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Abstract
The chain of thought is fundamental in Trans-
formers, which is to perform step-by-step reason-
ing. Besides what intermediate steps work, the
order of these steps critically affects the difficulty
of the reasoning. This study addresses a novel
task of unraveling chain of thought—reordering
decoder input tokens to a learning-friendly se-
quence for Transformers to learn arithmetic tasks.
The proposed pipeline first trains a Transformer
on a mixture of target sequences arranged in dif-
ferent orders and then identifies benign orders
as those with fast loss drops in the early stage.
As the search space grows factorially with se-
quence length, we propose a two-stage hierarchi-
cal approach for inter- and intra-block reordering.
Experiments on four order-sensitive arithmetic
tasks show that our method identifies a learning-
friendly order out of a few billion candidates. No-
tably, on the multiplication task, it recovered the
reverse-digit order reported in prior studies.

1. Introduction
Autoregressive generation is central to the success of the
Transformer (Vaswani et al., 2017) in reasoning tasks, which
leads to many successes of the end-to-end learning of arith-
metic and hard symbolic computations, such as (Lample
& Charton, 2020; Charton, 2022; Kera et al., 2024; 2025;
Alfarano et al., 2024; Wenger et al., 2022; Li et al., 2023a;b).
The autoregressive nature makes each reasoning step con-
ditioned on the preceding context, and careful design of
intermediate reasoning steps, such as chain of thought (Wei
et al., 2022), guides the model’s reasoning toward the final
answer of the target problem. For example, it has been
known that learning the parity function—the prediction of
the parity of the input bit string—is challenging (Shalev-
Shwartz et al., 2017; Hahn & Rofin, 2024). However, Kim
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& Suzuki (2025) recently has shown that the step-by-step
prediction of the parity of the first k bits with k = 1, 2, . . .,
makes the learning successful.

One important yet underexplored aspect is the order of the
chain of thought—not only which steps to include, but also
the order in which they are arranged can greatly impact
learning. For example, Shen et al. (2023) has shown that
the Transformer learns multiplication of two integers with
better generalization to larger integers (i.e., those with more
digits) when the product is generated from least to most
significant digits (cf. Figure 1). While this particular case
can be explained by the carries, which flow from least to
most significant digits, a systematic way of determining
a learning friendly order of the chain of thought remains
unknown.

In this study, we address a new task of reordering decoder
input tokens, or unraveling chain of thought presented in
an unfriendly order, for better reasoning, particularly in
arithmetic tasks. Exploiting the observation that neural
networks tend to learn from easy to hard instances dur-
ing training (Arpit et al., 2017; Forouzesh & Thiran, 2024;
Swayamdipta et al., 2020), we train a Transformer on a mix-
ture of target sequences in different orders and identify those
that lead to a faster loss drop in the early stages of training.
To better handle longer sequences, we propose a two-stage
hierarchical approach, where the global stage finds block-
level orders, while the local stage reorders tokens within
each block.

The experiments demonstrate that the proposed method
successfully reorders the target sequences. We designed
three arithmetic tasks that are relatively easy to compute
with the (input and) target sequence in the forward order
but not with other orders. Starting from random orders,
the proposed method succeeds up to thirteen tokens (i.e.,
13! > 6× 109 permutations), increasing the success rate of
arithmetic computation from approximately 10 % to 100 %.
We also applied our method to the multiplication task in
(Shen et al., 2023) and successfully rediscovered the reverse
orders.

Our contributions are summarized as follows:

• We address a novel task of unraveling chain of thought
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to reorder the target tokens so that the learning be-
comes more successful for in-distribution samples and
generalizable to out-distribution samples.

• We propose a method that efficiently determines
learning-friendly orders from the loss profile at the
early stage of training. Empirically, this filters a few
thousand candidates in a single epoch, and combined
with a hierarchical strategy, the best order can be found
out of a few billion candidates.

• We introduce order-sensitive arithmetic tasks using
non-injective maps and present extensive experiments,
where the proposed method is evaluated when starting
with random permutations and partially sorted ones.
Not only on the proposed tasks but also recovered the
previously reported orders in the multiplication task.

2. Related work
Transformers for mathematical tasks. Transformers
have recently been applied to mathematical problem-solving
with encouraging results. (Lample & Charton, 2020) has
demonstrated that a Transformer can carry out integral cal-
culus with a high success rate, opening the possibility that
sequence-to-sequence models can handle algebraic tasks.
Since that study, applications have expanded to arithmetic
(Charton, 2022), linear algebra (Charton, 2022), computa-
tional algebra (Kera et al., 2024; 2025), and coding theory as
well as cryptography (Wenger et al., 2022; Li et al., 2023a;b).
One reason behind these successes is the autoregressive gen-
eration scheme. Although theory has suggested that learning
high-sensitive functions such as parity is difficult (Hahn &
Rofin, 2024), recent work achieved a high success rate on
parity tasks by applying chain of thought prompting (Wei
et al., 2022; Kojima et al., 2022; Chen et al., 2023; Yao et al.,
2023; Zhang et al., 2024) to arithmetic and by exploiting the
generated output tokens effectively (Kim & Suzuki, 2025).
Positional encoding is also crucial for arithmetic problems;
prior work (Jelassi et al., 2023) has shown that relative-
position and abacus-style embeddings improve generaliza-
tion to out-of-distribution data. These studies collectively
show that task-specific representations and positional en-
codings strongly influence performance. In particular, prior
work (Shen et al., 2023) analyzed in detail how digit order
affects multiplication success rate and demonstrated that
generating digits from the least significant position upward
raises the success rate; however, the ordering was chosen
heuristically rather than by an automated procedure. Sys-
tematic optimization of the output order itself in arithmetic
tasks remains unaddressed. This study is the first to explo-
ratively optimize the output-sequence permutation for each
task, automatically discovering a learning-friendly target
order.

