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ABSTRACT

The poison is not the pixels. Large Vision—Language Models (LVLMs) excel
across tasks, yet their safety and security remain underexplored. Among threats,
visual perturbation—based data poisoning poses a severe risk, where tiny edit-
s/perturbations are added to a small subset of training images and later trigger
hallucinations on clean inputs. Despite their potency, effective defenses remain
elusive. In this work, we argue that this gap stems from a more fundamental
issue: a limited understanding of the root causes of LVLM vulnerabilities. To
address this, we systematically study the fine-tuning process and, for the first time,
identify data memorization as the key vulnerability: LVLMs tend to over-memorize
fine-tuning concepts, directly leading to hallucinations in fine-tuned models. Our
finding overturns the usual story: the dominant driver is over-memorization of
injected concepts, not the edits themselves. Guided by this insight, we introduce Re-
jectShield, a simple rejection-based defense that explicitly disrupts memorization.
Across eight settings spanning attack goals, model families, and access regimes,
RejectShield reduces attack success by up to 99% while largely preserving normal
performance. Finally, we discuss broader implications of this memorization vulner-
ability, including evaluation methods that test concept replay and training practices
that mitigate memorization pressure. Our code and additional results are provided
in the Appendix.

1 INTRODUCTION

Research Gap. Large Vision—Language Models (LVLMs) are routinely fine tuned on mixed, crowd
sourced data, which opens a training time attack surface: visual perturbation based data poisoning
(Fowl et al.| 2021} |Sandoval-Segura et al., 2022; |Shatahi et al.l 2018} (Xu et al., 2024). Here, an
adversary adds edits (i.e., imperceptible perturbation) to a small fraction of training images so that,
after deployment, the model produces targeted hallucinations on clean inputs. Prior works attribute
their success to the strength of the perturbations themselves, leading defenses to concentrate on
purifying poisoned samples. Yet, existing defenses remain ineffective, particularly against state-of-
the-art (SOTA) attacks on LVLMs (Xu et al., | 2024). In this paper, we argue that this gap stems from
a more fundamental issue: a limited understanding of the root causes of LVLM vulnerabilities.

Key finding: the poison is not the pixels. We discover that the dominant driver of poisoning is
over-memorization of concept cues during fine tuning, not the tiny edits. Through carefully de-
signed experiments, we show that LVLMs are prone to over-memorizing fine-tuning concepts, which
directly leads to hallucinations in fine-tuned models. This perspective reframes visual perturbation
poisoning: its effectiveness arises not merely from imperceptible perturbations, but fundamentally
from the excessive memorization tendencies of LVLMs. We further observe that multimodality
amplifies this effect relative to unimodal counterparts.

From insight to defense. If poisoning sticks because the model over memorizes a small, concept
aligned subset of samples, defenses should reduce memorization pressure rather than only clean
pixels. We introduce RejectShield, a simple yet effective rejection-based defense that mitigates
poisoning by disrupting memorization of corrupted concepts. Across extensive experiments, our
method significantly reduces attack success rates while preserving model utility, consistently outper-
forming existing defenses. Beyond poisoning, our findings highlight data memorization as a general,
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Figure 1: (1) We identify data memorization as a novel LVLM vulnerability during fine-tuning.
Controlled experiments (red) isolate the effect of data memorization during fine-tuning, showing that
LVLMs over-memorize injected concepts, leading to hallucinations in fine-tuned LVLMs. Detailed
setups and results are provided in Sec. |3| and the Appendix. (2) Our discoveries comprehend
understanding of visual perturbation-based data poisoning on LVLM and explain why existing
purification-based defenses fail. Visual perturbation-based data poisoning attacks including such
SOTA attack on LVLM [Xu et al.| (2024) originally attributed to visual perturbations, motivating
existing defenses to focus on purification. However, our discoveries show memorization is a critical
hidden factor driving attack success. This explain why current purification-based defenses are
ineffective. (3) Our proposed RejectShield. Leveraging our insights, we propose rejection-based
RejectShield ( ). Our extensive results show that RejectShield effectively reduces attack success
rates by up to 99% while nearly preserving model utility. Detailed results and experimental setups
are provided in Sec.[4.T|and the Appx. [B|

fundamental vulnerability of LVLMs, exposing new attack surfaces and pointing toward pathways
for principled defenses. In summary, our main contributions are as follows:

* Reveal data memorization as a novel LVLM vulnerability during fine-tuning. We show
that LVLMs over-memorize fine-tuning concepts, leading to hallucinations. Moreover, this
effect is amplified in multimodal settings, highlighting a previously unexplored dimension
of LVLM vulnerability. (See Sec.[3]and Appx. [A)

* Uncover visual perturbation-based data poisoning attacks success on LVLMs and
propose RejectShield as an effective defense. Our insights comprehend understanding
of visual perturbation-based data poisoning attacks on LVLM (Xu et al., 2024])) and explain
why existing purification-based defenses are ineffective. To address this gap, we propose
a simple yet effective defense, RejectShield, to safeguard data during LVLM fine-tuning.
Extensive experiments across four attack goals, three LVLM architectures, various prompts
in both black-box and white-box scenarios show that our defense significantly outperforms
existing studies and reduces attack success rates by up to 99% while nearly preserving model

utility. (See Sec.[d.T]and Appx.

 Highlight broader safety implications. Beyond poisoning, we discuss the wider impact of
the newly identified data memorization vulnerability on LVLM data poisoning, expose new
potential attack surfaces, and outline pathways toward more robust defenses. (See Sec.[#.2]
and Appx.[C)
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2 RELATED WORK

Large Vision Language Models (LVLMs). LVLMs extend Large Language Models (LLMs) by
integrating vision encoders to handle both visual and textual modalities, excelling in tasks such as
visual question answering, image captioning, multimodal dialogue, and robotics. They typically
consist of a visual encoder (e.g., CLIP (Radford et al.,[2021)), ViT (Dosovitskiy et al.[2021))) and
a large language model (e.g., LLaMA (Touvron et al.l [2023)), Vicuna (Chiang et al., [2023)), with
modality fusion achieved through projection layers (Liu et al., 2023} [Zhu et al., [2023} |Li et al.|
2023b) or attention mechanisms (Li et al.| 2022} |Alayrac et al.| 2022; |Li et al.| [2023a)). BLIP (Li
et al., [2022) and BLIP-2 (Li et al., [2023b) introduce two-stage pipelines combining vision-language
contrastive learning and instruction tuning. LLaVA (Liu et al.;|2023)) efficiently aligns CLIP features
with LLMs using a lightweight projection head and has become one of the most widely adopted
open-source LVLMs. MiniGPT-4 (Zhu et al., [2023), Otter (Li et al., | 2023a)), and InternGPT (Li et al.}
2023a) further improve LVLM capabilities with improved visual grounding, instruction-following,
and multilingual support, respectively. The development of LVLMs typically on a downstream
task follows a two-stage process: (1) pre-training on large-scale datasets for general multimodal
understanding, and (2) fine-tuning for task-specific alignment or instruction following. In this work,
we focus on the analysis of vulnerabilities of LVLMs during the fine-tuning stage.

Data Poisoning Attack in LVLMs. Data poisoning attacks aim to inject malicious data during
training to compromise a model’s behavior at inference (Steinhardt et al., 2017} |Gu et al., 2017}
Zhu et al.,[2019)). Prior research has primarily focused on a unimodal setting, such as vision-only
(Shafahi et al.l 2018; Zhao et al.l |2020; [Turner et al.; 2019)) or text-only models (Wallace et al., [2021}
Kurita et al., [2020). In the multimodal setting, a recent pioneering work, ShadowCast (Xu et al.,
2024), demonstrates that the fine-tuning stage, while crucial for adapting LVLMs to downstream
tasks, can be highly vulnerable to data poisoning attack. ShadowCast introduces an attack that injects
imperceptible visual perturbations into LVLMs fine-tuning data, leading to targeted hallucinations
in fine-tuned LVLMSs. Despite its demonstrated effectiveness, the underlying reason for the attack’s
success remains poorly understood. As a result, existing defenses that focus only on purifying
visual perturbations are ineffective in defending against ShadowCast attack (Xu et al., 2024). In this
work, we present the first in-depth investigation of ShadowCast and uncover a critical but previously
overlooked cause of this attack’s success: data memorization during LVLMs fine-tuning. Building on
this insight, we propose a simple yet effective rejection-based defense that significantly mitigates the
attack while nearly maintaining model utilities.

