
Can LLMs Formally Reason as Abstract Interpreters for Program
Analysis?

Anonymous ACL submission

Abstract

LLMs have demonstrated impressive capabili-001
ties in code generation and comprehension, but002
their potential in being able to perform pro-003
gram analysis in a formal, automatic manner004
remains under-explored. To that end, we sys-005
tematically investigate whether LLMs can rea-006
son about programs using a program analysis007
framework called abstract interpretation. We008
prompt LLMs to follow two different strate-009
gies, denoted as Compositional and Fixed Point010
Equation, to formally reason in the style of ab-011
stract interpretation, which has never been done012
before to the best of our knowledge. We vali-013
date our approach using state-of-the-art LLMs014
on 22 challenging benchmark programs from015
the Software Verification Competition (SV-016
COMP) 2019 dataset, widely used in program017
analysis. Our results show that our strategies018
are able to elicit abstract interpretation-based019
reasoning in the tested models, but LLMs are020
susceptible to logical errors, especially while in-021
terpreting complex program structures, as well022
as general hallucinations. This highlights key023
areas for improvement in the formal reasoning024
capabilities of LLMs.025

1 Introduction026

Large language models (LLMs) have undeniably027

changed the way we interact with software, offering028

significant benefits in software development, from029

acting as coding agents (Bouzenia et al., 2024)030

to aiding program analysis tasks (Cheng et al.,031

2024). Program analysis mathematically proves032

certain properties of a program, such as ensuring033

that safety-critical systems never reach an error034

state. A program property that always holds true is035

called a program invariant.036

Many works have leveraged LLMs for the task037

of guessing program invariants by performing su-038

pervised fine-tuning on examples of program in-039

variants (First et al., 2023; Wu et al., 2024a; Pei040

et al., 2023). However, these approaches primar- 041

ily treat LLMs as black-box tools, offloading the 042

formal reasoning to external solvers. Thus, it is 043

still unclear whether the LLMs are capable of prov- 044

ing that the generated invariants are indeed true, or 045

they are simply relying on pattern-matching from 046

the examples seen during training or fine-tuning. 047

Thus, it is of interest to see if LLMs are capable of 048

generating formal proofs as part of their reasoning. 049

One type of proof comes from running interac- 050

tive theorem provers (e.g., Lean (Moura and Ull- 051

rich, 2021), Coq (Bertot et al., 2014)) based on first- 052

order / higher-order logic and type systems. While 053

many prior works have used LLMs to generate for- 054

mal proofs (Yang et al., 2024b; Wei et al., 2024), 055

they still rely on some interaction with an external 056

solver. Another type of proof comes from conduct- 057

ing abstract interpretation on a program (Cousot 058

and Cousot, 1977). In contrast to interactive the- 059

orem provers, abstract interpretation is a form of 060

automatic (non-interactive) theorem proving that 061

soundly identifies program invariants during all 062

possible program executions. Because abstract in- 063

terpretation operates on relatively simplified mathe- 064

matical operations compared to higher-order logic, 065

evaluating LLMs’ capabilities in doing this task 066

on their own is a precursor to automating more 067

complex logical reasoning. 068

To explore these gaps, we evaluate the innate 069

ability of LLMs to conduct formal reasoning in the 070

style of abstract interpretation. These abstract in- 071

terpretation steps are inherently algorithmic, which 072

suggests that algorithmic approaches (Sel et al., 073

2023) could be beneficial, but have not been ex- 074

plored yet in the context of program analysis and 075

code semantics. To this end, we design an evalua- 076

tion pipeline as follows. First, we translate bench- 077

mark programs into a simple intermediate represen- 078

tation and annotate them with program locations 079

and control flow directives for context. Then, we 080

prompt LLMs to follow two different strategies for 081

1

invariant generation in the style of abstract inter-082

pretation. Finally, we verify whether or not the083

generated invariants are sound at each program lo-084

cation and analyze any errors LLMs have made085

during the process. Our main contributions are:086

1. We introduce how to elicit formal reasoning087

from LLMs under two abstract interpretation-088

based strategies in the context of invariant gen-089

eration.090

2. We propose an experimental pipeline and eval-091

uate LLMs’ formal reasoning abilities on real-092

world benchmark programs from the Software093

Verification Competition (SV-COMP) 2019.094

3. We quantitatively and qualitatively analyze095

thematic errors in LLMs’ formal reasoning096

to identify their common pitfalls and discuss097

how to address them.098

To the best of our knowledge, we are the first099

to systematically evaluate whether LLMs are capa-100

ble of generating and proving program invariants101

in a formal, automatic manner. The paper is orga-102

nized as follows. We first review the preliminar-103

ies and define our problem statement in Section 2.104

Then, we outline our methodology in Section 3. We105

present and discuss our experimental evaluation in106

Section 4. Finally, we review the related work in107

Section 5 and finish with concluding remarks in108

Section 6.109

2 Preliminaries110

2.1 Abstract Interpretation111

Abstract interpretation is a mathematical frame-112

work used to prove properties about programs by113

approximating their semantics. Consider the pro-114

gram in Figure 1; to verify that a program never115

reaches an ERROR state, one could theoretically ex-116

ecute the program with every possible value of a.117

However, such an analysis would never terminate,118

as a can take on infinitely many values.119

Motivated by this, abstract interpretation exe-120

cutes the program abstractly, such that the analy-121

sis can be made to terminate (Cousot and Cousot,122

1977). This is done by representing variable values123

not in a concrete domain, but in an abstract domain124

(AD). In our work, we use a simple abstract domain125

called the interval abstract domain.126

Definition 1 (Interval Abstract Domain). Each in-127

teger variable x is assigned an interval [a, b] (where128

int a = input();
if (a > 6) { a = 0; }
while (a < 6) { a = a + 1; }
if (a > 6) { ERROR; }

Figure 1: Our running example program.

a ≤ b), ⊤([− inf, inf]), or ⊥ (the empty interval, 129

or undefined). The partial order ⊑ is defined by 130

[a, b] ⊑ [c, d], if and only if c ≤ a and b ≤ d. 131

For example, instead of representing x as x = 1 132

or x = 2, we can represent it in the interval AD 133

as x 7→ [1, 2], meaning that that x can take any 134

integer value between 1 and 2. 135

Definition 2 (Abstract State). An abstract state S 136

maps each variable to an integer interval. 137

Consider the first line of the program in Figure 1 138

(int a = input();). Just after executing that 139

line, the abstract state (AS) at this location will be 140

S = {a 7→ [− inf, inf]}, indicating that the value 141

of a can be anything after reading user input. 142

Definition 3 (Witness Invariant). A witness invari- 143

ant1 ϕ maps every location in a program to an ab- 144

stract state, which maps every variable to an integer 145

interval that contains all possible values the vari- 146

able may take during execution. If every abstract 147

state does this for every program location, a witness 148

invariant (WI) is considered sound. 149

Using Figure 1 again, let l represent the program 150

location after exiting the while-loop. Consider the 151

following witness invariant (WI) ϕ = {l 7→ {a 7→ 152

[8, 10]}}. This is unsound because the value of 153

a at l may be 6, which is not represented by the 154

interval. A sound witness invariant could map l 155

to a 7→ [6, 6] or a 7→ [4, 10], as these intervals 156

contain all possible values of a at l. Now, consider 157

the following WI: ϕ = {l 7→ {a 7→ [6, 6]}}. This 158

is not only sound but also sufficiently precise to 159

prove that the ERROR state is unreachable. 160

2.2 Computing Witness Invariants 161

Computing witness invariants via abstract inter- 162

pretation requires four pieces of machinery: (1) 163

abstract transfer functions, (2) filtering operations, 164

(3) join operations, and (4) widening operations. 165

Definition 4 (Abstract Transfer Function). An ab- 166

stract transfer function lifts a program operation 167

into one that operates on a given abstract domain. 168

1In the context of our paper, we use witness invariants and
program invariants interchangeably.

2

For example, subtraction in the interval AD is169

defined as [a, b]−[c, d] = [a−d, b−c]. Specifically,170

the resulting interval must include the result of171

n1 − n2, for all n1 ∈ [a, b] and n2 ∈ [c, d].172

Definition 5 (Filtering Operation). A filtering op-173

eration refines an abstract state to ensure that a174

specific Boolean expression holds.175

In our running example, suppose that the AS be-176

fore the first if-statement is a 7→ [− inf, inf]. When177

entering the then-branch, a filtering operation re-178

fines a 7→ [− inf, inf] to a 7→ [7, inf] to account179

for that a > 6 holds.180

Definition 6 (Join Operation). A join operation181

uses the join operator ⊔ to merge two abstract states182

to over-approximate their union.183

For example, if S = {a 7→ [−1, 2]} and S′ =184

{a 7→ [4, 7]}, then S ⊔ S′ = {a 7→ [−1, 7]}.185

Tying these things together, we look at the while-186

loop in our running example. Let F be a function187

that performs a filtering operation to refine an AS188

by the loop guard a < 6. Let I be a function that ap-189

plies to an AS an addition abstract transfer function190

for the instruction inside the loop body a = a+ 1.191

Together, I ◦ F represents the interpretation of192

the loop body once. Suppose that the abstract193

state just before the loop is S0 = {a 7→ [0, 0]}.194

Now, we can define the sequence of iterations195

as Sk+1 = Sk ⊔ I ◦ F (Sk) and continue until196

Sk+1 = Sk. This outputs the following sequence197

of abstract states: S1 = {a 7→ [0, 1]}, . . . , S6 =198

{a 7→ [0, 6]}, S7 = {a 7→ [0, 6]}. Thus, our final199

abstract state that describes all behaviors of the200

loop is {a 7→ [0, 6]}. Note that S7 = F (S6) = S6.201

This procedure is known as fixed point compu-202

tation, which describes how to reach convergence203

to derive a sound abstract state in the presence204

of loops (Cousot and Cousot, 1977). However,205

convergence can often be slow and may not even206

terminate. This motivates the widening operation.207

Definition 7 (Widening Operation). A widening208

operation uses the widening operator ∇ to ac-209

celerate the convergence of fixed point computa-210

tion by over-approximating the result as follows:211

[a, b]∇[c, d] = [if c < a then − inf else a, if d >212

b then inf else b].213

Using the same example as before, we now de-214

fine the sequence of iterations using the widen-215

ing operation: Sk+1 = Sk∇I ◦ F (Sk). Then,216

S1 = {a 7→ [0, 0]∇[0, 1]} = {a 7→ [0, inf]} and217

S2 = {a 7→ [0, inf]}. Since S2 = S1, our final218

E := n | x | E⊙E | read()
B := x⊕ n | B&&B | B || B | !B | (B)

C := skip | C;C | x := E |
if(B) then {C} else {C} end | while do (B){C} end

P := C

⊙ ∈ {+,−, ∗, /} (arithmetic operators)
⊕ ∈ {<,<=,==, >,>=} (comparison operators)
n ∈ Z (integers)
x ∈ X (program variables)

Figure 2: A simple IMP context-free grammar for some
program P .

