproducible, and
capable of keeping pace with the rapid acceleration of agentic capabilities.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Zhen Ye, Guang Chen, Zhiyong Huang, and
Jing Ma. Adammeme: Adaptively probe the reasoning capacity of multimodal large language
models on harmfulness. arXiv preprint arXiv:2507.01702, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma,
Ce Zhang, Jiaqi Chen, Xiyun Li, et al. Cognitive kernel-pro: A framework for deep research
agents and agent foundation models training. arXiv preprint arXiv:2508.00414, 2025.

GAIA Benchmark Team. GAIA Leaderboard. https://huggingface.co/spaces/
gaia-benchmark/leaderboard, 2025. Accessed: YYYY-MM-DD.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. arXiv
preprint arXiv:2508.07976, 2025.

Google DeepMind. Gemini 2.5 models. https://www.deepmind.com/gemini, 2025. Of-
ficial model family overview. Accessed: 2025-09-24.

11

https://arxiv.org/abs/2412.19437
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://www.deepmind.com/gemini


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dadi Guo, Jiayu Liu, Zhiyuan Fan, Zhitao He, Haoran Li, Yumeng Wang, and Yi R Fung. Mathe-
matical proof as a litmus test: Revealing failure modes of advanced large reasoning models. arXiv
preprint arXiv:2506.17114, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024.

Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong
Weng, Aili Chen, Shiqi Chen, et al. Synlogic: Synthesizing verifiable reasoning data at scale for
learning logical reasoning and beyond. arXiv preprint arXiv:2505.19641, 2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025. Model announcement. Accessed: 2025-09-24.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead,
Yu Su, and Ahmed Hassan Awadallah. Explorer: Scaling exploration-driven web trajectory
synthesis for multimodal web agents. In Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 6300–6323, Vienna, Austria, July 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. URL https://aclanthology.org/2025.
findings-acl.326/.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? arXiv preprint arXiv:2404.10952, 2024.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo

12

https://openai.com/index/introducing-gpt-5/
https://aclanthology.org/2025.findings-acl.326/
https://aclanthology.org/2025.findings-acl.326/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Trieu Trinh, Yuhuai Tony Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476–482, 2024. doi: 10.1038/s41586-023-06747-5.

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. Gta:
a benchmark for general tool agents. Advances in Neural Information Processing Systems, 37:
75749–75790, 2024a.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Bench-
mark self-evolving: A multi-agent framework for dynamic llm evaluation. arXiv preprint
arXiv:2402.11443, 2024b.

JiaRu Wu and Mingwei Liu. Autoevoeval: An automated framework for evolving close-ended llm
evaluation data. arXiv preprint arXiv:2506.23735, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023. URL https://webarena.dev.

13

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://webarena.dev


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 Algorithm for TRACE
Require: Proposer P , Executor E , Validators V = {V1, . . . , VL}, Tools T , Seed tasks Q0, Nmax,

max_retry
Ensure: Evolved benchmark Q∗

1: Q∗ ← ∅; C ← Q0

2: for iteration← 1 to Nmax do
3: q ← Select(C)
4: for retry ← 1 to max_retry do ▷ propose–execute–validate loop
5: ∆← ProposeMining(P, q, T ) ▷ evolution directions
6: (q′, s′)← TaskEvolve(E , q,∆, T ) ▷ tool-augmented transformation
7: ŝ← ExecuteTrajectory(q′, T ) ▷ run once to ensure solvability/correctness
8: if ¬AnswerCheck(ŝ, s′) then
9: continue

10: pass← true
11: for ℓ← 1 to L do
12: if ¬Vℓ(q

′, s′, logs, T ) then
13: pass← false; break ▷ multi-layer validator; break on first failure
14: if pass then
15: Q∗ ← Q∗ ∪ {q′}; break ▷ accept evolved task; stop retries after success
16: return Q∗

Table 5: Comparison of capability distribution ratios before and after TRACE evolution on GAIA.
Capability Category GAIA Original (%) Evolve Round 1 (%) Capability Totals (%)
Web browsing 43.9 42.2 27.1
Coding 19.1 20.5 24.7
Multi-modality 17.1 4.8 8.2
Diverse filetype reading 16.0 20.5 28.2
Integrative Capabilities 4.0 12.0 11.8

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we primarily use large language models (LLMs) to aid our writing, including polishing
the manuscript by checking grammar errors, and detecting the potential logical flaws.

B APPENDIX

In this section, we present the system prompts we set for different agents, as well as examples of
tasks before and after evolution.

B.1 EXTENDED EXPERIMENTAL RESULTS AND VISUALIZATIONS

Table 5 shows how TRACE evolution reshapes the capability mix of GAIA. Compared to the orig-
inal dataset, the evolved benchmark slightly down-weights pure web-browsing and multi-modality
questions, while increasing the share of coding and diverse filetype reading tasks, which typically
require more structured reasoning and robust tool use. The higher “Integrative Capabilities” mass
further reflects the emergence of more complex, mixed-capability items that do not fall cleanly into
a single category, indicating that TRACE places greater emphasis on multi-faceted agentic behavior
rather than simple lookup-style queries.

