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Abstract
A key paradigm to improve the reasoning capa-
bilities of large language models (LLMs) is to
allocate more inference-time compute to search
against a verifier or reward model. This process
can then be utilized to refine the pretrained model
or distill its reasoning patterns into more efficient
models. In this paper, we study inference-time
compute by viewing chain-of-thought (CoT) gen-
eration as a metastable Markov process: easy rea-
soning steps (e.g., algebraic manipulations) form
densely connected clusters, while hard reasoning
steps (e.g., applying a relevant theorem) create
sparse, low-probability edges between clusters,
leading to phase transitions at longer timescales.
Under this framework, we prove that implement-
ing a search protocol that rewards sparse edges
improves CoT by decreasing the expected num-
ber of steps to reach different clusters. In contrast,
we establish a limit on reasoning capability when
the model is restricted to local information of the
pretrained graph. We also show that the informa-
tion gained by search can be utilized to obtain a
better reasoning model: (1) the pretrained model
can be directly finetuned to favor sparse edges
via policy gradient methods, and moreover (2) a
compressed metastable representation of the rea-
soning dynamics can be distilled into a smaller,
more efficient model.

1. Introduction
Pretraining and inference constitute two distinct computa-
tional phases in large language models (LLMs). The pre-
training phase, during which the model learns from vast
amounts of text data through next-token prediction (Rad-
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ford et al., 2018), is well known for its high computational
demands, and its scaling behavior has been extensively stud-
ied (Kaplan et al., 2020; Hoffmann et al., 2022; Dubey et al.,
2024). On the other hand, inference (running the trained
model to generate responses) was traditionally considered
computationally inexpensive, until a recent paradigm shift
demonstrating that model reasoning capabilities can drasti-
cally improve by allocating more computational resources
during inference time (Jaech et al., 2024; Guo et al., 2025;
Kimi et al., 2025). Hence it is crucial to understand the ad-
vantages scaling inference computation can provide beyond
those achieved through pretraining (Jones, 2021; Snell et al.,
2024; Wu et al., 2024).

Reasoning LLMs follow the chain-of-thought (CoT) (Nye
et al., 2021; Wei et al., 2022) format where intermediate
reasoning steps are iteratively generated before arriving at
a final answer. Various reinforcement learning (RL) based
approaches (Bai et al., 2022) have been proposed to improve
CoT quality at inference time, such as process reward model-
ing (Lightman et al., 2023; Uesato et al., 2022), Monte-Carlo
Tree Search (MCTS) (Silver et al., 2018; Feng et al., 2023b;
Trinh et al., 2024; Xie et al., 2024), and data self-generation
(Zelikman et al., 2022; Kumar et al., 2024). Theoretically,
the benefit of (sufficiently long) CoT has been studied in
terms of expressive power and statistical efficiency (Merrill
& Sabharwal, 2023; Li et al., 2024b; Kim & Suzuki, 2024;
Wen et al., 2024).

Motivated by the discrete and sequential nature of CoT, we
follow Xu et al. (2019); Sanford et al. (2024a); Abbe et al.
(2024); Besta et al. (2024) and consider learning on graphs
as an ideal abstraction of complex reasoning tasks. We
model pretraining as the process of discovering the graph
structure, or the linguistic (world) model, upon which a
reasoning (inference) component is implemented to search
for a valid path between states (at a high level, this division
parallels the System 1 vs. System 2 distinction discussed in
Kahneman (2011); Xiang et al. (2025)). Building on the ob-
servation that intermediate reasoning steps vary in difficulty,
we assume the underlying graph consists of dense clusters
connected by sparse, low-probability edges representing
“hard” reasoning steps. We further model CoT generation
as a Markov process and characterize hitting/escape times
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Figure 1. (Left) Example of metastable graph with three clusters. Each state represents a logical assertion and edges correspond to
reasoning steps. Solid and dashed arrows indicate easy (within-cluster) and hard (inter-cluster) reasoning steps, respectively. The goal of
the reasoner is to retrieve a valid CoT path from Xin to Xout (highlighted). Search aims to use CoT generated from the pretrained model
to explore the linguistic model and identify hard steps, which can then be used to fine-tune the pretrained model via RL to improve its
generation. (Right) The coarse-grained dynamics of CoT at long timescales can be represented by a meta-chain on the set of clusters and
distilled into a smaller model, which can generate reasoning paths more efficiently.

by leveraging metastability theory (Bovier et al., 2002; Betz
& Le Roux, 2016), which describes systems with multi-
ple locally stable states separated by high energy barriers,
leading to a timescale separation between local and global
transitions (e.g., a reasoner may become stuck at a critical
reasoning step for an extended period). Our toy model cap-
tures key phenomena observed in the training of reasoning
LLMs:

• Benefit of search and RL. Inference-time search elicits
reasoning capabilities beyond pretraining (Jones, 2021;
Yao et al., 2024; Snell et al., 2024). Roughly speaking,
running search on the pretrained graph identifies impor-
tant reasoning steps, and then RL can improve the base
linguistic model by modifying the graph and reweighting
the corresponding transition probabilities.

• Benefit of distillation. Reasoning patterns can be distilled
into a smaller model (Hsieh et al., 2023; Gandhi et al.,
2024; Guo et al., 2025). By training on curated CoT
data of the larger model, we can efficiently represent the
reasoning dynamics with a much smaller meta-chain that
compresses the dense clusters (representing “easy” steps).

1.1. Our Contributions

We study the metastable Markov process underlying CoT
generation (see Figure 2) which provides insights into the
roles of pretraining, search, RL, and distillation. Our contri-
butions are summarized as follows.

• In Section 2, we introduce a perturbed Markov chain
model for CoT reasoning that differentiates between easy
and hard reasoning steps through a dense-sparse structure.
We develop a quantitative analysis of its metastable dy-
namics over long timescales by deriving tight bounds on
the expected hitting times of target states.

• In Section 3, we demonstrate that inference-time search

based on intrinsic reward improves hitting times by iden-
tifying key reasoning steps, whose generation can be en-
hanced directly or by fine-tuning the base model with RL.
Moreover, optimization guarantees for pretraining and RL
(PPO-Clip) are provided for a simple softmax model.

• In Section 4, we show that a compressed version of the
CoT dynamics can be distilled to a smaller model by only
learning the macroscopic cluster transitions. We prove
that this representation efficiently maps out paths through
clusters while preserving essential dynamical quantities
of the original chain.

• Finally, in Section 5 we prove that large test time compute
(unbounded search) is necessary to solve a computational
version of the path-finding task, by introducing a new
statistical query (SQ) complexity measure that accounts
for additional information the learner can access (e.g.,
CoT path, local search data).

All proofs are deferred to the appendix. A discussion of addi-
tional related works is provided in Appendix A. Metastable
dynamics and hitting times are studied in Appendices B-C,
optimization dynamics are analyzed in Appendix D, and
learning-theoretic lower bounds are given in Appendix E.

2. Metastable Dynamics and Reasoning
2.1. CoT as Markov Chains

Our key insight to understanding inference-time search is
to frame CoT reasoning as a metastable Markov process
over an underlying linguistic model. Each state represents
a logical assertion (e.g., a sentence or mathematical ex-
pression rather than a single token), and state transitions
correspond to reasoning steps. The model distinguishes be-
tween easy/trivial reasoning steps, which form dense local
clusters of roughly equivalent meaning, and hard/crucial
reasoning steps, which form sparse connections between
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clusters of small probability O(ε). Reasoning paths sam-
pled from this process typically spend a long time in each
cluster before making a nontrivial jump to another cluster.
This leads to a dynamical separation between fast and slow
timescales, which we quantitatively study by tuning the
degree ε of perturbation.

