
InfoGain-RAG: Boosting Retrieval-Augmented Generation through
Document Information Gain-based Reranking and Filtering

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) has001
emerged as a promising approach to address002
key limitations of Large Language Models003
(LLMs), such as hallucination, outdated knowl-004
edge, and lacking reference. However, current005
RAG frameworks often struggle with identify-006
ing whether retrieved documents meaningfully007
contribute to answer generation. This short-008
coming makes it difficult to filter out irrelevant009
or even misleading content, which notably im-010
pacts the final performance. In this paper, we011
propose Document Information Gain (DIG), a012
novel metric designed to quantify the contribu-013
tion of retrieved documents to correct answer014
generation. DIG measures a document’s value015
by computing the difference of LLM’s genera-016
tion confidence with and without the document017
augmented. Further, we introduce InfoGain-018
RAG, a framework that leverages DIG scores019
to train a specialized reranker, which prioritizes020
each retrieved document from exact distinguish-021
ing and accurate sorting perspectives. This ap-022
proach can effectively filter out irrelevant docu-023
ments and select the most valuable ones for bet-024
ter answer generation. Extensive experiments025
across various models and benchmarks demon-026
strate that InfoGain-RAG can significantly out-027
perform existing approaches, on both single028
and multiple retrievers paradigm. Specifically029
on NaturalQA, it achieves the improvements030
of 17.9%, 4.5%, 12.5% in exact match accu-031
racy against naive RAG, self-reflective RAG032
and modern ranking-based RAG respectively,033
and even an average of 15.3% increment on034
advanced proprietary model GPT-4o across all035
datasets. These results demonstrate the feasibil-036
ity of InfoGain-RAG as it can offer a reliable037
solution for RAG in multiple applications.038

1 Introduction039

Recent advancements in Natural Language Process-040

ing (NLP) have been significantly propelled by the041

emergence of LLMs (Brown et al., 2020; Achiam042

et al., 2024), which demonstrates remarkable ca- 043

pabilities across many knowledge-intensive tasks. 044

However, maintaining reliability remains an on- 045

going challenge for LLMs, as they often struggle 046

with issues such as hallucination, outdated infor- 047

mation and lacking reference. RAG has emerged 048

as a promising solution to the aforementioned is- 049

sues. It can enhance responses by augmenting 050

prompts with external information, especially when 051

the model’s inherent knowledge is limited (Ram 052

et al., 2023). However, the generation quality heav- 053

ily depends on both the selection of relevant doc- 054

uments and their sequential ordering within the 055

LLMs’ context window (Liu et al., 2023). 056

Research addressing RAG document priori- 057

tization spans multiple perspectives, of which 058

three pipelines gain significant attention. The 059

first pipeline focuses on retriever optimization, 060

which enhances retrieval performance through task- 061

specific training (Lewis et al., 2020; Shi et al., 2023; 062

Chen et al., 2024a). However, this approach be- 063

comes impractical when working with multiple re- 064

trievers (Fan et al., 2024). The second pipeline 065

leverages LLMs’ self-reflection capabilities to eval- 066

uate the utility of documents. It employs LLMs 067

to analyze each document and determine whether 068

it should be used. Although feasible, the multi- 069

ple LLM calls introduce substantial computational 070

overhead (Asai et al., 2024; Yan et al., 2024; Chang 071

et al., 2024). The third pipeline adds a reranker 072

after the retrieval stage to reorder all retrieved doc- 073

uments (Chen et al., 2024b; Li et al., 2024). While 074

this approach can effectively address multiple re- 075

trievers, the only consideration on semantic similar- 076

ity may fail to select the most useful documents for 077

generation (as shown in the Figure 6 of Appendix 078

A). All these shortcomings limit their further prac- 079

tical application. 080

To address these limitations, we propose a novel 081

RAG framework, InfoGain-RAG, to filter out ir- 082

relevant or even misleading documents, and pri- 083
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oritize the most valuable ones for answer genera-084