For both Round 1 and Round 2, we further applied a trajectory-agnostic solver as an auxiliary
validator to eliminate items that remained solvable under a unified ReAct-style solver without seeing
trajectories. This pruning removed 13/23/6 items from Levels 1/2/3, respectively, totaling 42 items
per round. The effect is most pronounced at LEVEL 2, reflecting that mid-tier items are more likely
to be filtered under this trajectory-agnostic check. The final post-filter sizes are 123 (from 165) for
Round 1 and 73 (from 115) for Round 2. These details are shown in Table 6.
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Figure 3: Capability-wise profiles explaining ranking shifts on TRACE-evolved GAIA. For
each model, radar plots show accuracy across capability categories, together with the distribution of
tasks in each category (outer pink region), on Round 1 (top) and Round 2 (bottom). TRACE evo-
lution re-weights the benchmark distribution, while simultaneously demanding longer, tool-heavy
trajectories, which in turn exposes different capability “fingerprints” across models and accounts for
changes in their relative ranking.
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Table 6: Item counts before/after applying the trajectory-agnostic solver as an auxiliary validator.
Each cell shows Before→ After (−Removed).

Round Level 1 Level 2 Level 3 Total

Round 1 40 → 20 (−20) 64 → 43 (−21) 15 → 10 (−5) 119 → 73 (−46)
Round 2 45 → 25 (−20) 57 → 36 (−23) 11 → 8 (−5) 115 → 69 (−42)

B.2 PROMPTS IN TRACE FRAMEWORK

B.2.1 THE SYSTEM PROMPT OF EVOLUTION PROPOSER AGENT

4 shows our evolution proposal agent’s system prompt. This prompt clearly defines the agent’s tasks
and workflow, and provides detailed, categorized hints regarding the agent’s bottlenecks. Guided
by this prompt, the agent first analyzes the original task to identify its bottlenecks. Subsequently, it
conducts a preliminary exploration of the problem, seeking opportunities to increase its difficulty.
Finally, it proposes several feasible proposals. We provided some bottleneck demonstrations for the
agent’s reference, as shown in Figure 5.

B.2.2 THE SYSTEM PROMPT OF EXPLORATION EXECUTOR AGENT

The system prompt of our Exploration Executor agent is shown in Figure 6. It outlines a highly
structured and prescriptive framework designed to guide an advanced AI agent in its mission of task
evolution. The agent’s primary objective is to take an existing intelligent agent task, and evolve it
into a more complex and difficult version based on improvement proposals provided by the Evolu-
tion Proposer Agent. This evolution is underpinned by two core principles: the first one is divergent
evolution, which encourages exploring intermediate states to identify opportunities for increased
difficulty. Another one is inverse problem creation, where the agent first executes and verifies a
complex solution path, then defines the problem that fits this proven trajectory. The agent must
deliver its output in a meticulously specified Python dictionary format, with the recorded solution
trace being a critical historical record compiled directly from the successful code and observation
pairs of its exploration, ensuring the problem’s verifiable solvability. This comprehensive prompt
thus serves as a meta-programming guide, enabling the AI to systematically generate challenging,
well-defined, and fully verifiable tasks.

B.2.3 THE PROMPT OF TRACE VALIDATORS

Our pipeline employs multi-level validators. Here, we introduce the prompts for two types of val-
idators. The first is a fine-grained validator, which individually checks whether the actual output
of each code or tool call within the solution trace provided by the evolution executor is consistent
with its claimed observation; its prompt is shown in Figure 7. The second type is an overall val-
idator, whose purpose is to check the logic of the entire problem-solving process to determine if
the problem’s result is easily verifiable (e.g., it shouldn’t be an open-ended question), as well as the
problem’s solvability (e.g., whether the problem context is complete, the answer is unique, etc.), and
the correctness of the solution process. The prompt of overall validator is shown in Figure 8.

B.3 TASK EVOLUTION DEMONSTRATIONS

In this subsection, we present a comparison between pre-evolution and post-evolution problems to
demonstrate the effectiveness of our proposed framework. Figure 9-16 show 8 real-world cases of
evolution. Specifically, Figures 9, 10, 13, and 14 demonstrate tasks themed around tool invocation
and searching, while Figures 11, 12, 15, and 16 present tasks focused on logical reasoning and
program writing. For each case, we provide an analysis within the figures, detailing the differences
between the two tasks and explaining why the evolved task is more difficult.
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Evolution Proposer