The setup is formalized as follows. Let Xε = (Xε
t )t≥0

be a perturbed family of discrete-time stationary Markov
chains on a (large but finite) state space S with transition
kernel pε, such that pε uniformly converges to p0 as ε→ 0.
We assume Xε is recurrent for all ε ≥ 0 and irreducible
for all ε > 0; also, X0 is reducible and decomposes S
into K disjoint p0-ergodic components C1, · · · , CK . We
set M := maxk |Ck| and assume that mink |Ck| = Θ(M)
and K ≤ poly(M). Moreover, we denote the stochastic
complement of pε corresponding to Ck by the matrix Sε

kk;
see Appendix B for definitions. The stationary distributions
of pε,Sε

kk are denoted by πε, πε
k and we set µk := π0

k.
Assumption 1 (dense clusters). For each Sε

kk, the pseudo-
spectral gap γ†(Sε

kk) ≥ γ > 0 and the stationary measure
πε
k satisfies πε

k(x) = Θ(1/M) for all x ∈ Ck.

We give verifiable conditions on the unperturbed kernel p0

which guarantee Assumption 1 in Proposition B.8.

We further denote E0 = supp p0 and assume that E =
supp pε is fixed for all ε > 0. A reasoning path X0:T is
termed valid if (Xt−1, Xt) ∈ E for all t ∈ [T ]. The set of
sparse edges is denoted by Es = E \ E0.
Assumption 2 (sparse edges). There are at most dout sparse
edges from each of at most nout sources in Ck, and there is
at most one sparse edge between any two distinct clusters,
with at least one sparse edge from each cluster. Moreover,
pε(y|x) ∝ ε for each (x, y) ∈ Es with proportionality
constant bounded above and below w.r.t. M,K, and pε(z|x)
for (x, z) ∈ E0 all decrease proportionally with ε.

2.2. Reasoning Task

The reasoner is given a pair of input and output states
(Xin, Xout) sampled from a distribution D on S × S. The
goal of the reasoner is to find a valid path from Xin to Xout.
We are thus interested in the hitting time of CoT generation
to understand inference-time computation. The overall dif-
ficulty of the task is measured by the minimum number of
hard reasoning steps needed to reach Xout from Xin; longer
reasoning chains will require more sparse transitions. We
assume the average difficulty of the task is lower bounded:
Assumption 3. For (Xin, Xout) ∼ D and any valid path
X0:T with X0 = Xin and XT = Xout, it holds that

ED[min |X0:T ∩ Es|] = Ω(K).

Note thatXout is already known in our setting. For example,
for theorem proving, Xin is the problem statement andXout

is the QED symbol; or when asked a “why” question, Xout

could be the conclusion, “That is why...” Nonetheless, for
many reasoning problems the answer is unknown and must
be deduced or computed. We incorporate this aspect by
introducing a ‘logical computation’ task in Section 5.

2.3. Metastable Dynamics

The hitting time and return time of Xε to a set A ⊆ S are
defined as τεA = inf{t ≥ 0 : Xε

t ∈ A}, τ̄εA = inf{t >
0 : Xε

t ∈ A}, respectively. Probabilities and expectations
conditioned on the initial state x are denoted as Px,Ex, etc.

In the context of perturbed Markov chains, a subsetM⊂ S
is defined as a metastable system (Bovier et al., 2002) if

lim
ε→0

sup
x∈M,y /∈M

Px(τ̄
ε
M\{x} < τ̄εx)

Py(τ̄εM < τ̄εy )
= 0. (1)

That is, it is much easier to return toM than to transition
between different states in M. The following result, ob-
tained from our perturbative analysis in Appendices B-C,
will motivate the distillation scheme described in Section 4.

Proposition 2.1. Any subset S◦ = {x1, · · · , xK} ⊂ S of
cluster representatives xk ∈ Ck constitutes a metastable
system for Xε in the sense of (1) as M →∞.

Meta-chain. The coarse-grained dynamics of Xε over
long timescales is captured by its effective metastable
representation Xε

⋆ (Wicks & Greenwald, 2005; Betz &
Le Roux, 2016), which acts as a compression of the full
chain by only retaining information on inter-cluster dynam-
ics. This ‘meta-chain’ is defined on the set of clusters
S⋆ = {C1, · · · , CK} with transition kernel

qε⋆(Cℓ|Ck) =
∑
x∈Ck

µk(x)
2Px(τ̄

ε
Cℓ
< τ̄εx), k ̸= ℓ, (2)

and qε⋆(Ck|Ck) such that the conditional probabilities sum
to 1. We emphasize that Xε

⋆ faithfully characterizes clus-
ter escape probabilities (see Proposition 4.1) but is not a
one-to-one copy of the cluster transitions of Xε, which gen-
erally cannot be uniquely defined as a Markov chain. For
example, qε⋆ is asymptotically reversible and always posi-
tive regardless of the actual arrangement of sparse edges
(Proposition C.8). To provide further intuition, we state and
discuss the following assumption.

Assumption 4 (uniform escape of Xε
⋆). For all k ̸= ℓ,

qε⋆(Cℓ|Ck) = Ω(ε/M). (3)

Equation (3) holds if there exists a sparse edge from Ck to
Cℓ (Corollary C.11), but it may well hold even if Ck, Cℓ are
not directly connected. For example, if the sparse edges are
arranged as a cycle on S⋆, escaping Ck implies that all other
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Algorithm 1 Two-stage Pretraining

1: set W(0) = 0, η = O(KM),
2: T1 = Õ(KM2ε−2), T2 = Õ(KMε−2)
3: for t = 1, · · · , T1 do
4: W(t) = W(t−1)+η∇EX0,X1

[log p̂W(t−1)(X1|X0)]
5: end for
6: w(T1)

ij ← −∞ if p̂(T1)
ij < cthresε (thresholding)

7: for t− T1 = 1, · · · , T2 do
8: W(t) = W(t−1)+η∇EX0,X1

[log p̂W(t−1)(X1|X0)]
9: end for

clusters Cℓ will be hit before the process returns to Ck, and
so Assumption 4 is satisfied. Hence Assumption 4 naturally
guarantees that it is relatively easy to explore the entire state
space from any starting cluster.1

3. Search Improves the Pretrained Model
3.1. Pretraining the Base (World) Model

We equate pretraining the base model with learning the un-
derlying transition kernel pε. Indeed, if the context window
of an LLM is restricted to the tokens in the previous state,
next-token prediction recursively defines a distribution over
the following state, and further over reasoning chains of arbi-
trary length. We encode each state x ∈ S as a one-hot vector
in R|S| also denoted by x and write pεij = pε(ej |ei). For
the model, we consider a simple linear softmax predictor:

p̂W(·|x) = softmax(⟨W, x⟩), W ∈ R|S|×|S|.

The pretraining data consists of random bigram samples
(X0, X1) where X1 ∼ pε(·|X0); we allow X0 to be either
uniform over S or distributed according to the stationary
measure πε of pε. The latter arises when generating sam-
ples (Xt−1, Xt)t≥1 from the observed transitions of the
(unbounded) chain (Xε

t )t≥0. The model is trained by gra-
dient descent with cross-entropy loss, with an intermediate
thresholding step to mask out edges determined to not lie
in E. See Algorithm 1 for details and Theorem D.1 for the
full statement.

