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ABSTRACT

World modelling, i.e. building a representation of the rules that govern the world
so as to predict its evolution, is an essential ability for any agent interacting with
the physical world. Recent applications of the Transformer architecture to the
problem of world modelling from video input show notable improvements in sam-
ple efficiency. However, existing approaches tend to work only at the image level
thus disregarding that the environment is composed of objects interacting with
each other. In this paper, we propose an architecture combining Transformers
for world modelling with the slot-attention paradigm, an approach for learning
representations of objects appearing in a scene. We describe the resulting neural
architecture and report experimental results showing an improvement over the ex-
isting solutions in terms of sample efficiency and a reduction of the variation of
the performance over the training examples. The code for our architecture and
experiments is available at [Redacted from the anonymized version]

1 INTRODUCTION

World modelling is the ability of an artificial agent to build an internal representation of the world
in which it operates. This representation is employed by the agent to forecast the evolution of the
world. The problem of building a world model spans many branches of artificial intelligence, such
as planning and reinforcement learning (Micheli et al., 2023; Paster et al., 2021), physics modelling
and reasoning (Ding et al., 2021), and robotics (Wu et al., 2022). An accurate representation of
the world allows building simulations that, in turn, enable practitioners to gather additional data
and test the performance of an artificial agent without interacting with their environment. This
is convenient because interacting with an agent’s environment can be time-consuming, risky due
to possible failures of physical components, and sometimes even impossible due to the potential
unavailability of the environment (e.g. experimenting with the exploration of Mars by a rover).

Recent applications of the Transformer architecture (Vaswani et al., 2017) to the task of world mod-
elling from video input suggest that this family of architectures is not only it is capable of capturing
the dynamics of the environment, but it is also capable of learning with high sample efficiency
(Micheli et al., 2023; Robine et al., 2023). However, existing approaches typically operate directly
at the image level, with little regard for the objects contained within it. Understanding how objects
interact with each other and with the environment is of paramount importance, as it endows agents
with an intuitive theory of object motion (McCloskey, 1983). In neural architecture, this problem is
addressed in a separate line of research (Locatello et al., 2020; Kipf et al., 2022; Wu et al., 2023), that
focuses on learning object-based representations that allow the objects in the scene and their inter-
actions to be modelled explicitly. We hypothesise that Transformers may benefit from object-based
representations to learn more accurate models of the world.

Problem statement In this paper, we focus on physical world modelling through the analysis
and prediction of synthetic videos. Learning a model of basic physical laws such as gravity and
collision is very important for any agent working in a real environment to understand better the
world’s evolution and the consequences of the agent’s actions.

Machine learning research on modelling intuitive physics aims to replicate the innate understanding
of physical concepts that humans display since their first months of age (McCloskey et al., 1983;
Baillargeon, 2004). Specifically, we approach the physical interaction output prediction problem, as
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defined in a recent survey (Duan et al., 2022). In this context, the agent is shown a video, composed
of a sequence of frames x1, ...,z depicting several objects interacting in a world governed by
physical laws such as gravity and collision. The agent is then asked to predict the final outcome of
the situation, which requires estimating how the objects will behave after what is shown in the input
video (Yi et al., 2020).

Contribution We design a transformer-based architecture for world modelling, inspired by the
principles of representation learning with slot encoding (Kipf et al., 2022; Singh et al., 2022). The
evaluation is based on how well the learned model predicts the outcome of the situations it gets
shown. We show that this allows us to reap the benefits from both approaches (i.e. slot encoding
and transformers), while also noticeably improving the stability of the training process.

Paper outline We structure the rest of the paper as follows. Section 2 discusses some previous
works on the topics of world modelling and representation learning. Section 3 describes our ar-
chitecture and how it was trained. Section 4 describes the evaluation experiments we performed.
Section 5 offers some final remarks on this work.