tion. Specifically, we firstly introduce a new metric085

named Document Information Gain (DIG), which086

calculates the change in LLM’s generation confi-087

dence with and without the document augmented.088

A higher DIG score means the document has higher089

information value. Then, a multi-task training strat-090

egy is designed, enabling one newly added rerank-091

ing module to predict the DIG score for each docu-092

ment. Only those with a score greater than a certain093

threshold will be augmented into the LLM for final094

generation. This reranking module is plug-and-095

play across diverse models and tasks. Furthermore,096

it can efficiently handle documents from multiple097

retrievers by invoking LLM only once for the entire098

process and the low computational overhead makes099

it feasible for the real application.100

Extensive evaluations on two different types101

of tasks: open-domain question answering (Trivi-102

aQA (Joshi et al., 2017), NaturalQA (Kwiatkowski103

et al., 2019), and PopQA (Mallen et al., 2023)) and104

fact verification (FM2 (Eisenschlos et al., 2021))105

spanning both proprietary LLMs (GPT, Claude)106

(Wu et al., 2023; Eisele-Metzger et al., 2024)107

and open-source models (LLaMA, Qwen, Gemma,108

DeepSeek) (Touvron et al., 2023; Bai et al., 2023;109

Team et al., 2024; Liu et al., 2024), demonstrate110

substantial improvements of InfoGain-RAG over111

existing methods. Specifically on NaturalQA, it112

achieves significant gains in Exact Match accuracy:113

outperforming naive RAG by 17.9%, retriever-114

optimized RAG by 6.8%, self-reflective RAG by115

4.5%, and modern ranking-based RAG by 12.5%.116

Notably, even compared to the proprietary state-of-117

the-art reranker GTE-7B (Zhang et al., 2024), our118

method (335M) still demonstrates a 3.4% improve-119

ment. These consistent performance gains extend120

across TriviaQA, PopQA and FM2, validating our121

approach’s effectiveness across diverse scenarios.122

Our main contributions include:123

• We introduce a novel metric called Document124

Information Gain (DIG), to quantify each re-125

trieved document’s impact on the LLM’s gen-126

eration confidence. Different from semantic127

similarity, DIG can more accurately evaluate128

whether the document is helpful for generat-129

ing a correct answer;130

• We develop a multi-task training strategy,131

which is used to optimize one reranker added132

after the retriever, with the aim of fitting the133

DIG score for each document. This strategy134

is designed from the exact distinguishing and 135

accurate sorting perspectives, so as to filter 136

out the irrelevant and select the most valuable 137

documents for answer generation. 138

• Integrating the DIG and the multi-task 139

reranker, we propose InfoGain-RAG, a com- 140

prehensive framework for enhancing RAG. 141

This framework can improve the quality of 142

generation with both single and multiple re- 143

trievers, showing strong adaptability across 144

vairous real-world settings with only an effi- 145

cient, plug-and-play reranking module. 146

2 Related Work 147

RAG has emerged as a promising solution to ad- 148

dress fundamental limitations of LLMs. However, 149

a key challenge in RAG systems lies in effectively 150

evaluating and selecting the most valuable docu- 151

ments for answer generation. Existing document 152

selections in RAG broadly follow three approaches: 153

The first approach optimizes retrievers through 154

training on task-specific datasets. RePlug (Shi et al., 155

2023) proposed a training pipeline that uses black- 156

box LLM outputs as supervision signals to optimize 157

the retriever, aiming to reduce LLM perplexity. RA- 158

DIT (Lin et al., 2023) proposed a dual instruction 159

tuning framework that jointly optimizes both the 160

LLM and retriever. Though useful, they struggle 161

with multiple retrievers. 162

The second approach aims to evaluate retrieved 163

documents utility by LLMs’s self-reflection capa- 164

bilities (Asai et al., 2024; Yan et al., 2024). Self- 165

RAG introduces reflection tokens that allow the 166

LLM to adaptively retrieve passages on-demand 167

and critique both the retrieved content and its own 168

generations. While effective in identifying valuable 169

documents, multiple LLM calls introduce substan- 170

tial computation overhead. 171

The third approach incorporates a reranker to re- 172

order retrieved documents, typically including the 173

open-source reranker BGE (Chen et al., 2024b) and 174

proprietary GTE-7B (Zhang et al., 2024). BGE is 175

a small encoder initially trained on over 300M text 176

pairs, then supervised fine-tuning on high-quality 177

labeled data, while GTE-7B trains a large long- 178

context LLM to learn the hybrid document repre- 179

sentations (both dense and sparse). However, BGE 180

is mainly trained to capture fine-grained semantic 181

relationships, which may fail to select truly helpful 182

documents, and GTE is computationally expensive 183

for practical deployment. 184
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3 Method185

In this section, we present InfoGain-RAG to ad-186

dress the key challenges discussed earlier. Our187

framework consists of two main components: (1)188

Document Information Gain (DIG), a metric that189

quantifies a document’s contribution to correct an-190

swer generation by measuring changes in LLM’s191

generation confidence scores, along with an effi-192

cient pipeline for collecting high-quality training193

data, and (2) a multi-task reranker that combines194

document relevance classification and ranking ob-195

jectives to optimize document selection. By in-196

corporating these, our framework enables effec-197

tive document selection without requiring multiple198

LLM calls, making it both computationally effi-199

cient and practical for real-world applications.200

3.1 Document Information Gain201

The core of InfoGain-RAG lies in quantifying each202

document’s contribution to correct answer gener-203

ation through calculating the information gain of204

each retrieval. This section details our methodol-205

ogy for computing DIG and utilizing it to build206

high-quality training data. The complete data col-207

lection pipeline is presented in Algorithm 1. To208

compute DIG, we first propose a robust approach209

for estimating LLM’s generation confidence, and210

then use this estimation to measure the information211

gain provided by each document.212

Algorithm 1 DIG Data Collection Pipeline
Require: Query setQ, Document corpusD, LLM ϕ
Ensure: DIG dataset T
1: T ← ∅
2: for each query x ∈ Q do
3: Retrieve candidate documents Dx fromD
4: Get confidence pϕ(y|x) (defined in equation 2) without documents
5: for each doc d ∈ Dx do
6: Get confidence pϕ(y|x, d) with document
7: Calculate DIG (defined in equation 3)
8: T ← T ∪ {(x, d, DIG(d|x))}
9: end for
10: end for
11: return T