Training tendencies of DNNs. The observation that
DNNs can be trained even on randomly assigned la-
bels—while still achieving excellent generalization on real
data—led to a line of research into how models adapt to data
during training (Zhang et al., 2017). (Arpit et al., 2017) has
experimentally shown that networks first pick up simple reg-
ularities between inputs and labels and only later transition
to memorizing harder, noise-like examples. More broadly,
DNNs are known to learn easy instances in a dataset before
gradually fitting the more difficult ones; in image domains,
this behavior is often referred to as spectral bias (Rahaman
et al., 2019). This property is now widely exploited in cur-
riculum learning (Jiang et al., 2018; Han et al., 2018; Bal-
dock et al., 2021) and data-quality control (Swayamdipta
et al., 2020). For example, integrating each sample’s learn-
ing curve can reveal mislabeled data (Forouzesh & Thiran,
2024). Most prior work, however, analyzes such dynamics
by injecting noise directly into the target labels themselves.
In contrast, this study focuses on the ordering of the target
sequences. The dataset is rearranged with multiple permuta-
tion matrices, and the model is trained on these reordered
versions to investigate how sequence order affects learning.

3. Unraveling Chain-of-Thought
Let SL be the symmetric group of order L, i.e., the set of
all permutations over {1, . . . , L}. We address a problem of
discovering a permutation π ∈ SL over the token sequence
(of length L) to the Transformer decoder that improves the
overall learning effectiveness of the Transformer.

The Transformer decoder generates output sequences in an
auto-regressive manner. It is widely known—especially in
the context of chain-of-thought prompting—that the order
of generation can have a crucial impact on the reasoning
ability of Transformers. For example, Figure 1 shows that,
in the task of multiplying two integers, the digits of the
target integer (each treated as a token) should be presented
in reverse order—from lower to higher digits—because this
allows the Transformer to compute carries step by step.

More generally, for example, let X = [x1, . . . , xL] be
a sequence of numbers, which is the input sequence to
the Transformer. If the target sequence is defined by a
map f(x, y) that is non-injective with respect to y (e.g.,
f(x, y) = max{x + y, 0}) as Y = [y1, . . . , yL] with
y1 = x1 and yi+1 = f(xi + yi) for i > 1, learning from
reverse order Y r = [yL, . . . , y1] is significantly harder than
that from the forward order because of non-injective f(x, y).

We now introduce our formal problem setup as well as its
challenges.

Formulation. Let Σ be the set of all tokens. We denote
the set of all finite token sequences by Σ∗ and its restriction
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Figure 1. Success rates for the multiplication of two integers. Ma-
trix rows and columns indicate the number of digits in each
operand. Evaluation is conducted with 100 samples for each digit
position. (a) Model trained with the standard (forward) order. (b)
Model trained with the reverse order.

to length-L sequences by ΣL. Let Tθ : Σ∗×ΣL → ΣL be a
Transformer with parameter θ. Hereinafter, we assume that
the target sequence length is fixed. Now, let (X,Y ) ∼ D be
an input–target sequence pair (X,Y ) with |Y | = L from a
joint distribution D. The empirical risk minimizer (ERM)
θERM with finite sample set D = {(Xi, Yi)}mi=1 and permu-
tation π ∈ SL is

θπERM = argmin
θ

1

m

m∑

i=1

ℓ(Tθ, Xi, π(Yi)), (3.1)

with ℓ denotes a loss function. Our goal is to discover a
permutation π that minimizes the expected risk:

π∗ = arg min
π∈SL

E(X,Y )∼D
[
ℓ
(
Tθπ

ERM
, X, π(Y )

)]
. (3.2)

A permutation π(Y ) of a target sequence Y =
[y1, . . . , yL] ∈ ΣL can be represented as a matrix product
Y P , where P ∈ {0, 1}L×L is a permutation matrix.