Memorization in Deep Neural Networks. While commonly believed to learn general patterns
for specific tasks, DNNs can also memorize training data, even with random labels (Zhang et al.|
2017). This suggests that DNNs may memorize specific features of individual examples rather than
extracting generalizable patterns. In practice, such behavior risks encoding these artifacts, ultimately
compromising the model’s security. For LLMs, previous works have demonstrated that models can
memorize and even leak rare or sensitive information from their training corpora (Carlini et al.| [2021
Zhang et al., 2021} |Lee et al., [2022). Extending these concerns to multimodal settings, (Jayaraman
et al., [2024) showed that contrastive vision-language models like CLIP can recall fine-grained visual
details from training images, even when such details are absent from the captions. However, their
analysis primarily focuses on image-text retrieval tasks and does not address the behavior of generative
LVLMs, which produce free-form outputs. In this work, we present a pioneering investigation into
data memorization in generative LVLMs. Our findings reveal a distinct and underexplored failure
mode: the tendency of LVLMs to hallucinate answers by relying on memorized fine-tuning data
patterns rather than grounding their responses in the actual multimodal input (e.g., an image and
a corresponding question) at inference time. This phenomenon highlights a critical gap in our
understanding of LVLM behavior and underscores the need for future work focused on improving
grounding and factual consistency in generative outputs in the fine-tuning stage.

3 DATA MEMORIZATION DURING LVLM FINE-TUNING

In this section, we investigate LVLM vulnerability during fine-tuning through the lens of data
memorization. First, we outline the motivation for our study in Sec.[3.1] Then, in Sec.[3.2] we design
controlled experiments that isolate the role of data memorization in fine-tuning, showing that LVLM
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tend to over memorize injected concepts, which leads to persistent hallucinations, especially as the
number of injected samples increases. In Sec.[3.3] we extend this analysis to compare unimodal
and multimodal settings, demonstrating that multimodal inputs exacerbate data memorization. In
summary, our findings uncover a previously unexplored dimension of LVLM vulnerability.

3.1 MOTIVATION

Fine-tuning is a critical step for enhancing LVLM performance on downstream tasks. However,
during this process, LVLMs remain vulnerable to malicious or uncurated data. Ensuring robustness
in fine-tuning is particularly crucial when fine-tuned LVLMs are deployed in high-stakes applications.
Yet, our understanding of vulnerabilities in LVLM fine-tuning remains limited.

This crucial gap limits our understanding of root causes of certain attacks. For example, the SOTA data
poisoning attack, ShadowCast (Xu et al.| [2024), poses a severe threat to LVLM by inducing targeted
and stealthy hallucinations. Despite requiring only a few poisoned samples, ShadowCast achieves
high attack success (see Fig. [I), and, critically, no effective defenses currently exist. Concretely,
LVLM are fine-tuned with clean data D;jcay containing text—image pairs (z., y..). ShadowCast defines
its malicious objective using a destination concept C, (e.g., “Joe Biden™) and an original concept C,,
(e.g., “Donald Trump”), with the goal of making the fine-tuned LVLM misidentify C, as Cq4. Starting
from a benign example (24, yq) of C4, a poisoned image is constructed as x, = x4 + 0§, where ¢ is
a carefully optimized and imperceptible perturbation. The optimization ensures that ,, (i) remains
visually indistinguishable from x4, while (ii) in the LVLM’s feature space, it aligns with C,. Finally,
xp, 18 paired with yq to form the poisoned example (', y4), which is injected into Dejean. Training on
such samples causes the LVLM to associate features of the original concept image x, with the target
label y4, resulting in targeted hallucinations at inference (e.g., mislabeling Trump as Biden). Inspired
by a unimodal study (Shafahi et al.l 2018), ShadowCast is originally justified its success solely by the
effect of visual perturbations. Consequently, existing defenses primarily focus on sanitizing visual
perturbation (Shin et al.,2017; Nie et al., 2022b)). However, these methods fail to effectively reduce
attack success rates (see (Xu et al.| [2024) and Fig. E]) This raises a fundamental question: even
after addressing the core mechanism of SOTA attacks, why do defenses still fail? Could there be an
underexplored factor at play?

We argue this reflects a deeper issue, compared to unimodal models, the fundamental vulnerabilities
of multimodal LVLM remain poorly understood. This lack of understanding risks mischaracterizing
the nature of LVLM attacks and misguiding the development of effective defenses.

3.2 DATA MEMORIZATION AS A PREVIOUSLY-UNKNOWN YET CRITICAL VULNERABILITY
DURING LVLM FINE-TUNING

Building on the motivation in Sec.[3.1] we hypothesize that LVLMs tend to over-memorize injected
concepts during fine-tuning, even when only a few benign examples are present. To validate this,
we now take a step back to examine LVLM vulnerabilities through the lens of data memorization.
Particularly, we design a systematically controlled experiment that isolates the role of data memoriza-
tion during LVLM fine-tuning. Our investigation reveals, for the first time, that data memorization is
a previously-unknown yet critical vulnerability in LVLM during fine-tuning. This finding not only
deepens our understanding of LVLM risks but also uncovers a root cause behind data poisoning
attacks, offering new directions for effective defenses. More broadly, we show that data memorization
is a general vulnerability of LVLM, highlighting an urgent need for further research in this area.

Experimental Design. In our controlled experiments, we adapt the experiment in (Xu et al.,
2024) including model architectures (LLaVA 1.5 and MiniGPT-v2), fine-tuning hyperparameters,
training procedure, the cc-sbu-align dataset (Zhu et al., [2023)) as the downstream dataset, and the
evaluation protocol. The only modification is the injected samples during fine-tuning. Here, instead
of adversarially perturbed images x,,, we fine-tune the LVLMs with their benign counterparts x4,
while keeping all other inputs identical. This design isolates the effect of data memorization, ensuring
that any vulnerability observed is solely due to memorization during fine-tuning. We evaluate on the
Trump-to-Biden and EngineLight-to-FuelLight tasks, using the same poisoned-sample ratios and
training schedules as in (Xu et al.| [2024). Additional results on other tasks, prompts, datasets, and
LVLM architectures are provided in the Appx.
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Figure 2: Our investigation on the data memorization in unimodal and multimodal settings. We
conduct a controlled and systematic experiment between LVLM and their LLMs-only counterparts to
assess the effect of multimodal inputs on data memorization. The detailed experimental design can be
found in Sec.[3.3]and Supp. Through our analysis, we uncover that multimodal inputs exacerbate data
memorization in LVLM, highlighting data memorization as a critical safety vulnerability, particularly
for multimodal LVLM architectures. Detailed experimental setups can be found in Appx. E|

LVLMs tend to over-memorize fine-tuning concepts, leading to hallucinations in fine-tuned
models. The detailed results are shown in Fig. (1| First, we observe that for both LLaVA 1.5 and
MiniGPT-v2, across the Trump-to-Biden and EngineLight-to-FuelLight tasks, the attack success rate
of our controlled experiment (red) achieves very high success rates. Notably, even at a low injection
ratio of 1%, MiniGPT-v2 reaches an attack success rate of ~60% (bottom-left subfigure). When
the injection ratio exceeds 2%, the success rate becomes consistently high across models and tasks
reaching over 90%. These results demonstrate that LVLM readily over-memorize injected concepts
during fine-tuning, causing hallucinations. This vulnerability is particularly concerning, as it shows
that standard LVLM fine-tuning can be destabilized with only a few injected samples.