Theorem 3.1 (convergence of pretraining). Let X0 ∼
Unif(S) or X0 ∼ πε and X1 ∼ pε(·|X0) be random sam-
ples from Xε. Then for the gradient descent iterates W(t)

from Algorithm 1 w.r.t. cross-entropy loss

Lpre(W) = EX0,X1
[− log p̂W(X1|X0)],

the learned transition probabilities p̂(T )
ij = p̂W(T )(ej |ei)

converge with error supi,j |p̂
(T )
ij − pεij | = O(

√
KM2/T )

1On the other hand, if the meta-chain has poorly connected re-
gions, then Xε

⋆ itself is amenable to metastability analysis, leading
to a hierarchy of metastable representations at increasingly faster
timescales (Wicks & Greenwald, 2005).

before thresholding. Moreover, after thresholding at time
T1 = Õ(KM2ε−2), the error converges as exp(−Ω(ε2T )).
Hence after T2 = Õ(KMε−2) additional steps, the output
of Algorithm 1 has error exp(−Ω(|S|)).

Thus the base model p̂ learns the underlying graph E and
all transition probabilities with exponentially small error.
Under mild regularity conditions, all assumptions can be
verified for p̂ (see Propositions B.8 and C.8); to simplify the
discussion, we henceforth assume the base model is exact,
p̂ = pε. We remark that while the time to converge is quite
long compared to the search, RL and distillation methods
studied later, this is natural as pretraining is done on much
longer timescales compared to test-time compute.

3.2. Learning Sparse Rewards via Search

Having learned the underlying probabilities pε, the base
model now performs CoT reasoning by generating each step
of the chain (Xε

t )t≥0 in sequence starting from Xε
0 = Xin.

Since the reasoner has no prior knowledge of which steps
it must take to progress towards Xout, on average it will
spend a long time trapped in each cluster before chancing
upon a sparse edge (new idea) and moving to a new cluster.
From our quantitative dynamical analysis, we are able to
obtain a nearly tight characterization of the average hitting
time.
Theorem 3.2 (expected hitting time). Under Assumptions
1-4, it holds for all ε ≤ εmax := Θ(M−1(logM)−4) that

E(Xin,Xout)∼D[EXin
[τεXout

]] = Θ̃

(
KM

ε

)
.

Intuitively, since each cluster is rapidly mixing, the chain
will spend roughly Θ(1/M) of the time in states with out-
bound edges, from where it escapes with probability Θ(ε).
Such rare events are distributed approximately exponen-
tially, and must be repeated Θ(K) times to reach the cluster
containing Xout, where the chain will mix fast and likely
hit Xout.

This result also illustrates a simple method to improve the
hitting time: modifying the underlying probabilities to in-
crease the denominator ε. This corresponds to guiding CoT
or fine-tuning the base model so that (correct) new, difficult
reasoning steps are generated more often, ensuring a more
efficient exploration of the solution space. However, this
cannot be done by simply increasing the likelihood of low-
probability edges, as there may be many low-probability
edges within clusters as well; we want to only boost the
generation of sparse edges to preserve the capabilities of the
pretrained model. Indeed, we demonstrate in Theorem 5.3
that any updates based on local information is not enough
to improve reasoning ability in a precise sense.

Instead, we run a simple tree search protocol to identify
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Algorithm 2 Sparse Edge Search
Require: pretrained model p̂W

1: set R = Θ(K logK), N = Θ(logK),
T0 = Θ(M(logM)2), Tmax = Θ(M/ε),Ms = ∅

2: for r = 1, · · · , R do
3: set Ĉ, Ĉn, Ê = ∅, A = [N ]
4: sample X0 ∼ Unif(S) or X0 ∼ πε

5: for t = 1, · · · , Tmax do
6: for n ∈ A do
7: generate Xn,ε

t ∼ p̂W(·|Xn,ε
t−1)

8: if t ≤ T0 then (cluster search)
9: Ĉn ← Ĉn ∪ {Xn,ε

t }
10: else if t > T0, Xn,ε

t /∈ Ĉn then (edge search)
11: Ê ← Ê ∪ {(Xn,ε

t−1, X
n,ε
t )}

12: A← A \ {n}
13: end if
14: end for
15: if t = T0 then
16: Ĉ = ∩Nn=1Ĉ

n

17: end if
18: end for
19: run Algorithm 3 with p̂W, Ê (if RL mode)
20: Ms ←Ms ∪ Ê (if PRM mode)
21: end for
22: returnMs

Algorithm 3 PPO-Clip

Require: pretrained model p̂W, subset of edges Ê
1: set W(0) = W, TPPO = Θ(log εmax/ε), α =

Θ(KM)
2: advantage function Â(x, y) = 1{(x,y)∈Ê}
3: for t = 1, · · · , TPPO do
4: W(t) = W(t−1) + α sgn(∇LPPO(W

(t−1); Â))
5: end for

sparse edges, detailed in Algorithm 2. The method consists
of randomly sampling a state X0 and rolling out N random
walks in parallel to construct an estimate Ĉ of the cluster
containing X0 for time T0. After the cluster has been suffi-
ciently explored we continue to simulate each walk until a
transition outside Ĉ is detected, at which point the edge is
marked as a sparse edge (added to Ê) and the path is termi-
nated. This continues until until all paths are terminated or
a time horizon Tmax is reached. Since we are not receiving
signals from an external oracle but rather recording rare tran-
sitions, this is similar to intrinsic rewards such as curiosity
or exploration bonuses (Burda et al., 2018; 2019).

We consider two versions of this process, PRM mode and
RL mode, depending on whether the information gained
from search is collected into an external reward model or
used to fine-tune the base model. The benefits of both
methods for reasoning is discussed in the next subsection.

3.3. Improving the Base Model via RL

PRM mode keeps an external process reward ‘model’
(PRM) throughout the search process, which is simply the
setMs which collects the estimated sparse edges over mul-
tiple iterations of the outer loop to reconstruct Es. We prove
that the PRM is strongly consistent:
Proposition 3.3. PRM mode of Algorithm 2 returnsMs =
Es with probability 1− Õ(1/K).

Then by increasing the likelihood of transitions (x, y) ∈
Ms when the current state is x by a factor of εmax/ε,
the PRM can guide CoT to follow pεmax rather than pε.
It is immediate from Theorem 3.2 that the ex-
pected hitting time decreases from Θ̃(KM/ε) to
Θ̃(KM/εmax). Moreover, the time complexity of Algo-
rithm 2 is RTmax = Õ(KM/ε), which is equal to the
time to solve a single instance (Xin, Xout) without search,
and the memory requirement is only O(M + K). This
demonstrates the effectiveness of utilizing search to guide
CoT generation.

However, it is often desirable to use the information gained
during search to directly fine-tune the pretrained model,
so that maintaining an independent PRM is not necessary.
RL mode performs online RL updates to p̂W at each itera-
tion of Algorithm 2; while many policy gradient methods
can be applied, we analyze the popular proximal policy
optimization algorithm (PPO-Clip, Schulman et al., 2017).
Based on the estimate Ê of sparse edges originating from
the initialized cluster, we define the advantage function as
Â(x, y) = 1 if (x, y) ∈ Ê and 0 otherwise. Similarly to
pretraining, samples are generated as X0 ∼ Unif(S) or
πε and X1 ∼ pε(·|X0). The objective of PPO-Clip to be
maximized is (OpenAI, 2018)

LPPO(W; Â)

= EX0,X1

[
min

{
p̂W(X1|X0)

pε(X1|X0)
, cclip

}
Â(X0, X1)

]
.