Challenges. The optimization over permutations is chal-
lenging because one has to test all possible permutations,
the number of which is L! for those over {1, ..., L}. One
may introduce a soft permutation matrix P̃ ∈ [0, 1]L×L and
perform empirical risk minimization jointly over θ and P̃ ;
namely,

min
θ,P̃

1

m

m∑

i=1

ℓ(Tθ, Xi, YiP̃ ). (3.3)

However, as shown in Figure 2, such an approach leads to an
immediate loss drop at the early stage of training, because
the soft permutation P̃ causes information leakage from
future tokens; each token in YiP is a soft mixture of all the
tokens in Y , which undermines the next-token prediction.
Introducing an additional loss that strongly penalizes non-
dominant entries in P̃ and encourages it to approximate a

(a) Eval loss curve (b) Optimized Permutation

Figure 2. (a) Training-loss curves for a vanilla Transformer (blue)
and for a model trained with soft-permutation optimization (red).
The permutation-trained model’s loss drops rapidly, far more
steeply than in standard training. (b) Permutation matrix learned
during permutation training. Sparse off-diagonal weights clustered
around the main diagonal indicate leakage from future tokens.

hard permutation matrix P can mitigate such leakage. How-
ever, training over nearly hard permutation matrices induces
a highly non-convex loss surface, and the optimization pro-
cess is prone to getting trapped in local minima (Mena et al.,
2018; Jang et al., 2017).

Analysis of attention sparsity. To address the challenges
of permutation optimization, we undertake a more detailed
analysis. Intuitively, when the target order is learning-
friendly, the causal structure of the sequence is broken:
more input and output tokens become relevant to predicting
the next token. Conversely, for an learning-friendly order
we expect the attention map to be sparser.

Let the query and key matrices be Q,K ∈ RL′×demb , where
L′ is the decoder-input length and demb the embedding
dimension. The self-attention weights are

A = Softmax

(
QK⊤
√
demb

)
∈ RL′×L′

, (3.4)

where Softmax(·) is applied row-wise. Because each row
of A = (aij)ij is a probability vector, we define the mean
sparsity S by the Shannon entropy:

S = − 1

L′

L′∑

i,j=1

aij log aij . (3.5)

We compute S for models trained on both the forward
(learning-friendly) and reverse (learning-unfriendly) orders
of the order-sensitive tasks (Section 5.1). Table 1 shows that
the forward order consistently yields lower S, and—since
a smaller S directly means higher sparsity—this confirms
that learning-friendly orders produce sparser attention. Rep-
resentative heat maps are provided in Appendix A.
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Table 1. Attention sparsity S across target orders. A smaller value
of S indicates greater sparsity.

Task Target length Sparsity

Forward Reverse

RELU
L = 20 1.160 1.640
L = 50 1.462 4.319
L = 100 1.687 3.195

SQUARE-19
L = 20 1.117 1.531
L = 50 1.773 1.914
L = 100 1.407 1.990

INDEX
L = 13, d = 2 0.848 2.574
L = 13, d = 4 0.887 1.486
L = 13, d = 8 1.116 1.596

Because S is derived from the learned attention weights, it
is independent of the language-model loss and can serve as
an orthogonal diagnostic metric. We also experimented with
optimizing permutations under an additional sparsity regu-
larizer that rewards low-entropy attention (cf. Appendix B).
Even with this bias, the optimizer failed to discover the
learning-friendly order and instead converged to interleaved
permutations, suggesting that sparsity alone is insufficient
to solve the permutation search in difficult regimes.

4. Proposed Method
We introduce our strategy for discovering a suitable permu-
tation of target token sequences. The key idea is to leverage
a characteristic of the training dynamics of deep neural net-
works: they tend to learn easy samples in the early stages of
training, and gradually adapt to harder samples later. This
phenomenon has been reported in several contexts in the
literature, such as (Arpit et al., 2017) for learning with noisy
labels and (Baldock et al., 2021) for identifying difficult
examples.

We exploit this property by training a Transformer for a
few epochs on a dataset with various orders in mixture
and identify learning-friendly orders as “easy samples,” for
which loss drops faster.

More formally, let D = {(Xi, Yi)}mi=1 and D′ =

{(X ′
i, Y

′
i )}m

′
i=1 be training and validation sets, respectively.

Let P = {P1, . . . , PT } be the set of T candidate permuta-
tion matrices. Let DPt be the set D with reordered target
sequences by Pt, i.e., DPt = {(Xi, YiPt)}mi=1. We deter-
mine learning-friendly orders through the following loss
profiling.

P1. Let E ∈ N. Train a Transformer for E epochs on a
mixed dataset D̄ :=

⋃T
t=1 D

Pt . Let Tθ′ be the Trans-
former after training.
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Figure 3. Search flow of our hierarchical approach. Global stage:
The proposed method generates T candidate permutations by swap-
ping the sequence at the macro-level, exchanging P token blocks
to quickly spot coarse, learning-friendly orders. Local stage: in-
side each chosen block, the proposed method further permutes the
tokens, refining the sequence to discover a final permutation that
maximises learning ease.

P2. Compute the loss on the validation set D′ for each
permutation; namely, for t = 1, . . . , T , compute

L(D′, Pt) =
1

m′

m′∑

i=1

ℓ(Tθ′ , X ′
i, Y

′
i Pt). (4.1)

Then, the most learning-friendly order P ∗ := Pτ is
determined with τ = argmint L(D′, Pt).