Part 1: Your Mission & Role
You are a powerful intelligent agent task designer. Your job is to design modifications that
meaningfully increase the cognitive and operational difficulty of existing agent tasks by ex-
ploiting real bottlenecks in agent capabilities. The ideas you provide will be used to increase
the difficulty of a real-world agent task. These agents possess strong reasoning capabilities,
are able to write and execute code, and can use exactly the same tools as you do. Therefore,
you must come up with creative and diverse ideas to increase the difficulty of the task. Your
proposals must:
** Target verifiable, real-world data sources (no fabricated data; abstract games/logic-only
tasks are the only exception, and must be programmatically verifiable).
** Introduce multiple, distinct bottlenecks that measurably raise difficulty, not just extra steps.
** Produce tasks with unique, deterministic solutions that can be independently verified.
To do so, you have been given access to a list of tools: these tools are basically Python func-
tions which you can call with code. To solve the task, you must plan forward to proceed in a
series of steps, in a cycle of Thought, Code, and Observation phases.
Part 2: Your Working Process: The Thought-Code-Observation Cycle
Your entire process is a continuous, step-by-step cycle of **Thought, Code, and Observa-
tion.** You MUST follow this structure for every action you take...
Part 3: What Can Be Bottlenecks And How to Create Them
{Bottleneck Demonstrations}
Part 4: Guiding Principles
1. Embrace Creativity and Complexity...
2. Innovate Beyond the Scenario...
3. Develop Synergistic and Diverse Ideas...
4. Design for Verifiable Solutions...
5. Leverage Real-World, Complex Data Sources...
6. Freedom to Traverse the Open Web...
7. Evidence Handling and Reproducibility...
Here are a few simple examples using notional tools, and your task should be more complex:
{Workflow Demonstrations}
Above example were using notional tools that might not exist for you. On top of performing
computations in the Python code snippets that you create, you only have access to these tools,
behaving like regular python functions:
{%- for tool in tools.values() %}
- {{ tool.to_tool_calling_prompt() }}
{%- endfor %}

Figure 4: The system prompt of our Evolution Proposer agent.
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Bottleneck Demonstrations

A. Multiple-Source Conflict and Reconciliation (Breadth)
- Positive (Conflicts): Require collecting and comparing information from at least three inde-
pendent, credible sources that naturally disagree in numbers, definitions, or time ranges.
- Positive (Convergent Corroboration): Require gathering multiple sources that each provide
partial, non-identical evidence so that only one candidate remains after intersecting constraints.
- Negative: Merely collecting multiple sources that restate the same fact or number without
adding new constraints or exposing disagreements. Avoid prompts where additional sources
only echo one uncontested answer and do not help narrow the candidate set or force reconcil-
iation.
B. Long Evidence Chains with Structure (Depth)
- Positive: Require a chain of at least six steps where later steps depend on earlier findings.
- Negative: Tasks solvable via straightforward, procedural retrieval like “search → open top
result → copy value.”
C. Multi-Modal, Complex Media Comprehension
- Positive: Combine heterogeneous media that require different extraction strategies—scanned
PDFs with non-selectable text, tables with merged headers, figures with tiny tick labels, map-
s/plots requiring numeric reading, and videos where a chart must be captured at specific
timestamps. Mix machine-readable files (CSV/JSON/API) with non-machine-readable arti-
facts (images, scanned documents) so that visual decoding or OCR is unavoidable.
- Negative: Relying on a single clean HTML page or a simple, fully searchable PDF with
neatly structured text that can be solved via copy-paste without visual parsing or layout rea-
soning.
D. Domain Transfer to Specialized Contexts
- Positive: Migrate a familiar capability into a niche, expert-only setting where surface skills
no longer suffice. The goal is to preserve the underlying task type while drastically increasing
domain complexity and data difficulty.
- Negative: Superficial re-skinning that keeps the data simple (e.g., switching to another
modern font or a different but equally clean dataset). Tasks that can still be solved with
generic OCR or shallow keyword matching without domain-specific adaptation do not con-
stitute meaningful domain transfer.
E. Toolchain Planning and Dependency
- Positive: At least three distinct tools in a dependent chain (e.g., web search → file down-
loader/OCR → parser/vision model → code interpreter), where the output of one is the input
of the next, including at least one validation/backtracking step.
- Negative: One-shot use of a single tool or parallel, non-dependent calls whose results don’t
constrain each other.
F. Abstract Logic, Board/Game, and Modeling Tasks
- Positive: Begin by diagnosing the primary difficulty nucleus of the task (e.g., search branch-
ing factor, constraint density, horizon length, state observability, symmetry/degeneracy, or
proof depth).
- Negative: Superficial changes that do not touch the core difficulty (e.g., renaming pieces,
small cosmetic rule tweaks, or adding a single extra variable/constraint that leaves search
trivial). Avoid expansions that only increase input length without increasing constraint inter-
actions, or that introduce ambiguity making solutions non-unique or unverifiable.

Figure 5: The bottleneck demonstrations in the system prompt of our Evolution Proposer agent.
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Exploration Executor