{P0}
a := read();
{P1}
if (a > 6) then
[then]
{P2}
a := 0;
{P3}

else
[else]
{P4}
skip;
{P5}

end [endif]

{P6}
while (a < 6) do
[while_true]
{P7}
a := a + 1;
{P8}

end [while_false]
{P9}

Figure 3: Annotated version of our running example
program from Figure 1 written in the grammar of Fig-
ure 2. {P0} ... {P9} mark program locations, which
are included to help LLMs identify where to compute
abstract states.

abstract state is {a 7→ [0, inf]}. Note that the final 219

abstract states using ⊔ and ∇ differ slightly in form. 220

Both approaches are sound, but ∇ guarantees that 221

the analysis will terminate, whereas ⊔ provides no 222

such guarantee. 223

3 Methodology 224

With these definitions in place, we now introduce 225

our task formally: Given a program P , can we 226

prompt LLMs to successfully generate a sound wit- 227

ness invariant ϕ for each program location using 228

abstract interpretation? 229

In this section, we discuss our methodology to 230

do this task, which consists of annotating input 231

programs for abstract operations (Section 3.1) and 232

prompting LLMs to perform abstract interpretation 233

under two distinct strategies for computing witness 234

invariants (Section 3.2). 235

3.1 Program Annotation 236

3

Grammar In our study, all programs are ex-237

pressed in an intermediate language derived from238

the IMP programming language, a small imperative239

language containing while-loops, if-statements, as-240

signments, and sequential composition of those241

statements. The grammar used in our work is242

shown in Figure 2. We translate programs into this243

grammar to simplify the program representation244

allow the LLMs to reason like abstract interpreters,245

since this intermediate representation is common246

in the area of formal program semantics.247

Program Locations Figure 3 shows an annotated248

version of the running example translated into our249

grammar. We place program location marks before250

every program statement defined in IMP with the251

following annotation: {Px}. We do the translation252

and annotation manually, but this can also be done253

automatically.254

Control Flow Directives Each program location255

that deals with control flow, such as if-statements256

and while-loops, is annotated with control flow257

directives, to show LLMs how to use control-flow258

information for fixed point computation.259

if-statements rely on join (⊔) operation at the260

end of the statements to soundly over-approximate261

all possible program behaviors. Using the example262

from Figure 3, the abstract state(AS) at {P6} is263

the result of joining AS at {P3} and at {P5}. This264

is indicated to the LLM with an [endif] directive.265

The branching statements depend on filtering oper-266

ation to satisfy the condition to enter either branch.267

Looking at Figure 3 again, suppose that the abstract268

state at {P1} is a 7→ [−10, 20]. Then, the abstract269

state at {P2} is a 7→ [7, 20], as the condition indi-270

cates that a > 6. This is indicated to the LLM with271

a [then] directive. Analogously, the same thing272

is done in the else branch with the negation of the273

condition. This is indicated with a [else] directive.274

while-loops also rely on the join and filtering275

operations. The AS immediately before the while276

loop ({P6}) and the AS immediately after the last277

statement of the loop body ({P8}) are joined to-278

gether for both at the loop head ({P7}) and outside279

the statement ({P9}). To account for the condi-280

tion being true ({P7}), the join operation is filtered281

by the loop guard; the LLM is instructed to do282

this with a [while_true] directive. To account283

for the false case ({P9}), the join operation is fil-284

tered by the negation of the loop guard; this is285

indicated to the LLM with a [while_false] direc-286

tive. [while_true] directive also indicates to the287

LLM to perform widening operation to accelerate 288

the convergence of fixed point computation. 289

3.2 Prompting for Abstract Interpretation 290

There are two primary strategies to calculate wit- 291

ness invariants in abstract interpretation, Compo- 292

sitional and Fixed Point Equation (Cousot and 293

Cousot, 1977), described in detail later. Since these 294

approaches are inherently algorithmic, we design 295

our prompts inspired by the Algorithm of Thoughts 296

(AoT) (Sel et al., 2023). AoT is similar to Chain of 297

Thought (Wei et al., 2022) but further integrates the 298

search process into their few-shot learning (Brown 299

et al., 2020). In-context examples in AoT are de- 300

signed to illustrate how to evaluate each solving 301

step and to guide whether the model should explore 302

a problem subtree further or backtrack to find a dif- 303

ferent viable subtree to make progress towards the 304

solution. Our full prompts for the two strategies in- 305

cluding some examples are provided in Appendix A 306

for reference. 307

3.2.1 Compositional Strategy 308

Compositional approach interprets each program 309

operation as a function between abstract states, 310

where each program construct is interpreted by 311

compositionally applying a corresponding abstract 312

version of the operation. This closely aligns with 313

the mathematical, theoretical perspective of ab- 314

stract interpretation. 315

As shown on the top left of Figure 4, we repre- 316

sent the program like a tree for this strategy to guide 317

LLMs to inductively interpret statements. By lever- 318

aging the subtree information at each program loca- 319

tion, they can perform higher-level operations for 320

locations that depend on previously computed ab- 321

stract states. The program locations are not explicit 322

in the abstract program semantics, so we model 323

updating the abstract state at a specific location as 324

a side-effect. For example, when a := read() is 325

processed in Step 1, we update the abstract state 326

at {P1} to be {a : [− inf, inf]} as a side-effect of 327

interpreting the statement that precedes it. 328

We show the inner workings of the Composi- 329

tional strategy in Figure 5. Black arrows represent 330

the flow between program components, and blue 331

arrows represent the flow between the internal ma- 332

chinery for fixed point computation. This approach 333

takes in an initial abstract state S, iteratively trans- 334

forms it by processing each statement, and returns 335

a final abstract state S′. 336

First, we interpret the read() and then go 337

4

Initially, abstract state at {P0} is {a : [-inf, inf]}.
1. Interpret a := read() → Update {P1} as a side-effect
2. Interpret if-then-else statement

1. Interpret then-branch
1. Filter by a > 6 → Update {P2} as a side-effect
2. Interpret a := 0 → Update {P3} as a side-effect

2. Interpret else-branch [...]
3. Join the results of then and else-branch → Update {P6} as a side-

effect
3. Interpret while-loop

1. Fixed Point Iteration 1:
1. Filter by a < 6 → Update {P7} as a side-effect
2. Interpret a := a + 1 → Update {P8} as a side-effect
3. Widen the result of previous iteration by current iteration to

compute fixed point
2. [Continue until fixed point is reached]
3. Filter fixed point by a ≥ 6 → Update {P9} as a side-effect

Final witness invariants: {P0} → {a : [-inf, inf]}, ... , {P9} → {a : [6, inf]}

Compositional

Initially, abstract state {P0} is {a : [-inf, inf]}.
1. Set up the fixed point equations (FPE)

1. [FPE for each program location]
2. Solve the fixed point equations using a worklist algorithm

1. Initially, Map M({P0}) = {a : ⊥}, ..., M({P9}) = {a : ⊥},
and Worklist W = {P0, ..., P9}

2. Pick {P0} from W
1. Remove {P0} from W
2. Calculate current abstract state S at {P0} based on FPE
3. Update M({P0}) as S
4. Add {P1} to W, since M({P0}) changed and {P1} directly

depends on {P0}
3. [Continue down the worklist]
4. Pick {P7} from W

1. Remove {P7} from W
2. Calculate current abstract state S at {P7} based on FPE

3. Update M({P7}) via widening it (∇) by S, since {P7}
corresponds to a loop-head

4. Add {P8} to W, since M({P7}) changed and {P8} directly
depends on {P7}

5. [Continue down the worklist until W is ∅]

Final witness invariants: {P0} → {a : [-inf, inf]}, ... , {P9} → {a : [6, inf]}

Fixed Point Equation

Start

then

else

while
loop
body

End

Pick P𝑥
Update

W
W = ∅ ?

No

Yes
read

End

Start FPE
Update
𝑀(P𝑥)

Figure 4: Two strategies for abstract interpretation: Compositional (left) and Fixed Point Equation (right). The texts
on the top show the in-context outputs for the two strategies, given the annotated program from Figure 3 as the
in-context input. The flowcharts on the bottom visually represent the algorithmic flow of the two strategies.

Figure 5: Overall flow of the Compositional strategy for
our running example. It corresponds to the high-level
workflow shown on the bottom left of Figure 4.

{P0} = {a : [− inf, inf]}
{P1} = Interpret(a := read, P0(a))
{P2} = Filter(a > 6, P1(a))
{P3} = Interpret(a := 0, P2(a))
{P4} = Filter(a ≤ 6, P1(a))
{P5} = Interpret(skip, P4(a))
{P6} = {a : P3(a) ⊔ P5(a)}
{P7} = Filter(a < 6, P6(a) ⊔ P8(a))
{P8} = Interpret(a := a+ 1, P7(a))
{P9} = Filter(a ≥ 6, P6(a) ⊔ P8(a))

Figure 6: Fixed point equations for FPE Prompting for
our running example.

through the if-statement. The two branches (then 338

and else) are interpreted separately, and their re- 339

sults are joined at the end (⊔). Now, we go through 340

the while-loop, which is interpreted using fixed 341

point computation in a recursive manner. We first 342

initialize the iteration at k = 0, then interpret 343

the loop body, and perform widening (∇), until 344

we reach Sk = Sk+1. Upon convergence, we go 345

through filtering again to exit the loop and output 346

our final abstract state S′. 347

3.2.2 Fixed Point Equation Strategy 348

In contrast to Compositional strategy, which induc- 349

tively reasons over program statements, Fixed Point 350

Equation strategy explicitly derives and solves a 351

system of fixed point equations (FPE). FPEs cap- 352

5

ture how abstract states are transformed based on353

the program semantics and control-flow. Each pro-354

gram location has a corresponding FPE, and the sys-355

tem of equations is solved using a standard worklist356

algorithm. This closely aligns with how abstract357

interpreters are implemented in practice, known as358

chaotic iterations.359

Figure 6 shows the set of FPEs for our running360

example. For instance, the AS at {P7} (loop head)361

is the result of filtering the join of the abstract states362

at {P6} (before the loop) and {P8} (after the loop363

body) by the loop guard (a < 6).364

As shown on the right-hand side of Figure 4, for365

this strategy, we first ask LLMs to come up with366

a set of FPEs. Then, it asks to solve it in a linear367

fashion using a worklist algorithm. Worklist is a368

list of program locations whose abstract states are369

not yet converged. Initially, the worklist contains370

all program locations, and the procedure continues371

until the worklist is completely empty.372

For every program location {Px} that is picked373

at each step: (1) {Px} is removed from the worklist.374

(2) The abstract state for {Px}, S, is calculated375

based on its FPE. (3a) S is saved to a map M ,376

where M({Px}) is the most recent AS for {Px}.377

(3b) If {Px} is the first program location inside378

of a while-loop body (e.g., {P7}), the most recent379

AS for {Px} (i.e., M({Px})) is widened by the380

current abstract state S to ensure termination. (4) If381

M({Px}) has changed during the update, then the382

program locations whose FPEs directly depend on383

{Px} are to the worklist. This procedure continues384

until the worklist is finally empty.385

4 Experiments386

We now describe the experiments conducted on387

the two strategies. We refer the readers again Ap-388

pendix A for the full prompts.389

4.1 Experimental Setup390

Implementation Details We selected 22 C pro-391

grams from the SV-COMP 2019 dataset (Beyer,392

2019) containing complex control flows, such as393

nested loops and conditionals. C programs were394

parsed to IMP using a customized parser. Once395

the models are queried, we automatically verify396

the soundness of the witness invariant using UAu-397

tomizer (Heizmann et al., 2013), a winning tool in398

the latest SV-COMP.399

Models For our main experiment, we selected400

four models: (1) NVIDIA’s Llama 3.1 Nemotron401

70B Instruct (Wang et al., 2024), (2) Google’s Gem- 402

ini 2.0 Flash (Kavukcuoglu, 2025), (3) OpenAI’s 403

GPT-4o (OpenAI et al., 2024), and (4) Qwen’s 404

QwQ 32B Preview (Yang et al., 2024a). All queries 405

were made using their native API libraries, with 406

the exception of Llama which used OpenRouter.2 407

We set the temperature to 0 for all models. 408

4.2 Main Results 409

Table 1 describes our experimental results. Column 410

1 shows the program names. Columns 2-5 show the 411

results for Compositional strategy (Section 3.2.1), 412

and Columns 6-13 show the results for FPE strategy 413

(Section 3.2.2). The ‘-’ symbol means that the 414

LLMs did not return a final witness invariant at the 415

end of their responses. 416

4.2.1 Witness Invariant Soundness 417

The Witness Invariant (WI) Soundness columns 418

describe whether the witness invariant generated 419

per program by each model is sound or not. The 420

fraction indicates how many of the abstract states 421

within the witness invariant are sound (the number 422

of abstract states corresponds to the number of 423

program locations, denoted by the denominator). 424

Any fraction less than 1 means that there is an 425

abstract state at some program location that does 426

not capture all possible values of the program vari- 427

ables; for example, an abstract state at {P2} maps 428

x to [6, 8], but there is some concrete program exe- 429

cution such that x = 5 at {P2}. When the model 430

returns a final witness invariant that is missing ab- 431

stract states for certain locations, a point is also 432

deducted per program location missing. 433

Looking at Table 1, there are fewer ‘-’ cells for 434

Compositional than for FPE strategy. This indi- 435

cates that LLMs return more outputs that are coher- 436

ent and not cut off for Compositional than for FPE 437

strategy. We hypothesize that this is due to the fact 438

in Compositional strategy, the program statements 439

are reasoned over inductively, and this additional 440

structure that inductive reasoning enforces may al- 441

low for better internal state tracking. In contrast, in 442

FPE strategy, the worklist algorithm simply keeps 443

track of program locations and their corresponding 444

fixed point equations. Upon inspection, we find 445

that for FPE strategy, this is largely due to LLMs 446

not knowing when to terminate the worklist algo- 447

rithm and continuously adding a program location 448

when the abstract state has already reached con- 449

vergence, which corroborates our hypothesis. For 450

2https://openrouter.ai/

6

Table 1: Comparison of different models across the two strategies on 22 C programs.