The old policy is fixed to pε during Algorithm 2. We use sign
gradient ascent for simplicity of analysis (ordinary gradient
ascent also guarantees convergence as long as ε ≥ ε2max).
Proposition 3.4 (convergence of PPO-Clip). By running RL
mode of Algorithm 2 with PPO-Clip for a suitable cclip, the
base model pε is modified to pε

′
where ε′ = (1− o(1))εmax

with probability 1− Õ(1/K).

The additional time complexity of running PPO-Clip is
Õ(K log(εmax/ε)) which is small compared to the pretrain-
ing time or search process. In particular, it again follows
from Theorem 3.2 that the expected hitting time is improved
by the factor εmax/ε. At the same time, the magnitude (total
variation) of change to the pretrained model is negligible:

supx∈S∥pε(·|x)− pεmax(·|x)∥TV ≤ o(1/M),

5
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Algorithm 4 Meta-chain Distillation

1: set S◦ = ∅, Z(0) = 0, ι(x) = 0 for all x ∈ S,
2: Tdist = O(M2(logK)2ε−2), Tthres = Õ(Mε−1)
3: η = Θ(K), β = Θ(log(M/ε))
4: while ι−1(0) ̸= ∅ do (cluster labeling)
5: draw X0 ∈ ι−1(0)
6: S◦ ← S◦ ∪ {X0}, ι(X0)← X0

7: for t = 1, · · · , T0 do
8: generate Xε

t ∼ pε(·|Xε
t−1)

9: ι(Xε
t )← X0

10: end for
11: end while
12: for t = 1, 2, · · · do (data collection)
13: if Xε

t ∈ S◦ then
14: Y

(t)
0 , Y

(tprev)
1 ← Xε

t

15: tprev ← t
16: else
17: Y

(t)
0 , Y

(t)
1 ← ι(Xε

t )
18: end if
19: end for
20: for t = 1, · · · , Tdist do (distillation)
21: Z(t) = Z(t−1) − η∇EY0,Y1 [− log p̂Z(t−1)(Y1|Y0)]
22: if t = Tthres then
23: z

(Tthres)
kℓ ← −∞ if q̂(Tthres)

kℓ < cthresε/M
24: end if
25: end for
26: z+

kℓ ← z
(Tdist)
kℓ + β for ℓ ̸= k (time rescaling)

27: return Z+

so the original capabilities of the base model are generally
preserved. Hence RL is also extremely efficient for fine-
tuning the pretrained model to improve CoT.

4. Distillation to a Smaller Model
A prominent innovation in the LLM development pipeline is
to distill CoT of a powerful model into a smaller, more effi-
cient model. This approach has been shown to significantly
enhance reasoning ability, especially compared to directly
training the smaller model with RL (Shridhar et al., 2022;
Hsieh et al., 2023; Gandhi et al., 2024; Guo et al., 2025).
In this section, we showcase an explicit distillation scheme
for our CoT model that efficiently generates the hard rea-
soning steps to solve any task while faithfully capturing the
metastable dynamics of the original system.

4.1. Distilling Cluster Transitions

The metastable chain qε⋆ (Section 2) provides a natural no-
tion of compression for the nearly reducible system Xε by
collapsing each cluster into a single state. For many down-
stream tasks (including the logic task studied in Section 5) it
may be satisfactory to retrieve only the hard reasoning steps

connecting the clusters containing Xin, Xout. In particular,
if the goal is to extract only the connectivity of S⋆, it suffices
to take the sparse edge estimate Ms of Algorithm 2 and
perform a uniform random walk to find a path between any
two clusters. However, we want the distilled model to also
preserve the underlying dynamics of the original chain as
best as possible. To this end, we implement the following
process, detailed in Algorithm 4.

We first choose a set S◦ = {x1, · · · , xK} of representatives
xk of Ck and assign each state to its representative via the
map ι : S → S◦; this can be done by exploring each cluster
similarly to the first T0 steps of the search process.

Data collection. The data for distillation is collected by
continually running CoT and recording the frequency of
transitions (or non-transitions) between S◦. The yields one
datum per CoT step, and can also be implemented in parallel
for an arbitrary number of independent chains.

(1) If Xε
t ∈ S◦ and the previous return to S◦ was Xε

tprev
then add (Xε

tprev , X
ε
t ) to Ddist.

(2) If Xε
t /∈ S◦ (no transition) add (ι(Xε

t ), ι(X
ε
t )) to Ddist.

This requires only O(K2) memory for frequency counts; no
cache for Xε is needed. The cluster labels ι and parameters
Z require O(KM) and O(K2) memory, respectively. We
suppose the process is run for arbitrarily long time so that
we have access to the population distribution of Ddist. We
then one-hot embed S◦ in RK and use the collected data
pairs to train a softmax model q̂Z(·|x) = softmax(⟨Z, x⟩),
Z ∈ RK×K similarly to pretraining. Finally, we rescale
time so that the non-diagonal entries sum to Θ(1), reducing
redundant within-cluster transitions.

Equivalence with meta-chain. The data (Y0, Y1) ∼
Ddist has been constructed so that the distilled model learns
the following kernel qε◦ on S◦: Y0 ∼ πε, Y1 ∼ qε◦(·|Y0)
where

qε◦(xℓ|xk) := πε
k(xk)Pxk

(Xε
τ̄ε
S◦

= xℓ), k ̸= ℓ,

qε◦(xk|xk) := 1−
∑

ℓ ̸=k q
ε
◦(xℓ|xk).

This kernel is a lazy version of the process obtained from
Xε by deleting all transitions to states outside S◦, with an
additional time rescaling according to the stationary proba-
bility πε

k(xk). This is slightly different from the construction
given in Betz & Le Roux (2016), as we do not presume ac-
cess to the stationary distribution of the unperturbed chain
p0k and must sample directly from πε. Moreover, qε◦ is de-
pendent on the choice of representatives and thus different
from the ‘canonical’ meta-chain qε⋆ in general. Nonetheless,
qε◦ is faithful to the meta-chain in a rigorous sense:

Proposition 4.1. Denote the return time of qε◦ to xk as τ̄ε◦,xk
.
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For all k, ℓ ∈ [K] with k ̸= ℓ, it holds that

Pxk
(τ̄ε◦,xℓ

< τ̄ε◦,xk
)

qε⋆(Cℓ|Ck)
= 1 + oM (1).

That is, the escape probabilities of qε◦ converge to qε⋆ with
uniformly vanishing relative error. This property is desir-
able as it shows the eventual likelihood of escaping to each
cluster (i.e., reaching a certain idea) is consistent across
different choices of S◦.

4.2. CoT of Distilled Model

To analyze the utility of the trained model p̂Z+ , we make
the additional assumption:

Assumption 5 (inbound sparse edges). All sparse edges
leading to each cluster Ck terminate at a fixed point xk. For
any sparse edge (x′, xℓ) from Ck, there exists a path from
xk to x′ in Ck of probability bounded below.