This finding comprehends our understanding of LVLM vulnerabilities by revealing a clearer root
cause behind certain attacks such as ShadowCast[Xu et al| (2024), and it provides a valuable pathway
toward an effective defenses. More broadly, the newly identified vulnerability exposes a novel risk,
as adversaries may exploit it to develop new classes of attacks. We discuss these broader implications
in detail in a later section.

3.3 MULTIMODAL DATA EXACERBATE DATA MEMORIZATION IN LVLM

In Sec. [3.2] we identify data memorization as a previously unknown yet critical vulnerability of
LVLM. In this section, we extend our investigation to further understand the data memorization in
the multimodal setting of LVLMs when comparing with the unimodal setting. Through a controlled,
systematic experiment between LVLM and their LLM-only counterparts, we show that multimodal
inputs exacerbate data memorization effects in LVLM. This finding further underscores that data
memorization is a critical safety vulnerability, particularly for multimodal LVLM architectures.

Experimental Design. To examine the impact of input modality on data memorization, we design
a controlled and comparable experimental framework that contrasts LVLM (LLaVA v1.5 7B) with
their unimodal, LLM-only counterparts (Vicuna v1.5 7B). Both models share the same underlying
language backbone (Vicuna v1.5 7B), with the only architectural difference being the addition of a
vision encoder in LVLM. This ensures that any observed differences in behavior can be attributed
solely to the multimodal setting.
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From a dataset point of view, we follow our setup in Sec. [3.2]on the Biden-to-Trump task for the
LVLM experimental setup. To ensure a fair and systematic comparison, we construct an equivalent
setup for LLMs using only text. Particularly, in both setups, models are fine-tuned using LoRA on
similarly sized datasets (3.5k samples): Sub-CC-Aligned (Zhu et al.,[2023) for LVLM (image-text)
and Sub-Alpaca (Taori et al.,2023)) for LLMs (text-only). In both settings, during the fine-tuning, we
inject a small number of poisoning samples containing Biden content. For the LVLM setup, we use
Biden image-text pairs provided in (Xu et al.| [2024) but without visual perturbations. For the LLMs
setup, we collect a comparable number of Biden text-only data points (see Appx.[A]for details on the
collection process).

During evaluation, both models are presented with Trump-related queries: LVLM receive image-text
pairs of Trump, while LLMs are given text-only questions about Trump. The aligned response
is expected to mention Trump and avoid referencing Biden. In contrast, a hallucinated response
incorrectly mentions Biden. By maintaining consistency across datasets, model sizes, fine-tuning
methods, and poisoning content, our design ensures that the only variable under investigation is the
data modality. This allows us to directly assess the extent to which multimodal inputs exacerbate
memorization in LVLM. The detailed experimental design can be found in the Appx.[A]

Experimental results. As shown in Fig. P}eft, the attack accuracy of fine-tuned LVLM increases
significantly once the injection ratio exceeds about 1%, rising from nearly 0% to over 90%. In
contrast, the pre-trained LVLM are not hallucinated. This drastic jump indicates that multimodal
LVLM can quickly memorize a number of injected images with the same destination concept during
fine-tuning, allowing the injected content to strongly influence the fine-tuned LVLM’ responses.

In comparison, the Fig. 2}right shows that when the same injection strategy is applied to unimodal
LLMs (text-only), both pre-trained and fine-tuned models remain robust, with small attack success
rates, even when the injected data ratio is up to 5%. Importantly, since both LVLM and LLMs
share the same language backbone, model size, fine-tuning method, dataset size, and poisoning
content, the observed differences can be directly attributed to the presence of a multimodal setting.
The integration of visual information introduces additional pathways for memorization, making
LVLM more susceptible to poisoning. We hypothesize that the added visual modality complicates
the optimization landscape, increasing the risk of overfitting to spurious correlations and triggering
memorization vulnerabilities.

In conclusion, under a comparable fine-tuning setting, our systematic experiment suggests that
multimodal data exacerbate data memorization in LVLM, highlighting data memorization as a
critical safety vulnerability, particularly for multimodal LVLM architectures.

4 IMPLICATIONS OF DATA MEMORIZATION FOR LVLM VULNERABILITY

In Sec. |3 we identify data memorization as a novel vulnerability in LVLM during fine-tuning. In
this section, we discuss its implications for LVLM vulnerability. First, in Sec. @ we show that data
memorization is an overlooked yet critical factor underlying the SOTA visual perturbation-based
data poisoning attacks on LVLM [Xu et al.[(2024). This explains why no effective defenses exist, as
they fail to address the issue of data memorization. We then propose a simple yet effective defense,
RejectShield, which significantly mitigates the attack. Second, in Sec.[d.2] we highlight that data
memorization is a general and concerning vulnerability in LVLM. For example, an adversary could
exploit this weakness to launch novel attack scenarios, which we propose a LLM-based monitoring
defense. Together, RejectShield and LLM-based monitoring provide a comprehensive safeguard for
LVLM fine-tuning datasets. Broadly, we highlight the long-term safety implications of our findings
for LVLMs.

4.1 How DATA MEMORIZATION DRIVES SOTA DATA POISONING VULNERABILITIES

Inspired by our findings in Sec. [3] we show that data memorization is a key, overlooked factor behind
the SOTA visual perturbation-based data poisoning attacks attack | Xu et al.|(2024) explaining why no
effective defenses exist, as they fail to address the issue of data memorization. To address this, we
propose RejectShield, a rejection-based defense that effectively mitigates the attack.
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4.1.1 UNCOVERING SOTA DATA POISONING ATTACK ON LVLMS: WHY CURRENT
DEFENSES FAIL

The SOTA data poisoning attack, ShadowCast (Xu et al., [2024), aims to inject a small set of
poisoned pairs Dpoison = {(2p,ya)} into a clean fine-tuning dataset Deiean = {(2¢, yc)}. Then, the
Dirain = Dclean U Dpoison 18 used to fine-tune LVLM, causing targeted and stealthy hallucinations
at inference time. Original explanations Xu et al.| (2024)) attribute ShadowCast’s success solely to
the visual perturbation in each x,,, and existing defenses therefore apply SOTA purification methods
from vision-only models to purify x,,. However, these purification-based defenses remain ineffective.
In what follows, we explain this failure based on our findings on data memorization. Attack details
can be found in the Appx.[B]and the ShadowCast paper Xu et al.|(2024).

Even without adversarial visual perturbations, the attack can still achieve high success rates
through data memorization. The detailed results are shown in Fig.[l| As discussed in Sec.[3.2]
attack success rate of our controlled experiment (red) variant closely approaches that of the standard
“ShadowCast Attack”, particularly when the poisoned ratio exceeds 2%. Notably, in the Trump-
to-Biden task, the attack success rate of the controlled experiment variant nearly matches that of
the standard “ShadowCast Attack”. This suggests that, beyond the small poisoned-sample regime,
adversarial visual perturbation contributes little to the attack’s effectiveness. Instead, the model likely
memorizes a number of these injected samples with the same destination concept during fine-tuning
and produces the attacker’s target response with very high success rates.