Program
Compositional FPE

Witness Invariant Soundness Witness Invariant Soundness Fixed Point Equation Correctness
Llama Gemini GPT-4o QwQ Llama Gemini GPT-4o QwQ Llama Gemini GPT-4o QwQ

afnp2014.c 3/7 7/7 6/7 7/7 3/7 7/7 3/7 - 7/7 7/7 7/7 7/7
as2013-hybrid.c 3/14 14/14 14/14 14/14 11/14 - 3/14 - 12/14 14/14 14/14 13/13
benchmark02_linear.c 11/12 12/12 12/12 12/12 9/12 12/12 12/12 12/12 10/12 12/12 12/12 12/12
benchmark04_conjunctive.c 12/13 13/13 6/13 2/13 9/13 13/13 6/13 - 11/13 13/13 12/13 13/13
cggmp2005.c 5/9 9/9 8/9 6/9 3/9 8/9 - - 9/9 9/9 9/9 9/9
const.c 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14 14/14
count_by_2.c 6/6 6/6 6/6 5/6 4/6 6/6 6/6 5/6 6/6 6/6 6/6 2/6
css2003.c 10/16 16/16 13/16 14/16 8/16 16/16 - - 14/16 16/16 16/16 16/16
deep-nested.c 10/33 - 10/33 9/33 4/33 21/33 - - 33/33 33/33 33/33 13/33
eq1.c 14/14 14/14 14/14 14/14 14/14 14/14 14/14 0/14 14/14 14/14 14/14 5/14
eq2.c 9/9 9/9 9/9 9/9 9/9 9/9 9/9 5/9 9/9 9/9 9/9 2/9
even.c 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 3/5
gauss_sum.c 9/14 14/14 13/14 13/14 10/14 14/14 10/14 - 14/14 14/14 14/14 14/14
in-de20.c - 14/14 14/14 8/14 7/14 13/14 5/14 10/14 14/14 14/14 14/14 10/14
jm2006.c 13/18 18/18 16/18 15/18 6/18 18/18 - 11/18 18/18 18/18 17/18 18/18
loopv3.c 8/11 11/11 11/11 5/11 9/11 11/11 11/11 9/11 11/11 11/11 11/11 6/11
mine-2018-ex4.6.c 5/5 5/5 2/5 5/5 5/5 5/5 3/5 5/5 5/5 5/5 3/5 5/5
mono-crafted_7.c 6/17 14/17 13/17 7/17 13/17 - - - 17/17 17/17 17/17 17/17
Mono6_1.c 4/12 12/12 12/12 12/12 7/12 - 6/12 - 12/12 12/12 12/12 12/12
nested_1.c 6/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11
nested_2.c 10/16 16/16 16/16 5/16 15/16 15/16 10/16 - 16/16 16/16 16/16 13/16
simple_vardp_1.c 9/9 9/9 9/9 - 4/9 9/9 8/9 - 9/9 9/9 9/9 9/9

Compositional strategy, we find that this is due to451

meeting the output token limit.452

For cases where both the Compositional and FPE453

strategies returned a final witness invariant, more454

programs are found with more sound abstract states455

in Compositional than in FPE strategy across the456

models. For Llama, 8 programs yield better re-457

sults with Compositional strategy, and 7 programs458

yield better results with FPE strategy. For Gemini,459

3 programs and 0 programs perform better with460

Compositional and FPE strategy, respectively. For461

GPT-4o, the scores are 6 programs and 2 programs,462

respectively. For QwQ, the scores are 2 programs463

and 2 programs, respectively.464

When considering the same cases, the total num-465

ber of sound abstract states found for Llama in FPE466

strategy is 1 more than what is found in Composi-467

tional. For the rest of the models, Compositional468

strategy yielded more sound abstract states com-469

pared to FPE: there are 3, 38, and 16 more sound470

abstract states found for Gemini, GPT, and QwQ,471

respectively in Compositional strategy.472

4.2.2 Fixed Point Equation Correctness473

The Fixed Point Equation (FPE) Correctness474

columns found under FPE strategy header describe475

whether or not the fixed point equations generated476

per program by each model are correct or not. Re-477

call that for FPE strategy, models are required to478

derive correct fixed point equations before starting479

the worklist algorithm. Thus, we want to evalu-480

ate if the LLMs find difficulty in either setting up481

the fixed point equations in the first place or going482

through the worklist algorithm. 483

The results show that the fixed point equations 484

are almost always all correct, with the exception of 485

a few, mostly in QwQ. This indicates that LLMs in 486

general have a good understanding of the abstract 487

control flows in the program. Considering that 488

the fractions in the Witness Invariant Soundness 489

columns are in general smaller than the fractions 490

under the FPE Correctness columns, we can con- 491

clude that although LLMs can set up the equation 492

systems well at the start, they still struggle during 493

the worklist algorithm. 494

4.3 Additional Results 495

We additionally tested our methodology on more 496

advanced models: OpenAI’s GPT-o1 (OpenAI, 497

2024) and DeepSeek’s R1 (DeepSeek-AI et al., 498

2025). They are known to be capable of complex, 499

multi-step reasoning, so we are interested to see if 500

these specific abilities will help the LLMs reason 501

in the style of abstract interpretation. 502

Table 2 presents the results of these models on 503

a four selected programs that contain challenging 504

nested control-flows. How to interpret the column 505

names are the same as our main table. Overall, 506

GPT-o1 and DeepSeek-R1 perform well, in partic- 507

ular for FPE strategy. This is especially notable for 508

mono-crafted_7, for which three out of four models 509

used in the main evaluation could not even return 510

coherent abstract states at the end. DeepSeek did 511

especially well for deep-nested, with 31 out of 33 512

abstract states being sound. 513

What is particularly interesting about these re- 514

7

sults is that FPE correctness is sometimes lower515

than WI soundness for DeepSeek-R1. This means516

that although the model generated wrong fixed517

point equations in the beginning, it was still able to518

derive sound abstract states toward the end.519

Table 2: Comparison of advanced models on selected
C programs. GPT refers to GPT-o1, and DS refers to
DeepSeek-R1.

Program
Compositional FPE

WI Soundness WI Soundness FPE Correctness
GPT DS GPT DS GPT DS

deep-nested.c 10/33 8/33 8/33 31/33 31/33 33/33
mono-crafted_7.c 17/17 17/17 17/17 17/17 17/17 14/17
nested_1.c 11/11 11/11 11/11 11/11 11/11 11/11
nested_2.c 16/16 16/16 16/16 16/16 16/16 13/16