3.1.1 Answer Generation Probability213

A key challenge in computing DIG is estimating the214

probability of a specific answer. A straightforward215

way would be to multiply the probabilities of indi-216

vidual tokens as the final confidence score. How-217

ever, this approach faces two key challenges: First,218

it suffers from the length bias problem (Shi et al.,219

2021) where longer sequences tend to receive lower220

scores as any single low token probability severely221

impacts the overall score. Second, treating all to-222

kens equally fails to capture the strongest signal223

for generation quality (Gangi Reddy et al., 2024) 224

which initial tokens often provide. To address these, 225

we propose a two-component approach: 226

Sliding Window Smoothing: To mitigate the 227

length bias problem, we implement a sliding win- 228

dow smoothing mechanism. For each token ti in 229

the answer sequence, its smoothed probability is 230

calculated as: 231

psmooth(ti) =
1

W

i+⌊W/2⌋∑
j=i−⌊W/2⌋

p(tj) (1) 232

where W is the window size and p(tj) represents 233

the original token probability, obtained by normal- 234

izing LLM logits (Yenduri et al., 2024). 235

Token Importance Weighting: It is reported 236

that initial tokens often carry stronger signals in 237

model generation(Gangi Reddy et al., 2024). Incor- 238

porating this observation, we apply higher weights 239

to the first k tokens when computing probability 240

scores, as they typically contain core semantic in- 241

formation for the response. The final formula is as 242

follows: 243

pϕ(y|x) =

k∏
i=1

(psmooth(ti))
ωi·α ·

|y|∏
j=k+1

(psmooth(tj))
1−α (2) 244

where ωi are the importance weights for the first k 245

tokens, α is a weight hyper-parameter, and |y| is 246

the answer length. 247

3.1.2 Calculation of DIG 248

With a reliable approach to estimate answer gen- 249

eration probability, we now define the calculation 250

of DIG, as shown in Figure 1(NOTE part). Unlike 251

traditional relevance metrics that rely on lexical 252

overlap or semantic similarity, DIG directly mea- 253

sures how much a document improves the LLM’s 254

confidence in generating the correct answer. 255

Formally, given an LLM ϕ, a query x, and 256

its corresponding ground truth answer y, the 257

DIG for a document retrieved di(di ∈ D,D = 258

{d1, d2, . . . ,d|D|}) is defined as: 259

DIG(di|x)
def
= pϕ(y|x, di)− pϕ(y|x) (3) 260

where pϕ(y|x,di) represents the model’s output 261

confidence with both the query and the document, 262

and pϕ(y|x) is the query-only confidence. 263

Based on above, we establish a data collection 264

pipeline that begins by categorizing queries based 265

on the model’s baseline performance without re- 266

trieved documents, shown in Figure 1 (STEP 1): 267
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Figure 1: Illustrations of InfoGain-RAG. STEP 1: Distinguish proficient queries from challenging ones; STEP 2:
Retrieve top-k documents for each query and calculate their DIG scores; STEP 3: Train the multi-task reranker;
STEP 4: Inference with InfoGain-RAG; NOTE: Calculation of DIG.

• Model-Proficient Queries: Queries that the268

LLM can answer correctly using only its in-269

herent knowledge (i.e., high pϕ(y|x)). These270

queries are particularly effective for identify-271

ing noisy documents through DIG < 0, while272

positive DIG samples are naturally rare since273

external correct information adds little value274

to already-known answers.275

• Model-Challenging Queries: Queries that276

the LLM shows low confidence without ex-277

ternal information (i.e., low pϕ(y|x)). These278

queries facilitate us to identify helpful docu-279

ments, as confidence increases (DIG > 0).280

Based on DIG, documents are categorized into281

three groups (see Figure 5):282

• DIG > 0: Documents that enhance the283

model’s confidence, containing relevant and284

helpful information that should be prioritized285

during reranking.286

• DIG ≈ 0: Documents that neither improve 287

nor diminish confidence and occur in two sce- 288

narios: (1) the document contains no mean- 289

ingful information for answering the query, or 290

(2) LLM has already mastered the required 291

knowledge during pre-training, making addi- 292

tional correct information unnecessary. 293

• DIG < 0: Documents that reduce confidence 294

and contain misleading or contradictory infor- 295

mation that should be filtered out. 296

This categorization offers two key advantages: 297

1) quantitative measurement of document utility 298

through DIG scores, enabling both automatic iden- 299

tification of high-quality documents and precisely 300

filtering noise; and 2) fine-grained document prior- 301

itization through continuous DIG scores, which al- 302

lows optimal document ordering during inference. 303

By computing DIG across diverse query- 304

document pairs, we create a rich training dataset 305

4



capturing both absolute relevance and relative im-306

portance of documents. This dataset serves as the307

foundation for training our specialized reranker, as308

detailed in the following section.309

3.2 Multi-task Reranker310

Building on DIG-scored training data collected311

above, we propose a multi-task learning strategy to312

train our reranker to select the most valuable docu-313

ments for correct answer generation. The training314

objective combines Cross-Entropy (CE) loss and315

Margin loss to filter out noisy content and prioritize316

highly effective documents based on DIG scores.317

CE loss enables the model to distinguish between318

helpful and noisy documents through binary clas-319

sification, while margin loss optimizes document320

ordering based on their DIG values. This unified321

training approach enables our reranker to simulta-322

neously learn discriminative document classifica-323

tion and fine-grained ranking preferences, leading324

to robust document selection for RAG.325

3.2.1 Document Relevance Classification326

The first task focuses on the relevance determina-327

tion of the retrievals through binary classification.328

Building upon the former collected data, we train329

the reranker to distinguish documents that have330

substantial contributions or potential harm to an-331

swer generation. Specifically, we employ CE loss332

to optimize the reranker θ to achieve this objective:333

min
θ

LCE =
1

N

N∑
i=1

[
− yi log(p(xi, di))