2 RELATED WORK

2.1 WORLD MODELLING

The world modelling problem has received tremendous attention in the last few years. In reinforce-
ment learning, being able to simulate the environment dynamics is especially useful, because it
enables the agent to act and learn in its own simulated world without paying the cost of interacting
with the “real” environment. The Dreamer algorithm, in its various versions (Hafner et al., 2020;
20215 2023), has been relatively influential on the topic, with Wu et al. (2022) being an application
in a robotic domain, where real-world interaction has the unfortunate potential of breaking usually
costly equipment, in addition to time costs. Additional approaches in reinforcement learning include
solutions based on causal discovery and reasoning (Yu et al., 2023), which aim at learning a causal
model of the environment to better understand the interactions between the agent and the world, and
even provide an explanation for the actions taken by the agent. Transformer-based approaches are
also studied, due to their generally good performance in different tasks and the sample efficiency
they provide in this specific problem (Micheli et al., 2023; Robine et al., 2023).

In the case of agents acting in a real physical environment, learning a model of the basic physical
laws of the world is essential to act effectively in the environment and understand the consequences
of each move. We refer to this problem as intuitive physics modelling. For this reason, several
solutions have been studied for this problem with approaches ranging from deep learning (Qi et al.,
2021), to violation of expectation (Piloto et al., 2022), to causal reasoning (Li et al., 2022).

With this work, we aim to improve the general level of performance and stability of Transformer-
based approaches by implementing an unsupervised representation learning module, specifically one
based on the principles of slot encoding.

2.2  OBIJECT-ORIENTED REPRESENTATION LEARNING

In this work, we integrate concepts from the line of research on learning object-oriented represen-
tations from images and videos (Locatello et al., 2020; Zoran et al., 2021; Jia et al., 2023). In
particular, slot encoders for video (Kipf et al., 2022; Singh et al., 2022) learn a representation that
tracks the prominent objects in a video frame by frame. The structure of our architecture is based on
that of slot encoders, but we try to streamline it by focusing exclusively on using Transformer mod-
ules, which allows us to convert the image to just one intermediate form, i.e. a sequence of tokens
to be elaborated by the Transformers, while Singh et al. (2022) requires two separate elaborations
of the image: one to produce convolutional features and one to produce a sequence of tokens.

The idea of leveraging slot encoding mechanisms for world modelling has also been explored in Wu
et al. (2023). However, while that work uses a single transformer as the dynamics modelling mod-
ule, we experiment with the idea of keeping representation correction and dynamics advancement
separate, where each step is learned by a different, smaller neural model.
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Figure 1: Architecture diagram for the Future-Predicting Transformer Triplet for world modeling.

This is not the only existing approach: an additional, earlier line of work focuses on using generative
models with object-centric features for images (Eslami et al., 2016; Engelcke et al., 2020) and video
(Kosiorek et al., 2018) to distinguish the objects present in a scene and improve image/video genera-
tion with the learned object awareness. Jiang et al. (2020) applies this paradigm to world modelling.
Other approaches include spatial attention (Lin et al., 2020) and latent space factorization (Kabra
etal., 2021).

3 METHOD

We introduce a multi-stage architecture, called “Future-Predicting Transformer Triplet for world
modeling” (FPTT), which aims to model the behaviour of objects in a set of videos so as to predict
their evolution.

We frame the world modelling problem as a sequence learning one. We use transformers as the
fundamental building block of our architecture, due to their proven performance in world mod-
elling (Micheli et al., 2023) as well as other tasks that can be reduced to modelling and manipulating
a sequence of tokens (Vaswani et al., 2017; Esser et al., 2021). In particular, we leverage the recent
work by Micheli et al. (2023), which showcases a sample-efficient application of transformers to
world modelling. This design principle is integrated with the slot-attention mechanism (Kipf et al.,
2022; Singh et al., 2022), which is used to learn a compact representation of objects that appear in a
video.

3.1 NOTATION

We indicate with x; the ¢-th frame of a video and with z; a sequence of tokens corresponding to x;.
A(z) is the internal representation of the input video x up to time ¢, i.e. given frames x1, ..., x¢_1,
while A} (z) is the “corrected” representation which also includes information from frame z;. The
initial representation A;(x) is randomly determined for initialization purposes.
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3.2 ARCHITECTURAL OVERVIEW

Figure 1 shows the high-level components of FPTT. Further details on the implementation, e.g. the
hyperparameters of the architecture, can be found in Appendix A.