4.4 Thematic Errors Made by LLMs During520

Reasoning521

In most cases, LLMs successfully generated traces522

of abstract interpretation but exhibited common523

errors across models. This section outlines these524

recurring mistakes.525

Forgetting Key Operations. LLMs may over-526

look essential program operations. For instance, in527

as2013-hybrid.c, Gemini incorrectly filters [0, 0]528

with i ≤ 9 to [0, 9], overapproximating uninten-529

tionally. In the FPE algorithm, LLMs often neglect530

the widening operator during worklist iterations,531

especially in complex nested structures requiring532

prolonged analysis. In css2003.c, GPT-4o fails to533

apply widening after a long iteration.534

Mixing State Order. LLMs struggle with535

control flow in long-context programs. In536

deep_nested.c, which has six nested while-loops,537

the R1 model misorders abstract operations, ap-538

plying transformations before the corresponding539

statements.540

Short-Circuiting. LLMs sometimes produce541

final abstract states that would be unreachable if542

widening were properly applied. Similarly, they543

may generate abstract states that do not follow cor-544

rect interpretation steps, suggesting reliance on545

extraneous information. Despite being an error,546

short-circuiting could inform heuristics for decid-547

ing when to widen (Lakhdar-Chaouch et al., 2011).548

5 Related Work549

There is a growing body work in the intersection550

of formal reasoning and LLMs, due to the demon-551

strated capability of LLMs to reason about code.552

Some methods use LLMs as agents in program553

analysis pipelines (Bouzenia et al., 2024; Cheng554

et al., 2024), while others use LLMs to predict loop 555

invariants to be used in bounded model checkers 556

in an iterative manner, until the bounded model 557

checker approves the invariant (Wu et al., 2024a). 558

Pei et al. (2023) fine-tune LLMs on Daikon 559

datasets for invariant prediction. While they 560

achieve reasonable test performance, it is unclear 561

whether LLMs are merely pattern-matching, given 562

the similarity between training and test data. More- 563

over, their approach does not assess LLMs’ innate 564

formal reasoning abilities or specific frameworks 565

like abstract interpretation. 566

First et al. (2023) similarly fine-tune LLMs on 567

Isabelle/HOL-style proofs to generate full proofs 568

rather than individual steps. They show that addi- 569

tional context, such as error messages from failed 570

proof attempts, helps LLMs repair proofs. How- 571

ever, it remains unclear whether their performance 572

stems from training data rather than innate abil- 573

ity, as formal reasoning is left to external proof 574

assistants. 575

Wu et al. (2024b) propose a formal proof lan- 576

guage where LLMs predict invariants within infer- 577

ence rules, with correctness checked by Z3. Incor- 578

rect predictions allow for backtracking, but formal 579

reasoning is still delegated to external tools. 580

These are works closest to ours. Unlike these 581

works, we evaluate LLMs’ innate formal reasoning 582

ability without fine-tuning or reliance on external 583

tools. 584

6 Conclusion 585

We introduce a new framework to evaluate the in- 586

nate ability of LLMs to conduct formal reasoning 587

for code in the style of abstract interpretation. In 588

particular, we provide two novel prompting strate- 589

gies inspired by Algorithm of Thoughts that can be 590

used to elicit formal reasoning required to under- 591

stand code abstractions. Our results indicate that 592

the LLM has the ability to perform formal reason- 593

ing under a proper guiding algorithm, but there is 594

still space to potential guiding algorithms to avoid 595

errors. The ability of the LLMs to generate abstract 596

interpretation-based proofs shows great promise for 597

the using LLMs as program verifiers, however, cor- 598

recting the errors we encountered is critical for this 599

endeavor. We plan to explore avenues to improve 600

upon this in future work. 601

8

Limitations602

While our results demonstrate that LLMs have603

promising potential in reasoning as abstract inter-604

preters, we acknowledge several limitations, the605

first two are regarding the choice of the concepts606

from abstract interpretation we are testing.607

The first limitation is that the in-context exam-608

ples are limited to a simple widening strategy. In609

practice, many different widening strategies may be610

used which may be more precise than the standard611

widening operator from (Cousot and Cousot, 1977),612

we introduced. Techniques such as narrowing may613

be employed in practice to recover precision. This614

limitation raises questions about the generalizabil-615

ity to the broader landscape of abstract interpreta-616

tion techniques used in abstract interpreters.617

The second is our choice of the interval abstract618

domain. The interval abstract domain is a very619

simple domain, which is not as expressive in terms620

of its ability to capture relationships between pro-621

gram variables. In practice, a variety of much more622

expressive abstract domains are used in order to623

prove program properties, including the octagon624

abstract domain, which can capture linear relation-625

ships between program variables (i.e. x ≤ y) to626

the symbolic bit-vector domain used to prove prop-627

erties about cryptographic code and low-level sys-628

tems software. Our choice of abstract domain was629

motivated by the possibility that more complex do-630

mains would make it more difficult for the LLMs631

to interpret. For instance, in the polyhedra abstract632

domain, the join of two polyhedra requires comput-633

ing the convex hull of two polyhedrons. Instead,634

in this work, our goal was to focus on understand-635

ing if the LLMs can understand the core concepts636

behind abstract interpretation, rather than specific637

abstract domains. We leave exploration of other638

domains to future work.639

The third limitation is in that while LLMs may640

produce valid proofs of program properties by gen-641

erating a correct sequence of abstract intepretation-642

based steps, it is unclear if this capability corre-643

sponds to internal phenomena in the vein of mech-644

anistic interpretability. Combining our work along645

with mechanisitic interpretability techniques could646

provide deeper insights into how LLMs handle the647

tasks explored in our paper, for instance, if certain648

neural circuits correspond to handling certain com-649

ponents of abstract interpretation, such as a circuit650

specialized for widening.651

References 652

Y. Bertot, G. Huet, P. Castéran, and C. Paulin-Mohring. 653
2014. Interactive Theorem Proving and Program 654
Development: Coq’Art: The Calculus of Inductive 655
Constructions. Texts in Theoretical Computer Sci- 656
ence. An EATCS Series. Springer Berlin Heidelberg. 657

Dirk Beyer. 2019. Advances in automatic software 658
verification: Sv-comp 2019. In Tools and Algorithms 659
for the Construction and Analysis of Systems (TACAS 660
2019), volume 11429 of Lecture Notes in Computer 661
Science, pages 194–223. Springer. 662

Islem Bouzenia, Premkumar T. Devanbu, and Michael 663
Pradel. 2024. Repairagent: An autonomous, 664
llm-based agent for program repair. CoRR, 665
abs/2403.17134. 666

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 667
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 668
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 669
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 670
Gretchen Krueger, Tom Henighan, Rewon Child, 671
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 672
Clemens Winter, Christopher Hesse, Mark Chen, Eric 673
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 674
Jack Clark, Christopher Berner, Sam McCandlish, 675
Alec Radford, Ilya Sutskever, and Dario Amodei. 676
2020. Language models are few-shot learners. CoRR, 677
abs/2005.14165. 678

Yiran Cheng, Lwin Khin Shar, Ting Zhang, Shouguo 679
Yang, Chaopeng Dong, David Lo, Shichao Lv, 680
Zhiqiang Shi, and Limin Sun. 2024. Llm-enhanced 681
static analysis for precise identification of vulnerable 682
OSS versions. CoRR, abs/2408.07321. 683

Patrick Cousot and Radhia Cousot. 1977. Abstract inter- 684
pretation: A unified lattice model for static analysis 685
of programs by construction or approximation of 686
fixpoints. In Proceedings of the 4th ACM SIGACT- 687
SIGPLAN Symposium on Principles of Programming 688
Languages (POPL), pages 238–252. ACM. 689

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 690
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 691
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 692
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 693
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 694
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 695
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 696
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 697
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 698
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 699
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 700
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 701
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 702
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 703
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 704
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 705
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 706
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 707
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 708
Miaojun Wang, Mingming Li, Ning Tian, Panpan 709

9

https://books.google.com/books?id=rWMfswEACAAJ
https://books.google.com/books?id=rWMfswEACAAJ
https://books.google.com/books?id=rWMfswEACAAJ
https://books.google.com/books?id=rWMfswEACAAJ
https://books.google.com/books?id=rWMfswEACAAJ
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.48550/ARXIV.2403.17134
https://doi.org/10.48550/ARXIV.2403.17134
https://doi.org/10.48550/ARXIV.2403.17134
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2408.07321
https://doi.org/10.48550/ARXIV.2408.07321
https://doi.org/10.48550/ARXIV.2408.07321
https://doi.org/10.48550/ARXIV.2408.07321
https://doi.org/10.48550/ARXIV.2408.07321
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973

Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,710
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,711
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,712
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,713
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng714
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing715
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,716
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,717
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao718
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan719
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin720
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,721
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,722
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-723
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,724
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang725
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng726
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,727
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,728
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,729
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-730
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,731
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,732
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,733
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,734
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean735
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,736
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-737
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,738
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu739
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-740
tivizing reasoning capability in llms via reinforce-741
ment learning. Preprint, arXiv:2501.12948.742

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy743
Brun. 2023. Baldur: Whole-proof generation and744
repair with large language models. In Proceedings of745
the 31st ACM Joint European Software Engineering746
Conference and Symposium on the Foundations of747
Software Engineering, ESEC/FSE 2023, San Fran-748
cisco, CA, USA, December 3-9, 2023, pages 1229–749
1241. ACM.750

Matthias Heizmann, Jürgen Christ, Daniel Dietsch,751
Evren Ermis, Jochen Hoenicke, Markus Lindenmann,752
Alexander Nutz, Christian Schilling, and Andreas753
Podelski. 2013. Ultimate automizer with smtinterpol.754
In Tools and Algorithms for the Construction and755
Analysis of Systems, pages 641–643, Berlin, Heidel-756
berg. Springer Berlin Heidelberg.757

Koray Kavukcuoglu. 2025. Gemini 2.0 is now available758
to everyone.759

Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Gi-760
rault. 2011. Widening with thresholds for programs761
with complex control graphs. In Automated Technol-762
ogy for Verification and Analysis, 9th International763
Symposium, ATVA 2011, Taipei, Taiwan, October 11-764
14, 2011. Proceedings, volume 6996 of Lecture Notes765
in Computer Science, pages 492–502. Springer.766

Leonardo de Moura and Sebastian Ullrich. 2021. The767
lean 4 theorem prover and programming language.768

In Automated Deduction – CADE 28, pages 625–635, 769
Cham. Springer International Publishing. 770

OpenAI. 2024. Openai o1 system card. Accessed: 771
2025-02-15. 772

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 773
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 774
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 775
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 776
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 777
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 778
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 779
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 780
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 781
man, Tim Brooks, Miles Brundage, Kevin Button, 782
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 783
Carey, Chelsea Carlson, Rory Carmichael, Brooke 784
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 785
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 786
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 787
Dave Cummings, Jeremiah Currier, Yunxing Dai, 788
Cory Decareaux, Thomas Degry, Noah Deutsch, 789
Damien Deville, Arka Dhar, David Dohan, Steve 790
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 791
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 792
Simón Posada Fishman, Juston Forte, Isabella Ful- 793
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 794
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 795
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 796
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 797
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 798
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 799
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 800
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 801
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 802
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 803
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 804
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 805
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 806
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 807
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 808
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 809
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 810
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 811
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 812
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 813
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 814
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 815
Anna Makanju, Kim Malfacini, Sam Manning, Todor 816
Markov, Yaniv Markovski, Bianca Martin, Katie 817
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 818
McKinney, Christine McLeavey, Paul McMillan, 819
Jake McNeil, David Medina, Aalok Mehta, Jacob 820
Menick, Luke Metz, Andrey Mishchenko, Pamela 821
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 822
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 823
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 824
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 825
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 826
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 827
tista Parascandolo, Joel Parish, Emy Parparita, Alex 828
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 829
man, Filipe de Avila Belbute Peres, Michael Petrov, 830

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/
https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/
https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/
https://doi.org/10.1007/978-3-642-24372-1_38
https://doi.org/10.1007/978-3-642-24372-1_38
https://doi.org/10.1007/978-3-642-24372-1_38
https://openai.com/index/openai-o1-system-card/

Henrique Ponde de Oliveira Pinto, Michael, Poko-831
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-832
ell, Alethea Power, Boris Power, Elizabeth Proehl,833
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,834
Cameron Raymond, Francis Real, Kendra Rimbach,835
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-836
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,837
Girish Sastry, Heather Schmidt, David Schnurr, John838
Schulman, Daniel Selsam, Kyla Sheppard, Toki839
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav840
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,841
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin842
Sokolowsky, Yang Song, Natalie Staudacher, Fe-843
lipe Petroski Such, Natalie Summers, Ilya Sutskever,844
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,845
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,846
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-847
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,848
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,849
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,850
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-851
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,852
Clemens Winter, Samuel Wolrich, Hannah Wong,853
Lauren Workman, Sherwin Wu, Jeff Wu, Michael854
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-855
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong856
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao857
Zheng, Juntang Zhuang, William Zhuk, and Bar-858
ret Zoph. 2024. Gpt-4 technical report. Preprint,859
arXiv:2303.08774.860

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton,861
and Pengcheng Yin. 2023. Can large language mod-862
els reason about program invariants? In International863
Conference on Machine Learning, ICML 2023, 23-29864
July 2023, Honolulu, Hawaii, USA, volume 202 of865
Proceedings of Machine Learning Research, pages866
27496–27520. PMLR.867

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar,868
Lu Wang, Ruoxi Jia, and Ming Jin. 2023. Algo-869
rithm of thoughts: Enhancing exploration of ideas in870
large language models. CoRR, abs/2308.10379.871

Zhilin Wang, Alexander Bukharin, Olivier Delal-872
leau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Olek-873
sii Kuchaiev, and Yi Dong. 2024. Helpsteer2-874
preference: Complementing ratings with preferences.875
Preprint, arXiv:2410.01257.876

Chenrui Wei, Mengzhou Sun, and Wei Wang. 2024.877
Proving olympiad algebraic inequalities without hu-878
man demonstrations. Preprint, arXiv:2406.14219.879

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten880
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,881
and Denny Zhou. 2022. Chain-of-thought prompting882
elicits reasoning in large language models. In Ad-883
vances in Neural Information Processing Systems 35:884
Annual Conference on Neural Information Process-885
ing Systems 2022, NeurIPS 2022, New Orleans, LA,886
USA, November 28 - December 9, 2022.887

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng888
Wei, Taolue Chen, and Xiaoxing Ma. 2024a. LLM889

meets bounded model checking: Neuro-symbolic 890
loop invariant inference. In Proceedings of the 39th 891
IEEE/ACM International Conference on Automated 892
Software Engineering, ASE 2024, Sacramento, CA, 893
USA, October 27 - November 1, 2024, pages 406–417. 894
ACM. 895

Haoze Wu, Clark W. Barrett, and Nina Narodytska. 896
2024b. Lemur: Integrating large language models 897
in automated program verification. In The Twelfth 898
International Conference on Learning Representa- 899
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 900
OpenReview.net. 901

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 902
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 903
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 904
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 905
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 906
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 907
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 908
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 909
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 910
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 911
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 912
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 913
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 914
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu 915
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2 916
technical report. arXiv preprint arXiv:2407.10671. 917

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, 918
Kristin Lauter, Swarat Chaudhuri, and Dawn Song. 919
2024b. Formal mathematical reasoning: A new fron- 920
tier in AI. CoRR, abs/2412.16075. 921

11

https://arxiv.org/abs/2303.08774
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.48550/ARXIV.2308.10379
https://doi.org/10.48550/ARXIV.2308.10379
https://doi.org/10.48550/ARXIV.2308.10379
https://doi.org/10.48550/ARXIV.2308.10379
https://doi.org/10.48550/ARXIV.2308.10379
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2406.14219
https://arxiv.org/abs/2406.14219
https://arxiv.org/abs/2406.14219
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=Q3YaCghZNt
https://doi.org/10.48550/ARXIV.2412.16075
https://doi.org/10.48550/ARXIV.2412.16075
https://doi.org/10.48550/ARXIV.2412.16075

A Prompts Used922

A.1 Compositional Strategy923

Context: Given a program, analyze the program with abstract interpretation, using the interval
abstract domain. Programs are composed of assignment, skip, if-then-else, while-loops, and
sequential composition of these statements, where program variables are integer variables. The
goal is to output an abstract state for each program location. An abstract state maps each program
variable to an interval, or the empty interval ⊥. For example, {x : [1, 4], y : [−1, 3]} means that x
can take on values between 1 and 4 and y can take on values between −1 and 3. ⊥ means that the
variable cannot have any concrete value.