Part 1: Your Mission & Role
You are an advanced AI agent specializing in "Problem Evolution". Your mission is to take an
existing intelligent agent task and evolve it into a more complex and difficult version.
You will be provided with the specific description of this task. Additionally, you may also be
given materials such as the general solution steps for the task, the final answer, and the tools
that need to be used. More importantly, you will also receive some improvement ideas, and
you are required to increase the difficulty of the problem based on the guidance of these ideas.
**Your Core Principles of "Problem Evolution":**
1. **Divergent Evolution:**
At each step, if solution steps are provided, you may simulate or refer to them to explore the
intermediate states in the original problem-solving process. If no solution steps are provided,
you may conduct exploration according to your own ideas. If you believe that the difficulty
of the problem can be increased based on one of the ideas from the "improvement ideas"
during the exploration at this step, then carry out specific exploration to determine the detailed
implementation of this idea.
2. **Inverse Problem Creation:**
After you have implemented some of the improvement ideas (it is not necessary to implement
all of them, as some ideas may not be feasible to put into practice), you will create a more
difficult task in reverse based on the new information you have acquired.
Part 2: Your Working Process: The Thought-Code-Observation Cycle
Your entire process is a continuous, step-by-step cycle of **Thought, Code, and Observa-
tion.** You MUST follow this structure for every action you take...
Part 3: Guiding Principles of Evolution
**1. The Golden Rule of Evolution: The Burden of Discovery (CRITICAL PRINCIPLE)**
Your primary goal is to maximize difficulty by forcing the solver to perform two distinct,
non-negotiable actions: **1) Discovering all necessary information** and **2) Deducing the
entire solution path.** Complexity must arise from the solver’s own exploration and problem
decomposition, not from following a recipe you provide.
**2. Principle of Real-World Grounding & Authenticity (CRITICAL PRINCIPLE)** The
new task must be a meaningful evolution of the original, grounded in verifiable reality.
**3. Principle of Logical Integrity and Solvability (CRITICAL PRINCIPLE)** You must
ensure the evolved task is a **well-defined, solvable puzzle**. It must be complete, clear
(unambiguous), and consistent (no contradictions). Your goal is to create a challenging but
fair and solvable task.
**4. Uniqueness, Determinism, and Verifiability of the Answer (CRITICAL PRINCIPLE)**
Your primary directive is to create problems where the final answer is **singular, determinis-
tic, and verifiable via a simple string match (‘==‘)**.
Here are a few simple examples using notional tools, and your task should be more complex:
{Workflow Demonstrations}
Above example were using notional tools that might not exist for you. On top of performing
computations in the Python code snippets that you create, you only have access to these tools,
behaving like regular python functions:
{%- for tool in tools.values() %}
- {{ tool.to_tool_calling_prompt() }}
{%- endfor %}

Figure 6: The system prompt of our Exploration Executor agent.
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Fine-grained Validator

You are a meticulous AI Output Verifier. Your mission is to determine if an agent’s claimed
"Observation" is informationally consistent with the "Actual Output" from its code execution.
This is NOT a test for exact string equality. It is a test for **informational fidelity**. The
core question is: **"Does the Actual Output contain sufficient evidence to justify the Obser-
vation?"**
Part 1: The Core Principle
* **Judgement TRUE (Consistent):** The Observation is a correct and logical conclusion that
can be derived from the Actual Output. The Actual Output factually supports every piece of
information claimed in the Observation.
* **Judgement FALSE (Inconsistent):** The Observation makes a claim that is contradicted
by, or cannot be verified from, the Actual Output.
Part 2: Rules of Semantic Equivalence
**A. PERMITTED VARIATIONS (Judgement: TRUE):**
1. **Whitespace and Formatting:** Differences are irrelevant.
2. **Data Structure Order:** Order of keys in JSON or items in unordered lists does not
matter.
3. **Floating-Point Precision:** Minor differences are acceptable (e.g., ‘0.333‘ vs.
‘0.333333‘).
4. **Extraneous Information:** The Actual Output can contain more details; the Observation
can be a subset or summary.
5. **Natural Language Equivalence:** Different phrasing with the same meaning is accept-
able.
**B. FATAL FLAWS (Judgement: FALSE):**
1. **Factual Contradiction:** Conflicting facts (e.g., Actual: ‘"42"‘, Observation: ‘"43"‘).
2. **Missing Information:** Observation claims something not present in the Actual Output.
3. **Type Mismatch:** Actual Output is an error, but Observation claims success.
Part 3: Output Format
You MUST provide your response in a JSON object format with exactly two keys: "Final
Judgement" and "Reason".
**Template:**
{ "Final Judgement": "TRUE/FALSE", "Reason": "Your reasoning here." }
Part 4: Your Task
Now, analyze the following pair of outputs and provide your response in the specified JSON
format.

Figure 7: The prompt of our fine-grained validator.
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Overall Validator

Part 1: Your Mission & Role
You are a strict agent task reviewer. Your mission is to judge two things: the validity of a
new task adapted from the original task, and whether the new task has increased in difficulty
compared to the original one.
First, you will be provided with a description of the original task. Additionally, you may
also be given reference information such as the original task’s solution steps, answer, required
tools, and attached file materials.
Subsequently, you will receive the new task adapted from the original task, along with all rele-
vant information including its description, solution steps, answer, required tools, and attached
file materials.
Part 2: Your Working Process: The Thought-Code-Observation Cycle
Your entire process is a continuous, step-by-step cycle of **Thought, Code, and Observa-
tion.** You MUST follow this structure for every action you take...
Part 3: The Core Verification Conditions
The conditions for the new task to pass verification are as described in (1) to (5) below. A task
must satisfy ALL five conditions to pass.
**(1) Check the Verifiability and Format of the New Task’s Answer** * **Answer Verifiabil-
ity:** The question should have a verifiable answer. It must not rely on subjective qualifiers
or ask for open-ended explanations.
**(2) Verify the Solution Steps of the New Task**
### 1. Step-by-Step Verification For each step in the ‘solution trace‘, you must perform the
following checks:
* **Logical Continuity (Thought vs. Previous Observation):** ...
* **Thought-Code Implementation:** ...
* **Critical Rule of Evidence: Prohibit Factual Simulation:** ...
### 2. Holistic Final Review After verifying all individual steps, you must perform a final,
holistic review of the entire logical chain: * **Problem Solved?:** Does the final conclusion
or output actually and accurately solve the new task?
**(3) Check the Completeness of the Question and the Uniqueness of Answer** When you
have finished reviewing this new task and its solution trace, you need to make the following
judgments: * **Completeness of the Question: ** ...
* **Uniqueness of the Answer: ** ...
**(4) Verify the Task’s Complexity Improvement** The new task must be demonstrably and
significantly more complex than the original in at least one of the following, with explicit
evidence in the solution trace that the main bottleneck has been made harder:
* **Solution Path Complexity (Depth & Coupling):**...
* **Problem Formulation Complexity (Discovery Burden):**...
* **Domain Transfer Hardening (Same core skill, harder domain):**...
* **Toolchain Planning & Dependency:**...
* **Abstract Logic / Board / Modeling Hardness:**...
Pass Criteria for (4): You must identify (a) the original bottleneck, (b) the new bottleneck,
and (c) concrete evidence from the solution trace (e.g., added modalities, reconciliation steps,
hashes/metadata, domain-specific references) showing a net increase in difficulty along at least
one axis above. If these are not clearly demonstrated, mark as FAIL.
Here are a few simple examples using notional tools, and your task should be more complex:
{Workflow Demonstrations}
Above example were using notional tools that might not exist for you. On top of performing
computations in the Python code snippets that you create, you only have access to these tools,
behaving like regular python functions:
{%- for tool in tools.values() %}
- {{ tool.to_tool_calling_prompt() }}
{%- endfor %}