Data memorization explains why existing purification-based defenses are ineffective. Second,
we find that purification-based defenses (“DiffPure” and “DiffJPEG”) are only effective when the
poisoning ratio is very low (<1%). In this regime, these defenses can reduce the attack success rate
to below 20%. However, once the poisoning ratio increases to 3% or higher, these defenses become
ineffective, with attack success rates significantly increasing and becoming comparable to those of
the standard “ShadowCast Attack”. This is a surprising result, especially considering that the original
justification for the success of ShadowCast (Xu et al.| [2024) attributes its success solely to adversarial
visual perturbations. Despite this assumption, purifying the visual perturbations is not an effective
defense. Our new finding on the critical role of data memorization in the success of ShadowCast
provides a clear explanation. Even when ideal purification is applied and adversarial perturbations
are perfectly removed, the model can still memorize the poisoned captions during fine-tuning. As a
result, it can still produce the attacker’s target responses with very high success rates. Consequently,
purification-based defenses are insufficient to mitigate the attack.

The transferability property of ShadowCast attack is strongly attributed to Data Memorization.
ShadowCast attack is transferable (Xu et al.|, [2024)), where poisoned samples crafted using one model
can effectively poison other models. In their work, this property is originally attributed to adversarial
transferability in vision models (Liu et al., 2017; Papernot et al.,[2017). However, our investigation
of the role of data memorization in the ShadowCast attack provides a new perspective on this
transferability. To gain deeper insight, we conduct a similar controlled experiment on ShadowCast’s
transferability by attacking MiniGPT4-v2 (Zhu et al., [2023)) using poisoned samples generated by
LLaVA v1.5 7B (i.e., “Our controlled experiment”). We compare this with a baseline setup using
unperturbed images (i.e., “ShadowCast Attack: LLaVA v1.5 -> MiniGPT4-v2”). The results are
presented in Fig. [T}bottom. In contrast to the original justification (Xu et all [2024), the results show
that data memorization is the critical cause behind the success of the ShadowCast attack in this setup,
while the transferability of visual perturbations plays a minimal role. The attack achieves high success
rates on MiniGPT4-v2 even without visual perturbations, indicating that data memorization is the
key. While the role of perturbation transferability is significant in very low poisoned ratios (<1%),
the difference diminishes as the poisoned ratio increases, with both scenarios reaching similarly
high attack success rates. This observation is consistent with our findings and provides a clearer
understanding of the success of previous results on black-box settings in (Xu et al., 2024).

Finally, these observations confirm that data memorization during fine-tuning is the overlooked
yet critical cause of ShadowCast’s effectiveness. Any defense strategy that targets only visual
perturbations will ultimately fail once sufficient poisoned samples are injected, underscoring the need
for new defenses that address data memorization directly.
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Figure 3: Our RejectShield defense vs. Existing defenses. While the SOTA LVLM data poisoning
attack, attributes their success primarily to visual perturbations (Xu et al., [2024). Consequently,
existing defenses focus on purify such visual perturbations. However, our analysis reveals that
data memorization is a previously unknown yet critical cause of ShadowCast’s effectiveness. This
insight explains why existing purification-based defenses that solely target visual perturbations are
insufficient. Building on this novel finding, we propose RejectShield, the first rejection-based defense
for LVLM data poisoning attacks that significantly mitigates the success of such attacks.

Table 1: Model utility comparison. Following ShadowCast setups (Xu et al.,2024), we report the
model utility on VizWiz (Gurari et al.l 2018) and GQA (Hudson & Manning|, |2019) benchmarks.
We compare ShadowCast Attack and our RejectShield defense. The results show that applying our
RejectShield defense for LVLM fine-tuning primarily preserves the resulting model’s utility.

Poison Ratio (%)
0 0.1 0.3 0.6 0.9 14 2.9 4.3 5.7
GQA 59.88 59.34 5930 59.16 5937 59.57 59.53 59.09 59.37

Task Defi Bench k

No Defense
. VizWiz 56.42 56.15 5630 5631 56.56 5622 5631 5598 5643
Trump-to-Biden
Ours GQA 59.20 59.26 5933 59.62 59.61 5944 5932 5921 59.49
VizWiz 5578 55.85 56.07 56.02 5599 5577 5583 56.15 55.82
GQA 59.88 59.22 5937 59.29 59.29 59.50 59.74 5939 59.59
No Defense
. VizWiz 56.42 5573 5630 56.27 5646 56.16 56.63 5578 56.06
Engine-to-Fuel
o GQA 59.26 5921 59.26 59.12 5932 59.19 59.15 59.13 59.17
urs

VizWiz 5559 5576 55776 55.89 55.64 5574 56.04 5591 55.88

4.1.2 REJECTSHIELD: A REJECTION-BASED DEFENSE AGAINST SHADOWCAST ATTACK

In Sec.[d.T.T] we discover that data memorization is the previously unknown but critical cause of
ShadowCast attack effectiveness. This suggests that even an ideal purifier that recovers the exact
clean image x4 cannot effectively defend against ShadowCast attack. Inspired by our finding, we
introduce RejectShield, a novel rejection-based defense to reject poisoned examples. Instead of
attempting to purify or reconstruct each x,, as existing purification-based defenses, RejectShield
employs an adversarial detector faqv : € — {0, 1}, which detects whether an input image has likely
been adversarially manipulated. We emphasize that we follow the idea of (Wang et al.| [ 2024)), such
that adversarial detection is generalizable to different types of adversarial perturbation. Importantly,
no ShadowCast poison data is needed to train our detector. We then filter the fine-tuning set as below

and perform fine-tuning exclusively on D, ..

(I:Iean = {(-T,y) € Dyrain ¢ fadv(x) = 0}7

RejectShield offers a simple yet effective defense against ShadowCast data poisoning in LVLM, even
without using any ShadowCast poison data to train the detector.

Experimental Setup. We strictly follow the ShadowCast attack setups in (Xu et al.}|2024) and use
their open-source code for the implementations. Due to the space constrain, we present the main
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setups on two common LVLM, LLaVA v1.5 7B and MiniGPT4-v2, with Label Attacks Category
including the Trump-to-Biden and EngineLight-to-FuelLight tasks. Additional experiments with
more tasks, prompts, LVLM architectures, and datasets are included in the Supp. For f,4, in our
RejectShield defense framework, we adapt the adversarial detector from (Wang et al.,|2024)). The
further detailed implementation of our RejectShield can be found in the Appx.|[B]

Experimental Results. The defense results are shown in Fig.[l|and Tab. Additional results
on our RejectShield defense can be found in the Supp. First, in Fig.[I] by directly targeting the
root cause of data memorization through correctly rejecting poisoned samples, our RejectShield
significantly outperforms existing defenses. Our defense can reduce attack success rates by up to 99%.
Notably, under high poison ratios, where existing defenses fail and the attack success approaches
the no defense baseline (i.e., ShadowCast Attack), RejectShield is still a strong defense. Second,
RejectShield accurately accepts clean samples, resulting in model utilities comparable to the No
Defense (i.e., ShadowCast Attack) and Clean Model (i.e., poison ratio = 0%) settings as shown in
Tab.[S.2] This demonstrates that RejectShield effectively mitigates ShadowCast attacks with minimal
sacrifice of model utilities.

4.2 DATA MEMORIZATION IS A GENERAL AND CONCERNING VULNERABILITY IN LVLM

The earlier stage of memorization-based attacks. Our investigation reveals that data memorization
during LVLM fine-tuning exposes a general and critical vulnerability that adversaries can exploit.
Such a memorization-based attack is particularly concerning, as adversaries need only standard
fine-tuning procedures and the injection of benign destination data to trigger targeted model behaviors.
Moreover, they target the crucial fine-tuning stage and do not rely on suspicious features in poisoned
samples (such as visual perturbations used by ShadowCast). Without awareness of our discovered
data memorization vulnerability, such attacks can stealthily cause fine-tuned LVLMs to hallucinate.
The results of the memorization-based attack are illustrated as our controlled experiment in Fig. [T}

MemDefense as a Rapid Defense. Despite their sophistication, memorization-based attacks typ-
ically require injecting (slightly) more samples than ShadowCast to achieve high success, though
the absolute number remains small (i.e., less than ~ 5%). To counter such attacks, we propose
MemDefense, an LLM-powered monitoring tool for safeguarding LVLM fine-tuning dataset curation.
MemDefense uses a carefully designed prompt informed by our findings on data memorization, to
detect overrepresented concepts. We evaluate MemDefense on the Trump-to-Biden and LowFuel-to-
Engine tasks, analyzing fine-tuning text for memorization signals. Implementation details and results
are provided in Appx.[C] MemDefense flagged phrases such as “the current U.S. president Joe Biden”
and “low fuel light” as highly overrepresented concepts likely to induce targeted hallucinations. This
highlights its practicality as a screening mechanism against memorization-based threats.