Each abstract state should be sound. For instance, if the abstract state at location {P} maps x to
[4, 10], then in any concrete execution of the program, the value of x should be between 4 and 10
at location {P}.

Arithmetic expressions are interpreted with interval arithmetic. Be cautious of edge cases in
interpreting division with interval arithmetic. For example, [1, 3]/[0, 0] = ⊥, as no valid value
results from a division by 0. Furthermore, [1, 3]/[−2, 3] = [− inf, inf], as division by 0 may or
may not occur.

read() expressions are interpreted as [− inf, inf], as reading from the standard input can result in
any value.

The abstract state at {P0}, the program entry point, maps each program variable to [− inf, inf],
indicating that at the beginning of the program, the variables can have any integer value.

You should abstractly interpret programs in a denotational style. This means that each program
statement is interpreted as a function, mapping abstract states to abstract states, and we iteratively
interpret each statement on an input abstract state. As the program is being interpreted, we save
the abstract state at a program location after interpreting the statement preceding it, as a side-effect
of the interpretation process.

There are several directives in the annotated programs that help keep track of control flow.
[if_then] means that the input abstract state to the if-statement is filtered to account for the fact
that the guard of the if-statement should hold.
[if_else] means that the input abstract state to the if-statement is filtered to account for the fact
that the negation of the guard of the if-statement should hold.
[endif] means the the result of interpreting the then-branch on the input abstract state and the
result of interpreting the else-branch on the input abstract state are merged.

[while_true] means that the input abstract state to a while-statement is filtered to account for the
fact that the loop guard should hold.
[whilefalse] means that the abstract state as a result of interpreting the loop body is filtered by the
negation of the loop guard, indicating possible behaviors when the while loop is no longer executed.

Some examples of filtering are:

- Filtering abstract state x : [5, 7], y : [6, 8] by !(read() == 0) results in the same abstract
state, because we cannot know for certain if the result of reading from standard input is 0.

- Filtering abstract state {x : [5, 10], y : [5, inf]} by !(y == 6) results in
924

12

x : [5, 10], y : [5, inf]. Filtering by !(y == 6) is equivalent to filtering by y > 6||y < 6.
Filtering the abstract state by y > 6 results in x : [5, 10], y : [7, inf]. Filtering the abstract
state by y < 6 results in x : [5, 10], y : [5, 5]. Joining the resulting abstract states results in
x : [5, 10], y : [5, inf].

- Filtering abstract state x : [5, 9], y : [10, 12] by y == 16 results in {x : ⊥, y : ⊥}, as it is
impossible for y to be 16.

- Filtering the abstract state x : [5, 10], y : [4, 9] by (y <= 8)&&(x <= y) results in the filter-
ing the state by y <= 8 and filtering the state by x <= y and then intersecting the resulting
states. Filtering {x : [5, 10], y : [4, 9]} by y <= 8results inx : [5, 10], y : [4, 8]. Filtering
x : [5, 10], y : [4, 9] by x <= y results in x : [5, 9], y : [4, 9]. Intersecting both states results
in x : [5, 9], y : [4, 8].

While loops are interpreted using fixed point computation, by iteratively interpreting the body
of the while loop on the input abstract state. At each iteration, the result from the previous iter-
ation is widened by the interpretation of the loop body on the abstract state from the previous
iteration. Widening is used to ensure termination of the fixed point computation. The widening of
two intervals is defined symbolically as [a, b]∇[c, d] = [if c < a, then − inf else a, if d >
b then inf else b]. For example, [6, 7]∇[9, 10] = [6, inf]. Note that ⊥∇[c, d] = [c, d] and
[a, b]∇⊥ = [a, b]. Finally, when a fixed point is reached, it is filtered by the negation of the
loop guard, which is the final result of interpreting the loop.
When all commands have been interpreted, the most recent abstract state at each program location
is returned.
Here are some examples:
Example 1:
Input:

{P0}
x := read ();
{P1}
if (x < 3) then

[if_then]
{P2}
x := x - 1;
{P3}
x := x * 2;
{P4}

else
[if_else]
{P5}
x := x + 2;
{P6}

end [endif]
{P7}

Output:
Initially, the abstract state at P0 is x : [− inf, inf].
Begin interpreting the program.

1. Interpret x := read();

- The input abstract state is {x : [− inf, inf]}
925

13

- The resulting abstract state is {x : [− inf, inf]}
- As a side-effect, the abstract state at {P1} is {x : [− inf, inf]}

2. Interpret the if-then-else statement.

- Interpret the then-branch.
1. The input abstract state is x : [-inf, inf].
2. Filter the input state by x < 3. The resulting abstract state is x : [-inf, 2]. As a

side-effect, the abstract state at P2 is x : [-inf, 2].
3. Interpret x := x - 1;

- The input abstract state is x : [-inf, 2].
- The resulting abstract state is x: [-inf, 1].
- As a side-effect, the abstract state at P4 is x : [-inf, 2].

- Interpret the else-branch.
1. The input abstract state is x : [-inf, inf].
2. Filter the input state by x >= 3. The resulting abstract state is x : [3, inf]. As a

side-effect, the abstract state at P5 is x : [3, inf].
3. Interpret x := x + 2;

- The input abstract state is x : [3, inf].
- The resulting abstract state is x : [5, inf].
- As a side-effect the abstract state at P6 is x : [5, inf].

- Join the results of interpreting the then and else branch:
- The output of interpreting the then-branch is x : [-inf, 2].
- The output of interpreting the else-branch is x : [5, inf].
- The result of joining the two states is x : [-inf, inf]. As a side-effect, the abstract

state at P7 is x : [-inf, inf]

There are no more statements to interpret, and the answer is

{P0} 7→ {x : [− inf, inf]}
{P1} 7→ {x : [− inf, inf]}
{P2} 7→ {x : [− inf, 2]}
{P3} 7→ {x : [− inf, 1]}
{P4} 7→ {x : [− inf, 2]}
{P5} 7→ {x : [3, inf]}
{P6} 7→ {x : [5, inf]}
{P7} 7→ {x : [− inf, inf]}

Example 2:
Input:

{P0}
i := 1;
{P1}
j := 0;
{P2}
while (i <= 5) do

[while_true]

926

14

{P3}
j := j + i;
{P4}
i := i + 1;
{P5}

end [while_false]
{P6}

Output:
Initially, the abstract state at P0 is i : [− inf, inf], j : [− inf, inf]

1. Interpret i := 1

- The input abstract state is {i : [−inf, inf], j : [−inf, inf]}
- The resulting abstract state is {i : [1, 1], j : [−inf, inf]}
- As a side-effect, the abstract state at {P1} is {i : [1, 1], j : [−inf, inf]}

2. Interpret j := 0

- The input abstract state is {i : [1, 1], j : [−inf, inf]}
- The resulting abstract state is {i : [1, 1], j : [0, 0]}
- As a side-effect, the abstract state at {P2} is {i : [1, 1], j : [0, 0]}.

3. Interpret the while loop.

- The input abstract state (iteration 0) is {i : [1, 1], j : [0, 0]}.
- Begin fixed point iteration.
- Fixed point Iteration 1:

- The input abstract state to this iteration is {i : [1, 1], j : [0, 0]}
- Filtering the state by i <= 5 results in the abstract state {i : [1, 1], j : [0, 0]}. As a

side-effect, the abstract state at {P3} is {i : [1, 1], j : [0, 0]}.
- Interpret j := j + i;

- The input abstract state is {i : [1, 1], j : [0, 0]}
- The resulting abstract state is {i : [1, 1], j : [1, 1]}
- As a side-effect the abstract state at {P4} is {i : [1, 1], j : [1, 1]}.

- Interpret i := i + 1;
- The input abstract state is {i : [1, 1], j : [1, 1]}.
- The resulting abstract state is {i : [2, 2], j : [1, 1]}.
- As a side-effect the abstract state at {P5} is {i : [2, 2], j : [1, 1]}.

- Widen the input abstract state by the interpretation of the loop body
- The input abstact state to this iteration is {i : [1, 1], j : [0, 0]}
- The result of interpreting the loop body is {i : [2, 2], j : [1, 1]}.
- {i : [1, 1], j : [0, 0]}∇{i : [2, 2], j : [1, 1]} results in {i : [1, inf], j : [0, inf]}.

- The result of this iteration is {i : [1, inf], j : [0, inf]}.
- Fixed point Iteration 2:

- The input abstract state to this iteration is {i : [1, inf], j : [0, inf]}.
- Filtering the state by i <= 5 results in the abstract state {i : [1, 5], j : [0, inf]}. As a

side-effect, the abstract state at {P3} is {i : [1, 5], j : [0, inf]}.
- Interpret j := j + i;

- The input abstract state is {i : [1, 5], j : [0, inf]}.
- The resulting abstract state is {i : [1, 5], j : [1, inf]}

927

15

- As a side-effect the abstract state at {P4} is {i : [1, 5], j : [1, inf]}
- Interpret i := i + 1;

- The input abstract state is {i : [1, 5], j : [1, inf]}
- The resulting abstract state is {i : [2, 6], j : [1, inf]}
- As a side-effect the abstract state at {P5} is {i : [2, 6], j : [1, inf]}.

- Widen the abstract state from the previous iteration by the interpretation of the loop
body
- The input abstract state to this iteration is {i : [1, inf], j : [0, inf]}
- The result of interpreting the loop body is {i : [2, 6], j : [1, inf]}.
- {i : [1, inf], j : [0, inf]}∇{i : [2, 6], j : [1, inf]} results in {i : [1, inf], j :
[0, inf]}.

- The result of this iteration is {i : [1, inf], j : [0, inf]}.
- We are at a fixed point. The result of the iteration was the same as the previous one.
- Filter the fixed point by the negation of the loop-guard, i > 5. Filtering
i : [1, inf], j : [0, inf] by i > 5 results in {i : [6, inf], j : [0, inf]}. As a side effect the
abstract state at {P6} is {i : [6, inf], j : [0, inf]}.

There are no more statements to interpret, and the answer is

{P0} 7→ {i : [− inf, inf], j : [− inf, inf]}
{P1} 7→ {i : [1, 1], j : [− inf, inf]}
{P2} 7→ {i : [1, 1], j : [0, 0]}
{P3} 7→ {i : [1, 5], j : [0, inf]}
{P4} 7→ {i : [1, 5], j : [1, inf]}
{P5} 7→ {i : [2, 6], j : [1, inf]}
{P6} 7→ {i : [6, inf], j : [0, inf]}

Example 3:
Input:

{P0}
y := 7;
{P1}
while (true) do

[while_true]
{P2}
x := read ();
{P3}
while (x <= y) do

[while_true]
{P4}
x := x + 1;
{P5}

end [while_false]
{P6}

end [while_false]
{P7}

928

16

Initially, the abstract state at {P0} is {x : [−inf, inf], y : [−inf, inf]}.

1. Interpret y := 7

- The input abstract state is {x : [−inf, inf], y : [−inf, inf]}.
- The resulting abstract state is {x : [−inf, inf], y : [7, 7]}.
- As a side-effect, the abstract state at {P1} is {x : [−inf, inf], y : [7, 7]}.