Figure 8: The system prompt of our Overall Validator agent.
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Case 1

Original Task:
If Eliud Kipchoge could maintain his record-making marathon pace indefinitely, how many
thousand hours would it take him to run the distance between the Earth and the Moon its
closest approach? Please use the minimum perigee value on the Wikipedia page for the Moon
when carrying out your calculation. Round your result to the nearest 1000 hours and do not
use any comma separators if necessary.
Evolved Task:
Calculate the time it would take to run the distance of the Moon’s minimum perigee, once
using the average pace from Eliud Kipchoge’s 2018 marathon world record, and again using
the average pace from his 2022 marathon world record. The minimum perigee distance and
both world record times should be sourced from Wikipedia. What is the absolute difference
between these two calculated travel times? Provide your answer in hours, rounded to the
nearest integer. The answer should be a single numerical string.
Analysis:
The evolved task is harder because it requires retrieving and cross-checking more Wikipedia
data (the Moon’s minimum perigee plus two separate marathon records from 2018 and 2022),
deriving two average paces, performing two long-distance time computations with consistent
unit conversions, and then taking an absolute difference, all while adhering to stricter out-
put formatting and rounding to the nearest hour. This multiplies the number of chained steps,
increases opportunities for parsing and calculation errors, and demands tighter procedural con-
trol than the original task, which needs only a single pace, a single computation, and a coarser
rounding instruction.

Figure 9: Task evolution case 1.

Case 2

Original Task:
How many studio albums were published by Mercedes Sosa between 2000 and 2009 (in-
cluded)? You can use the latest 2022 version of english wikipedia.
Evolved Task:
Calculate the number of full years that passed between Mercedes Sosa’s return to Argentina
after her exile and the year she posthumously won her last Latin Grammy Award for ’Best
Folk Album’. Your answer must be a single integer.
Analysis:
The evolved task is harder because it requires integrating biographical chronology and awards
data from multiple Wikipedia pages, disambiguating the precise date of Mercedes Sosa’s return
from exile (which can be described variably in sources) and identifying the exact year of her
posthumous “Best Folk Album” Latin Grammy, then interpreting “full years that passed” to
handle date boundaries correctly before performing the subtraction. By contrast, the original
task is a constrained filtering/counting problem over a discography. It locate studio albums and
count those with years between 2000 and 2009 inclusive, which entailing fewer sources, less
ambiguity (once “studio” is applied), and a single straightforward tally rather than multi-step
temporal reasoning.

Figure 10: Task evolution case 2.
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Case 3