Towards Robust Defenses and Future Work. Building on our discovery of LVLMs’ data mem-
orization vulnerability, MemDefense offers an initial defense pathway and early discussion of
memorization-based attacks. However, it may miss stealthier methods like ShadowCast, which
achieve high success with fewer, more subtly injected samples, where our RejectShield remains
crucial. Together, MemDefense and RejectShield provide a more comprehensive safeguard for LVLM
fine-tuning datasets. As adversaries advance, poisoning attacks may become increasingly sophisti-
cated, requiring fewer injected samples and potentially bypassing both language- and vision-based
defenses. We therefore urge the community to develop stronger safeguards against these emerging
threats.

5 CONCLUSION

This paper uncovers a critical vulnerability in LVLM: data memorization during fine-tuning. Our
study shows that LVLM tends to over-memorize fine-tuning concepts, leading to hallucinations in fine-
tuned models. This effect is particularly pronounced in the multimodal setting of LVLM compared
to unimodal models. Building on these findings, we uncover a comprehensive understanding of the
SOTA LVLM data poisoning attack and explain why existing defenses fail. To mitigate this, we
introduce RejectShield, a rejection-based defense that reduces attack success rates by up to 99% while
nearly preserving model utility. More broadly, we discuss the implications of data memorization,
highlighting potential new attack surfaces and pathways toward robust defenses.
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ETHICAL STATEMENT

Our research on LVLM vulnerabilities aims to improve model safety and security. While we study
malicious behaviors, we do so in a controlled environment. We acknowledge the risk of our findings
being misused, but believe public disclosure of vulnerabilities is crucial for advancing the field. By
providing an effective defense, RejectShield, we enable the development of more trustworthy systems.
Our work is a proactive measure to prevent future harm, prioritizing public safety. We are committed
to transparency, providing code and results to aid community validation.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make our code and datasets publicly available
upon publication. The details of our model architecture, experimental setup, and hyperparameters
are provided in the main paper and further elaborated in the appendix. This approach allows other
researchers to replicate our experiments and build upon our findings.
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Appendix

This appendix provides supplementary information not included in the main paper due to space limita-
tions. Additionally, we provide a Pytorch-like code and a checkpoint in the submitted Supplementary
zip file.
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A DATA MEMORIZATION DURING LVLM FINE-TUNING

A.1 ADDITIONAL RESULTS ON OTHER LVLMS

In the main manuscript, we provide the results on data memorization during LVLM fine-tuning with
the two architectures in (Xu et al., [2024)) including LLaVA v1.5(Liu et al.,|2023)) and MiniGPT4-v2
(Zhu et al.} |2023). In this Supp, we provide additional results on LLaVA-NeXT. The results can be
found in Fig.[S.1I] The additional results are consistent with those in the main manuscript that Data
Memorization as a previously-unknown yet critical cause of ShadowCast effectiveness across LVLMs
architectures.
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Whitebox Setup, Trump-to-Biden Task
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Figure S.1: Additional results on LLaVA NeXT

A.2 ADDITIONAL RESULTS ON OTHER PROMPTS

In the main manuscript, we provide the results of data memorization during LVLM fine-tuning with
one prompt. Particularly, for EngineLight-to-LowFuelLight task, we use prompt “What does this
warning light mean?” for the evaluation as in (Xu et al.} 2024). In this Supp, we provide additional
results on other evaluation prompts including “Identify the function of this warning light.” and “What
message is this vehicle’s warning light conveying?”. The results can be found in Fig.[S.2] The
additional results are consistent with those in the main manuscript that Data Memorization as an
overlooked but critical underlying cause of ShadowCast effectiveness across evaluation prompts.

LLaVA 1.5 7B
Whitebox Setup, EngineLight-to-LowFuelLight Task
Prompt : Identify the function of this warning light

LLaVA 1.5 7B
Whitebox Setup, EngineLight-to-LowFuelLight Task
Prompt : What message is this vehicle’s warning light conveying?

-~ 80 1 -
. ,_——' ,.:n.\ . --___.aﬂ .
X 801 - 2y 2 - s
= P P = - -
32 7 i 2 60 7’ -_—
] ” .- ) P -
o 60 - 2 - =4 - -
7 P ; | uw==?
o 1/, .= =« ShadowCast Attack @ 40| I ,’ = « ShadowCast Attack
S 40+ ) ,,f DiffPure Defense E | 3 DiffPure Defense
o 1, 4 == = Diff|PEG Defense o v ==« Diff|PEG Defense
2 20 P,/ ShadowCast Attack w/o | & 20 l ShadowCast Attack w/o
£ / = " visual Perturbation £ y; = " visual Perturbation
< ¥ Our RejectShield < " Our RejectShield

Q4= 01+
0 1 2 3 4 5 0 1 2 3 4 5

Poisoned Ratio (%)

Poisoned Ratio (%)

Figure S.2: Additional results on other prompts

A.3 ADDITIONAL RESULTS ON OTHER TASKS
In the main manuscript, we provide the results on data memorization during LVLM fine-tuning

with the two main tasks in (Xu et al., [2024) including the Trump-to-Biden and EngineLight-to-
LowFuelLight tasks. In this Supp, we provide additional results on two other tasks including

14
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JunkFood-to-HealthyFood and VideoGame-to-PhysicalHealth tasks. The results can be found in
Fig.[S.3] The additional results are consistent with those in the main manuscript that Data Memoriza-
tion as an overlooked yet critical cause of ShadowCast effectiveness across clean data setup.
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Figure S.3: Additional results on other tasks : JunkFood-to-HealthyFood and VideoGame-to-
PhysicalHealth tasks. Note that for VideoGame-to-PhysicalHealth, we observe the decent attack
accuracy even when poisoned ration is 0% as the pretrained model without any poisoned data has
already suffered around 45% hallucination.

A.4 ADDITIONAL RESULTS ON OTHER CLEAN DATA

In the main manuscript, we provide the results on data memorization during LVLM fine-tuning using
cc-sbu-align as clean data following (Xu et al., [2024)). In this Supp, we provide additional results
on new clean data, i.e., OK-VQA(Schwenk et al.,|[2022). The results can be found in Fig. @ The
additional results are consistent with those in the main manuscript that Data Memorization as a
previously-unknown yet critical cause of ShadowCast effectiveness across target tasks.
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Figure S.4: Additional results on OK-VQA subset as clean data

A.5 DETAILED EXPERIMENTAL DESIGN ON MULTIMODAL DATA EXACERBATE DATA
MEMORIZATION IN LVLMS

We design a comparable experiment that is oriented in language only and most similar to the Trump-
to-Biden task in (Xu et al., 2024). The details can be found in Tab. Here, we use the standard
LoRA for LVLMs and LLMs, and we use Vicuna-2 7B as the base model for LLaVA v1.5 7B. For

this experiment, we collect the injected data set during the fine-tuning and evaluation data set for the
LLM setup.
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Table S.1: Detailed experimental design on Multimodal data exacerbate data memorization in LVLMs

LVLMs setup LLMs setup
Goal Mis-identify Trump to Biden
Input Modality Image and Text Text
Sub-CC-Aligned Sub-Alpaca
Fine Tuning Dataset
(~3500 samples) (~3500 samples)
Injected Dataset Image-Text of Biden Text of Biden
Model LLaVA-1.57B Vicuna-2 7B
Fine Tuning Method LoRA