− (1− yi) log(1− p(xi, di))
]

s.t. p(xi, di) ∈ [0, 1], yi ∈ {0, 1}, ∀i = 1, . . . , N

(4)334

Here, p(xi, di) represents the predicted probabil-335

ity that document di will achieve a positive DIG336

score for query xi. The label yi is determined by337

our previously computed DIG scores, with yi = 1338

for documents whose score is above upper decision339

boundary b1 and yi = 0 for those below lower deci-340

sion boundary b2. These thresholds effectively sep-341

arate helpful documents from harmful ones. These342

hyper-parameters selection will be detailed in the343

experiment section. This classification-based learn-344

ing not only helps identify useful documents but345

also facilitates better learning of relative document346

ordering through the joint training process.347

3.2.2 Document Ranking Optimization348

The second task focuses on learning relative doc-349

ument importance through pairwise comparison.350

Inspired by Circle Loss (Sun et al., 2020), we in- 351

troduce a margin-based learning objective that ex- 352

plicitly models the relative ordering of documents 353

based on their DIG values. Given a query, this 354

objective constrains the maximum score of neg- 355

ative query-document pairs to be lower than the 356

minimum score of positive pairs: 357

min
θ

LMargin = [max (sn)−min (sp)]+

with [x]+ = max(x, 0)
(5) 358

where sn and sp denote scores for pairs with 359

DIG values above b1 and below b2 respectively, 360

and θ denotes reranker. To involve all samples in 361

one process, we employ the LogSumExp function 362

to approximate extremal value: 363

max {x1, . . . , xn} = log (exp (max (xi))) ≈ LSE (xn) ,

min {x1, . . . , xn} = −max {−x1, . . . ,−xn} ≈ −LSE (−xn)
(6) 364

where LSE(xn) is the LogSumExp function, 365

with detailed derivation provided in Appendix B.1. 366

Substitute the LogSumExp approximations into 367

equation (5) and yield: 368

min
θ

LMargin ≈ [LSE (γ (sn))− (−LSE (−γ (sp)))]+

≈ log

1 +

K∑
i=1

L∑
j=1

exp
(
γ
(
s
j
n − s

i
p

)) (7) 369

where γ is a scaling factor controlling the contribu- 370

tion of non-extremal pairs and K and L denote the 371

number of positive and negative document pairs. 372

Detailed derivation is provided in Appendix B.2. 373

Softplus is used to smooth the ReLU function: 374

Softplus(x) = log
(
1 + e

x) ≈ [x]+ (8) 375

By integrating CE loss and margin loss with 376

weight β, our multi-task training objective enables 377

the reranker to jointly optimize DIG and inter- 378

document relationships: 379

Ltotal = βLCE + (1− β)LMargin (9) 380

This unified approach produces a robust reranker 381

that considers both absolute document relevance 382

and relative ordering preferences within the re- 383

trieved documents, leading to more effective docu- 384

ment reranking and filtering for RAG systems (see 385

Figure 2 for empirical study on balancing these two 386

objectives via hyper-parameter β). 387

During inference, InfoGain-RAG enhances naive 388

RAG pipelines by adding an efficient document 389

reranking step while maintaining low computa- 390

tional overhead, as illustrated in Figure 1 (STEP 391

4). The process begins with document retrieval, fol- 392

lowed by our trained reranker which both reorders 393
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Figure 2: The relationship between the hyper-parameter
β and accuracy on TriviaQA, LLaMA3.1-8B achieves
optimum at β = 0.8, while Qwen2.5-14B at 0.7.

