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Abstract

Accurate 3D reconstruction of nanomaterials is essential for studying their phys-1

ical properties. Focused Ion Beam (FIB) tomography is a preferred method for2

creating 3D image stacks of micrometer-sized material volumes at nanometer reso-3

lution. To achieve valid 3D reconstructions, it is crucial to segment these images4

using machine learning-based methods, as they help mitigate artifacts in the data.5

However, supervised machine learning requires a large amount of training data6

and ground truth, which is challenging because FIB tomography is a destructive7

technique. While training machine learning models on synthetic data and applying8

this to real data is possible, it is only partially accurate due to differences in data9

distributions. Moreover, generating synthetic training data is time-consuming, even10

with modern computing, because of the complex physical Monte Carlo modeling.11

This study proposes a machine learning pipeline that reduces the difference in FIB12

tomography data distribution using domain adaptation techniques and introduces a13

novel method for quickly generating synthetic data by considering physical effects14

without Monte Carlo simulations.15

1 Introduction16

Nanoporous materials have significant potential in fields like materials science and biochemistry17

due to their unique properties. To understand these properties, accurate 3D reconstruction of their18

structure is often required. When studying nanoporous materials, such as hierarchical nanoporous19

gold (HNPG), electron microscopy (EM) is one of the few imaging methods that can provide the20

necessary resolution, as pore sizes can be smaller than 20 nm. Focused ion beam (FIB) combined21

with a scanning electron microscope (SEM) allows for high-resolution volumetric data collection of22

such nanomaterials, with in-plane (xy) resolution of 1 nm and depth resolution of 10 nm or less. This23

is achieved by removing material and imaging the newly exposed cross-sections consecutively (1).24

However, because FIB tomography is a destructive technique, obtaining ground-truth values for the25

structure being studied is impossible.26

Additionally, these high-resolution image stacks often contain artifacts, such as the shine-through27

effect and intensity ambiguities (2). The shine-through effect occurs when structures from deeper28

layers become visible in the current milling plane, introducing extra information to the images. As a29

result, it is very challenging to uniquely map intensity and structural information in gray-scale FIB30

tomography images.31

These challenges make it hard to semantically segment FIB tomography images using traditional32

methods like thresholding or k-means clustering, which rely mainly on intensity values. However,33

as demonstrated in (3), combining FIB tomography with machine learning can lead to accurate 3D34
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reconstructions of nanomaterials. In their study, they trained machine learning models on synthetic35

data and then applied this knowledge to extract structural information from real FIB tomography36

data.37

Training deep learning models with synthetic data is especially valuable in electron microscopy,38

where acquiring real data is difficult and expensive. In FIB tomography, the sample is destroyed,39

making it impossible to obtain ground-truth data. Synthetic data, however, can be easily reproduced40

and often include ground truth values, making them highly useful. Researchers have successfully used41

synthetic data in various fields, such as training machine learning models for autonomous vehicles42

to handle rare scenarios (4; 5). In electron microscopy, (6) generated simulated images of basic43

geometries for training purposes.44

However, generating synthetic electron microscopy data presents challenges. It is time-consuming and45

resource-intensive, and creating realistic synthetic data requires comprehensive physical knowledge.46

The best synthetic data in electron microscopy are generated using Monte Carlo simulations, as47

suggested by (7). However, simulating 512 slices of 512 x 512 pixels using the Monte Carlo plugin in48

Dragonfly software (8) can take time in days on a high-performance CPU due to the need to calculate49

each electron trajectory.50

Monte Carlo simulations are generally slow because they require iterative calculations for each event.51

Recently, generative adversarial networks (GANs) have shown promise in generating these events52

more efficiently. For instance, (9) demonstrated the use of GANs in particle physics, while (10)53

suggested a GAN-based approach for simulating electron-proton scattering events. Additionally,54

(11) proposed a 3D GAN based on StyleGAN2 (12) to generate realistic MR images. In electron55

microscopy, (13) utilized CycleGAN to create realistic scanning transmission electron images.56