Original Task:
Here’s a fun riddle that I think you’ll enjoy.
You have been selected to play the final round of the hit new game show "Pick That Ping-
Pong". In this round, you will be competing for a large cash prize. Your job will be to pick one
of several different numbered ping-pong balls, and then the game will commence. The host
describes how the game works.
A device consisting of a winding clear ramp and a series of pistons controls the outcome of
the game. The ramp feeds balls onto a platform. The platform has room for three ping-pong
balls at a time. The three balls on the platform are each aligned with one of three pistons. At
each stage of the game, one of the three pistons will randomly fire, ejecting the ball it strikes.
If the piston ejects the ball in the first position on the platform the balls in the second and third
position on the platform each advance one space, and the next ball on the ramp advances to the
third position. If the piston ejects the ball in the second position, the ball in the first position
is released and rolls away, the ball in the third position advances two spaces to occupy the first
position, and the next two balls on the ramp advance to occupy the second and third positions
on the platform. If the piston ejects the ball in the third position, the ball in the first position is
released and rolls away, the ball in the second position advances one space to occupy the first
position, and the next two balls on the ramp advance to occupy the second and third positions
on the platform.
The ramp begins with 100 numbered ping-pong balls, arranged in ascending order from 1 to
100. The host activates the machine and the first three balls, numbered 1, 2, and 3, advance to
the platform. Before the random firing of the pistons begins, you are asked which of the 100
balls you would like to pick. If your pick is ejected by one of the pistons, you win the grand
prize, $10,000.
Which ball should you choose to maximize your odds of winning the big prize? Please provide
your answer as the number of the ball selected.
Evolved Task:
You have been selected for the final round of ’Pick That Ping-Pong’. The game’s rules are as
follows:
A machine controls the game. A ramp feeds numbered ping-pong balls onto a platform that
holds three balls at a time, in positions 1, 2, and 3. Three pistons are aligned with these
positions.
- If the piston at position 1 fires, the ball is ejected. The ball from position 2 moves to 1,
position 3 moves to 2, and a new ball from the ramp takes position 3. - If the piston at position
2 fires, the ball is ejected. The ball at position 1 is discarded. The ball from position 3 moves
to 1, and two new balls from the ramp take positions 2 and 3. - If the piston at position 3 fires,
the ball is ejected. The ball at position 1 is discarded. The ball from position 2 moves to 1, and
two new balls from the ramp take positions 2 and 3.
Each piston has an equal 1/3 probability of firing at each stage.
This time, the ramp is loaded with 100 balls numbered according to the Fibonacci sequence,
starting with F(1)=1, F(2)=1, F(3)=2, and so on. The first three balls (1, 1, 2) are already on
the platform.
Your goal is to maximize your expected score. The score you receive is equal to the number
on the ball if it’s ejected. You must choose one of the first three balls on the platform. Which
ball number should you choose? Provide your answer as a single integer.
Analysis:
The evolved task is harder than the original because it replaces a pure hit-probability maxi-
mization with an expected-value optimization under heterogeneous rewards. In the evolved
version, starting from the specific state [1, 1, 2], you must compute, for each of the three can-
didate balls, its probability of being ejected (not merely discarded) and then weight that by
its Fibonacci value, which breaks the symmetry that simplified the first problem. The dupli-
cate “1”s introduce labeling subtlety, the “2” offers higher payoff but different positional risk,
and the loss of uniformity means expected scores depend sensitively on the detailed transition
structure. This added value–probability trade-off and the need for finer conditional expecta-
tions make the evolved task more intricate.

Figure 11: Task evolution case 3.
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Case 4

Original Task:
My family reunion is this week, and I was assigned the mashed potatoes to bring. The atten-
dees include my married mother and father, my twin brother and his family, my aunt and her
family, my grandma and her brother, her brother’s daughter, and his daughter’s family. All
the adults but me have been married, and no one is divorced or remarried, but my grandpa
and my grandma’s sister-in-law passed away last year. All living spouses are attending. My
brother has two children that are still kids, my aunt has one six-year-old, and my grandma’s
brother’s daughter has three kids under 12. I figure each adult will eat about 1.5 potatoes of
mashed potatoes and each kid will eat about 1/2 a potato of mashed potatoes, except my sec-
ond cousins don’t eat carbs. The average potato is about half a pound, and potatoes are sold in
5-pound bags. How many whole bags of potatoes do I need? Just give the number.
Evolved Task:
I’m making mashed potatoes for a family reunion. The recipe requires 1 stick of butter for
every 8 potatoes. My family includes my married mother and father, my twin brother and
his family (wife, two kids), my aunt and her family (husband, one child), my grandma, her
brother, his daughter, and his daughter’s family (husband, three kids). All living spouses are
attending. However, my aunt’s family decided not to come since the outdoor picnic forecast
calls for rain. Additionally, my great-uncle’s daughter and her entire family are on a strict keto
diet and will not be eating any potatoes.
For those eating, a standard adult portion is 1.5 potatoes and a standard kid portion is 0.5
potatoes. However, my twin brother is bulking and will eat a double portion, while my mother
is watching her carbs and will only eat a half portion.
An average potato weighs half a pound. Potatoes are sold in 5-pound bags costing $3.99 each.
Butter is sold in individual sticks costing $1.25 each. You must buy whole bags of potatoes
and whole sticks of butter. What is the total cost for the potatoes and butter I need to buy?
Provide the answer as a string in the format ’$XX.XX’.
Analysis:
The evolved task is harder because it requires filtering who actually attends and who eats,
accounting for dietary exclusions, handling variable portions (a double portion for your twin
brother and a half portion for your mother), and managing two separate items—potatoes and
butter—with different pricing and integer rounding constraints, all while converting from por-
tions to potato counts to weight to bags and then calculating butter sticks and total cost;
the original task only involves counting adults and kids with uniform portions, converting
to weight, and rounding up whole potato bags, making it much simpler in scope and steps.

Figure 12: Task evolution case 4.
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Case 5

Original Task:
In the year 2022, and before December, what does "R" stand for in the three core policies of
the type of content that was violated in the public logs on the Legume Wikipedia page?
Evolved Task:
Find the user who performed the original page move for the Wikipedia article ’Legume’. What
is the title of the article associated with that user’s first-ever edit on Wikipedia? The answer
should be the article title, correctly capitalized.
Analysis:
Both tasks require digging through Wikipedia, but they emphasize different skills and sources:
the original task hinges on interpreting the Legume page’s public logs to identify the specific
content violation and then mapping that violation to Wikipedia’s “three core policies” as they
were defined before December 2022, isolating what the “R” stands for; this involves policy
literacy, time-bounded interpretation, and resolving potential ambiguity in log descriptions
and policy acronyms. The evolved task is a chain of archival lookups: locate the original page
move for “Legume,” identify the user who performed it, navigate to that user’s contribution
history, and extract the title of the article from their first-ever edit with correct capitalization;
this stresses precise provenance tracing, familiarity with page histories and user logs, and
attention to naming conventions rather than policy interpretation.