Then we may specify S◦ as the set of the points xk. This
ensures that representatives will not be skipped; otherwise,
a CoT passing through Ck, Cℓ, Cn in succession may miss
xℓ and record the wrong transition (xk, xn) (although the
likelihood of this is o(1) regardless).

Now, as with pretraining, the distilled model will converge
to qε◦ when trained with cross-entropy loss on Ddist.

Proposition 4.2 (convergence of distillation). For the gra-
dient descent iterates Z(t) from Algorithm 4, the learned
probabilities converge to qε◦ after Tdist = Õ(M2ε−2) as

supk,ℓ |q̂Z(Tdist)(xℓ|xk)− qε◦(xℓ|xk)| = K−ω(1).

We point out the time to convergence is much faster than pre-
training time Õ(KM2ε−2) (Theorem 3.1), and also more
computationally efficient since we are training a size K2

model rather than size (KM)2.

Finally, after time rescaling, the model qZ+ is capable of
efficiently finding a path from the cluster containing Xin to
the cluster containing Xout, with hitting time linear in |S◦|
and independent of the difficulty parameter ε.

Theorem 4.3 (hitting time of distilled CoT). For all k ̸= ℓ,
q̂Z+(xℓ|xk) = Θ(1) if there exists a sparse edge from Ck

to Cℓ or 0 if not. Moreover, the hitting time τ+xℓ
of xℓ ∈ S◦

by q̂Z+ satisfies Exk
[τ+xℓ

] = O(K).

The returned sequence of clusters C0:T indicate the exis-
tence of a path from Xin to Xout passing through precisely
these clusters in order. Once C0:T is determined, a weaker
reasoning agent (e.g., the base model pε) may also efficiently
resolve the fine-grained dynamics within each cluster.

5. Logical Reasoning is Hard without Search
5.1. Logical Reasoning Task

In this section, we further investigate the benefits of search
for reasoning by adding a quantitative ‘logic task’ on top of
the path-finding task. This provides two benefits. First, hav-
ing a numerical answer allows us to evaluate the hardness
of the task from a learning-theoretic perspective, separate
from the previously obtained hitting time bounds. Second,
by having the answer depend only on the sparse edges along
a path, the reasoner is required to estimate which edges are
sparse – in other words, understand which reasoning steps
are actually important – in order to solve the task. Taking a
proof problem for example, we expect an LLM with strong
reasoning capability to not only generate a plausible solu-
tion via next-token prediction but also understand its own
proof, so that it can correctly answer logical questions such
as “what are the key ideas of this proof?” or “what happens
if we replace step X with Y?” We attempt to formalize this
notion using group actions (Definition E.1).

Logical actions. Let (G, ◦) be a finite group with identity
eG. The logical value (or simply logic) of a reasoning chain
is an element of an abstract space R equipped with a G-
action r 7→ g · r. Each edge e ∈ E is assigned a logical
action α(e) ∈ G which acts on the current logic when the
edge is selected. To focus on learning hard steps, we assume
that the logical action of edges not in Es are trivial, α|Ec

s
:=

eG. Let ψ : S → R be an arbitrary embedding map. For
a valid path X0:T ⊆ S, we define the corresponding logic
sequence r0:T ⊆ R as

r0 = ψ(X0), rt = α(Xt−1, Xt) · rt−1.

For example, if each state is a Boolean expression being
manipulated according to certain rules,R = G = Z2 could
be used to encode the evaluation of the current expression
by switching between 1 (True) and 0 (False) depending
on the effect of each manipulation. G could also be taken
to be a space of functions with the evaluation action g · r =
g(r), so that the logic computes a repeated composition
of functions. When the chain terminates, the final logic
rT =: r(X0:T ) is returned. Note that logical values are not
unique to states and rT depends on the entire path X0:T .

Logic Task. Given (Xin, Xout) ∼ D, the goal is to output
both a valid path X0:T from Xin to Xout and its logical
value r(X0:T ). Since any path can be made simple by
deleting loops, here we require valid paths to be simple.

To establish a rigorous distinction between the use of a
search algorithm and lack thereof, we consider models con-
sisting of a pretrained base model or linguistic component
Mp, responsible for learning p and generating a valid CoT,
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and a reasoning component fθ, which predicts the answer
r(X0:T ) based on (limited) information fromMp. As in
Section 3, we supposeMp has perfectly learned the kernel
p and can output arbitrary valid pathsMp(Xin, Xout), solv-
ing the first part of the task. Here we do not consider the
time complexity of runningMp, which (as we have seen
in Theorem 3.2) can be quite long without a search-and-
improvement protocol. Thus the main task of the reasoner
is to execute logical computations along a generated CoT.

In this section, we assume a stronger uniform lower bound
in Assumption 3 on the minimum number of hard steps;
otherwise, querying a single sparse edge (Xin, Xout) ∈
Es(p) could immediately reveal its (nontrivial) action.

Assumption 3’. For any (Xin, Xout) ∼ D and any valid
path X0:T with X0 = Xin and XT = Xout, it holds that
min |X0:T ∩ Es| = Ω(K).

We remark that this condition can be weakened to Ω(logK)
if M ≥ Ω(K), in which case our results hold with e−Ω(K)

replaced by K−ω(1).

Concept class. Define P the set of transition kernels on
S satisfying Assumptions 1, 2 and denote the sparse edge
set of p ∈ P as Es(p). The logical action α can be seen
as generated by sampling A : S × S → G i.i.d. uniformly
from G, then masking out all edges not in Es(p) by setting
them to eG. Thus A can be regarded as a variable separate
from the target p, and the logic is computed recursively as

rA,p(X0) = ψ(X0), rA,p(X0:t) ={
A(Xt−1, Xt) · rA,p(X0:(t−1)) (Xt−1, Xt) ∈ Es(p)

rA,p(X0:(t−1)) (Xt−1, Xt) /∈ Es(p).

Finally, the logic rA,p(X0:T ) is mapped to a scalar out-
put via a classifier ϕ : R → {+1,−1}. We assume that
Eg∈G[ϕ(g · r)] = 0 for all r ∈ R. The concept class is thus

H =
{
hp ∈ S × S ×G|S|×|S| : p ∈ P,
hp(Xin, Xout,A) = ϕ ◦ rA,p(Mp(Xin, Xout))

}
,

equipped with inner product ⟨hp, hp′⟩H :=
E(Xin,Xout)∼D,A[hp(Xin, Xout,A)hp′(Xin, Xout,A)].

5.2. A Measure of Hardness with Restricted Access

In previous sections, we have seen that pretrainingMp =
p̂W and running a search or distillation algorithm fθ will
correctly infer the underlying sparse structure. In this case,
computing rA,p(Mp(Xin, Xout)) is trivial by concatenat-
ing actions along the identified sparse edges. In contrast, we
now restrict the reasoning component’s access to p by only
allowing certain queries toMp. This makes it difficult to
infer the sparse structure and true logical actions.

To understand learning with this additional (restricted) in-
formation, we propose the following generalization of the
statistical query dimension (Kearns, 1998; Feldman, 2017).

Definition 5.1 (SDA: SQDIM with access). Let P be the
set of ground truths and H = {hp : X → {±1} | p ∈ P}
the associated concept class with inner product ⟨·, ·⟩H. Let
Ip be any value or any function on X depending on p. Then
the statistical query dimension of P with access to I and
tolerance τ is defined as

SDAτ (P; I) := sup{|P ′| : P ′ ⊆ P,
|⟨hp1

, hp2
⟩H| ≤ τ, Ip1

= Ip2
∀p1 ̸= p2 ∈ P ′}.