However, to effectively replace Monte Carlo simulations, which incorporate physics-based knowledge,57

generative networks must also be provided with the necessary information to accurately simulate data58

using machine learning.59

(A) (B)

Figure 1: Slice of a (A) synthetic hierarchical nanoporous gold (HNPG) generated using MCXray
plugin and (B) real HNPG structure - scale bar: 200 nm

When generating synthetic data, it is not always guaranteed that it will match the distribution of real60

data. This mismatch often occurs because synthetic data typically follow strict physical formulas,61

making them too ideal. As a result, they lack the randomness and unique characteristics found62

in real-world data (see Figure 1). Due to these differences, models trained on synthetic data may63

underperform when applied to real data (14; 15).64

In this study, we make two key contributions. First, we introduce a synthetic data pipeline that65

replaces the time-intensive Monte Carlo simulations with generative networks. This pipeline includes66

an additional artificial neural network (ANN) block designed to incorporate critical characteristics,67

such as realistic structural details and the physical relationships between variables like voltage,68

penetration depth, and atomic number. Second, we enhance the semantic segmentation of hierarchical69

nanoporous gold (HNPG) by applying domain adaptation techniques using generative networks.70

Our results demonstrate that our novel machine learning-based synthetic data pipeline performs on71

par with Monte Carlo-based simulation methods. Additionally, by applying domain adaptation to72

synthetic data before training, we achieve, on average, a 20% improvement in 3D reconstruction73

accuracy for semantic segmentation tasks.74
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2 Method75

2.1 Acquiring Imaging Data76

In this study, we analyzed real HNPG samples and generated synthetic samples using various methods.77

2.1.1 Synthetic Samples78

We began by generating binarized structures using the leveled wave method (LWM) (16), as described79

in (17). These binarized structures served as the first step in our synthetic FIB tomography data80

generation pipeline and provided the ground-truth values for our synthetic data.81

Next, we used the Monte Carlo plugin in Dragonfly software (8) to generate realistic synthetic FIB82

tomography images, which incorporate nearly all relevant electron microscope physics (7). We83

created three synthetic datasets with different voltages (1kV, 2kV, and 4kV) using the same initial84

structure. These multi-voltage datasets (sMC-1kV, sMC-2kV, and sMC-4kV) are suitable for training85

multimodal machine learning models. Additionally, we generated three more synthetic datasets (sML-86

1kV, sML-2kV, and sML-4kV) using the same binarized structure but with the machine learning87

method outlined in Section 2.3 instead of Monte Carlo simulations. To evaluate the impact of domain88

adaptation, we also created domain-adapted versions of the Monte Carlo datasets (sMCDA-1kV,89

sMCDA-2kV, and sMCDA-4kV).90

Furthermore, we prepared a dataset, sMC-BS, using Monte Carlo simulations to capture realistic91

material contrasts. We generated 50 virtual structures, each with an epoxy layer of varying thickness92

(0 to 190 nm in 10 nm increments) over a bulk material. These structures were simulated at different93

accelerating voltages and with various materials. By calculating the mean voxel intensities for each94

structure, we derived realistic backscattered coefficients. These coefficients, along with atomic95

number, accelerating voltage, and penetration depth, were used to train our artificial neural network96

(ANN) in a supervised manner.97

2.1.2 Real Samples98

An HNPG sample with a uniform random network structure and ligament sizes of 15 and 110 nm was99

prepared using the dealloying-coarsening-dealloying method (17). To enhance SEM imaging for solid-100

pore phase differentiation, the sample was infiltrated with epoxy resin (18). Following the approach101

in (19), multi-voltage FIB tomography was conducted using a Dual Beam FEI HeliosNanoLab G3102

system with ASV4 software for automated control (20), which also monitored milling progress and103

compensated for drift (21).104

To optimize HNPG tomography, two fiducial markers with intersecting trenches and a ruler system105

were used for drift compensation and precise slice thickness determination (22; 23). Three datasets106

at different accelerating voltages (1kV, 2kV, and 4kV) were prepared as described in (19) and are107

referred to as r-1kV, r-2kV, and r-4kV.108

2.2 Machine Learning Architecture109

We employed an encoder-decoder model based on cycle-consistent adversarial networks (CycleGAN)110