2. Interpret the outer while-loop.

- The input abstract state (iteration 0) is {x : [−inf, inf], y : [7, 7]}.
- Begin fixed point iteration.
- Outer Loop Fixed Point Iteration 1:

- The input abstract state to this iteration is {x : [−inf, inf], y : [7, 7]}.
- Filtering the state by true results in the abstract state {x : [−inf, inf], y : [7, 7]}.

As a side-effect, the abstract state at {P2} is {x : [−inf, inf], y : [7, 7]}.
- Interpret x := read();

- The input abstract state is {x : [−inf, inf], y : [7, 7]}.
- The resulting abstract state is {x : [−inf, inf], y : [7, 7]}.
- As a side-effect, the abstract state at {P3} is {x : [−inf, inf], y : [7, 7]}.

- Interpret the inner while-loop:
- The input abstract state (iteration 0) is {x : [−inf, inf], y : [7, 7]}.
- Begin fixed point iteration.
- Inner Loop Fixed Point Iteration 1:

- The input abstract state to this iteration is {x : [−inf, inf], y : [7, 7]}.
- Filtering the state by x <= y results in {x : [−inf, 7], y : [7, 7]}. As a

side-effect, the abstract state at {P4} is {x : [−inf, 7], y : [7, 7]}.
- Interpret x := x + 1;

- The input abstract state is {x : [−inf, 7], y : [7, 7]}.
- The resulting abstract state is {x : [−inf, 8], y : [7, 7]}.
- As a side-effect the abstract state at {P5} is {x : [−inf, 8], y : [7, 7]}

- Widen the abstract state from the previous iteration by the interpretation of
the loop body

- The input abstract state to this iteration is {x : [−inf, inf], y : [7, 7]}.
- The result of interpreting the loop body is {x : [−inf, 8], y : [7, 7]}.
- {x : [−inf, inf], y : [7, 7]}∇{x : [−inf, 8], y : [7, 7]} = {x :

[−inf, inf], y : [7, 7]}.
- The result of this iteration is {x : [−inf, inf], y : [7, 7]}

- We are at a fixed point. The result of this iteration was the same as the previous
one.

- Filter the fixed point by the negation of the loop guard, x > y. Filtering {x :
[−inf, inf], y : [7, 7]} by x > y results in {x : [8, inf], y : [7, 7]}. As a side-effect,
the abstract state at {P6} is {x : [8, inf], y : [7, 7]}.

- The result of interpreting the inner while loop is {x : [8, inf], y : [7, 7]}.
- Widen the abstract state from the previous iteration by the interpretation of the loop

body
- The input abstract state to this iteration is {x : [−inf, inf], y : [7, 7]}.
- The result of interpreting the outer loop body is {x : [8, inf], y : [7, 7]}.
- {x : [−inf, inf], y : [7, 7]}∇{x : [8, inf], y : [7, 7]} = {x : [−inf, inf], y :
[7, 7]}.

929

17

- The result of this iteration for the outer while loop is {x : [−inf, inf], y : [7, 7]}.
- We’ve reached a fixed point for the outer while loop. The input state to the first iteration

of the fixed point computation for the outer loop is the same as the abstract state resulting
from the first iteration.

- Filter the fixed point for the outer while loop by the negation of the loop guard, false.
Filtering {x : [−inf, inf], y : [7, 7]} by false results in {x : ⊥, y : ⊥}. As a side-effect,
the abstract state at {P7} is set to {x : ⊥, y : ⊥}.

There are no more statements to interpret, and the answer is

{P0} 7→ {x : [− inf, inf], y : [− inf, inf]}
{P1} 7→ {x : [− inf, inf], y : [7, 7]}
{P2} 7→ {x : [− inf, inf], y : [7, 7]}
{P3} 7→ {x : [− inf, inf], y : [7, 7]}
{P4} 7→ {x : [− inf, 7], y : [7, 7]}
{P5} 7→ {x : [− inf, 8], y : [7, 7]}
{P6} 7→ {x : [8, inf], y : [7, 7]}
{P7} 7→ {x : ⊥, y : ⊥}

Now, please solve this, outputting the intermediary steps you take:
[Input Program]

930

A.2 Fixed Point Equation Strategy931

Context:
Given a program, analyze the program with abstract interpretation, using the interval abstract
domain. Programs are composed of assignment, skip, if-then-else, while-loops, and sequential
composition of these statements, where program variables are integer variables. The goal is to
output an abstract state for each program location. An abstract state maps each program variable
to an interval, or the empty interval ⊥. For example, {x : [1, 4], y : [−1, 3]} means that x can take
on values between 1 and 4 and y can take on values between -1 and 3. ⊥ means that the variable
cannot have any concrete value.

Each abstract state should be sound. For instance if the abstract state at location {P} maps x to
[4, 10], then in any concrete execution of the program, the value of x should be between 4 and 10
at location {P}.

Arithmetic expressions are interpreted with interval arithmetic. Be cautious of edge cases in
interpreting division with interval arithmetic. For example, [1, 3]/[0, 0] = ⊥, as no valid value
results from a division by 0. Furthermore, [1, 3]/[−2, 3] = [−inf, inf], as division by 0 may or
may not occur.

read() expressions are interpreted as [−inf, inf], as reading from the standard input can result
in any value.

You should abstractly interpret programs by first deriving a set of fixed point equations, where each
program location corresponds to one equation. Then, solve the fixed point equations iteratively
until you reach a fixed point. The fixed point equation associated with the location at program

932

18

entry, {P0}, maps each program variable to [− inf, inf], indicating that at the beginning of the
program, the variables can have any integer value.

There are several directives in the annotated programs that help keep track of control flow, as well
as indicate how the fixed point equations should be defined.

[if_then] means that the fixed point equation corresponding to the location after the directive is
the result of filtering the abstract state at the location corresponding to the input of the if-then-else
statement, by the if guard.
[if_else] means that the fixed point equation corresponding to the location after the directive is
the result of filtering the abstract state at the location corresponding to the input of the if-then-else
statement, by the negation of the if guard.
[if_end] means the fixed point equation corresponding to the location after the directive is the
result of joining the abstract states at the locations of the end of each branch in the if-statement.

[while_true] means that the fixed point equation at the location after the directive first joins the
abstract states at the program locations before the while-loop and after the last statement in the
loop body, and filters this result by the loop guard.

[while_false] means that the fixed point equation at the location after the directive first joins the
abstract states at the program locations before the while-loop and after the last statement in the
loop body, and filters this result by the negation of the loop guard.

Some examples of filtering are:

- Filtering abstract state x : [5, 7], y : [6, 8] by !(read() == 0) results in the same abstract
state, because we cannot know for certain if the result of reading from standard input is 0.

- Filtering abstract state {x : [5, 10], y : [5, inf]} by !(y == 6) results in
x : [5, 10], y : [5, inf]. Filtering by !(y == 6) is equivalent to filtering by y > 6||y < 6.
Filtering the abstract state by y > 6 results in x : [5, 10], y : [7, inf]. Filtering the abstract
state by y < 6 results in x : [5, 10], y : [5, 5]. Joining the resulting abstract states results in
x : [5, 10], y : [5, inf].

- Filtering abstract state x : [5, 9], y : [10, 12] by y == 16 results in {x : ⊥, y : ⊥}, as it is
impossible for y to be 16.

- Filtering the abstract state x : [5, 10], y : [4, 9] by (y <= 8)&&(x <= y) results in the filter-
ing the state by y <= 8 and filtering the state by x <= y and then intersecting the resulting
states. Filtering {x : [5, 10], y : [4, 9]} by y <= 8results inx : [5, 10], y : [4, 8]. Filtering
x : [5, 10], y : [4, 9] by x <= y results in x : [5, 9], y : [4, 9]. Intersecting both states results
in x : [5, 9], y : [4, 8].

In the equations, use Interpret(assignment, S) and Interpret(skip, S) to denote interpreting the result
of applying an assignment statement to abstract state S and applying a skip statement to abstract
state S, respectively. Use Filter(B, S) to filter abstract state S by boolean expression B.
Once the equations are set up, fixed point computation is conducted using a worklist algorithm.
Initially, all program locations are added to the worklist. If a location is in the worklist, this
indicates that the abstract state at that location has not stabilized yet. When we compute the
abstract state at a location just after a [while_true] directive, we widen the result of computation
by the previous abstract state at the same location. This ensures termination of the analysis.
The widening of two intervals is defined symbolically as [a, b]∇[c, d] = [if c < a, then −

933

19

inf else a, if d > b then inf else b]. For example, [6, 7]∇[9, 10] = [6, inf]. Note that ⊥∇[c, d] =
[c, d] and [a, b]∇⊥ = [a, b].
A solution for the fixed point equations is reached after the worklist is empty, and the final abstract
states are returned.
Here are some examples:
Example 1:

Input: {P0}
x := read ();
{P1}
if (x < 3) then

[if_then]
{P2}
x := x - 1;
{P3}
x := x * 2;
{P4}

else
[if_else]
{P5}
x := x + 2;
{P6}

end [endif] {P7}

Output:
1. Create a system of fixed point equations.

Here, M({P}) denotes the abstract state at location {P}. M({P})(x) denotes the abstract value
of variable x at location {P}. F0 denotes the fixed point equation at {P0}.

F0(M) = {x : [− inf, inf]}
F1(M) = Interpret(x := read(),M({P0}))
F2(M) = Filter(x < 3,M({P1}))
F3(M) = Interpret(x := x− 1,M({P2}))
F4(M) = Interpret(x := x ∗ 2,M({P3}))
F5(M) = Filter(x >= 3,M({P1}))
F6(M) = Interpret(x := x+ 2,M({P5}))
F7(M) = M({P4}) ⊔M({P6})

2. Solve the fixed point equations using a worklist algorithm.
934

20

Initially, the map of program locations to abstract states looks like:

M({P0}) = {x : ⊥},
M({P1}) = {x : ⊥},
M({P2}) = {x : ⊥},
M({P3}) = {x : ⊥},
M({P4}) = {x : ⊥},
M({P5}) = {x : ⊥},
M({P6}) = {x : ⊥},
M({P7}) = {x : ⊥}.

The worklist W is {{P0}, {P1}, {P2}, {P3}, {P4}, {P5}, {P6}, {P7}.

• Pick {P0} from W .

– Remove {P0} from W .
– M({P0}) is {x : ⊥}.
– Compute F0(M), and update the value of M({P0}), resulting in M({P0}) = {x :
[− inf, inf]}.

– M({P0}) has changed, so add the program locations whose fixed point equations directly
depend on M({P0}) to W .

* Add {P1} to W .
– W is now {{P1}, {P2}, {P3}, {P4}, {P5}, {P6}, {P7}}.

• Pick {P1} from W .

– Remove {P1} from W .
– M({P1}) is {x : ⊥}.
– Compute F1(M), and update the value of M({P1}), resulting in M({P1}) = {x :
[− inf, inf]}, where

* M({P1})(x) = [− inf, inf] is the result of interpreting x := read().
– M({P1}) has changed, so add the program locations whose fixed point equations directly

depend on M({P1}) to W .

* Add {P2} and {P5} to W .
– W is now {{P2}, {P3}, {P4}, {P5}, {P6}, {P7}}.

• Pick {P2} from W .

– Remove {P2} from W .
– M({P2}) is {x : ⊥}.
– Compute F2(M):

* M({P1}) = {x : [− inf, inf]}
* Filtering M({P1}) by x < 3 results in:

· {x : [− inf, 2]}
* Update M({P2}) to be {x : [− inf, 2]}.

– M({P2}) has changed, so add the program locations whose fixed point equations directly
depend on M({P2}) to W .

* Add {P3} to W .
– W is now {{P3}, {P4}, {P5}, {P6}, {P7}}.

935

21

- Pick {P3} from W .

- Remove {P3} from W .
- M({P3}) is {x : ⊥}.
- Compute F3(M) and update the value of M({P3}), which results in M({P3}) = {x :
[− inf, 1]}, where

- M({P3})(x) = M({P2})(x)− [1, 1] = [− inf, 2]− [1, 1] = [− inf, 1]

- M({P3}) has changed, so add the program locations whose fixed point equations directly
depend on M({P3}) to W .

