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Extended Abstract
Spreading on networks encompasses numerous influential processes, including rumour propa-
gation on social networks and contagion on contact networks [1]. Decision makers may wish
to promote a beneficial quantity or contain a harmful one, but in either case they benefit from
accurate network spreading models. However, many of these models are limited by their re-
liance on local features, such as degree [2] or adjacency [3], which can only represent each
node’s immediate neighbourhood and reflect just one or two of the immediately succeeding
transmission steps. They achieve excellent performance on synthetic networks satisfying the
appropriate assumptions, but can be challenged by alternative structures [4].

Towards addressing these limitations of popular models, we consider a network property
ideally suited to capturing spreading. This is the network correlation dimension D [5], which
characterises how the number of entities within network distance s of a source scales with
network distance via the power-law relationship

c(s) ∝ sD−1, 1 ≤ s ≤ smax, (1)

where smax is the upper cutoff of the considered dimension-based structural model and the cor-
relation c(s) is the fraction of distinct nodes at network distance s (see Fig. 1). Leveraging
this property leads to a simple but accurate model. On a wide range of synthetic and empirical
networks the proposed method yields better predictions of early susceptible-infected-recovered
spreading dynamics than established techniques of substantially higher parametric complexity
(see Fig. 2). The proposed model also leads to a basic reproduction number–one of the most
important terms in studies of epidemics and spreading–providing additional information about
final system state (see Fig. 3). The insights from our proposal highlight the importance of incor-
porating global properties such as dimension into spreading models, and suggest a promising
direction for more accurate characterisations of complex dynamics.
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Figure 1: Network correlation dimension governs scaling of small network distances in a wide
range of networks. Fraction C(s) = ∑

s
r=0 c(r) of pairs of distinct nodes within network distance

s for observed networks (filled blue circles), together with estimates based on maximum likeli-
hood fits to Eq. (1) (black lines). (a) Synthetic network. (b)-(d) Empirical networks.

Figure 2: The proposed dimensional spreading model captures the early stages of spreading
more accurately than established models of higher complexity. (a) Synthetic network. (b)-(f)
Empirical networks. Curves represent true mean state (filled blue circles) and estimates from
homogeneous mean field (purple dot-dashed), heterogeneous mean field [2] (red dotted), prob-
abilistic discrete-time Markov chain [3] (green dashed), and proposed dimensional spreading
(yellow solid) model.

Figure 3: The dimensional spreading model provides information about ultimate system state
not available from other models. Variation of final affected ratio R̃(∞) (the fraction of nodes
who eventually enter the recovered state) with: (a) rewiring rate p and mean degree ⟨k⟩ on a
small world network; and (b) lattice dimension and degree k on a regular lattice. Curves show
level sets of basic reproduction number R0 inferred from the homogeneous mean field (purple
dot-dashed), heterogeneous mean field (red dotted), probabilistic discrete-time Markov chain
(green dashed), and proposed dimensional spreading (yellow solid) model.
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