documents and filters out those below a quality394

threshold. The filtered and reranked documents are395

then passed to LLM for final answer generation396

while only calling once.397

4 Experiment398

We evaluate InfoGain-RAG in four experiment se-399

ries. First, we compare it with modern ranking400

methods, including the open-source reranker of401

BGE-Reranker-Large (Chen et al., 2024b) trained402

on 300M samples, and the state-of-the-art pro-403

prietary reranker GTE-7B (Zhang et al., 2024).404

Second, we compare with retriever optimization405

approaches like RePlug (Shi et al., 2023) and406

RADIT (Lin et al., 2023), and self-reflection ap-407

proaches like Self-RAG (Asai et al., 2024) and408

CRAG (Yan et al., 2024). Third, we test InfoGain-409

RAG on combined documents retrieved from Con-410

triever (Lei et al., 2023), BM25 (Robertson and411

Zaragoza, 2009) and DPR (Karpukhin et al., 2020)412

to demonstrate its capability to handle multiple413

retrievers. Last, several ablation studies are con-414

ducted to verify the effectiveness from different415

aspects. The datasets and models we used are pub-416

licly accessible.417

4.1 Setup418

Tasks and Datasets. We experiment on two tasks419

of four English datasets: (1) open-domain ques-420

tion answering, including TriviaQA (Joshi et al.,421

2017), NaturalQA (Kwiatkowski et al., 2019), and422

PopQA (Mallen et al., 2023); (2) fact verification,423

FM2 (Eisenschlos et al., 2021). We use the Decem-424

ber 2018 Wikipedia dump (Karpukhin et al., 2020)425

as the retrieval corpus.426

Models and Metrics. All evaluations are con-427

ducted across both proprietary LLMs (GPT-428

4o-20241120, ChatGPT-20240125, and Claude-429

3.5-Sonnet-20241022) and open-source models430

(LLaMA3.1, Qwen2, Gemma2, DeepSeek-V3, and 431

DeepSeek-R1). We adpot Exact Match (EM) ac- 432

curacy (Rajpurkar et al., 2016) as the metric. EM 433

provides a strict evaluation of response accuracy 434

while accommodating multiple correct answer for- 435

mats, as it compares the model outputs with all 436

valid answers provided. 437

Implementation Details. We sample 110K 438

queries from TriviaQA dataset (with train-test 439

overlap removed) and calculate DIG scores for 440

all collected <query, answer, document> triplets 441

using Qwen2.5-7B. The scoring results in three 442

categories: 70K triplets with high positive gain 443

(>b1 = 0.5), 150K triplets with negative gain 444

(<b2 = −0.2), and 1200K triplets showing neg- 445

ligible information gain (−0.05 ∼ 0.05). From 446

these scored triplets, we create a unified training 447

dataset of 88K samples through different sampling 448

strategies for each loss: for CE loss, we sample bal- 449

anced query-document pairs with equal numbers of 450

positive and negative samples (68K), while for mar- 451

gin loss, we sample query-document groups (34K) 452

where each query is paired with 3-5 high-DIG doc- 453

uments and augmented with additional negative 454

and negligible documents. 455

For experimental settings, we implement our 456

reranker using RoBERTa-large (Liu et al., 2019) 457

to rerank the top 100 documents retrieved by Con- 458

triever (Lei et al., 2023). Our reranker is trained 459

on an A800 GPU using Adam optimizer with a 460

learning rate of 5e-6 and β value of 0.75. For DIG 461

calculation, we set importance weights ωi to 0.8 462

for the first k = 3 tokens and use α = 0.6 for bal- 463

ancing token probabilities. During inference, we 464

select the top 4 documents and employ a document 465

filtering threshold of 0.2 while retaining all can- 466

didates that exceed this threshold. This threshold 467

is slight different from b1, as the the addition of 468

margin loss would widen the score distribution of 469

valid samples. Notably, to ensure minimal context 470

for generation, we retain at least 2 documents if 471

fewer exceed the filtering threshold. 472

4.2 Results 473

We first present InfoGain-RAG’s performance with 474

single retriever across different LLMs and bench- 475

marks, comparing it with naive RAG and reranking 476

approaches. We then show its effectiveness in mul- 477

tiple retriever settings. Finally, we demonstrate 478

our method’s advantages over self-reflection and 479

retriever-optimization approaches. 480
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Table 1: Performance Comparison of RAG Reranking approaches with single-retriever (Contriever).

Model TriviaQA NaturalQA PopQA FM2
RAG BGE(550M)§ GTE(7B)3 Ours(355M) RAG BGE(550M)§ GTE(7B)3 Ours(355M) RAG BGE(550M)§ GTE(7B)3 Ours(355M) RAG BGE(550M)§ GTE(7B)3 Ours(355M)

Qwen2.5-0.5B 48.5% 48.6% 49.5% 55.8% 22.5% 27.3% 29.5% 35.3% 26.5% 35.7% 35.3% 36.5% 53.0% 52.3% 55.6% 58.7%
Qwen2.5-1.5B 50.4% 59.1% 63.3% 66.3% 30.7% 39.5% 45.2% 47.2% 31.3% 41.3% 44.2% 43.0% 69.1% 69.5% 71.1% 73.9%
Qwen2.5-7B 52.9% 67.0% 69.5% 72.1% 36.3% 41.8% 49.9% 53.6% 32.4% 43.4% 43.7% 47.6% 72.5% 74.5% 77.8% 79.9%
Qwen2.5-14B 56.1% 68.4% 71.1% 72.9% 36.0% 42.7% 52.5% 53.8% 31.8% 44.1% 45.9% 49.4% 72.6% 75.7% 76.4% 79.4%
Qwen2.5-32B 58.7% 70.3% 72.0% 74.7% 36.4% 42.1% 53.7% 55.9% 32.3% 45.5% 48.1% 50.5% 73.7% 75.6% 79.0% 81.2%
Qwen2.5-72B 59.9% 70.6% 73.4% 76.3% 40.3% 44.9% 53.9% 58.1% 34.0% 44.8% 49.5% 51.4% 73.6% 75.9% 80.4% 83.4%
Qwen3-8B 57.9% 67.6% 71.1% 72.3% 34.0% 41.5% 50.9% 52.6% 32.1% 43.6% 46.5% 49.1% 71.4% 76.1% 80.9% 80.0%

LLaMA3.1-8B 55.1% 65.5% 67.5% 70.4% 33.6% 39.4% 46.9% 50.7% 31.7% 41.3% 44.6% 47.1% 74.3% 77.6% 79.5% 81.2%
LLaMA3.1-70B 54.5% 67.9% 67.4% 71.3% 35.1% 39.9% 48.6% 51.6% 30.4% 43.0% 47.2% 47.6% 77.0% 79.5% 81.1% 82.4%
LLaMA3.1-405B 56.7% 69.2% 73.8% 74.6% 35.8% 41.5% 52.3% 53.3% 30.5% 43.4% 47.3% 49.5% 75.9% 77.6% 80.6% 83.1%

Gemma-2-9B 54.3% 64.4% 69.0% 71.3% 34.3% 39.6% 44.6% 56.6% 31.4% 43.9% 45.5% 49.3% 75.4% 78.5% 80.9% 81.5%
Gemma-2-27B 59.6% 68.5% 70.9% 74.3% 37.6% 42.3% 51.5% 57.4% 33.1% 45.4% 49.4% 50.3% 76.3% 78.4% 82.1% 81.6%