The architecture takes as input a sequence of 1" frames of a video, i.e. z; with¢ = 1,...,T. The
frames are processed sequentially, so that A;;(x) is determined by combining the previous repre-
sentation A, (z) with the new frame ;.

As in previous works (Micheli et al., 2023), each frame x; is transformed into a corresponding
sequence of tokens z; by a discrete Vector Quantized Variational Autoencoder (VQVAE) (van den
Oord et al., 2017; Esser et al., 2021), as transformers need to work on sequences of tokens. Further
details on the VQVAE can be found in section 3.3.

After this preliminary step, the sequence of tokens z; is processed by the core components of the
architecture which are meant to predict the next representation A;(z) based on the current one
Ai(z) and z;. These components, both based on the transformer architecture, have the same high-
level purpose as their counterparts in slot attention for video (Kipf et al., 2022; Singh et al., 2022)
architectures:

* The corrector transformer (see section 3.4) which compares the previous (internal) rep-
resentation A:(x) with the tokenized representation of the current frame z; in order to
consistently align the internal representation with the actual evolution of the video;

* The predictor transformer (see section 3.5) which predicts the evolution of the world state
and produces the representation of the next time step A;41 () on the basis of the result of
the corrector, i.e., Af(x). A¢11(z) is then passed to the corrector for the next stage.

The result of the prediction at stage t, i.e. A;y1(x), is also passed to the decoder transformer
(see section 3.6). This component transforms the predicted internal representation A:11(x) into
a sequence of tokens Z;1. Finally, the loss is calculated by comparing Z; 1 with 24,1, i.e. the
sequence of tokens obtained from the input frame. All the above steps (correction, prediction,
decoding and loss calculation) are computed for each input frame except the last one, i.e. for t =
1,...,T — 1. The last frame is not processed at training time because it would require the existence
of a frame x7 1 to calculate the loss against, which is impossible to provide since the video only
goes up to frame x7 by definition.

3.3 VECTOR QUANTIZED VARIATIONAL AUTOENCODER FOR TOKENIZATION

The Vector Quantized Variational Autoencoder (VQVAE) transforms video frames into a format that
subsequent transformers can process. This format is a sequence of L tokens, with each token repre-
sented by a vector of the space V = {v1, vy, ...,un} C RY, where d is defined as a hyperparameter
of the architecture (see appendix A).

The VQVAE alternates residual convolutional layers, attention blocks, and convolutional downsam-
pling layers to convert an image' © € RW >3 (W and H are the width and height of the image,
respectively) to a latent-space representation z;(x) = (21,1(7), 21,2(¥), ..., z1,.(¥)) € REX. Then
each latent vector is quantized into a token simply by picking the closest embedding vector in V),
that is to say, z(z) € REX9 is such that z;(z) = argmin,ey (||21:(z) — v||2) foreachi =1, ..., L.

A decoder network with a symmetrical structure to the encoder (not shown in figure 1) is used
to reconvert a token sequence z back into an image #(z) for the purposes of training the whole
autoencoder pair.

3.4 CORRECTOR TRANSFORMER

The purpose of the corrector transformer is to avoid drifting, i.e. making the internal representation
stick with the evolution of the video. This is achieved by updating the estimated representation A¢ ()
with the corresponding frame z; thus producing a corrected representation A; (). It is implemented

"'We omit the ¢ subscript in this paragraph for ease of notation, since the VQVAE processes images as single
entities, not as parts of a video.
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by a transformer that produces the corrected representation (A; (x)) by performing an unmasked
cross-attention of the two inputs (A¢(z) and z;).

It is worth noting that this structure fits neither the transformer encoder nor the transformer decoder
descriptions as traditionally defined in Vaswani et al. (2017), since we perform cross-attention (like
a decoder) without including a causal mask (like an encoder). This allows us to compare the two
input sequences as a whole, without arbitrarily limiting the context. We also note that the purpose
of this transformer is not to perform autoregressive generation, so a non-causal flow of information
causes no harm.