(24). This architecture utilizes two GANs with identical structures, each focusing on different tasks:111

the first maps data from the source domain to the target domain, while the second maps data from the112

target domain back to the source domain. This design enables the model to learn without requiring113

paired image data, making it suitable for unsupervised tasks.114

For the encoder, we used a customized U-Net (25) with residual connections, and for the decoder, we115

adopted the architecture proposed in (24).116

The cycle loss concept was key in addressing two primary challenges in this study: generating117

synthetic data and minimizing differences in data distribution.118

2.3 Generating Synthetic Data Using Machine Learning119

To efficiently generate Monte Carlo-like images, we employed a CycleGAN model combined with an120

artificial neural network (ANN) trained on physics-based data.121
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Figure 2: Block diagram of the experimental setup to obtain synthetic images using machine learning
based on physical effects

In electron microscopy, the relationship between the backscattered electron coefficient (η), acceler-122

ating voltage (E), and atomic number (Z) is well-established (Equation 1) (26). However, a direct123

relation between η and penetration depth has not been explicitly defined in existing literature. To124

address this, we defined a basic ANN model, which had three input features, followed by four125

hidden layers containing 16, 32, 32, and 32 neurons, respectively, and a single output to map the126

backscattered electron coefficient with accelerating voltage, atomic number, and penetration depth.127

η(Z,E) = Em(Z)∗C(Z) (1)

Where128

m(Z) = 0.1382− 0.9211

Z0.5
(2)

C(Z) = 0.1904− 0.2236 · ln(Z) + 0.1292 · (ln(Z))2 − 0.01491 · (ln(Z))3 (3)

Then, we trained this ANN model in a supervised manner using the sMC-BS dataset (see Section129

2.1.1) to obtain the necessary backscattered coefficients to preprocess the leveled wave method130

(LWM) data before feeding it into the CycleGAN model. These backscattered coefficients were131

normalized across groups of atomic numbers and accelerating voltages and then applied as weights132

to generate weighted grayscale images from the binarized LWM data, typically using 10-15 slices to133

create the final preprocessed dataset.134

These preprocessed gray-scale images served as the source domain, while the corresponding Monte135

Carlo simulation data acted as the target domain. The CycleGAN model was trained in an unsuper-136

vised manner, similar to domain adaptation, to enhance the robustness of our pipeline. The complete137

pipeline for this approach is illustrated in Figure 2.138

2.4 Reducing Data Distribution Differences Using Machine Learning139

To address the data distribution discrepancies between synthetic (source domain) and real FIB140

tomography data (target domain), we utilized a CycleGAN-based approach for unpaired image style141

transfer. This process, known as domain adaptation, was applied to synthetic datasets (sMC-1kV,142

sMC-2kV, sMC-4kV, sML-1kV, sML-2kV, and sML-4kV) to produce the final training datasets. The143

full pipeline for generating domain-adapted synthetic data and performing semantic segmentation on144

real HNPG data is illustrated in Figure 3.145

2.5 Semantic Segmentation Using Machine Learning146

After domain adaptation, we conducted semantic segmentation on all datasets following the approach147

outlined in (3). We trained three different models to evaluate performance: one using domain-adapted148

4



Figure 3: Block diagram of the experimental setup to reduce data distribution difference between
synthetic and real HNPG images. Gx and Gy are CNN-based generators, and Dx and Dy are
discriminators for the source domain (x) and the target domain (y) respectively

data, another using Monte Carlo simulation data, and a third using data generated with our proposed149

method. This comparative analysis allowed us to measure the improvement in segmentation accuracy150

due to domain adaptation and our innovative data generation technique.151

2.6 Training Procedure152

All machine learning models were trained on RTX 3090 GPUs. For CycleGAN, images were cropped153

into smaller patches (128 × 128) with a 64-pixel stride using a sliding window technique, and154

training was conducted on these 2D image patches. The loss functions employed were consistent155

with those proposed in (24), with an initial learning rate of 0.001, which decayed by a factor of 10 if156

no improvement in loss was observed for ten consecutive epochs.157

For semantic segmentation, we adopted a structured training approach, presenting data as individual158