Figure 13: Task evolution case 5.

Case 6

Original Task:
What writer is quoted by Merriam-Webster for the Word of the Day from June 27, 2022?
Evolved Task:
Visit the Merriam-Webster ’Word of the Day’ page for June 27, 2022. According to the et-
ymology provided in the ’Did You Know?’ section, the word ’jingoism’ originated in the
context of a specific 19th-century war. Identify the full name of the primary treaty that offi-
cially and finally concluded this war. Your answer should be the name of the treaty.
Analysis:
Both tasks start from the same Merriam-Webster Word of the Day page for June 27, 2022,
but they emphasize different skills: the original task is a direct fact lookup to identify which
writer is quoted on that page—requiring accurate navigation and citation capture from a sin-
gle source. The evolved task chains that page to external historical research: use the “Did
You Know?” etymology to identify the specific 19th-century war linked to “jingoism,” then
determine which treaty officially and finally concluded that war, taking care to distinguish pre-
liminary accords from the definitive settlement and to provide the treaty’s full formal name.
This adds steps of context extraction, cross-referencing, and precision in historical nomencla-
ture beyond the initial page.

Figure 14: Task evolution case 6.
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Case 7

Original Task:
Given this table defining * on the set S = a, b, c, d, e
|*|a|b|c|d|e|
|—|—|—|—|—|—|
|a|a|b|c|b|d|
|b|b|c|a|e|c|
|c|c|a|b|b|a|
|d|b|e|b|e|d|
|e|d|b|a|d|c|
provide the subset of S involved in any possible counter-examples that prove * is not commu-
tative. Provide your answer as a comma separated list of the elements in the set in alphabetical
order.
Evolved Task:
Consider a binary operation ’*’ defined on the set S = 0, 1, 2, 3, 4, 5, 6, 7. The operation is
defined by the formula: x * y = (3*x + 5*y) mod 8. Determine the total number of ordered
triplets (a, b, c), where a, b, and c are elements of S, for which the associative property fails,
i.e., (a * b) * c is not equal to a * (b * c). Provide the final answer as a string containing a
single integer.
Analysis:
Both tasks concern algebraic properties of binary operations but require different approaches:
the original task is a table-based analysis on a five-element set to find any pair witnessing non-
commutativity and then report the subset of elements involved—this is about reading a Cayley
table, detecting asymmetries xy ̸= yx, and aggregating the implicated symbols in sorted
order. The evolved task shifts to an eight-element modular operation defined by xy := (3x+
5y) mod 8 and asks for a global count of associativity failures over all ordered triplets, which
entails formulating and checking the associativity condition either by full enumeration of 83
cases or by deriving algebraic criteria for when (ab)c ̸= a (b ∗ c) holds; it emphasizes modular
arithmetic, structural properties of linear-combination operations on Z8, and programmatic
verification to ensure complete and accurate counting.

Figure 15: Task evolution case 7.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Case 8

Original Task:
You are a telecommunications engineer who wants to build cell phone towers on a stretch of
road. In the reference file is a layout of the road and nearby houses. Each dash, "-", is a marker
indicating a mile. Each capital H indicates a house located next to a mile marker, appearing
above or below the stretch of road. Each cell phone tower can cover houses located next to the
road within a 4-mile radius. Find the minimum number of cell phone towers needed to cover
all houses next to the road. Your answer should be a positive numerical integer value.
Evolved Task:
You are a telecommunications engineer tasked with deploying cell towers on a 2D grid defined
in the provided Excel file, ’deployment_grid.xlsx’. Your goal is to find the minimum total
deployment cost to provide coverage to all houses.
Grid Rules: - The grid is defined in the ’DeploymentGrid’ sheet of the Excel file. - Cell values
represent the content of the grid: - ’H’: A house that needs coverage. Towers cannot be built
on these cells. - ’X’: A no-build zone. Towers cannot be built on these cells. - ’G’: Green
terrain (Terrain Cost = 1) - ’Y’: Yellow terrain (Terrain Cost = 3) - ’B’: Blue terrain (Terrain
Cost = 5)
Tower Types & Costs: - You have two types of towers available: 1. ’Pico Tower’: Base Cost
= 10, Coverage Radius = 2 2. ’Macro Tower’: Base Cost = 30, Coverage Radius = 4 - The
’Total Deployment Cost’ for a single tower is its ’Base Cost’ + the ’Terrain Cost’ of the cell it
is placed on. - The total cost for the project is the sum of costs for all deployed towers.
Coverage Rules: - A tower at ‘(r1, c1)‘ covers a house at ‘(r2, c2)‘ if the Manhattan distance
between them is less than or equal to the tower’s radius. - Manhattan Distance = ‘|r1 - r2| + |c1
- c2|‘.
Your task is to determine the absolute minimum total deployment cost to ensure every house
on the grid is covered by at least one tower. The final answer should be a single integer
representing this minimum cost.
Analysis:
The evolved task is substantially harder than the original: the original is a one-dimensional
placement problem along a road with identical towers and a uniform 4-mile radius, reducible
to a classic interval covering problem solvable in linear time by a simple greedy strategy that
repeatedly places a tower as far right as possible within 4 miles of the leftmost uncovered
house; by contrast, the evolved task operates on a two-dimensional Excel-defined grid with
forbidden cells (H, X), buildable terrains (G/Y/B) that impart different terrain costs, and two
tower types (Pico radius 2 with base cost 10, Macro radius 4 with base cost 30), where each
tower’s deployment cost is its base cost plus the terrain cost and coverage uses Manhattan
distance, making the objective of minimizing total cost while covering all houses a weighted
set cover/facility location problem: each buildable cell paired with a tower type is a candidate
facility with a specific cost and coverage set, and we must select a minimum-cost subset cover-
ing every H, which is NP-hard in general and thus best modeled via an integer linear program
with binary decision variables and coverage constraints or approximated with heuristics such
as cost-effectiveness greedy or Lagrangian methods, all preceded by parsing the spreadsheet
and precomputing coverage sets.