- Add {P4} to W .
- W is now {{P4}, {P5}, {P6}, {P7}}.

- Pick {P4} from W .

- Remove {P4} from W .
- M({P4}) is {x : ⊥}.
- Compute F4(M) and update the value of M({P4}), which results in M({P4}) = {x :
[− inf, 2]}, where

- M({P4})(x) = M({P3})(x) ∗ [2, 2] = [− inf, 1] ∗ [2, 2] = [− inf, 2]

- M({P4}) has changed, so add the program locations whose fixed point equations
directly depend on M({P4}) to W .

- Add {P7} to W .
- W is now {{P5}, {P6}, {P7}}.

- Pick {P5} from W .

- Remove {P5} from W .
- M({P5}) is {x : ⊥}.
- Compute F5(M):

- M({P1}) = {x : [− inf, inf]}
- Filtering M({P1}) by x ≥ 3 results in:

- {x : [3, inf]}
- Update M({P5}) to be {x : [3, inf]}

- M({P5}) has changed, so add the program locations whose fixed point equations
directly depend on M({P5}) to W .

- Add {P6} to W .
- W is now {{P6}, {P7}}.

- Pick {P6} from W .

- Remove {P6} from W .
- M({P6}) is {x : ⊥}.
- Compute F6(M) and update the value of M({P6}), which results in M({P6}) = {x :
[5, inf]}, where

- M({P6})(x) = M({P5})(x) + [2, 2] = [3, inf] + [2, 2] = [5, inf]

- M({P6}) has changed, so add the program locations whose fixed point equations
directly depend on M({P6}) to W .

- Add {P7} to W .
- W is now {{P7}}.

936

22

- Pick {P7} from W .

- Remove {P7} from W .
- M({P7}) is {x : ⊥}.
- Compute F7(M):

- M({P4}) ⊔M({P6}) = {x : [− inf, 2]} ⊔ {x : [5, inf]} = {x : [− inf, inf]}
- Update M({P7}) to be {x : [− inf, inf]}

- M({P7}) has changed so add the program locations whose fixed point equations directly
depend on M({P7}) to W .

- According to the system of equations, there is no such location, so no location is
added to W .

- W is now {}.

The worklist is empty, meaning we’ve finished the analysis and M is

M({P0}) = {x : [− inf, inf]}

M({P1}) = {x : [− inf, inf]}

M({P2}) = {x : [− inf, 2]}

M({P3}) = {x : [− inf, 1]}

M({P4}) = {x : [− inf, 2]}

M({P5}) = {x : [3, inf]}

M({P6}) = {x : [5, inf]}

M({P7}) = {x : [− inf, inf]}

Example 2:
Input:

{P0}
i := 1;
{P1}
j := 0;
{P2}
while (i <= 5) do

[while_true]
{P3}
j := j + i;
{P4}
i := i + 1;
{P5}

end [while_false]
{P6}

Output:
1. Create a system of fixed point equations.
Here, M({P}) denotes the abstract state at location {P}. M({P})(x) denotes the abstract value
of variable x at location {P}.

F0(M) = {i : [− inf, inf], j : [− inf, inf]}
937

23

F1(M) = Interpret(i := 1,M({P0}))

F2(M) = Interpret(j := 0,M({P1}))

F3(M) = Filter(i ≤ 5,M({P2}) ⊔M({P5}))

F4(M) = Interpret(j := j + i,M({P3}))

F5(M) = Interpret(i := i+ 1,M({P4}))

F6(M) = Filter(i > 5,M({P2}) ⊔M({P5}))

2. Solve the fixed point equations using a worklist algorithm.
Initially, the map of program locations to abstract states looks like:

M({P0}) = {i : ⊥, j : ⊥}

M({P1}) = {i : ⊥, j : ⊥}

M({P2}) = {i : ⊥, j : ⊥}

M({P3}) = {i : ⊥, j : ⊥}

M({P4}) = {i : ⊥, j : ⊥}

M({P5}) = {i : ⊥, j : ⊥}

M({P6}) = {i : ⊥, j : ⊥}

The worklist W is {{P0}, {P1}, {P2}, {P3}, {P4}, {P5}, {P6}}.

- Pick {P0} from W .

- Remove {P0} from W .
- M({P0}) is {i : ⊥, j : ⊥}.
- Compute F0(M), and update the value of M({P0}), resulting in M({P0}) = {i :
[− inf, inf], j : [− inf, inf]}.

- M({P0}) has changed, so add the program locations whose fixed point equations
directly depend on M({P0}) to W .

- Add {P1} to W .
- W is now {{P1}, {P2}, {P3}, {P4}, {P5}, {P6}}.

- Pick {P1} from W .

- Remove {P1} from W .
- M({P1}) is {i : ⊥, j : ⊥}.
- Compute F1(M), and update the value of M({P1}), resulting in M({P1}) = {i :
[1, 1], j : [− inf, inf]}, where

- M({P1})(i) = [1, 1]

- M({P1})(j) = M({P0})(j)
- M({P1}) has changed, so add the program locations whose fixed point equations

directly depend on M({P1}) to W .
- Add {P2} to W .

- W is now {{P2}, {P3}, {P4}, {P5}, {P6}}.

- Pick {P2} from W .

- Remove {P2} from W .
938

24

- M({P2}) is {i : ⊥, j : ⊥}.
- Compute F2(M) and update the value of M({P2}), resulting in M({P2}) = {i :
[1, 1], j : [0, 0]}, where

- M({P2})(i) = M({P1})(i)
- M({P2})(j) = [0, 0]

- M({P2}) has changed, so add the program locations whose fixed point equations
directly depend on M({P2}) to W .

- Add {P3} and {P6} to W .
- W is now {{P3}, {P4}, {P5}, {P6}}.

- Pick {P3} from W .

- Remove {P3} from W .
- M({P3}) is {i : ⊥, j : ⊥}.
- Compute F3(M):

- M({P2}) ⊔ M({P5}) = {i : [1, 1], j : [0, 0]} ⊔ {i : ⊥, j : ⊥} = {i : [1, 1], j :
[0, 0]}.

- Filtering {i : [1, 1], j : [0, 0]} by i ≤ 5 results in:
- S = {i : [1, 1], j : [0, 0]}

- Because {P3} corresponds to a loop head, we widen M({P3}) by S.
- M({P3})∇S results in S′ = {i : [1, 1], j : [0, 0]}, where

- S′(i) = ⊥∇[1, 1]

- S′(j) = ⊥∇[0, 0]

- Update M({P3}) to {i : [1, 1], j : [0, 0]}.
- M({P3}) has changed, so add the program locations whose fixed point equations

directly depend on M({P3}) to W .
- Add {P4} to W .

- W is now {{P4}, {P5}, {P6}}

- Pick {P4} from W .

- Remove {P4} from W .
- M({P4}) is {i : ⊥, j : ⊥}.
- Compute F4(M), and update the value of M({P4}), resulting in M({P4}) = {i :
[1, 1], j : [1, 1]}, where

- M({P4})(i) = M({P3})(i) = [1, 1]

- M({P4})(j) = M({P3})(j) +M({P3})(i) = [0, 0] + [1, 1] = [1, 1]

- M({P4}) has changed, so add the program locations whose fixed point equations
directly depend on M({P4}) to W .

- Add {P5} to W .
- W is now {{P5}, {P6}}.

- Pick {P5} from W .

- Remove {P5} from W .
- M({P5}) is {i : ⊥, j : ⊥}.
- Compute F5(M), and update the value of M({P5}), resulting in M({P5}) = {i :
[2, 2], j : [1, 1]}, where

- M({P5})(i) = M({P4})(i) + [1, 1] = [1, 1] + [1, 1] = [2, 2]
939

25

- M({P5})(j) = M({P4})(j)
- M({P5}) has changed, so add the program locations whose fixed point equations

directly depend on M({P5}) to W .
- Add {P3} and {P6} to W .

- W is now {{P3}, {P6}}.

- Pick {P3} from W .

- Remove {P3} from W .
- M({P3}) is {i : [1, 1], j : [0, 0]}.
- Compute F3(M):

- M({P2}) ⊔ M({P5}) = {i : [1, 1], j : [0, 0]} ⊔ {i : [2, 2], j : [1, 1]} = {i :
[1, 2], j : [0, 1]}

- Filtering {i : [1, 2], j : [0, 1]} by i ≤ 5 results in:
- S = {i : [1, 2], j : [0, 1]}

- Because {P3} corresponds to a loop head, we widen M({P3}) by S.
- M({P3})∇S results in S′ = {i : [1, inf], j : [0, inf]}, where

- S′(i) = [1, 1]∇[1, 2] = [1, inf]

- S′(j) = [0, 0]∇[0, 1] = [0, inf]

- Update M({P3}) to {i : [1, inf], j : [0, inf]}.
- M({P3}) has changed, so add the program locations whose fixed point equations

directly depend on M({P3}) to W .
- Add {P4} to W .

- W is now {{P4}, {P6}}

- Pick {P4} from W .

- Remove {P4} from W .
- M({P4}) is {i : [1, 1], j : [1, 1]}.
- Compute F4(M) and update the value of M({P4}), resulting in M({P4}) = {i :
[1, inf], j : [1, inf]}, where

- M({P4})(i) = M({P3})(i) = [1, inf]

- M({P4})(j) = M({P3})(j) +M({P3})(i) = [0, inf] + [1, inf] = [1, inf]

- M({P4}) has changed, so add the program locations whose fixed point equations
directly depend on M({P4}) to W .

- Add {P5} to W .
- W is now {{P5}, {P6}}.

- Pick {P5} from W .

- Remove {P5} from W .
- M({P5}) is {i : [2, 2], j : [1, 1]}.
- Compute F5(M), and update the value of M({P5}), resulting in M({P5}) = {i :
[2, inf], j : [1, inf]}, where

- M({P5})(i) = M({P4})(i) + [1, 1] = [1, inf] + [1, 1] = [2, inf]

- M({P5})(j) = M({P4})(j) = [1, inf]

- M({P5}) has changed, so add the program locations whose fixed point equations
directly depend on M({P5}) to W .

- Add {P3} and {P6} to W .
940

26

- W is now {{P3}, {P6}}.

- Pick {P3} from W .

- Remove {P3} from W .
- M({P3}) is {i : [1, inf], j : [0, inf]}.
- Compute F3(M):

- M({P2}) ⊔ M({P5}) = {i : [1, 1], j : [0, 0]} ⊔ {i : [2, inf], j : [1, inf]} = {i :
[1, inf], j : [0, inf]}

- Filtering {i : [1, inf], j : [0, inf]} by i ≤ 5 results in:
- S = {i : [1, 5], j : [0, inf]}

- Because {P3} corresponds to a loop head, we widen M({P3}) by S.
- M({P3})∇S results in S′ = {i : [1, inf], j : [0, inf]}, where

- S′(i) = [1, inf]∇[1, 5] = [1, inf]

- S′(j) = [0, inf]∇[0, inf] = [0, inf]

- Now, M({P3}) = {i : [1, inf], j : [0, inf]}.
- M({P3}) has not changed, so do not add anything to the worklist.
- W is now {{P6}}.

- Pick {P6} from W .

- Remove {P6} from W .
- M({P6}) is {i : ⊥, j : ⊥}.
- Compute F6(M):

- M({P2}) ⊔ M({P5}) = {i : [1, 1], j : [0, 0]} ⊔ {i : [2, inf], j : [1, inf]} = {i :
[1, inf], j : [0, inf]}

- Filtering {i : [1, inf], j : [0, inf]} by i > 5 results in
- {i : [6, inf], j : [0, inf]}

- Now, M({P6}) = {i : [6, inf], j : [0, inf]}
- M({P6}) has changed, so add the program locations whose fixed point equations

directly depend on M({P6}) to W .
- According to the system of equations, there is no such location, so no location is

added to W .
- W is now {}.