In our experiments, we empirically observed that a few
thousands permutations can be handle at once through this
approach. However, the number of permutations grows fac-
torially, which leads us to introduce the following two-stage
hierarchical optimization, where aforementioned loss pro-
filing (i.e., P1 and P2) is performed to determine learning-
friendly orders at each level.

Figure 3 illustrates our hierarchical method. We start
with the initial set of permutation candidates P0 =
{P1, . . . , PT }. The global stage splits each token sequence
into several blocks and finds a good permutation in block
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Table 2. Success rates across different orders in the proposed task.
The forward order is learning-friendly, whereas the reverse order
is learning-unfriendly.

Task Target length Success rate (%)

Forward Reverse

RELU
L = 20 99.6 0.6
L = 50 99.9 5.6
L = 100 99.4 0.0

SQUARE-19
L = 20 100 0.1
L = 50 100 0.0
L = 100 100 0.0

INDEX

L = 13, d = 2 100 9.8
L = 13, d = 4 62.3 1.3
L = 13, d = 8 81.8 2.2
L = 31, d = 2 100 0.8

level. The local stage refines this coarse ordering by permut-
ing the tokens within each block discovered at the global
stage. Formally, the two stages operate as follows.

Global stage. Let the search depth be K and T = (K +
1)!. Let P1 := P0, for k = 1, . . . ,K, we first (conceptually)
split each target sequence into k blocks1. We apply the loss
profiling to the new permutation set:

⋃

P∈Pk

{PQ1, . . . , PQk!}, (4.2)

where Qi ∈ [0, 1]L×L are the block-level permutations. The
best ⌊T/(k + 1)!⌋ permutations define new candidate set
Pk+1.

We then apply the loss profiling to the final candidate set
Pg := PK+1 and determine the best permutation Pg. This
permutation is then refined with the local stage.

Local stage. Let P1 := Pg is the initial permutation. We
again conceptually split each target sequence into blocks of
size l. Let Ri

1, . . . , R
i
l! ∈ [0, 1]L×L be all the permutations

inside the i-th block. These permutations do not change
the orders outside the i-th block. For each block length
l = {2, 3, . . . , ⌊L/2⌋}2, we apply the loss profiling to new
candidate set:

L/l⋃

i=1

{PRi
1, . . . , PRi

l!}, (4.3)

and denote the lowest-loss result by Pl. Keeping each
block’s internal order fixed, we perform loss profiling over

1When k = 1, the sequence not split into blocks
2If L/l is not an integer, the remaining L mod l tokens are

placed in an additional block.

the ⌊L/l⌋ block-reordering candidates:

{PlQ
′
1, PlQ

′
2, . . . , PlQ

′
⌊L/l⌋}. (4.4)

The best candidate becomes the initial permutation for the
next block size l + 1.

With a global-stage depth of K and for a target length L, the
hierarchical search visits on the order of (K +1)! candidate
permutations. Empirically, a relatively large batch size 128
examples and just one or two epochs over a training sample
of 105 pairs suffice, so the entire discovery phase is finished
after only a few thousand optimization steps. We also tried
evolutionary strategy (cf. Appendix C), but this involves a
number of hyper-parameters, and our deterministic approach
is more reliable.

5. Experiments
5.1. Order-sensitive tasks

To evaluate the proposed method, we introduce three tasks.
They can be learned relatively easily with the forward order,
which however becomes challenging with the reverse or
random orders.

Let X = [x1, x2, ...] be an input sequence and Y =
[y1, ..., yL] an target sequence of fixed length L. In high
level, the target sequence of the three tasks is defined by the
following recurrence.

yi = f(X, y1, ..., yi−1). (5.1)

Because f( · ) is non-injective in its dependence on the pre-
ceding targets, a later value yi does not uniquely determine
its predecessor yi−1. Consequently, any disruption of the
natural left-to-right order—such as reversing or randomly
permuting the targets—breaks the causal chain and substan-
tially increases the learning difficulty.

RELU. Here the recurrence performs a running rectified
sum: y1 = x1 and for i = 2, . . . , L,

yi = ReLU
(
xi + yi−1

)
, (5.2)

where ReLU(z) = max(z, 0). The forward order is trivial
to learn because each step depends only on the current input
token xi and the immediately preceding output yi−1; in the
reverse order that dependency becomes latent.

SQUARE-19. The second task accumulates squared values
modulo a small prime: y1 = x1 and for i = 2, . . . , L,

yi = x2
i + y2i−1 mod 19 ∈ {−9, . . . , 9}. (5.3)

The squaring operation is non-injective: the mapping is
many-to-one. Within the interval z ∈ [−9, 9], the equation
z2 = 4 is satisfied by both z = 2 and z = −2, so the
preimage of 4 is not unique.