3.5 PREDICTOR TRANSFORMER

The predictor transformer performs self-attention on the representation A} (x) to estimate its ad-
vancement to the next time step Ayy1(x).

The predictor and corrector transformers can be seen as two halves of one model, dedicated to
predicting the next internal representation on the basis of the current representation and the current
frame of the video being processed. For this reason, each of them has individually fewer layers
compared to the decoder (see section 3.6).

3.6 DECODER TRANSFORMER

The decoder transformer converts a representation A;q(z) into a sequence of tokens Z;y1. The
loss is computed by comparing 2, ; with 241, i.e. the sequence of tokens obtained from the input
frame.

3.7 ARCHITECTURE VARIANTS

We experiment with two variants of this architecture, defined by the positioning of the decoder
transformer in the structure laid out so far.

The default FPTT architecture, represented by the continuous lines in figure 1, has this stage posi-
tioned between the predict step that generates A;11(z) and the subsequent correct step. Thus, the
loss computes the error on the prediction of the frame 2, 1.

The alternative variant, which we call FPTT-pre, is identical except that the decoder transformer
takes A} () instead. This is represented in figure 1 by replacing the line labeled as “default” with
the dashed line labeled as “FPTT-pre”. This produces a structure that is more in line with Kipf et al.
(2022) and Singh et al. (2022), while the default FPTT diverges from such previous work.

The objective of this experiment is to test whether calculating the loss on the predicted future repre-
sentation, as opposed to the corrected current one, directs the model’s attention towards the accurate
prediction of future events, thus emphasising the world modelling objective. This will be achieved
by experimenting with different placements of the decoder transformer (and thus of the loss func-
tion).

In the absence of any contrary indication, the two variants are to be considered as operating in a
similar manner.

3.8 TRAINING

The VQVAE is trained in isolation with respect to the whole architecture. To enhance the stability
of the training process, we maintain a fixed configuration of the VQVAE parameters throughout the
training of the other components. Following Micheli et al. (2023), the loss is a combination of a
mean absolute error and a perceptual loss (Johnson et al., 2016) on the reconstruction, as well as a
commitment loss on the embeddings (van den Oord et al., 2017).

As for the corrector, predictor and decoder transformers, they are trained together in an end-to-
end fashion, with the objective to minimize a cross-entropy loss on the (tokenized versions of the)
predicted frames 2o, ..., 27 with respect to the ground-truth ones zs, ..., zp.
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Figure 2: Example frames from the PHYRE dataset. 4 task types out of the full 23 are exemplified.

Both parts of the architecture are trained in a self-supervised way, with unlabeled videos from a
suitable dataset. See section 4.4 for further details on the dataset.

4 EXPERIMENTS

The ability to model the world of the proposed architecture (FPTT) is assessed through a physi-
cal reasoning task (see section 4.1) that requires the ability to predict how a set of objects moves
in a given environment. Specifically, we experiment with the PHYRE dataset which provides a
benchmark containing a wide set of simple classical mechanics puzzles in a 2D physical environ-
ment (Bakhtin et al., 2019). We compare the performance of the two variants of the FPTT archi-
tecture against each other and a baseline taken from the existing literature. We also performed an
ablation study to investigate the efficacy of the various components of the architecture.

4.1 PHYSICAL REASONING TASK

We adhere to the definition of a physical reasoning task as outlined in the PHYRE benchmark
(Bakhtin et al., 2019). The task is set in a two-dimensional world that simulates simple deterministic
Newtonian physics with a constant downward gravitational force and a small amount of friction.
This world contains non-deformable objects, distinguished by colour, that can be static (i.e. they
remain in a fixed position) or dynamic (i.e. they move if they collide with another object and are
influenced by the force of gravity). These objects can be arranged in different configurations to
create a wide diversity of tasks. We use a dataset made of video recordings from 23 different tasks,
for a total of 1.15M video samples.