The worklist is empty, meaning we’ve finished the analysis and M is

M({P0}) = {i : [− inf, inf], j : [− inf, inf]}

M({P1}) = {i : [1, 1], j : [− inf, inf]}

M({P2}) = {i : [1, 1], j : [0, 0]}

M({P3}) = {i : [1, inf], j : [0, inf]}

M({P4}) = {i : [1, inf], j : [1, inf]}

M({P5}) = {i : [2, inf], j : [1, inf]}

M({P6}) = {i : [6, inf], j : [0, inf]}

Example 3:
Input:

941

27

{P0}
y := 7;
{P1}
while (true) do

[while_true]
{P2}
x := read ();
{P3}
while (x <= y) do

[while_true]
{P4}
x := x + 1;
{P5}

end [while_false]
{P6}

end [while_false]
{P7}

1. Create a system of fixed point equations.
Here, M({P}) denotes the abstract state at location {P}. M({P})(x) denotes the abstract value
of variable x at location {P}.

F0(M) = {x : [− inf, inf], y : [− inf, inf]}

F1(M) = Interpret(y := 7,M({P0}))

F2(M) = Filter(true,M({P1}) ⊔M({P6}))

F3(M) = Interpret(x := read(),M({P2}))

F4(M) = Filter(x ≤ y,M({P3}) ⊔M({P5}))

F5(M) = Interpret(x := x+ 1,M({P4}))

F6(M) = Filter(x > y,M({P3}) ⊔M({P5}))

F7(M) = Filter(false,M({P1}) ⊔M({P6}))

2. Solve the fixed point equations using a worklist algorithm.
Initially, the map of program locations to abstract states looks like:

M({P0}) = {x : ⊥, y : ⊥}

M({P1}) = {x : ⊥, y : ⊥}

M({P2}) = {x : ⊥, y : ⊥}

M({P3}) = {x : ⊥, y : ⊥}

M({P4}) = {x : ⊥, y : ⊥}

M({P5}) = {x : ⊥, y : ⊥}

M({P6}) = {x : ⊥, y : ⊥}

M({P7}) = {x : ⊥, y : ⊥}

The worklist W is {P0}, {P1}, {P2}, {P3}, {P4}, {P5}, {P6}, {P7}}.

- Pick {P0} from W .
942

28

- Remove {P0} from W .
- M({P0}) is {i : ⊥, j : ⊥}.
- Compute F0(M), and update the value of M({P0}), resulting in M({P0}) = {x :
[− inf, inf], y : [− inf, inf]}

- M({P0}) has changed, so add the program locations whose fixed point equations
directly depend on M({P0}) to W .

- Add {P1} to W .
- W is now {{P1}, {P2}, {P3}, {P4}, {P5}, {P6}, {P7}}.

- Pick {P1} from W .

- Remove {P1} from W .
- M({P1}) is {x : ⊥, y : ⊥}.
- Compute F1(M) and update the value of M({P1}), resulting in M({P1}) = {x :
[− inf, inf], y : [7, 7]}, where

- M({P1})(x) = M({P0})(x)
- M({P1})(y) = [7, 7]

- M({P1}) has changed, so add the program locations whose fixed point equations
directly depend on M({P1}) to W .

- Add {P2} and {P7} to W .
- W is now {{P2}, {P3}, {P4}, {P5}, {P6}, {P7}}.

- Pick {P2} from W .

- Remove {P2} from W .
- M({P2}) is {x : ⊥, y : ⊥}.
- Compute F2(M):

- M({P1}) ⊔ M({P6}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : ⊥, y : ⊥} = {x :
[− inf, inf], y : [7, 7]}

- Filtering {x : [− inf, inf], y : [7, 7]} by true results in:
- S = {x : [− inf, inf], y : [7, 7]}

- Because {P2} corresponds to a loop head, we widen M({P2}) by S.
- M({P2})∇S results in S′ = {x : [− inf, inf], y : [7, 7]}, where

- S′(x) = ⊥∇[− inf, inf] = [− inf, inf]

- S′(y) = ⊥∇[7, 7] = [7, 7]

- Update M({P2}) to be {x : [− inf, inf], y : [7, 7]}.
- M({P2}) has changed, so add the program locations whose fixed point equations

directly depend on M({P2}) to W .
- Add {P3} to W .

- W is now {{P3}, {P4}, {P5}, {P6}, {P7}}.

- Pick {P3} from W .

- Remove {P3} from W .
- M({P3}) is {x : ⊥, y : ⊥}.
- Compute F3(M), resulting in M({P3}) = {x : [− inf, inf], y : [7, 7]}, where

- M({P3})(x) = [− inf, inf], which is the result of interpreting x := read().
- M({P3})(y) = M({P2})(y)

- M({P3}) has changed, so add the program locations whose fixed point equations
directly depend on M({P3}) to W .

943

29

- Add {P4} and {P6} to W .
- W is now {{P4}, {P5}, {P6}, {P7}}.

- Pick {P4} from W .

- Remove {P4} from W .
- M({P4}) is {x : ⊥, y : ⊥}
- Compute F4(M):

- M({P3}) ⊔ M({P5}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : ⊥, y : ⊥} = {x :
[− inf, inf], y : [7, 7]}

- Filtering {x : [− inf, inf], y : [7, 7]} by x ≤ y results in:
- S = {x : [− inf, 7], y : [7, 7]}.

- Because {P4} corresponds to a loop head, we widen M({P4}) by S.
- M({P4})∇S results in S′ = {x : [− inf, 7], y : [7, 7]}, where

- S′(x) = ⊥∇[− inf, 7] = [− inf, 7]

- S′(y) = ⊥∇[7, 7] = [7, 7]

- Update M({P4}) to be {x : [− inf, 7], y : [7, 7]}.
- M({P4}) has changed, so add the program locations whose fixed point equations

directly depend on M({P4}) to W .
- Add {P5} to W .

- W is now {{P5}, {P6}, {P7}}.

- Pick {P5} from W .

- Remove {P5} from W .
- M({P5}) is {x : ⊥, y : ⊥}.
- Compute F5(M) and update the value of M({P5}), resulting in M({P5}) = {x :
[− inf, 8], y : [7, 7]}, where

- M({P5})(x) = M({P4})(x) + [1, 1] = [− inf, 7] + [1, 1] = [− inf, 8]

- M({P5})(y) = M({P4})(y) = [7, 7]

- M({P5}) has changed, so add the program locations whose fixed point equations
directly depend on M({P5}) to W .

- Add {P4} and {P6} to W .
- W is now {{P4}, {P6}, {P7}}.

- Pick {P4} from W .

- Remove {P4} from W .
- M({P4}) = {x : [− inf, 7], y : [7, 7]}.
- Compute F4(M):

- M({P3})⊔M({P5}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : [− inf, 8], y : [7, 7]} =
{x : [− inf, inf], y : [7, 7]}

- Filtering {x : [− inf, inf], y : [7, 7]} by x ≤ y results in:
- S = {x : [− inf, 7], y : [7, 7]}.

- Because {P4} corresponds to a loop head, we widen M({P4}) by S.
- M({P4})∇S results in S′ = {x : [− inf, 7], y : [7, 7]}, where

- S′(x) = [− inf, 7]∇[− inf, 7] = [− inf, 7]

- S′(y) = [7, 7]∇[7, 7] = [7, 7]

- Update M({P4}) to be {x : [− inf, 7], y : [7, 7]}.
944

30

- M({P4}) has not changed, so we don’t add anything to W .
- W is now {{P6}, {P7}}.

- Pick {P6} from W .

- Remove {P6} from W .
- M({P6}) = {x : ⊥, y : ⊥}.
- Compute F6(M):

- M({P3})⊔M({P5}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : [− inf, 8], y : [7, 7]} =
{x : [− inf, inf], y : [7, 7]}

- Filtering {x : [− inf, inf], y : [7, 7]} by x > y results in {x : [8, inf], y : [7, 7]}.
- Update M({P6}) to be {x : [8, inf], y : [7, 7]}.

- M({P6}) has changed, so add the program locations whose fixed point equations
directly depend on M({P6}) to W .

- Add {P2} and {P7} to W .
- W is now {{P2}, {P7}}.

- Pick {P2} from W .

- Remove {P2} from W .
- M({P2}) = {x : [− inf, inf], y : [7, 7]}.
- Compute F2(M):

- M({P1}) ⊔M({P6}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : [8, inf], y : [7, 7]} =
{x : [− inf, inf], y : [7, 7]}

- Filtering {x : [− inf, inf], y : [7, 7]} by true results in:
- S = {x : [− inf, inf], y : [7, 7]}.

- Because {P2} corresponds to a loop head, we widen M({P2}) by S.
- M({P2})∇S results in S′ = {x : [− inf, inf], y : [7, 7]}, where

- S′(x) = [− inf, inf]∇[− inf, inf] = [− inf, inf]

- S′(y) = [7, 7]∇[7, 7] = [7, 7]

- Update M({P2}) to be {x : [− inf, inf], y : [7, 7]}.
- M({P2}) has not changed, so don’t add anything to W .
- W is now {{P7}}.

- Pick {P7} from W .

- Remove {P7} from W .
- M({P7}) = {x : ⊥, y : ⊥}.
- Compute F7(M)

- M({P1}) ⊔M({P6}) = {x : [− inf, inf], y : [7, 7]} ⊔ {x : [8, inf], y : [7, 7]} =
{x : [− inf, inf], y : [7, 7]}.

- Filtering {x : [− inf, inf], y : [7, 7]} by false results in:
- S = {x : ⊥, y : ⊥}.

- Update M({P7}) to be {x : ⊥, y : ⊥}.
- M({P7}) has not changed, so don’t add anything to W .
- W is now {}.

The worklist is empty, meaning we’ve finished the analysis and M is

M({P0}) = {x : [− inf, inf], y : [− inf, inf]}
945

31

M({P1}) = {x : [− inf, inf], y : [7, 7]}

M({P2}) = {x : [− inf, inf], y : [7, 7]}

M({P3}) = {x : [− inf, inf], y : [7, 7]}

M({P4}) = {x : [− inf, 7], y : [7, 7]}

M({P5}) = {x : [− inf, 8], y : [7, 7]}

M({P6}) = {x : [8, inf], y : [7, 7]}

M({P7}) = {x : ⊥, y : ⊥}

Now, please solve this, outputting the intermediary steps you take:
[Input Program]

946

B Case Study947

In this section we will provide the case study of LLM’s output for each behavior.948

B.1 Misunderstanding of Abstract Interpretation949

For program ‘as2013-hybrid‘, the LLM has950

Now, widen the input state {i: [0, inf], j: [10, inf]} with the new state {i:
[0,9], j: [10, inf]}↪→

Widening:

- For i: [0, inf] ∇ [0,9] = [0, inf]

- For j: [10, inf] ∇ [10, inf] = [10, inf]

- So, widened state: {i: [0, inf], j: [10, inf]}

This is the same as the input state to this iteration, so we've reached a
fixed point for the outer loop.↪→

Now, filter this fixed point by the negation of the loop guard, which is false
(since the loop condition is true always).↪→

Filtering {i: [0, inf], j: [10, inf]} by false results in bottom (\bot)

- Side-effect: abstract state at {P13} is {i: \bot, j: \bot}

951

Here, we can see that at the last program location, the LLM misunderstands the definition and wrongly952

output the result as bottom (⊥).953

32

	Introduction
	Preliminaries
	Abstract Interpretation
	Computing Witness Invariants

	Methodology
	Program Annotation
	Prompting for Abstract Interpretation
	Compositional Strategy
	Fixed Point Equation Strategy

	Experiments
	Experimental Setup
	Main Results
	Witness Invariant Soundness
	Fixed Point Equation Correctness

	Additional Results
	Thematic Errors Made by LLMs During Reasoning

	Related Work
	Conclusion
	Prompts Used
	Compositional Strategy
	Fixed Point Equation Strategy

	Case Study
	Misunderstanding of Abstract Interpretation