5



Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic

0 20 40 60 80 100 120
Permutation ID

2.40

2.45

2.50

2.55

2.60

2.65

2.70
Ev

al
 L

os
s

ReLU
Square
Index

Figure 4. For Pg , the evaluation loss of every permutation is com-
puted after training on the three tasks. Permutation ID 0 cor-
responds to the forward order, whereas the remaining 127 IDs
correspond to randomly generated permutations. The target length
is fixed at L = 13 for all tasks.

INDEX. The last task uses the recent output history as a
pointer into the input: y1 = x1 and for i = 2, . . . , L,

yi = xp, p =

d∑

j=1

yi−j mod L,

where d ≤ L is a fixed window size. Forward order enables
the model to compute p incrementally, whereas a reversed
or random order destroys the causal chain.

PROD. Unlike the three tasks proposed above, multiplica-
tion has been examined in earlier studies; although it does
not satisfy the recurrence in Equation (5.1), it still exhibits a
moderate degree of order sensitivity. Given two zero-padded
input numbers a and b, the target sequence is their product
Y = [ab]. When the digits are emitted from least significant
to most significant, we denote the sequence by Y (forward
order); when the digits are emitted in the opposite direction,
we denote it by Y r (reverse order).

Example 5.1 (SQUARE-19 task). Given the input sequence
X = [7,−2, 4, 1, 3] and the initial value y1 = x1 = 7,
applying the recurrence in (5.3) produces

y1 = 7,

y2 = (−2)2 + 72 mod 19 = −4,

y3 = 42 + (−4)2 mod 19 = −6,

y4 = 12 + (−6)2 mod 19 = −1,

y5 = 32 + (−1)2 mod 19 = −9.

In forward order, memorizing just 192 = 361 cases suffices
to output the target sequence. In reverse order Y r , however,
even with y5 = −9 known, y4 is still ambiguous between 1
and −1, so learning becomes much harder. Generation ex-
amples for the remaining tasks are provided in Appendix D.
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Figure 5. Success rate achieved when the Transformer is retrained
on each permutation dataset, ranked for the RELU and SQUARE-
19 tasks with Pf.The x-axis lists permutations from highest to
lowest rank (left to right). The target length is fixed at L = 20.

5.2. Training setup

Training parameters. We use a GPT-2 model (Rad-
ford et al., 2019) with six layers and a single attention
head. The embedding and feed-forward dimensions are
(demb, dffn) = (512, 2048), and dropout is set to 0.1. Po-
sitional embeddings are randomly initialized and remain
trainable throughout training. The model is trained for 10
epochs with AdamW (Loshchilov & Hutter, 2019) (β1 =
0.9, β2 = 0.999), a linearly decaying learning rate starting
from 5.0× 10−5 , and a batch size of 128.

Dataset. The generation procedure is detailed in Sec-
tion 5.1. For every task, the target length L is sampled
from the range {5, 6, . . . , 100}. Only the INDEX task intro-
duces a window size d, which is set to d ∈ {2, 4, 8}. The
training set contains 100,000 samples, and the evaluation
set contains 1,000 samples. Different random seeds (42 for
training and 123 for evaluation) are used to keep the two
sets disjoint.

To reorder them, we consider four permutation sets for P:

• Pf is obtained by splitting the forward and reverse
orders into column-wise blocks and swapping those
blocks.

• Pr denotes a permutation set chosen uniformly at ran-
dom.

• Pg contains the forward permutation plus random per-
mutations. For example, if the set size is 100, it in-
cludes one forward permutation and 99 random ones.

• Pb is obtained by splitting the forward and reverse
sequence into length b and permutes those blocks, and
fix b = 5 in experiments.
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Table 3. The orders discovered by the proposed method in its global and local stages. Depth denotes the hierarchy level K reached in the
global stage. Each order is listed relative to the forward sequence; when the list starts at 0, the forward order has been recovered. Forward
orders identified at a given stage are highlighted in bold.

Task Target Length Depth Order after global stage Discovered final order

RELU

L = 7 K = 4 [6, 0, 5, 2, 3, 4, 1] [2, 3, 4, 5, 0, 6, 1]
L = 8 K = 4 [0, 2, 1, 3, 4, 5, 6, 7] [0,1,2,3,4,5,6,7]
L = 9 K = 5 [0,1,2,3,4,5,6,7,8] [0,1,2,3,4,5,6,7,8]
L = 10 K = 6 [6, 7, 8, 9, 5, 4, 2, 3, 1, 0] [4, 5, 6, 7, 8, 9, 0, 1, 2, 3]
L = 11 K = 6 [8, 9, 10, 7, 6, 5, 4, 3, 2, 1, 0] [0,1,2,3,4,5,6,7,8,9,10]
L = 12 K = 6 [6, 7, 8, 9, 10, 11, 5, 4, 2, 3, 1, 0] [1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11]
L = 13 K = 6 [11, 12, 10, 9, 8, 7, 6, 5, 4, 2, 3, 1, 0] [0,1,2,3,4,5,6,7,8,9,10,11,12]