A task consists of an initial world state and a goal (see figure 2). The initial world state is a pre-
defined configuration of objects. The goal for all tasks is the following: at the end of the simulation
the green object must touch the blue object. If the goal is achieved, the task succeeds (as in the
PHYRE terminology).

Given a video (as a sequence of frames), the objective of the world model is to build an internal
representation that can be used to predict if the depicted task will succeed or fail. The ability to
predict that represents an auxiliary classification problem. This allows us to indirectly assess the
performance of the world models. It is worth noticing that the same evaluation protocol is used in
related work (Wu et al., 2023).
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Figure 3: Diagram of the experimental setup, showing how the classifier is positioned with respect
to the world modelling architecture. Note: in the case of the decoder-only ablation, replace A with
zZ7.

4.2 BASELINE

The performance of the proposed architecture is evaluated in comparison to STEVE (Singh et al.,
2022), a slot encoding architecture that is also based on the correction-prediction pattern. The input
frame is encoded using a convolutional neural network (CNN) which feeds a recurrent neural net-
work (RNN) acting as corrector. The result is then passed to the predictor (there called “interaction
step”), a single-layer transformer.

For the purposes of loss calculation, the slots resulting from the corrector (before the predictor) are
translated into a token sequence (i.e. Z;) by a transformer decoder and compared against a ground-
truth token sequence produced directly from the real video frames via a pretrained VAE.

4.3 ABLATION STUDY

As a further comparison, we consider an ablated version of the FPTT architecture where the cor-
rector and predictor transformer (therefore, the components enabling slot-encoding mechanism) are
removed from the architecture. This leaves only the decoder transformer to learn the entirety of the
world modeling task, predicting the (tokenized version of the) next frame z;, directly from the
previous one z;, without using an internal representation. In the following, we refer to this ablated
architecture as decoder-only.

It can also be noted that this architecture represents a close adaptation to our non-interactive context
of the approach to world modelling from visual data by Micheli et al. (2023), which also uses a
single transformer to predict the future world state in a reinforcement learning setting.

This is the only possible ablation, because the loss is computed against a tokenized representation
of the video frames, so the decoder is needed to produce the tokenized versions of the predicted
frames.

4.4 EXPERIMENTAL SETUP

We experiment on a dataset of synthetic videos presented in Qi et al. (2021). This dataset was
generated by rendering simulations from the PHYRE benchmark for physical reasoning (Bakhtin
et al., 2019). Specifically, we focus exclusively on videos from B-tier tasks, and within-template
evaluation. Figure 3 shows the experimental setup. The world model takes a video (as a sequence
of frames) from the PHYRE task and builds a representation. This representation is then passed to a
classifier which predicts the result of the task (i.e. success or failure). As for the classifier, we use a
BERT-like encoder architecture (Devlin et al., 2019), trained in a supervised manner.

As for FPTT (default and FPTT-pre variant) and STEVE, we proceed as follows. Each video in the
dataset represents a task that is labeled as either “success” or “failure”. The world model is given
the first N frames of a video whose total length is T" frames, with N < T'. The remaining T' — N
frames are kept hidden from the model. In order to obtain the representation of the whole video,
including both the given section and an estimation for the following hidden one, the N given frames
are processed as usual, updating the representation in the correct step and advancing it to the next
timestep in the predict step. Afterwards, the remaining T'— NV steps are projected by simply repeating
the predict step, skipping the correction for the hidden frames (see figure 4). In the experiments, N
is set to 5, while 7" varies depending on each video, ranging from 7 to 18, with many videos being
12-15 frames long.
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Figure 4: Illustration of the process described in section 4.4 for FPTT and STEVE. Notation has
been simplified with respect to figure 1. C represents the corrector transformer, P stands for the
predictor one.

We follow a similar approach for the decoder-only architecture, accounting for the lack of an internal
representation in this case. The world model sees the first N frames and the remaining are generated
autoregressively by the transformer. The final frame, i.e. the sequence of tokens 2, is passed to the
classifier instead of a representation.