Evaluation Dataset  Image and Text of Trump  Text of Trump

Injected Dataset. We employ a structured approach utilizing SOTA reasoning models for data
generation and verification. We use the powerful GPT-40 reasoning model to generate 300 diverse
QA pairs explicitly and exclusively mentioning Joe Biden. The GPT-40 is prompted as “Generate
300 questions and corresponding answers about Joe Biden. The goal is to create a dataset of 300
fine-tuning data points that explicitly and exclusively refer to Joe Biden. The questions should be
diverse and the answers must be factual. Provide the responses in Vicuna-style JSON format”. Then,
to ensure truthfulness and avoid duplication, we use both the DeepSeek R1 reasoning model and
GPT-40 for automatic validation. The model is prompted as “Given the Vicuna-style JSON file
provided, identify duplicate or untruthful questions and answers”. Finally, we conduct a manual
review of the dataset to further ensure factual accuracy and eliminate any remaining duplicates. After
this process, our final dataset includes 200 high-quality question-answer pairs about Joe Biden.

Evaluation Dataset. For the dataset collection of testing dataset in this experiment, we employ a
similar approach. We use the GPT-40 reasoning model to generate 200 diverse QA pairs where the
questions do not mention Donald Trump but the answers are expected to mention Donald Trump. The
GPT-40 is prompted as follows “Generate 200 questions and corresponding answers about Donald
Trump. The questions should be diverse and do not explicitly mention Donald Trump, while the
answers explicitly and exclusively mention Donald Trump and must be factual. Provide the responses
in JSON format”. To ensure truthfulness and avoid duplication, we use both the DeepSeek R1
reasoning model and GPT-4o for automatic validation. The model is prompted as follows “Given the
provided JSON file, identify duplicate or untruthful questions and answers”. After automatic filtering,
we conduct a manual review of the dataset to further ensure factual accuracy and eliminate any
remaining duplicates. After this process, our final dataset includes 191 high-quality question-answer
pairs about Donald Trump.

A.6 ADDITIONAL RESULTS ON MULTIMODAL DATA EXACERBATE DATA MEMORIZATION IN
LVLMSs

In the main paper, we compare the vulnerabilities of LVLMs using the original ShadowCast setup
(denoted as “Input”) and LLMs using our collected Evaluation Dataset (denoted as “LLM-question”).
To further investigate, we evaluate additional LVLM input variants summarized in Fig. [S.5]including:

* “Input A”: Images and same questions as in the LLM setup with an added hint “The answer
is the person in the provided image”. For example: an image of Donald Trump and text
“Who was the 45th president of the United States? The answer is the person in the provided
image.” are presented to LVLMs.

* “Input B”: Same as “Input A”, but without the hint. For example: an image of Donald Trump
and text “Who was the 45th president of the United States?” are presented to LVLMs.
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LVLMs Setup LLMs Setup

Input y " “Who is this person?”

Input “{LLM-question}. The answer is
A the person in the provided image.”
“{LLM-guestion}”
Ingut “{LLM-question}"
Ingut “{LLM-guestion}”

Figure S.5: We evaluate additional LVLM inputs to verify the observation of Multimodal data
exacerbate data memorization in LVLMs
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Figure S.6: Our additional results on Multimodal data exacerbate data memorization in LVLMs

* “Input C”: Identical input to the LLM setup (no visual input). For example: only text “Who
was the 45th president of the United States?” are presented to LVLMs.

For the implementation of “Input C”, we omit the vision input by bypassing the vision encoder and
the projection layers that typically process image features. During inference, instead of constructing
a multimodal prompt that includes an image placeholder (e.g., <image>) alongside text, we use a
plain text prompt and feed it directly to the language model. Generation then proceeds using only the
language model, making LLaVA operate as a standard LLM.

Results in Fig. [S.6|consistently show that multimodal data exacerbate data memorization in LVLMs.
In particular, even in “Input C”, where no visual input is provided, the fine-tuned LVLM exhibits a
greater vulnerability than the LLM. This highlights that multimodal training alone can exacerbate
memorization, even when only text is used during inference.

B REJECTSHIELD

B.1 AN OVERVIEW OF THE SOTA SHADOWCAST ATTACK

Data poisoning attacks aim to inject malicious training samples into a model’s dataset to induce
incorrect or attacker-controlled behavior at inference time (Steinhardt et al., 2017, |Gu et al.l 2017
Zhu et al|[2019). In unimodal settings, extensive research has targeted vision models using clean-

label (Shafahi et al., 2018} [Turner et al., 2019) and optimization-based poisons (Geiping et al
2021])), as well as NLP models via weight-poisoning or trigger-based techniques (Kurita et al.,[2020
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Wallace et al.| 2021). However, in multimodal settings such as LVLM, data poisoning attacks are
underexplored.

A recent pioneering study, ShadowCast (Xu et al.,[2024), exposes a novel threat to LVLM during the
fine-tuning phase, a critical stage for adapting pre-trained LVLM to downstream tasks. Particularly,
LVLM are fine-tuned with clean data Dje,, including clean text-image pairs (2., y.).

ShadowCast induces targeted hallucinations by injecting carefully crafted poisoned training pairs
(p, Yp), referred to as visually matching poison samples. Each poisoned image x,, is optimized to
visually similar x4 (representing the destination concept Cy) to human, while also being similar in the
LVLM visual latent feature space to an image x,, (representing a different concept Cy). The poison
image x,, is then paired with caption y,, = y4, which is the caption of x4 forming a poisoned training
pair (zp, yp). The ShadowCast attack is illustrated in Fig.

To create such a poison sample, the attacker begins with the image =4 and solves the following
optimization problem:

§* =arg min | ¢(zq+8) — d(z,)|5, 1)

ll6]loc <e
Tp=2xq+0",
where ¢ is the vision encoder in the LVLM, mapping images into the shared multimodal embedding
space. The resulting poisoned image—caption pair (z,,yq4) is then added to the fine-tuning dataset:
Dclean U {(xpa yd)}

The intuition, as justified in (Shafahi et al.,
2018)), is that training on such poisoned
samples causes the model to learn spurious
associations between visual features of the
source concept x,, and textual descriptions
of the destination y4. This leads to targeted
hallucinations at inference. For example,
after fine-tuning on poisoned pairs (z,, ¥4),
the LVLM may respond with the destina-
tion concept “Joe Biden” (i.e., y4) when
shown a clean image of the original con-
cept “Donald Trump” (i.e., z,), effectively
hallucinating the target label due to learned
feature associations from ¢(z,) ~ ¢(z,)
to yq.

Poison example

'
2 The 46th U.S. President |

Biden, dressed in a suit 1
and tie, is addressing the |
crowd through a microphone. |

The 46th U.S. President
! Biden, dressed in a suit
1 and tie, is addressing the
| crowd through a microphone.

visual latent space

eoeds jusje| [ensiA

Close in

Despite requiring just a few poison sam-

ples, ShadowCast achieves high attack suc-
cess. (e.g., nearly 95% success rate with
only 1% poison samples, see Fig.[I). The
original work attributes its effectiveness
solely to visual feature manipulation via
injecting adversarial visual perturbations.
Consequently, existing defenses propose to
sanitize visual inputs (Xu et al., [2024)) by
applying SOTA purification-based data poi-
soning defenses from vision models (Shin
et al.,|2017; Nie et al.| [2022b). Yet, these
methods fail to effectively reduce attack
success rates (Xu et al.,|2024).