SQUARE-19

L = 7 K = 4 [0,1,2,3,4,5,6] [0,1,2,3,4,5,6]
L = 8 K = 4 [1, 2, 4, 5, 0, 6, 7, 3] [1, 2, 4, 5, 0, 6, 7, 3]
L = 9 K = 5 [0,1,2,3,4,5,6,7,8] [0,1,2,3,4,5,6,7,8]
L = 10 K = 6 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] [0,1,2,3,4,5,6,7,8,9]
L = 11 K = 6 [0,1,2,3,4,5,6,7,8,9,10] [0,1,2,3,4,5,6,7,8,9,10]
L = 12 K = 6 [1, 2, 3, 4, 5, 6, 7, 11, 10, 9, 0, 8] [0,1,2,3,4,5,6,7,8,9,10,11]
L = 13 K = 6 [0, 1, 2, 3, 12, 11, 10, 4, 5, 6, 7, 8, 9] [8, 9, 0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7]

INDEX
L = 13, d = 2 K = 6 [1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] [0,1,2,3,4,5,6,7,8,9,10,11,12]
L = 13, d = 4 K = 6 [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12] [0, 1, 7, 6, 4, 2, 5, 8, 3, 9, 10, 11, 12]
L = 13, d = 8 K = 6 [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11] [1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 0, 11]

PROD L = 10 K = 6 [0,1,2,3,4,5,6,7,8,9] [0,1,2,3,4,5,6,7,8,9]

Examples of these permutation sets are provided in Ap-
pendix E.

5.3. Success rate for each order

Table 2 reports the success rate for each task under the
forward and reverse output orders. The success rate is
defined as the fraction of evaluation samples for which
the trained model’s output exactly matches the target se-
quence. As explained in Section 5.1, every task is con-
figured to be learning-friendly in the forward order but
learning-unfriendly in the reverse order. Consistent with
this design, Table 2 shows that the model almost fully learns
each task in the forward order, whereas in the reverse order,
the success rate never exceeds roughly 10 %. A closer look
at task-specific trends reveals that the success rate for the
RELU and SQUARE-19 tasks remains almost unchanged
as the target length grows. By contrast, for INDEX, the
forward order success rate declines with the window size
d, indicating that the model struggles when each prediction
depends on a larger number of previous outputs.

5.4. Transformer trained with multiple orders

We trained a Transformer on a set of permutations, Pg, con-
taining one learning-friendly forward order (ID 0) and 127
randomly generated learning-unfriendly orders. The evalua-
tion loss for each permutation is plotted in Figure 4, which

shows that only the learning-friendly order achieves the
lowest loss across all tasks. This indicates that the model
preferentially adapts to the learning-friendly sequence when
trained on a mixture of orders. This effect is particularly
pronounced in the INDEX task, where the loss for the for-
ward order drops much more steeply than for any other,
highlighting a strong preference for this sequence.

Figure 5 reports the success rate obtained when the Trans-
former is retrained with the permutation ranking produced
for the RELU and SQUARE-19 tasks using Pf . For both
tasks, the success rate declines progressively as the ranking
position worsens, indicating that our evaluation-loss crite-
rion indeed uncovers orders the model learns most easily.
In the SQUARE-19 task, the success rate drops monotoni-
cally from left to right—except at rank 13—showing that
the ranking is highly accurate.

5.5. Results of the hierarchical search

We perform hierarchical search from two initial permutation-
sets. The first, Pr, contains fully random permutations and
therefore defines the most challenging setting. The sec-
ond, Pb, is block-restricted: in many routine mathemat-
ical problems—polynomial manipulation is a typical ex-
ample—only a handful of monomial orders are considered
plausible within each block, so the effective search space is
far smaller than in the random case. Figure 6 contrasts the
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Figure 6. Success rates for the RELU task at varying target-sequence lengths; (b) corresponding results for the SQUARE-19 task. In each
panel, blue represents the learning-friendly forward order, red the learning-unfriendly reverse order, and green the order discovered by our
proposed method.

results obtained from these two starting points.

Random search-space initialization. Table 3 lists the
permutations discovered by the proposed method when it
begins from Pr. After the global stage, tokens that are
neighbours in the input usually remain adjacent, showing
that the method first captures coarse structure. The subse-
quent local stage then fine-tunes this order and moves the
order closer to the optimal forward arrangement. For the
RELU and SQUARE-19 tasks global order is often already
learning-friendly, and retraining a model on the discovered
order always produces a higher success rate than training on
the reverse order (see Figure 6(a)). The INDEX task proves
harder: as the reference width d grows, learning is difficult
even in the forward order (see Section 5.1), which flattens
the loss landscape and makes good permutations harder to
rank. In the PROD, the proposed method succeeds in re-
discovering the least-significant-digit first order reported
by (Shen et al., 2023), and it finds the optimal order for
target lengths up to 13, identifying a single solution among
roughly 6× 109 possibilities.