Figure 16: Task evolution case 8.
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Case 9

Original Task:
Jen enters a lottery by picking 4 distinct numbers from S = {1, 2, 3, · · · , 9, 10}. 4 numbers are
randomly chosen from S. She wins a prize if at least two of her numbers were 2 of the randomly
chosen numbers, and wins the grand prize if all four of her numbers were the randomly chosen
numbers. The probability of her winning the grand prize given that she won a prize is m

n where
m and n are relatively prime positive integers. Find m+ n.
Evolved Task:
Jen picks a set J of 4 distinct numbers from S = {1, 2, . . . , 10}. Tom then picks a set T of 4
distinct numbers from S, chosen uniformly at random from all such sets that have exactly one
number in common with J (i.e., |J ∩ T | = 1). A lottery then randomly draws a set L of 4
distinct numbers from S.
A ’J-only Prize’ is awarded if the lottery set L intersects Jen’s set J but is completely disjoint
from Tom’s set T . The probability of this prize being awarded can be expressed as a fraction
m
n , where m and n are relatively prime positive integers. Find m+ n.
Analysis:
The adapted problem is significantly more difficult and conceptually deeper than the original.
The original problem is a standard exercise in combinations and conditional probability. The
solution path is straightforward: one simply needs to calculate the number of outcomes for the
winning event ("at least two matches") and for the grand prize event ("four matches"), then
find their ratio. It primarily tests a student’s fluency with combinatorial formulas. The adapted
problem, however, introduces a higher level of complexity by adding a third set, T, with a
specific relationship to J (|J ∩ T | = 1). This transforms the problem from a simple counting
exercise into one requiring sophisticated logical and set-theoretical reasoning. The key to
solving it is not direct calculation, but the conceptual leap of partitioning the universal set S
into four distinct subsets based on J and T. Once this structure is understood, the calculation
becomes surprisingly simple. In essence, the difficulty shifts from mechanical computation to
conceptual abstraction. The adapted problem is harder because it demands a deeper insight
into the underlying structure of the sets involved, making it a more elegant and challenging
mathematical puzzle.

Figure 17: Task evolution case 9.
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Case 10

Original Task:
Alice and Bob play the following game. A stack of n tokens lies before them. The players
take turns with Alice going first. On each turn, the player removes either 1 token or 4 tokens
from the stack. Whoever removes the last token wins. Find the number of positive integers n
less than or equal to 2024 for which there exists a strategy for Bob that guarantees that Bob
will win the game regardless of Alice’s play.
Evolved Task:
An impartial game is played with two stacks of tokens, with sizes n and m. Two players take
turns making moves. A move consists of removing k tokens from *each* stack. The set of
allowed values for k depends on the current minimum stack size, p = min(n,m): - If p < 20,
the allowed moves are k ∈ {1, 2, 4}. - If p ≥ 20, the allowed moves are k ∈ {1, 4}.
A move is only possible if both stacks have at least k tokens. The player who makes the last
possible move wins. A starting position (n,m) is a ’losing position’ if the second player has a
guaranteed winning strategy.
Find the total number of losing positions (n,m) such that 1 ≤ n ≤ 100 and 1 ≤ m ≤ 100.
Analysis:
The leap in difficulty from the original to the adapted problem is enormous. The original is
a standard one-dimensional game theory exercise where the solution hinges on discovering a
simple, repeating pattern in the losing positions (P-positions). It primarily tests pattern recog-
nition.
The adapted problem, while appearing to be a more complex two-dimensional game, is a
sophisticated test of abstract reasoning. The critical insight, which is far from obvious, is
that the game’s two-dimensional state (n, m) collapses. The winning or losing status of any
position is determined solely by the minimum of the two stacks, p = min(n, m), and which set
of rules applies at that value of p.
This reduces the problem to a one-dimensional analysis again, but one that is masked by a
misleading setup and complicated by conditional rules. The difficulty is therefore elevated
from simple pattern-finding to a much higher level of model simplification and abstraction,
followed by a significantly more complex counting phase. It’s a shift from solving a problem
to figuring out what the problem really is.

Figure 18: Task evolution case 10.
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