DeepSeek-V3 56.0% 68.0% 72.0% 73.4% 37.6% 42.5% 50.7% 55.1% 30.8% 43.4% 48.6% 49.7% 75.7% 77.5% 78.6% 80.2%
DeepSeek-R1 60.4% 71.7% 75.7% 75.2% 40.8% 44.8% 56.8% 58.8% 31.2% 45.3% 51.1% 51.6% 77.1% 78.9% 80.3% 83.8%

Claude-Sonnet† 54.5% 68.4% 70.7% 73.9% 36.7% 41.1% 52.4% 55.2% 31.6% 43.1% 48.9% 50.4% 76.0% 78.4% 80.9% 80.8%
ChatGPT‡ 62.0% 69.0% 72.1% 74.1% 37.1% 42.7% 55.9% 54.5% 32.0% 43.5% 48.0% 48.5% 71.9% 73.2% 75.0% 75.3%
GPT-4o⋆ 57.2% 69.2% 74.4% 75.4% 37.5% 41.6% 53.1% 57.2% 31.4% 43.3% 48.3% 49.2% 76.6% 75.1% 78.8% 82.2%
GPT-4.1§ 58.6% 70.8% 76.1% 76.4% 35.1% 41.7% 55.6% 56.2% 30.9% 45.4% 51.3% 50.4% 75.2% 77.1% 76.4% 80.4%
§BGE-Reranker-Large (550M). 3 Proprietary GTE-Reranker (7B). †241022 version. ‡240125 version. ⋆241120 version. § 20250414 version.

Comparison to Reranking approaches with Sin-481

gle Retriever. Table 1 compares InfoGain-RAG482

(355M) against naive RAG, BGE-Reranker (550M)483

and GTE-Reranker (7B, SOTA) across different484

models and datasets. As shown in the results,485

InfoGain-RAG substantially improves over naive486

RAG and BGE-Reranker, while surpassing the far487

larger GTE-Reranker in most cases. On TriviaQA,488

for instance, DeepSeek-V3 achieves 72.0% with489

GTE-Reranker and 73.4% with InfoGain-RAG,490

while Qwen2.5-72B reaches 76.3% with InfoGain-491

RAG, surpassing naive RAG by 16.4%, BGE-492

Reranker by 5.7%, and GTE-Reranker by 2.9%.493

Moveover, these improvements hold across both494

model scales and families - from smaller models495

like Qwen2.5-1.5B (+15.9% over naive RAG) to496

larger ones like LLaMA3.1-405B (+17.9%).497

Trained on TriviaQA, InfoGain-RAG demon-498

strates strong generalization ability across different499

datasets and tasks. It improves Qwen2.5-72B’s500

accuracy on NaturalQA by 17.8% and PopQA by501

17.4% over naive RAG, with particularly notable502

gains on FM2 from 73.6% to 83.4%.503

In particular, our reranker achieves these results504

with just 88K training samples and merely 335M505

parameters, compared to BGE-Reranker’s 300M506

samples and GTE-Reranker’s 7B parameters(see507

Appendix C for comparisons with the GTE family).508

Comparison to Reranking approaches with Mul-509

tiple Retrievers. InfoGain-RAG maintains con-510

sistent superiority with multiple retrievers. As511

shown in Figure 3, our reranker achieves the best512

performance on all four tasks. Specifically, it im-513

proves by 9.9% over BGE-Reranker on NaturalQA514

and by 4.9% over GTE-Reranker on PopQA. Ad-515

ditionally, we observe that all rerankers show im-516

provements in the multi-retriever setting compared517

Figure 3: Performance comparison of Qwen2.5-7B
across different datasets with single retriever and multi-
ple retrievers.

to the single-retriever setting. Notably, our method 518

achieves the largest performance gains (when com- 519

paring multi-retriever to single-retriever settings) 520

on most tasks, with an average improvement of 521

3.8%. This clearly demonstrates the superior effec- 522

tiveness of our reranker in multi-retriever scenarios. 523

Comparison with Self-Reflection and Retriever- 524

Optimization approaches. As shown in Fig- 525

ure 4, we evaluate InfoGain-RAG against two types 526

of RAG approaches. For self-reflection, our ap- 527

proach outperforms both Self-RAG(Asai et al., 528

2024) and CRAG(Yan et al., 2024). With LLaMA2- 529

13B as the base model, InfoGain-RAG achieves 530

76.2% accuracy on TriviaQA and 51.9% on Natu- 531

ralQA, surpassing Self-RAG (69.3%, 49.5%) and 532

CRAG (74.5%, 48.2%) while avoiding multiple 533

LLM inference calls. For retriever-optimization, 534

InfoGain-RAG shows substantial improvements 535

using LLaMA-65B, reaching 78.2% on TriviaQA 536

and 54.3% on NaturalQA. This outperforms both 537

RePlug(Shi et al., 2023) (74.9%, 42.3%) and RA- 538

DIT(Lin et al., 2023) (75.1%, 43.9%). 539

4.3 Ablation Study 540

In this section, we conduct comprehensive abla- 541

tion studies to systematically evaluate the critical 542
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Figure 4: Performance Comparison with self-reflection
(7B, 13B) and retriever-optimization (65B) approaches
on TriviaQA (a) and NaturalQA (b). We strictly fol-
lowed the experimental settings of each baseline ap-
proach for fair comparison.