Structured search-space initialization. When the search
is initialized with Pb, the proposed method scales to much
longer target sequences. Figure 6(b) shows the resulting
success rate curves for RELU and SQUARE-19: the opti-
mal order is found for both tasks up to L = 30, and for
RELU even at L = 40. At L = 40 the theoretical permu-
tation space still contains about 1047 elements, indicating
that once implausible candidates are pruned, the proposed
method can explore the remaining space far more effectively.
Taken together, these results demonstrate that our hierarchi-
cal search is capable of recovering optimal orders in both
the most challenging fully random scenario and the more re-

alistic, block-restricted setting, and that its advantage grows
as the candidate space is made more coherent.

6. Conclusions
This study addressed a new task of reordering decoder input
tokens for Transformers in learning arithmetic tasks. In
essence, the proposed method performs short-term train-
ing on a mixture of target sequences in different orders
and discovers easy samples for which loss drops faster, as
learning-friendly orders. To search the factorially large
space efficiently, we propose a two-stage hierarchical ap-
proach combining global block-level exploration with local
refinement. The experiments on three order-sensitive arith-
metic tasks (RELU, SQUARE-19, and INDEX) demonstrated
that the proposed method discovers a learning-friendly order,
improving the success rate from about 10 % to near 100 %
and works for target lengths up to 13 tokens (13! > 6× 109

permutations). Moreover, it rediscovered the reverse-digit
order reported in earlier work on the PROD task. This study
presents an automatically unraveling chain of thought that
markedly enhances a Transformer’s reasoning ability. The
extension to longer sequences and target sequences at a
variable length will be future work.
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A. Visualizing attention map
We present the attention maps obtained when training a Transformer on our proposed RELU task with datasets reordered in
different ways. For this analysis, we use a GPT-2 model with a single layer and a single attention head. Figure 7 shows the
attention maps for target length L = 20 under four target orders. The forward and reverse orders are defined in Section 5.1.
The one-permuted order swaps exactly one pair of adjacent target tokens, whereas the random order is a random permutation
of the forward sequence. Figure 8 illustrates how the attention maps change as the target length increases.

(a) Forward order (b) one permuted order

(c) Random order (d) Reverse order

Figure 7. Attention matrices from models trained with four different target orders in the RELU task.

B. Soft-permutation optimization via attention sparsity
In this section, we present a soft-permutation optimization method based on attention sparsity. In our two-stage strategy, we
first optimize the Transformer parameters θ by minimizing the standard sequence-modeling loss over the training set:

min
θ

1

m

m∑

i=1

ℓ
(
Tθ, Xi, Yi

)
. (B.1)

Next, denoting by A = [aij ] ∈ RL′×L′
the attention map produced when the target sequence is fed as Yi P̃ into the

Transformer, we optimize the soft permutation P̃ by minimizing the total attention entropy:

min
P̃

1

L′

L′∑

i=1

L′∑

j=1

aij . (B.2)

In the experiments, we alternate between the two-stage optimizations at each step. Figure 9 compares the stage 2 loss
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Figure 8. Differences in the attention matrices for the RELU task between forward and reverse orderings. The top three matrices
correspond to models trained with forward order, and the bottom three with reverse order. Each pair of matrices shows results for input
lengths n = 20, 50, and 100, respectively.

under three conditions: the fixed, learning-friendly order, the fixed, learning-unfriendly (reverse) order, and the learned soft
permutation. We observe that the soft permutation does not reduce the entropy-based loss (B.2) relative to the fixed orders,
nor does it yield a genuinely hard ordering. Because attention sparsity—as measured by total attention mass—decreases
even for static orders, it cannot serve as a reliable objective for permutation optimization.

C. Permutation search via evolutionary strategy
This section summarizes the evolutionary strategy (ES) baseline that we ran in parallel with our proposed method to
search the permutation space. Each individual is a permutation P ; its fitness is the (negative) early-stage training loss of a
Transformer trained with that order, so that permutations that are easier to learn receive higher scores. The ES is controlled
by the population size Np, crossover probability Nc, mutation probability Nm, number of generations Ng , tournament size
Nt, and elitism ratio Nr, and proceeds as follows:

(1) Population initialization: sample Np random permutations.

(2) Selection: pick parents via tournament selection with size Nt.

(3) Crossover: with probability Nc, apply partially–mapped crossover to each selected pair.

(4) Mutation: with probability Nm, swap two positions in the offspring permutation.

(5) Elitism: evaluate every individual by

fitness(P ) = − 1

m′

m′∑

i=1

ℓ
(
Tθ, Xi, YiP

)
,

and copy the top Nr fraction to the next generation.

(6) Termination: stop when Ng generations have been processed.

Table 4 lists the permutation identified by the evolution strategy (ES) and the performance obtained when the model is
retrained using that order.
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Figure 9. (a) Comparison of Stage 2 loss under fixed learning-friendly order, fixed learning-unfriendly order, and learned soft permutation.
(b) shows a visualization of the learned soft permutation.

Table 4. Success rate obtained when the Transformer is retrained on the permutations discovered by the ES.