Figure S.7: Overview of ShadowCast LVLM Data Poi-
soning Attacks (Xu et al., [2024)). ShadowCast manip-
ulates fine-tuned LVLM into producing targeted hal-
lucinations by injecting a small number of poisoned
examples during fine-tuning. A poisoned pair (z,, yp)
is crafted from a benign example (x4, yq), Where the
poison image is defined as x,, = x4 + 6. This perturba-
tion J is optimized so that x,, appears visually similar
to x4 to humans. However, in the LVLM visual latent
space, x,, is close to z, (See Eq.[B.T). The attack’s
effectiveness is originally justified solely by the injected
adversarial visual perturbation § (Xu et al.,[2024])

B.2 MORE DETAILS ON IMPLEMENTATION OF OUR REJECTSHIELD DEFENSE

Departing from existing purification-based defenses, our RejectShield defense is a novel rejection-
based approach. Our defense is simple yet effective against the ShadowCast attack. Particularly,
based on our insight, we employ a detector to reject poison samples. Notably, the training of this
detector is lightweight and does not require any ShadowCast samples. To enable adversarial detection
that generalizes across a broad range of adversarial attacks, we build upon (Wang et al., 2024} and
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fine-tune their pretrained detector on 500 randomly sampled images from the COCO dataset (Lin
et al.,[2014)). We adopt protocol in (Wang et al.,2024) for our fine-tuning process.

Fine-tuning is performed for 10 epochs with a learning rate of 0.0002 and a weight decay of Se-6.
Training takes approximately 30 minutes on an NVIDIA RTX A6000 GPU with 48 GB VRAM.

The fine-tuning code and checkpoint can be found in the Supp. The resulting fine-tuned model is
then applied to our evaluation images to determine whether each image is clean or poisoned sample.

B.3 ADDITIONAL RESULTS ON OTHER LVLMs

In the main manuscript, we present our defense results using LLaVA v1.5 7B and MiniGPT4-v2
following ShadowCast setup. In this Supp, we further evaluate defense results on LLaVA-NeXT (Liu
et al., [2024)) for the EngineLight-to-LowFuelLight task. Specifically, we use the same fine-tuning
configuration and dataset as in (Xu et al., 2024). The results are presented in Fig. The observed
trends remain consistent, showing that our RejectShield strongly outperforms defenses against the
ShadowCast attack.

B.4 ADDITIONAL RESULTS ON POISONED DATA CRAFTED BY OTHER LVLMSs

In the main paper, we focus on the setup in which poisoned data are crafted using LLaVA v1.5. In this
Supp, we present additional defense results in which poisoned data are crafted with MiniGPT4-v2 and
LLaVA-NeXT. The additional results are in Fig. and Fig. We observe that our RejectShield
defense remains effective, consistent with the findings reported in the main paper.

Our RejectShield

MiniGPT-v2
Whitebox Setup, EngineLight-to-LowFuelLight Task
| a
§ 80 IF o - ,
— y, /
3 60 / ~ w7 *
SO0 e\ rm T e -
u Y ’ - -
o 17 LN == 1 ShadowCast Attack
8 40 DiffPure Defense
3 " == 1 DIiff|PEG Defense
" w — . ShadowCast Attack w/o
E 20 | f‘ Visual Perturbation
<

]

oll

0 1 2 3 4 5
Poisoned Ratio (%)

Figure S.8: Additional results on Poisoned Data crafted by MiniGPT4-v2

B.5 ADDITIONAL RESULTS ON OTHER PROMPTS

Fig.[S.2)illustrates the attack success rates across multiple prompts for our proposed RejectShield
defense, compared against ShadowCast, DiffPure(Nie et al., 2022a)), and DiffJPEG(Shin et al.,
2017). While the main paper reports results for the prompt “What does this warning light mean?”
on the EngineLight-to-LowFuelLight task, we additionally present evaluations for two alternative
prompts: “Identify the function of this warning light.” and “What message is this vehicle’s warning
light conveying?” We observe that RejectShield maintains strong performance across all prompts,
indicating its robustness is not limited to a specific query formulation.

B.6 ADDITIONAL RESULTS ON OTHER TASKS
In addition to the results on two tasks in the main manuscript, we provide additional results on LLaVA

v1.5 7B as the LVLM for the JunkFood-to-HealthyFood and VideoGame-to-PhysicalHealth tasks.
We follow the same setup as in (Xu et al.,[2024)). The results for the white box setting are shown in
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Table S.2: Model utility comparison. Additional model utility on GQA (Hudson & Manning, |2019)
and VizWiz (Gurari et al.| 2018)benchmarks on other tasks including JunkFood-to-HealthyFood and
VideoGame-to-PhysicalHeath. We compare ShadowCast Attack and our RejectShield defense. The
results show that applying our RejectShield defense for LVLMs fine-tuning primarily preserves the
resulting model’s utility.

Poison Ratio (%)
Task Defense Benchmark

0 0.1 0.3 0.6 0.9 1.4 29 4.3 5.7

GQA 59.88 5936 59.32 59.19 5943 5934 5922 59.00 59.73

No Defense
VizWiz 56.42 55.83 56.04 5627 55.85 5595 5634 5621 55.86
JunkFood-to-HealthyFood
o GQA 59.04 59.09 59.16 59.13 59.15 59.13 59.87 5945 59.68
urs
VizWiz 5598 55.74 5593 5553 5579 5597 5576 5599 56.22
GQA 59.88 59.08 5946 59.02 59.25 5926 59.03 5899 59.23
No Defense
VizWiz 56.42 55.80 56.19 5638 56.07 55.82 5622 5538 56.06
VideoGame-to-PhysicalHealth
o GQA 59.19 59.52 5945 59.15 59.44 5938 59.49 59.77 59.40
urs

VizWiz 5579 5597 5625 56.00 56.02 56.03 5599 56.14 56.32

Table S.3: Additional model utility comparison In addition to GQA (Hudson & Manning, 2019)
and VizWiz (Gurari et al.,|2018)), we report model utility results on TextVQA (Singh et al., [2019)
benchmark comparing ShadowCast Attack and our RejectShield defense. The results are consistent
that applying our RejectShield defense for LVLMs fine-tuning primarily preserves the resulting
model’s utility.

Poison Ratio (%)
Task Defense Benchmark

0 0.1 0.3 0.6 0.9 1.4 2.9 4.3 5.7

GQA 59.88 59.22 5937 5929 5929 59.50 59.74 5939 59.59

No Defense VizWiz 56.42 5573 5630 56.27 5646 56.16 56.63 5578 56.06

L . TextVQA 5389 5346 53.76 53.65 53.73 53.86 53.75 5386 53.71
EngineLight-to-LowFuelLight

GQA 59.26  59.21 5926 59.12 5932 59.19 59.15 59.13 59.17

Ours VizWiz 55.59 5576 5576 55.89 55.64 5574 56.04 5591 55.88

TextVQA  53.17 5298 52.89 53.14 5342 53.10 53.15 53.07 53.30

Fig.[S.3] Further, we present the model utility for these two tasks on GQA and VizWiz benchmarks
in Table[S.2]to compare with ShadowCast and our defense. We observe the consistent results with
those in the main paper that our RejectShield achieve SOTA defense while still nearly preserved for
model utility.

B.7 ADDITIONAL RESULTS ON OTHER CLEAN DATA

Following Shadowcast paper, we present our results using cc-sbu-align dataset for our study. In this
Supp, we perform a whitebox benchmark using another downstream dataset, OK-VQA. We construct
a subset of OK-VQA consisting of 3,500 samples, closely matching the size of cc-sbu-align (3,439
images). We report results in Fig. [S.4] for the EngineLight-to-LowFuelLight task under whitebox
conditions using the LLaVA 1.5 7B model, comparing four settings: No Defense, RejectShield (Ours),
DiffPure, and DiffIPEG. Furthermore, we present the model utility comparison for these models on
the testing data of TextVQA in Tab.[S.3] The results consistently show that our RejectShield strongly
outperforms other defenses while nearly preserving model utility.