In this section, we consider τ = 0 and omit its notation. Ex-
tending classical analyses (e.g., Shalev-Shwartz et al., 2017;
Shamir, 2018), we prove a general limitation for gradient-
based learning when additional information Ip is provided.

Theorem 5.2 (SQ learning with additional information).
Let fθ be any parametric model of the form

x 7→ fθ(x, Ip(x)).

Let the loss function be L(θ; p) := ∥hp−fθ∥2H and set δ :=
(4∥∇fθ∥2H/ SDA(P, I))1/3. Then choosing p randomly
from a subset of P , any iterative algorithm A(θ) that makes
at most n queries to the δ-corrupted gradient oracle ∇L
has expected loss

Ep[L(A(θ); p)] ≥ 1− SDA(P, I)−1

with probability at least 1− nδ.

Note that we only consider the squared loss in our formu-
lation for simplicity. While squared loss only answers cor-
relational queries, CSQ-learnability is equivalent to SQ-
learnability for Boolean concepts (Bshouty & Feldman,
2001).

5.3. Results on Hardness of Logical Task

We consider four types of access to the pretrained model.
Note that a local neighborhood of a subset S′ ⊂ S in the
weighted directed graph defined by p is defined as the sub-
graph consisting of states reachable with a bounded number
of steps from any state in S′.

(1) No pretraining, Ip ≡ ∅: the learner fθ(Xin, Xout,A)
has not been pretrained and does not receive any infor-
mation on p.

(2) Path-only (no search), I ≡M: the learner is allowed
to depend on inputs Xin, Xout, and A, and also the
generated pathMp(Xin, Xout). That is, the linguistic
component (base model) will return a valid CoT for the
input at hand, but we cannot simulate different chains
from p to execute some search policy or inference algo-
rithm.
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(3) Local search, I ≡ nbd(M): the learner is allowed
full access to a local neighborhood ofMp(Xin, Xout)
in the graph of p, including connectivity information
and transition probabilities. For instance, it can flag
low-probability edges as more likely to be sparse, or
run bounded-length CoT from Xin or Xout.

(4) Full search, I ≡ P: the learner is given full access to
the entire graph of p at all times. In this case, Algorithm
2 or 4 can be used to infer Es(p) and generate CoT
efficiently, and also perform the desired computation
hp.

Our main negative result states that (1)-(3) cannot solve the
logic task with polynomial compute, and thus global search
is necessary:
Theorem 5.3. SDA(P;P) = 1 and

SDA(P;∅) ≥ SDA(P;M) ≥ SDA(P; nbd(M)) ≥ eΩ(K).

Remark 5.4. The necessity of global information for certain
learning problems (globality barrier) has been conjectured
in Abbe et al. (2024), where the hardness of a ‘cycle task’ is
proved. These results are also closely related to classical SQ-
hard problems such as subset parity. The precise relationship
between SDA, globality and learning is still open.
Remark 5.5. While it suffices to lower bound the strictest
term SDA(P; nbd(M)), we exhibit different constructions
for each of the three dimensions as they offer increasing
levels of generality. In particular, SDA(P;∅) can be real-
ized by P ′ ⊂ P containing any prescribed p ∈ P and for
any D. Moreover, the difficulty is solely due to the logical
part of the task; without pretraining, the reasoner will take
exponentially many guesses to even produce a valid path.
Corollary 5.6 (hardness without global search). Suppose
fθ(nbd(Mp(Xin, Xout)),A) is any parametric model with
polynomially bounded gradients, that can freely search a
local neighborhood of the generated CoT. Then any iterative
algorithm A(θ) that makes at most polynomial queries to
the e−Ω(K)-corrupted gradient oracle ∇L satisfies

Ep[L(A(θ); p)] ≥ 1− e−Ω(K),

with probability 1− e−Ω(K) for M sufficiently large.

HenceH cannot be even weakly learned in polynomial time
if search is not long enough. The key intuition is that if the
graph is locally isomorphic, local search cannot distinguish
between sparse inter-cluster edges and low-probability but
within-cluster edges as it cannot explore the whole cluster.
This demonstrates the importance of spending sufficient
inference-time compute for improving reasoning ability.

6. Conclusion
We introduced a metastable Markov framework for model-
ing CoT reasoning, revealing the benefits of inference-time

search, RL, and distillation. We showed that search can
improve reasoning by identifying critical sparse transitions
(hard steps), which can then be leveraged to fine-tune the
pretrained model via RL or distilled into a more efficient
representation, improving hitting times for path generation.
We further established learning-theoretic limits on reasoning
with restricted information and showed that logical reason-
ing tasks become intractable without global search.

Future directions. We have studied a simple curiosity-
based unsupervised reward model; it would be interesting
to see how a more complex search process could be guided
with outcome rewards. Our framework could also be used
to study other inference-time methods such as CoT revision
(e.g., backtracking to better locate sparse edges), as well
as iterative finetuning of the pretrained model, and explore
scaling laws for inference time compute.
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A. Additional Related Works
Theoretical Analysis of CoT. Some theoretical works have focused on the expressivity of CoT (Feng et al., 2023a; Merrill
& Sabharwal, 2023; Chiang et al., 2023; Li et al., 2024b), analysis of optimization and estimation ability (Li et al., 2024a;
Hu et al., 2024; Kim & Suzuki, 2024), or in-context learning ability (Li et al., 2023; Bhattamishra et al., 2024). More closely
related to our paper, Sanford et al. (2024b;a); Abbe et al. (2024) study the algorithmic reasoning capabilities of CoT or
scratchpad transformers for certain computational or graph-based tasks. Also, Nichani et al. (2024) analyze how simple
transformer models learn latent causal structure within the data.

LLMs as Markov processes. Zekri et al. (2024) investigate the equivalence between autoregressive models and general
length Markov chains.Makkuva et al. (2024); Edelman et al. (2024) model sequential data as a Markov chain and analyze
the properties of a single-layer transformer. Ildiz et al. (2024) establish a link between self-attention and context-conditioned
Markov models. Such works generally focus on interpreting next-token prediction of a specific architecture, and do not
consider the abstraction to CoT reasoning.

Metastable Markov chains. The literature on metastable Markov processes is vast (e.g., Madras & Randall, 2001; Bovier
et al., 2002; Beltrán & Landim, 2011; Landim, 2018). Here we only mention the results most relevant to our theory. In
particular, as reversibility is unrealistic to presume for language or reasoning models, we generally restrict our attention to
works on nonreversible processes. Fritzsche et al. (2008); Jacobi (2010); Tifenbach (2011); Fackeldey et al. (2018) study
various spectral methods to identify metastable states of Markov chains. Landim (2012); Cirillo et al. (2014); Fernandez et al.
(2014; 2016); Bianchi & Gaudillière (2016) analyze critical configurations and escape times for metastable dynamics, while
Landim & Xu (2015) propose a recursive procedure for model reduction. Most relevant to our work, Wicks & Greenwald
(2005); Betz & Le Roux (2016) give a complete hierarchical characterization of the effective dynamics of perturbed chains
but only in the asymptotic limit; building on their results, we develop a new quantitative perturbation analysis throughout
Appendix C.