2D slices, 3D volumetric stacks, or 2D slices combined with neighboring slices in smaller patches159

(64 × 64). The models were optimized using Dice loss in conjunction with the Adam optimizer, with160

an initial learning rate of 0.0001, reduced by a factor of 10 after 10 epochs without improvement.161

The ANN model, used in the synthetic data generation pipeline, was trained using mean squared error162

(MSE) loss, with a learning rate decay scheme similar to that of the segmentation models. Detailed163

training parameters for all models are summarized in Table 1.164

Table 1: Summary of parameters used for training ML models

Parameter GANs Semantic Segmentation ANN

Patch size 128 64 -

Stride 0.5 0.5 -

Batch size 1 64 8

Epochs 100 with early stopping with patience=25

Loss CycleGAN Loss Dice loss MSE

Optimizer Adam

Learning rate 0.0001, adapted with a patience of 10 (reduction factor 10)
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2.7 Evaluation Criteria165

We used two types of accuracy metrics to evaluate our methods: those based on ground truth values166

for synthetic datasets and anisotropy-based metrics for real data where ground truth is unavailable.167

These metrics are inspired by (3).168

2.7.1 Synthetic Data169

For synthetic datasets, where ground truth data is available, we used three metrics:170

First, misplaced pixels (MP) measures the fraction of incorrectly classified pixels compared to the171

ground truth. It is calculated as:172

MP =

(
1− TP + TN

TP + FP + FN + TN

)
× 100 (4)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives,173

respectively. Second, misplaced gold pixels (MGP) assesses the fraction of misclassified gold pixels.174

It is computed by:175

MGP =

(
1− TP

TP + FN

)
× 100 (5)

MGP is useful for evaluating imbalanced data but does not account for false positives. Third, mean176

Dice score (MDS) evaluates the overlap between predicted and ground truth regions (27). Calculated177

for each phase, the Dice score is:178

DS =
2TP

2TP + FN + FP
. (6)

The MDS averages the Dice scores for the solid and pore phases.179

2.7.2 Real Data180

We used anisotropy-based metrics for real data where ground truth is unavailable, assuming isotropy181

in the structure. This is a valid assumption for hierarchical nanoporous gold (28; 29). The metrics182

include:183

First, the two-point correlation function (TPCF) error (eTPCF
L2

) assesses anisotropy by comparing the184

TPCF values in different directions. It is calculated as:185

eTPCF
L2

=
1

2

(
2×

√∑n
i=1(f

x
i − fz

i )
2√∑n

i=1(f
x
i )

2 +
√∑n

i=1(f
z
i )

2
+

2×
√∑n

i=1(f
y
i − fz

i )
2√∑n

i=1(f
y
i )

2 +
√∑n

i=1(f
z
i )

2

)
(7)

where fx
i , fy

i , and fz
i are the discretized functional values in the x-, y-, and z-directions, respectively.186

A value of zero indicates perfect isotropy; higher values suggest anisotropy.187

Second, lineal path function (LPF) error (eLPF
L2

) is computed analogous to eTPCF
L2

but based on the188

LPF. This metric evaluates anisotropy based on local correlations between points in the same phase.189

Third, diameter error (eDL2
) compares the predicted ligament diameters in different directions. It is190

calculated by:191

eDL2
=

1

2

(√
(Dxz −Dxy)2

D2
xy

+

√
(Dyz −Dxy)2

D2
xy

)
(8)

where Dij represents the average diameter of the ligaments in the ij-plane. A value of zero indicates192

a geometrically isotropic structure.193

All metrics are normalized to a range of [0, 1], where 0 denotes perfect accuracy, and 1 indicates a194

complete mismatch.195

3 Results196

3.1 Comparing different simulation techniques197

To achieve optimal performance in downstream tasks for real datasets, it is crucial to train machine198

learning models using well-prepared data, including synthetic data. This study compares our novel199
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machine learning-based simulation technique with the state-of-the-art Monte Carlo-based simulation200

method. We trained two machine learning models using two different datasets: sML-2kV (prepared201

using our ML-based method) and sMC-2kV (prepared using the Monte Carlo-based method). We then202

evaluated the models by calculating the overlapping regions of binary structures of r-2kV predicted203

by these segmentation models, using the mean Dice score (MDS) as described in Section 2.7.1. An204