All the experimenting architectures employ the same pre-trained VQVAE for transforming each
input frame into a sequence of tokens (see section 3.3).

Overall, the dataset contains 1.15M videos: 95% are used for training purposes, and the remaining
5% for evaluation. We consider the following classification metrics: accuracy, precision, recall, and
F1 score. The experiments were run on a server with an NVIDIA A100 graphics card, with 40GB
memory.

We report the training time for experiments with the various architectures in table 1, noting that
repeated runs with the same architecture resulted in extremely similar times. We attribute the much
higher time in the decoder-only case to the fact that, without an internal representation, the trans-
former needs to deal with the longer z; sequences, and the time and memory requirements for the
self-attention operation scale quadratically with sequence length.

4.5 RESULTS

We report on the result of our experiments in figure 5. To make reading easier, we also include
versions of those plots limited to a more relevant range in figure 6. Each experiment was repeated 5
times for statistical significance.

Looking just at the plots in the figure, it can be observed that FPTT and the decoder-only the
FPTT-pre variants exhibited comparable performance, while the STEVE baseline performs much
worse. In all cases, the evolution of the metric value over the course of the training process is very
unstable, due to the wide variety of situations proposed in the dataset. Looking closer to the F1 score
(Figure 6), we can also observe that the negative peaks of FPTT are not as intense as those of the
other variants, indicating a comparatively better stability.

We also claim that FPTT is more sample efficient than the baselines, and provide quantitative evi-
dence based on Gu et al. (2017). We set a performance threshold at 0.85 on the F1 score and measure
the number of training steps required in each experimental run to reach this threshold for the first
time. As a consistency condition, we require the threshold to be exceeded for 6 consecutive training
epochs (each epoch has 500 training steps, followed by an evaluation phase.) We report the result in
table 1, noting an improvement for our default architecture with respect to the others.?

As for the lower performance of the STEVE baseline, we noted that during our experiments STEVE
would always default to predicting a blank scene immediately after it stops being given frames (refer
to the experimental setup in section 4.4), causing the class prediction to be either always “success”
or always “failure”. Therefore, we believe we hit a limitation of the STEVE architecture, which was
conceived for slot encoding has difficulty with extrapolating a world model.

2STEVE not given a value in the S.E. column because its F1 score is significantly lower and never passes
the threshold.
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Table 1: Quantitative data from our experiments. “S.E.” stands for “sample efficiency”.

S.E. Metric Training time
Steps (mean =+ std. err.) Hours
FPTT (Ours) 16200 + 4760.8 ~ 3.5
STEVE N/A ~ 3.5
Decoder only 19000 £ 4585.3 ~ 8.5
FPTT-pre (Ours) 19000 + 4937.1 ~ 3.5
1.0 -
0.8
> 0.6 1 " F (Ours)
@ S STEVE
g $| Decoder only
® 04l = 0.4 FPTT-pre (Ours)
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Figure 5: Classification results on test data as a function of the number of training samples observed.
Each line represents an average over 5 experiments; the coloured bands indicate the standard error

of the mean.

5 DISCUSSION

In this section, we discuss the limitations of our approach, outline possible future research directions

and draw our conclusions from this study.

FPTT (Qurs)
STEVE
Decoder only
FPTT-pre (Ours)

d

T T T T T
20000 40000 60000 80000 100000
training samples

(d) Recall



Under review as a conference paper at ICLR 2025

09 i A, l'fji.- ,'”
1 I il i i

0 20000 40000 60000 80000 100000
training samples

Figure 6: Classification results focused on the range [0.6, 1] on the y axis.

5.1 LIMITATIONS

Despite the observed performance improvements, the representation remains opaque and lacks in-
terpretability. Our attempts at replicating the object segmentation displayed by slot-attention archi-
tectures (Kipf et al., 2022; Singh et al., 2022) have not yet yielded positive results so far. However,
this may be overturned by more systematic experimentation in the future.