B. Preliminaries
B.1. Pseudo-Spectral Gap and Mixing

By taking Assumption 2 and multiplying ε by a constant if necessary, we assume that cε ≤ pε(y|x) ≤ ε for some c > 0 and
all (x, y) ∈ Es throughout the appendix.

Definition B.1 (mixing time). For a time-homogeneous ergodic Markov chain X = (Xt)t≥0 on a finite state space Ω with
transition kernel p and stationary distribution π, the mixing time tmix is defined as

tmix(ϵ) = min

{
t ≥ 0 : ∀s ≥ t, sup

x∈Ω
∥ps(·|x)− π∥TV ≤ ϵ

}
.

Definition B.2 (hitting and return times). The nth hitting time and return time of Xε to a set A ⊆ S for n ∈ N are defined
as

τεA,n = inf{t ≥ 0 : |{0 ≤ t′ ≤ t : Xε
t′ ∈ A}| = n},

τ̄εA,n = inf{t > 0 : |{0 < t′ ≤ t : Xε
t′ ∈ A}| = n}.

In particular, we write τεA = τεA,1 and τ̄εA = τ̄εA,1. We write τεx = τε{x}, etc. for simplicity.

The chain X is reversible if it satisfies the detailed balance equation

π(x)p(y|x) = π(y)p(x|y) ∀x, y ∈ Ω.

While we do not assume reversibility in this paper, it is informative to compare the conditions for rapid mixing. Denote
the transition matrix corresponding to p by P and let the eigenvalues of P ordered by absolute value be 1 = λ1(P) ≥
|λ2(P)| ≥ |λ3(P)| ≥ · · · . For reversible chains, all eigenvalues are real and the mixing time is closely governed by the
(absolute) spectral gap γ(P) = 1− |λ2(P)| (Levin et al., 2009):

1

2 log 2ϵ

(
1

γ(P)
− 1

)
≤ tmix(ϵ) ≤

1

γ(P)
log

1

π∗ϵ
,
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where π∗ = minx∈Ω π(x) is the minimum stationary probability.

For nonreversible chains, the analogous quantity to γ(P) is given by the pseudo-spectral gap:

Definition B.3 (Paulin (2015)). The pseudo-spectral gap of P is given as

γ†(P) := max
m∈N

γ((P†)mPm)

m

where P† is the time reversal of P, defined as P†
ij = πjPji/πi.

When X is reversible, it holds that γ(P) ≤ γ†(P) ≤ 2γ(P) (Wolfer & Kontorovich, 2022, Lemma 15). Moreover, γ†(P)
controls the mixing time similarly to γ(P):

Proposition B.4 (Paulin (2015), Proposition 3.4). For 0 < ϵ < 1,

1− 2ϵ

γ†(P)
≤ tmix(ϵ) ≤

1

γ†(P)

(
1 + 2 log

1

2ϵ
+ log

1

π∗

)
.

Denote the maximum row sum norm as ∥A∥1,∞ = maxi
∑

j |aij | for A = (aij).

Lemma B.5. For A ∈ Rm×m it holds that ∥A∥2 ≤
√
m∥A∥1,∞.

Proof. For arbitrary v ∈ Rm with ∥v∥ = 1,

∥Av∥2 =
∑
i

∑
j

aijvj

2

≤
∑
i

∑
j

a2ij ≤
∑
i

∑
j

|aij |

2

≤ m∥A∥21,∞.

B.2. Stochastic Complementation

We denote the stochastic block matrix Pε corresponding to the kernel pε and partition S = ∪Kk=1Ck as

Pε =

Pε
11 · · · Pε

1K
...

. . .
...

Pε
K1 · · · Pε

KK

 .

That is, the probability pε(y|x) is contained in the (x, y) component, and the rows of Pε all sum to 1. The stochastic
complement of Pε

kk is defined as (Meyer, 1989)

Sε
kk = Pε

kk +Pε
k∗(I−Pε

k)
−1Pε

∗k

where Pε
k∗ is the kth block row of Pε with Pε

kk removed; Pε
∗k is the kth block column of Pε with Pε

kk removed; and Pε
k is

the principal block submatrix of Pε with the kth row and column removed. When ε = 0, it follows that P0
ij = 0 when

i ̸= j and S0
kk = P0

kk is the transition matrix of p0 restricted to Ck.

The following results are fundamental to the theory of stochastic complementation.

Theorem B.6 (Meyer (1989), Theorem 2.3). If Pε is an irreducible stochastic matrix for ε > 0, each stochastic complement
Sε
kk is also an irreducible stochastic matrix. Moreover, Sε

kk is equal to the transition matrix of the reduced chain X̃k,ε on
Ck,

X̃k,ε
t := Xε

τε
Ck,t+1

, t ∈ N0 (4)

obtained from Xε by deleting transitions to states outside of Ck.

We further denote the transition kernel of X̃k,ε
t corresponding to Sε

kk as sεkk, so that s0kk = p0|Ck
, and its return time to a

subset A ⊆ Ck as τ̃k,εA .
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Lemma B.7 (Meyer (1989), Theorem 6.1). Denoting the block diagonal matrix Sε = diagSε
kk, it holds for all k ∈ [K] that

∥Sε
kk −Pε

kk∥1,∞ = ∥Pε
k∗∥1,∞ and ∥Sε −Pε∥1,∞ = 2 max

k∈[K]
∥Pε

k∗∥1,∞.

In particular, it immediately follows that

∥Sε
kk −Pε

kk∥1,∞ ≤ doutε, ∥Sε −Pε∥1,∞ ≤ 2doutε. (5)

We now exhibit conditions on the unperturbed matrices P0
kk which imply the bounds on the spectral gap and stationary

distribution of Sε
kk in Assumption 1 up to a constant factor. The argument can be repeated to show that Assumption 1 holds

for the pretrained model p̂ of Theorem 3.1, as the error is exponentially small. This also implies that Assumption 4 is robust
to perturbation via Proposition C.8.

Proposition B.8. Suppose that each p0|Ck
is reversible with spectral gap γ(P0

kk) ≥ γ and the stationary measure µk := π0
k

satisfies ρ/M ≤ µk(x) ≤ ρ′/M . Moreover suppose that the eigenvalue matrix Vk of P0
kk has condition number bounded

as κ(Vk) = ∥Vk∥2∥V−1
k ∥2 ≤ κ0

√
M , and the group inverse A♯

k of I−P0
kk satisfies ∥A♯

k∥∞ ≤ g0 for constants κ0, g0.
Then for all ε = o(M−1),

γ†(Sε
kk) ≥

γ

2
and

ρ

2M
≤ πε

k(x) ≤
2ρ′

M
∀x ∈ Ck.

Proof. By the proportionality of pε in Assumption 2 and (5) we have

∥Sε
kk −P0

kk∥1,∞ ≤ ∥Sε
kk −Pε

kk∥1,∞ + ∥Pε
kk −P0

kk∥1,∞
≤ doutε+ max

x∈Ck

∑
y∈Ck

|p0(y|x)− pε(y|x)|

≤ 2doutε,

so that ∥Sε
kk −P0

kk∥2 ≤ 2
√
Mdoutε by Lemma B.5. Then by the Bauer-Fike theorem it holds that

|λ2(Sε
kk)− λ2(P0

kk)| ≤ κ(Vk)∥Sε
kk −P0

kk∥2 ≤ 2κ0Mdoutε = o(1),

therefore γ†(Sε
kk) ≥ γ(Sε

kk) ≥
γ
2 for sufficiently large M . Furthermore by the condition number bound in Meyer (1980)

the perturbed stationary distribution satisfies

∥πε
k − µk∥∞ ≤ ∥A♯

k∥∞∥S
ε
kk −P0

kk∥∞ ≤ 2g0doutε = o(M−1),

proving the second assertion.