MDS value of 0.83 indicates a high degree of overlap between the segmentations, demonstrating the205

effectiveness of our ML-based simulated data.206

Table 2: Segmentation results of ML models trained on sML-1kV, sML-2kV and sML-4kV on
respective test data prepared using our ML-based simulation method instead of Monte Carlo-based
method

Data MP ↓ MGP ↓ MDS ↑
sML-1kV 0.310 1.251 0.993

sML-2kV 0.539 2.415 0.987

sML-4kV 0.844 3.583 0.980

(A) (B)

Figure 4: A slice of a synthetic hierarchical nanoporous gold generated using (A) MCXray plugin
and (B) our ML-based simulation method - scale bar: 200 nm

Additionally, Table 2 demonstrates that models trained on synthetic data prepared using our ML-207

based method exhibit comparable performance in terms of absolute errors. These results are directly208

comparable to those of ML models trained on synthetic data prepared using the Monte Carlo method209

(see Table 3 - only ML). The segmentation results are particularly promising for the real dataset r-2kV,210

with minimal anisotropy-based errors: eTPCF
L2

= 0.1526, eLPF
L2

= 0.0359, and eDL2
= 0.0222. These211

values indicate the strong performance of segmentation models trained using our novel ML-based212

simulation method. Figure 6 in Appendix shows a visual comparison of segmentation performed213

using both ML models.214

Another notable advantage is the significantly reduced preparation time for simulated data using our215

method, which takes seconds compared to days required for the computation-intensive Monte Carlo216

methods. Figure 4 provides a comparison of a single FIB tomography dataset slice simulated using217

both the Monte Carlo method and our ML-based method.218

3.2 Comparing semantic segmentation after domain adaptation219

We evaluated the impact of our domain adaptation technique on the segmentation performance of220

machine learning models. Specifically, we compared the segmentation performance on synthetic FIB221

tomography data and real HNPG datasets. The machine learning models were trained on synthetic222

training data both with and without domain adaptation, and the results were predicted on the same223

dataset.224
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3.2.1 Synthetic Data:225

For synthetic datasets, which have ground truth values, we calculated absolute error-based metrics226

as described in Section 2.7.1. Table 3 presents the calculated MP, MGP, and MDS for synthetic test227

datasets (s-1kV, s-2kV, and s-4kV) predicted using machine learning models trained on sMC-1kV,228

sMC-2kV, and sMC-4kV data, and once with domain-adapted sMCDA-1kV, sMCDA-2kV, and229

sMCDA-4kV data. The comparable MP and MGP errors and MDS values for all corresponding230

test datasets indicate that the domain adaptation process does not significantly reduce performance.231

However, to demonstrate the clear advantage of domain adaptation for segmenting real HNPG datasets232

with substantial data distribution differences, we compared the performance of both machine learning233

models on the same real HNPG dataset in the next section. Figure 7 depicts a visual comparison of234

segmentation performed using different techniques.235

Table 3: Comparison of segmentation results based on absolute errors with (ML+DA) and without
(only ML) domain adaptation on test datasets

Method

Measure
MP ↓ MGP ↓ MDS ↑

Original 0.000 0.000 1.000

M
L

+
D

A s-1kV 0.401 1.654 0.991

s-2kV 0.833 3.294 0.980

s-4kV 1.809 7.428 0.958

on
ly

M
L s-1kV 0.245 0.963 0.994

s-2kV 0.654 2.512 0.985

s-4kV 1.407 6.466 0.967

3.2.2 Real Data:236

Table 4: Comparison of segmentation results based on isotropy errors with (ML+DA) and without
(only ML) domain adaptation on real datasets