components across InfoGain-RAG: 1) examining543

whether using different base models to generate544

DIG data will affect the final effect, 2) verifying545

whether the multi-task learning strategy can bring546

greater improvement compared to each individual547

task, and 3) assessing the impact of document fil-548

tering during inference.549

LLM-agnostic DIG-data Collection. Table 2550

demonstrates that InfoGain-RAG’s performance re-551

mains consistent regardless of which LLM is used552

for DIG data collection. Despite the changes in553

the DIG scores of each model due to factors such554

as structure and size, the trained reranker achieves555

similar accuracy on TriviaQA. This performance556

shows that InfoGain-RAG can identify the intrinsic557

query-document correlations independent of the558

LLM used for data collection, validating its robust-559

ness as a general framework.560

Table 2: Compared results of rerankers trained using
DIG scores from different base LLMs on TriviaQA.

Model RAG Ours
(DIG-Qwen)

Ours
(DIG-LLaMA)

Qwen2.5-7B 52.9% 72.1% 68.8%
Qwen2.5-14B 56.1% 72.9% 74.2%
Qwen2.5-72B 59.9% 76.3% 75.0%
LLaMA3.1-8B 55.1% 70.4% 72.1%
LLaMA3.1-70B 54.5% 71.3% 70.2%
LLaMA3.1-405B 56.7% 74.6% 73.0%

Single or Multi-task Reranker Training. Ta-561

ble 3 compares the performance differences of sin-562

gle CE or Margin task to the multi-task training.563

We can see that the combined strategy consistently564

outperforms individual loss across two types of565

models. For example, Qwen2.5-72B can get an566

accuracy of 76.8% with the multi-task training on567

TriviaQA, but only 73.0% for CE and 71.4% for568

margin loss. The large improvement demonstrates569

that the absolute relevance judgments can be com-570

bined with the relative rankings to achieve more 571

robust document selection. 572

Table 3: Performance differences of single CE or Mar-
gin task to the multi-task training across models. The
testings is conducted on TriviaQA.

Model Ours
(CE loss)

Ours
(Margin loss)

Ours
(Multi-loss)

Qwen2.5-7B 67.6% 68.2% 71.8%
Qwen2.5-14B 70.1% 67.9% 72.7%
Qwen2.5-72B 73.0% 71.4% 76.8%
LLaMA3.1-8B 68.2% 65.3% 70.7%
LLaMA3.1-70B 69.5% 67.1% 71.4%
LLaMA3.1-405B 73.6% 70.8% 74.2%

Document Filtering during Inference. In ta- 573

ble 4 we test the effectiveness of document filtering 574

during inference with the threshold of 0.2. Here, 575

non-filtering means all retrieved documents are 576

ranked without being filtered. It can be observed 577

that peformances are better with filtering than non- 578

filtering. For instance, Qwen2.5-72B improves 579

from 73.6% to 76.8%, and LLaMA3.1-405B gains 580

from 71.2% to 74.6%. These observations jointly 581

confirm that identifying and removing potentially 582

noisy contents is beneficial for final performance. 583

Table 4: Performance validations of retrieved document
filtering operations. All results are tested on TriviaQA.

Model RAG Ours
(Non-filtering)

Ours
(Filtering)

Qwen2.5-7B 52.9% 68.2% 71.8%
Qwen2.5-14B 56.1% 71.8% 72.9%
Qwen2.5-72B 59.9% 73.6% 76.3%
LLaMA3.1-8B 55.1% 67.8% 70.4%
LLaMA3.1-70B 54.5% 68.2% 71.3%
LLaMA3.1-405B 56.7% 71.2% 74.6%

5 Conclusion 584

In this paper, we present a novel framework 585

InfoGain-RAG to address the critical challenge of 586

RAG about filtering out semantically misaligned 587

and noisy retrieved content. By introducing a 588

principled DIG metric coupled with a multi-task 589

reranker learning strategy, InfoGain-RAG effec- 590

tively quantifies document utility and optimizes 591

both filtering and reranking processes. Compre- 592

hensive experiments across proprietary and open- 593

source LLMs demonstrate substantial improve- 594

ments across multiple benchmarks while maintain- 595

ing lower computational overhead compared to ex- 596

isting approaches. The effectiveness and economic 597

applicability of the framework suggest the feasi- 598

bility of InfoGain-RAG, as it can offer a reliable 599

solution for RAG in partical application. 600
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6 Limitation601

While InfoGain-RAG demonstrates strong perfor-602

mance improvements, several limitations warrant603

discussion. The current implementation has only604

been tested on text modalities, though it is the-605

oretically extensible to other modalities such as606

visual or code data. Computational constraints607

limit the reranker to 335M parameters rather than608

larger models (7B+), which could offer better per-609

formance but may significantly increase inference610

latency in practical applications. Additionally, the611

DIG metric, while effective, cannot distinguish fac-612

tual inaccuracies in retrieved documents, which613

may require an extra module to address this issue.614

We hope more efforts can be devoted to addressing615

these limitations collaboratively in the future.616
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A DIG Cases 795

Figure 5: Retrieved documents of which DIG > 0 (a), DIG ≈ 0 (b), and DIG < 0 (c) for the given query.
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Figure 6: Comparison of documents retrieved by InfoGain-RAG reranker and BGE reranker.
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B Mathematical Derivations796