Furthermore, we acknowledge that, although the dataset we used presents a variety of visual config-
urations, it is ultimately synthetic and simplistic. Although we claim that the presented experiments
demonstrate the benefit of the proposed architecture, we do plan to extend the experiments to more
complex video datasets such as MOVi-E (Greff et al., 2022) and Physion (Bear et al., 2021), which
will test its performance in more realistic scenes as well as its generalization capabilities. Experi-
ments on the latter dataset are currently ongoing but could not be completed for this publication.

5.2 CONCLUSION

We propose a new architecture, the Future-Predicting Transformer Triplet for world modeling
(FPTT), which leverages the power of transformers for sequence learning to model the behaviour of
objects in a set of videos and predict the evolution of the environment.

We experimentally show that our architecture outperforms transformer-based world models (Micheli
et al., 2023), and improves on slot-attention methods (Kipf et al., 2022; Singh et al., 2022) in terms
of sample efficiency and stability during the training process.

In the future, we intend to conduct further experiments with the architecture in more interactive envi-
ronments, in which objects can be moved by agents. Moreover, we would like to study applications
to causal discovery problems (Yu et al., 2023), where learning a compact representation that can be
interpreted causally might help in understanding complex scenarios.

10
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A  HYPERPARAMETERS AND CONFIGURATION

This whole work was implemented in Pytorch (Paszke et al., 2019); the code is open source and
published on [Link redacted from the anonymized version, see supplementary material].

A.1 VQVAE FOR TOKENIZATION

See table 2 below. The implementation is based on Esser et al. (2021) and Micheli et al. (2023).

Table 2: Hyperparameters for the VQVAE, both encoder and decoder

Hyperparameter Value
Video resolution (pixels) 64 x 64
Number of tokens per frame 64
Channels in convolution 64
Number of residual conv. layers 10
Number of self-attention layers 3

A.2 TRANSFORMERS AND SLOT ENCODING
See table 3 below. The implementation is based on nanoGPT (Karpathy, 2023). The transformers
involved, i.e. the corrector-predictor-decoder triplet and the task success classifier, use the same

values for the hyperparameters unless otherwise specified.

Table 3: Hyperparameters for the transformer triplet

Hyperparameter Value
Vocabulary size 50304
Number of tokens per frame 64, as above
Token embedding dimension 768
Number of layers (corrector) 2
(predictor) 2
(decoder) 6
(task classifier) 2
Number of attention heads 12

Number of slots 4
Given video frames (V) (task classifier) 5

A.3 TRAINING PROCESS
See table 4, 5, and 6.

Table 4: General configuration for the training process

Configuration Value

Epochs 100

Batch size (BS) 10

Batches per epoch (BPE) 50

Training steps per epoch BS x BPE =500

Data samples Training 1092500
Evaluation 57500

B EXISTING ASSET ATTRIBUTION

The following implementations have been referenced during this work:
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Table 5: Optimizer for the VQVAE

Hyperparameter  Value
Type Adam (Kingma & Ba, 2015)
Leaning rate 10~

Table 6: Optimizer for each transformer

Hyperparameter Value

Type AdamW  (Loshchilov & Hutter, 2019)
Leaning rate 6-1074

Weight decay 0.1

(81, 5) (0.9,0.95)

* nanoGPT (Karpathy, 2023) for the Transformer implementation, licensed under the MIT
license;

* Esseretal. (2021) for the VQVAE implementation, released under the MIT license;

e Micheli et al. (2023) for further details about the Transformer and VQVAE implementa-
tions, as well as the “decoder only” baseline, licensed under the GPL;

 Singh et al. (2022) for the STEVE baseline, licensed under the MIT license.

The PHYRE video dataset has been generated by Qi et al. (2021) from the PHYRE
simulator (Bakhtin et al, 2019). It was downloaded following the instructions on the
author’s GitHub repository: https://github.com/HaozhiQi/RPIN/blob/master/
docs/PHYRE.md#11-download-our—-dataset

Correspondence with the author has confirmed that the dataset is released under the same license as
PHYRE itself, i.e. the Apache license.
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