Method

Measure
eTPCF
L2

↓ eLPF
L2

↓ eDL2
↓

M
L

+
D

A r-1kV 0.132 0.047 0.029

r-2kV 0.121 0.096 0.059

r-4kV 0.140 0.038 0.017

on
ly

M
L r-1kV 0.145 0.059 0.030

r-2kV 0.169 0.091 0.037

r-4kV 0.271 0.181 0.138

It is crucial to assess the effect of training data prepared using domain adaptation on real HNPG237

datasets, as data distribution shifts are typically observed between synthetic and real FIB tomography238

datasets. Table 4 shows the superior performance of machine learning models trained using domain-239

adapted datasets. Notably, the very low errors for the r-4kV dataset for ML models with domain240

adaptation highlight the method’s effectiveness, even for datasets with large artifacts, such as r-4kV.241

Since capturing microscopy images at lower voltages requires significant effort and expertise, our242

domain adaptation method offers a novel approach for microscopists to capture images at higher243

accelerating voltages while achieving similarly good segmentation results. Figure 5 provides a244

histogram comparison of sMC-2kV, sMCDA-2kV, and r-2kV, illustrating the qualitative improvement245

8



due to our domain adaptation technique. Figure 8 describes a visual comparison of segmentation of246

real HNPG microstructures performed using different techniques.247

(A) (B) (C)

Figure 5: A slice of (A) a synthetic hierarchical nanoporous gold (HNPG) generated using MCXray
plugin and (B) a real HNPG structure and (C) a synthetic HNPG structure after domain adaptation.
The lower row represents histograms of the respective datasets - scale bar: 200 nm

4 Conclusion248

In this study, we proposed a novel method for rapidly generating synthetic data by leveraging249

available physics knowledge, thereby bypassing the time-consuming Monte Carlo methods. This250

approach addresses the large data requirements for machine learning models, achieving performance251

comparable to traditional Monte Carlo based methods. Our method also lays the groundwork for252

more sophisticated techniques that can accommodate various materials and microscopy conditions.253

Furthermore, we demonstrated that reducing data shifts through domain adaptation techniques254

significantly improves reconstruction quality. This allows microscopy data acquired at higher255

voltages, which requires less effort, to be used for accurate 3D reconstruction when combined with256

our domain adaptation technique. Overall, our work provides a robust framework for enhancing257

3D reconstruction accuracy in FIB tomography, making it a valuable tool for studying the physical258

properties of nanomaterials. However, it is important to note that generating synthetic data using259

our ML-based method has only been tested on the HNPG dataset. Future work should extend260

this approach to other materials, and consider replacing the current ANN with more sophisticated261

physics-based neural networks.262
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A Appendix347

A.1 Visual segmentation results of comparing different simulation techniques348

(A) (B)

Figure 6: Slice of a real HNPG microstructure segmented using the ML model trained on the synthetic
data prepared using (A) MCXray plugin and (B) our ML-based simulation method. Note: x kV
represents the original dataset imaged at an accelerating voltage x kV - scale bar: 300 nm
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A.2 Visual segmentation results of comparing semantic segmentation after domain349

adaptation350

A.2.1 Synthetic data351

(A) (B) (C) (D)

Figure 7: (A) Slice of a synthetic microstructure (ground truth) and segmentation results of Monte
Carlo-simulated BSE images using (B) k-means clustering, (C) ML model trained on data without
domain adaptation, and (D) ML model trained on data with domain adaptation. Note: x kV represents
the original dataset imaged at an accelerating voltage x kV - scale bar: 300 nm
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A.2.2 Real data352

(A) (B) (C)

Figure 8: Slice of a real HNPG microstructure segmented using (A) k-means clustering, (B) ML
model trained on data without domain adaptation, and (C) ML model trained on data with domain
adaptation. Note: x kV represents the original dataset imaged at an accelerating voltage x kV - scale
bar: 300 nm
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