Task Input length ES-discovered order Success rate (%)

Retrain Reverse

RELU
L = 5 [2, 1, 0, 4, 3] 26.9 10.4
L = 10 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 100 3.5
L = 20 [6, 7, 9, 8, 12, 11, 13, 18, 17, 14, 16, 15, 19, 5, 10, 1, 0, 3, 4, 2] 9.2 0.7

SQUARE-M19
L = 5 [1, 2, 3, 4, 0] 100 21.5
L = 10 [3, 4, 5, 6, 7, 8, 9, 1, 0, 2] 99.9 13.5
L = 20 [9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 0, 1, 7, 8] 5.2 1.2

INDEX (m = 2) L = 13 [0, 1, 2, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8] 27.6 7.8

D. Example dataset
This section provides concrete examples for the four tasks introduced in Section 5.1. Table 5 summarizes the correspondence
between the input X and the target Y , with every Y given in the forward—that is, learning-friendly—order. For the PROD
task only, the input consists of two integers, a and b.

E. Example set of permutations
This section describes the four permutation sets introduced in Section 5.2. Figure 10 visualizes every permutation P in
those four sets. Each set contains 32 elements.
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Table 5. Representative input–output samples for each task

Task Input Target

RELU, L = 50

X = (4, −7, −7, −3, 8, 1, −8, −9, 8, 6 Y = (4, 0, 0, 0, 8, 9, 1, 0, 8, 14
0, −9, 5, −9, 6, 5, −5, −9, 7, −5 14, 5, 10, 1, 7, 12, 7, 0, 7, 2
8, −6, −7, −2, −7, 6, 7, −2, 0, −6 10, 4, 0, 0, 0, 6, 13, 11, 11, 5
−3, −8, −7, −8, 3, −1, −6, 1, −4, −9 2, 0, 0, 0, 3, 2, 0, 1, 0, 0
2, −7, 1, 4, 9, −5, 6, 2, 3, −3) 2, 0, 1, 5, 14, 9, 15, 17, 20, 17)

SQUARE-M19, L = 50

X = (−5, −9, 8, 7, 8, −7, 5, −9, −6, 9 Y = (−5, 2, 2, 6, −4, −1, −2, 0, 8, 3
−2, −8, 6, −7, 2, −7, −6, −5, −5, 7 4, −5, −5, 8, 2, 6, 6, −5, 3, −8
3, 6, −9, 1, 7, 0, −7, 7, −5, 0 7, 0, −4, 8, 9, −4, −1, 3, 6, 8
−2, 6, −1, −9, −6, −7, 0, 2, 7, −1 2, −7, 3, 5, −5, 8, −2, −1, 3, 1
1, −2, −6, −7, 5, 1, 9, −6, −3, −3) −7, 6, 6, 0, −3, 1, −3, −2, 4, −3)

INDEX, L = 13, d = 2
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 4
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

INDEX, L = 13, d = 8
X = (1, 5, 12, 3, 8, Y = (5, 6, 8, 5, 1, 11,
6, 11, 12, 2, 8, 10, 8, 10) 10, 2, 10, 10, 12, 8, 12)

PROD, L = 10
a = (0, 0, 2, 0, 3) Y = (1, 1, 3, 5, 3, 5, 0, 0, 0, 0)
b = (0, 2, 6, 3, 7)

<latexit sha1_base64="9bxXKrJgS/WZEbeWenYRRBDU95Q="></latexit>

(a) Pf

<latexit sha1_base64="lL6O4zMX/y9h/9eC3Z7N9FPgxjQ="></latexit>

(b) Pr

<latexit sha1_base64="xMaaZ2uwng2TzE0uEaGmx+NP/6k=">AAACi3ichVHLLgRBFD3aa4zXYCOxmZgQNpMaBBELIRLL8RgkyKS71IyOfqW7ZpLRaR8g9hZWJCJiZ8vOxg9Y+ASxJLGxcKenRRDcSlXde+49t05VaY6he5KxhzqlvqGxqTnWEm9ta+/oTHR1r3p2yeUix23Ddtc11ROGbomc1KUh1h1XqKZmiDVtd66aXysL19Nta0VWHLFlqkVLL+hclQTlE4Obpip3XNMf4sPBfhhw1fCzQd7/yBSDIJlPpFiahZb86WQiJ4XIsnbiHJvYhg2OEkwIWJDkG1Dh0dhABgwOYVvwCXPJ08O8QIA4cUtUJahCJXSX1iJFGxFqUVzt6YVsTqcYNF1iJjHA7tkFe2Z37JI9srdfe/lhj6qWCu1ajSucfOdB7/LrvyyTdomdT9afmiUKmAy16qTdCZHqLXiNX947el6eWhrwB9kpeyL9J+yB3dINrPILP1sUS8eI0wdkvj/3T2d1JJ0ZT48vjqVmZqOviKEP/Rii957ADBaQRY7OPcQVrnGjtCujypQyXStV6iJOD76YMv8OgwuZdw==</latexit>

(c) Pg

<latexit sha1_base64="1DlXU2xUo5VXqqpmFzoeZpLk/OU="></latexit>

(d) Pb

Figure 10. Visualization of the elements in the four permutation sets.
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