B.8 ABLATION STUDY ON DECISION THRESHOLD IN REJECTSHIELD

The threshold used in RejectShield is determined only once after training the detector, based on the
trade-off between true positive and false positive rates. Since our detector is attack-agnostic, we
apply this fixed threshold and yield robust performance in distinguishing between poisoned and clean
samples across all setups.
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Table S.4: Ablation study on decision threshold in RejectShield

Threshold Attack Success Rate (%) Natural-Acc

0.78 0.00 59.17
0.76 0.00 59.59
0.75 0.00 59.61
0.70 1.50 59.33

Table S.5: Multi-input setting evaluation.

Poisoned Ratio (%) Setup Success Rate (%)
4.3 No Def 97.00
4.3 Data Memorization Setup 96.00
4.3 Ours 3.50

In this section, we provide additional experiments with other thresholds on Fuel-Light-to-Engine-
Light in Tab.[S.4] Increasing the threshold leads to the rejection of most samples (both clean and
poisoned), which may hinder practical usability. On the other hand, the results presented in the table
below show that lowering the threshold reduces the number of detected poisoned samples, resulting
in slightly weaker defense performance.

B.9 ADDITIONAL RESULTS ON MULTI-IMAGE INPUT SETTING

Since our approach builds on standard fine-tuning of LVLMs, our experiments focus on single-image
tasks. In this section, we further extend our evaluation to include multi-image input benchmarks, as
shown in the Tab.[S:5] Importantly, we use the same poisoned models presented in our main paper for
this evaluation. Specifically, for the Trump-to-Biden task, we provide two images of Trump along
with the prompt: “Who is the person in both images?” The results for multi-image input are consistent
with those in our submission for single-image input. The results are consistent with those in our main
submission that data memorization is a novel vulnerability in LVLM and our RejectShield effectively
safeguards LVLM’s fine-tuning.

C DETAILED IMPLEMENTATION AND EXPERIMENTAL RESULTS OF OUR

MEMDEFENSE
Trump-to-Biden Task EngineLight-to-FuelLight Task
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Figure S.9: Defense results of our MemDefense against memorization-based attacks on the Trump-to-
Biden and EngineLight-to-FuelLight tasks. MemDefense leverages an LLM as a monitoring tool to
analyze the textual content of the fine-tuning dataset, guided by a prompt designed from our discovery
on data memorization.
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Our findings on data memorization reveal a novel vulnerability in LVLMs that adversaries can exploit
through data poisoning attacks (see our controlled experiment in Fig. [T). This attack is particularly
concerning because adversaries only need to inject seemingly benign samples into standard fine-
tuning procedures. Without awareness of our discovered vulnerability, such attacks can stealthily
cause fine-tuned LVLMs to hallucinate.

To mitigate this risk, we propose to leverage LLMs to safeguard LVLM fine-tuning datasets, informed
by our insights on data memorization. Specifically, we employ an LLM to analyze fine-tuning text
for signs of memorization-based vulnerabilities, guided by prompts derived from our findings. This
section provides the detailed implementation and experiments of our LLM-based monitoring defense.

Dataset. We conduct experiments on the Trump-to-Biden and EngineLight-to-FuelLight tasks. Our
MemDefense analyzes the training set: Dyyqin, = Deiean U Dpoison

MemDefense Implementation. As a defense, we apply an LLM, specifically Gemini 2.5 Pro, to
act as a monitoring tool prior to fine-tuning by analyzing the textual of the dataset. Informed by our
discovery on data memorization, we use the below prompt. Here, the input JSON schema follows
the dialogue-style format widely used in datasets such as LLaVA, ShareGPT, and InstructBLIP for
LVLM fine-tuning. Since our goal is to analyze textual concepts, images are not passed to the LLM.

You are an expert Al content analyst specializing in the safety and robustness of Large
Vision—Language Models (LVLMs). You are given a list of JSON objects, where each object
represents a fine—tuning data point used to train an LVLM. Your task is to analyze these data
points to identify potential vulnerabilities, specifically:

Vulnerability of interest: If a concept (e.g., a phrase, object, or named entity) is frequently
repeated across many samples, it may cause the fine—tuned LVLM to hallucinate or overem-
phasize that concept in unrelated or ambiguous inputs.

Please examine the dataset and determine whether there is an overrepresented concept that
may raise a data poisoning or targeted hallucination alert.

If yes, provide the suspicious concept(s). Return your findings clearly and concisely.

Results. MemDefense flags “the current U.S. president Joe Biden” and “low fuel light” as highly
overrepresented concepts likely to induce targeted hallucinations when the injection ratio reaches
1.4% or higher (see below). These suspicious examples are then be filtered from the fine-tuning data.
The corresponding defense results are shown in Fig.[S.9]

While this LLM-based analysis is effective against early-stage “memorization-based attacks,” it
may not detect stealthier attacks such as ShadowCast, which require far fewer poisoned samples.
Thus, our RejectShield defense remains essential to counter advanced threats. Together, RejectShield
and LL.M-based monitoring provide a comprehensive safeguard for LVLM fine-tuning datasets. As
adversaries evolve, such attacks may become more sophisticated and harder to detect, underscoring
the urgent need for robust defenses.

Yes, an overrepresented concept that raises a data poisoning and targeted hallucination alert
has been identified in the dataset.

Vulnerability Analysis Report

Suspicious Concept: "the current U.S. president Joe Biden" (and slight variations thereof).
Analysis: A substantial fraction of fine-tuning samples repeatedly include the phrase "the
current U.S. president Joe Biden," often embedded in otherwise unrelated image descriptions
(e.g., political figures at podiums, in the Oval Office, or with military personnel). This extreme
overrepresentation strongly suggests a potential data poisoning attempt. The likely intent is to
bias the model toward this concept, causing it to hallucinate or invoke "Joe Biden" even in
unrelated or ambiguous contexts.
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Yes, there is an overrepresented concept in the dataset that raises a data poisoning or targeted
hallucination alert.

Suspicious Concept

The overrepresented concept is the “low fuel light” or variations of a vehicle being low on
fuel. This concept appears multiple times in the dataset with slightly different phrasing, which
is a strong indicator of a potential data poisoning attack. The model may learn to associate a
wide range of unrelated images with this concept, leading to hallucinations.

Examples from the dataset include:

* “The image highlights a car dashboard where the low fuel light is on, indicating the
need for refueling.”

* “The image shows a lit fuel gauge, pointing at three, indicating a low fuel level. The
gauge’s needle position suggests the low fuel light on the car is on.”

* “The image displays a bright yellow gas pump icon against a black background,
resembling a low fuel light or a fuel availability indicator.”

D COMPUTING RESOURCE

We conducted all experiments on NVIDIA RTX A6000 GPUs running Ubuntu 20.04.6 LTS, with
AMD Ryzen Threadripper PRO 5975WX 32-Core processors. The environment setup includes
CUDA 11.7, Python 3.10.16, and PyTorch 2.0.1 with Torchvision 0.15.2. For evaluation of JunkFood-
to-HealthyFood and VideoGame-to-PhysicalHealth tasks, we use Gemini 2.0 Flash API to compute
attack accuracy.

E LIMITATION

While our work provides important insights into the role of data memorization in LVLM poisoning at-
tacks and introduces an effective rejection-based defense, limitations in generalizability might remain.
Our analysis and defense follow the ShadowCast setup, focusing on specific LVLM architectures
(LLaVA v1.5 and MiniGPT4-v2), selected attack tasks, and clean datasets. Although we include
additional results on newer models (e.g., LLaVA-NeXT) and alternative clean datasets, the broader
applicability of our findings to other setups might need further investigation.

F LLM USAGE

We used a large language model to help polish the grammar, wording, and other minor text issues
in this manuscript. The authors are fully responsible for the ideas, analysis and conclusions in this
submission.
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