In this section, we provide detailed mathematical797

derivations for two key components of margin loss:798

(1) how LogSumExp (LSE) function approximates799

the maximum function, and (2) the complete deriva-800

tion steps of our margin loss formulation based on801

LSE.802

B.1 LSE Approximation of Maximum803

Function804

The LogSumExp function is defined as:805

LSE(x1, . . . , xn) = log(

n∑
i=1

exp(xi)) (10)806

First, we prove that LSE provides an upper bound807

for the maximum function. For any i:808

LSE(x1, . . . , xn) = log

 n∑
j=1

exp(xj)


≥ log(exp(xi))

= xi

(11)809

Since this holds for all i, we have:810

LSE(x1, . . . , xn) ≥ max(x1, . . . , xn) (12)811

Let x∗ = max(x1, . . . , xn). We can rewrite LSE812

as:813

LSE(x1, . . . , xn) = log

(
n∑

i=1

exp(xi)

)

= log

(
exp(x∗)

n∑
i=1

exp(xi − x∗)

)

= x∗ + log

1 +
∑

i:xi ̸=x∗

exp(xi − x∗)


(13)814

Since xi − x∗ ≤ 0 for all i (with equality only815

when xi = x∗), and typically xi − x∗ ≪ 0 for816

xi ̸= x∗, we have:817

exp(xi − x∗) → 0 when xi − x∗ ≪ 0 (14)818

Therefore:819

log(1 +
∑

i:xi ̸=x∗

exp(xi − x∗)) → 0 (15)820

This yields our final approximation:821

LSE(x1, . . . , xn) ≈ x∗ = max(x1, . . . , xn)
(16)822

The approximation becomes more accurate as823

the differences between the maximum value and824

other values increase.825

B.2 Derivation of Margin Loss 826

Starting from the initial margin loss formulation: 827

LMargin ≈ [LSE (γ (sn))− (−LSE (−γ (sp)))]+
(17) 828

We can expand this expression: 829

[LSE (γ (sn))− (−NLSE (γ (sp)))]+

=

log L∑
j=1

exp
(
γ
(
sjn
))

+ log
K∑
i=1

exp
(
γ
(
−sip

))
+

=

log
 L∑

j=1

exp
(
γ
(
sjn
)) K∑

i=1

exp
(
γ
(
−sip

))
+

=

log K∑
i=1

L∑
j=1

exp
(
γ
(
sjn − sip

))
+

(18) 830

Finally, using the softplus function to smooth 831

the ReLU operation: 832

LMargin ≈ log

1 + K∑
i=1

L∑
j=1

exp
(
γ
(
sjn − sip

))
(19) 833

This completes the derivation of our margin loss 834

formulation. 835

C Comparisons with GTE Family 836

Table 5: Comparative analysis of InfoGain-RAG and
various GTE models as rerankers, with Qwen2.5 as the
answer generation model on TriviaQA. Results demon-
strate InfoGain-RAG’s superior performance across all
tested configurations.

Method GTE-1.5B GTE-7B GTE-Proprietary InfoGain-RAG

Qwen2.5-0.5B 45.3% 46.5% 49.5% 55.8%
Qwen2.5-1.5B 59.7% 61.7% 63.3% 66.3%
Qwen2.5-3B 63.3% 65.6% 65.8% 68.2%
Qwen2.5-7B 67.4% 69.2% 69.5% 72.1%
Qwen2.5-14B 67.5% 70.5% 71.1% 72.9%
Qwen2.5-32B 70.1% 71.9% 72.0% 74.7%
Qwen2.5-72B 69.2% 72.2% 73.4% 76.3%

D Information of Datasets 837

TriviaQA1 consists of 174,000 questions based on 838

Wikipedia pages, with answers and their justifica- 839

tions also determined from Wikipedia, including 840

138,000 for the training set, 17,900 for the valida- 841

tion set, and 17,200 for the test set. NaturalQA2 842

1https://huggingface.co/datasets/mandarjoshi/
trivia_qa

2https://huggingface.co/datasets/
sentence-transformers/natural-questions
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is a dataset consists of 307,373 training questions,843

7,830 validation questions, and 7,842 test questions.844

where all questions originate from Google’s search845

records, with answers derived from Wikipedia.846

PopQA3 contains approximately 14,000 questions847

all sourced from the Wikidata database. PopQA848

focuses on long-tail entities and can effectively as-849

sess how well a LLM can grasp infrequent factual850

knowledge.851

FM24 is a dataset that contains 10,400 training852

questions, 1,170 validation qustions and 1,380 test853

questions, which are designed to test the ability of854

LLMs to answer simple, factual questions. These855

questions cover a wide range of topics and are col-856

lected from various online sources. The answers to857

these questions are also provided, making it a valu-858

able resource for training and evaluating question-859

answering systems.860

The December 2018 Wikipedia dump is a com-861

prehensive collection of the content available on862

Wikipedia up to December 2018. This dump in-863

cludes nearly 23 millions articles, discussions, and864

metadata, providing a vast amount of information865

on a diverse range of topics. It is a valuable re-866

source for natural language processing tasks, such867

as information extraction, text summarization, and868

question answering. Researchers and developers869

can use this dump to train and test their models on a870

large and diverse corpus of text, helping to improve871

the performance and accuracy of their systems.872

3https://huggingface.co/datasets/akariasai/
PopQA

4https://huggingface.co/datasets/tasksource/
fool-me-twice/viewer
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