With these results in mind, we can prove the following concentration bound for the reduced chain X̃k,ε.

Lemma B.9. For all x, y ∈ Ck and δ > 0 it holds that Px(τ̃
k,ε
y ≥ m) ≤ δ as long as

m ≥ 8M

ργ
log

1

δ
· log M

ρ
. (6)

Proof. By Proposition B.4, the mixing time of X̃k,ε
t is bounded above as

tmix := tmix

( ρ

2M

)
≤ 1

γ†(Sε
kk)

(
1 + 2 log

M

ρ
+ log

1

minπε
k

)
≤ 4

γ
log

M

ρ

so that for any x, y ∈ Ck,

(sεkk)
tmix(y|x) ≥ πε

k(y)−
(
πε
k(y)− (sεkk)

tmix(y|x)
)
≥ ρ

M
− ∥(sεkk)tmix − πε

k∥TV ≥
ρ

2M
.
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This implies each step of the tmix-skipped chain (X̃k,ε
tmixt)t≥0 is well-mixed, and hence

Px(τ̃
k,ε
y ≥ m) ≤ sup

⌊m/tmix⌋∏
t=1

(
1− PX̃k,ε

tmix(t−1)
(X̃k,ε

tmixt = y)

)
≤
(
1− ρ

2M

)⌊m/tmix⌋

≤ exp

(
− ρm

2Mtmix

)
≤ δ,

as was to be shown.

B.3. Detailed Balance of Escape Probabilities

The following ‘detailed balance equation’ for hitting times, proved in Proposition 3.1 of Betz & Le Roux (2016) for
nonreversible Markov chains, will be useful. We reproduce the proof here for convenience.
Proposition B.10. For an irreducible, positive recurrent Markov chain X on a state space S with unique stationary
distribution π, for all x, y ∈ S,

π(x)Px(τ̄y < τ̄x) = π(y)Py(τ̄x < τ̄y).

Proof. For arbitrary z ∈ S, it holds that

Ez[τ̄x] = Ez[min{τ̄x, τ̄y}] + Ez[(τ̄x − τ̄y)1{τ̄x>τ̄y}] = Ez[min{τ̄x, τ̄y}] + Ey[τ̄x]Pz(τ̄x > τ̄y). (7)

Taking z = y in (7) gives Ey[min{τ̄x, τ̄y}] = Ey[τ̄x]Py(τ̄x < τ̄y), and substituting this in (7) with x, y swapped and z = y
yields

1

π(y)
= Ey[τ̄y] = Ey[min{τ̄x, τ̄y}] + Ex[τ̄y]Py(τ̄x < τ̄y) = (Ey[τ̄x] + Ex[τ̄y])Py(τ̄x < τ̄y)

or
π(y)Py(τ̄x < τ̄y) =

1

Ey[τ̄x] + Ex[τ̄y]
= π(x)Px(τ̄y < τ̄x) (8)

by symmetry.

C. Perturbative Analysis of Metastable Dynamics
C.1. Quantitative Metastable Dynamics

We first show the following useful bound.
Lemma C.1. There exists ν > 0 such that for all k ∈ [K] and distinct states x, y ∈ Ck, the unperturbed chain X0 satisfies

Px(τ̄
0
y < τ̄0x) ≥

ν

logM
.

Proof. From (8) it holds that

µk(y)Py(τ̄
0
x < τ̄0y ) =

1

Ey[τ̄0x ] + Ex[τ̄0y ]
. (9)

By Assumption 1 it holds that µk(y) = Θ(1/M). Moreover since the skipped chain (X0
tmixt)t≥0 is well-mixed,

Px(τy ≥ m) ≤ sup

⌊m/tmix⌋∏
t=1

(
1− PX0

tmix(t−1)
(X0

tmixt = m)
)
≤ exp

(
− ρm

2Mtmix

)
.

It follows that

Ex[τ̄
0
y ] =

∞∑
m=0

Px(τy ≥ m) ≤
(
1− exp

(
− ρ

2Mtmix

))−1

= O(M logM)

and Ex[τ̄
0
y ] = O(M logM) by symmetry. The statement then follows from (9).
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To study the cluster transition dynamics, we begin with a decomposition of hitting probabilities, which is closely related to
the theory of stochastic complementation (Meyer, 1989). Here, we follow the proof in Betz & Le Roux (2016).

Lemma C.2. For C ⊆ S, x ∈ S and y ∈ C such that Px(τ̄
ε
C <∞) = 1, it holds that

Px(X
ε
τ̄ε
C
= y) = pε(x, y) +

∑
z∈Cc

Px(τ̄
ε
z < τ̄εC)

Pz(τ̄εC < τ̄εz )
pε(z, y). (10)

Proof. If Xε
τ̄ε
C
= y, either Xε has moved directly from x to y or has first moved to some z = Xε

τ̄ε
C−1 /∈ C. Conditioning on

the number of returns to z before transitioning to y yields

Px(X
ε
τ̄ε
C
= y) = pε(x, y) +

∑
z∈Cc

∑
n≥1

Px(τ̄
ε
z,n < τ̄εC , X

ε
τ̄ε
z,n+1 = y)

= pε(x, y) +
∑
z∈Cc

∑
n≥1

Px(τ̄
ε
z < τ̄εC)Pz(τ̄

ε
z < τ̄εC)

n−1pε(z, y)

= pε(x, y) +
∑
z∈Cc

Px(τ̄
ε
z < τ̄εC)

1− Pz(τ̄εz < τ̄εC)
pε(z, y),

concluding (10). Note that pε(x, y) must be added separately even for z = x as the second term only counts returns to x for
time t > 0.

Definition C.3 (induced path measure). For m ∈ N, define the path measure induced by Xε on Sm as

P̃ε,m
x (x1:m) :=

m∏
i=1

pε(xi|xi−1), x1:m ∈ Sm, x0 = x.

Similarly to the total variation distance bound between product measures, we have the following result.

Lemma C.4. ∥P̃ε,m
x − P̃0,m

x ∥TV ≤ mdoutε.

Proof. Recalling that ∥pε(·|x)− p0(·|x)∥TV ≤ doutε for all x ∈ S,

∥P̃ε,m
x − P̃0,m

x ∥TV

=
1

2

∑
x1:m

∣∣Pε,m
x (x1:m)− P0,m

x (x1:m)
∣∣

≤ 1

2

∑
x1:m

m∑
i=1

∣∣pε(xi|xi−1)− p0(xi|xi−1)
∣∣∏
j>i

pε(xj |xj−1)
∏
j′<i

p0(xj′ |xj′−1)

=
1

2

m∑
i=1

∑
x1:i

∣∣pε(xi|xi−1)− p0(xi|xi−1)
∣∣ ∏
j′<i

p0(xj′ |xj′−1)

≤ doutε ·
m∑
i=1

∑
x1:i−1

∏
j′<i

p0(xj′ |xj′−1)

= mdoutε.

Proposition C.5. For all k ∈ [K] and ε ≤ O(M−1(logM)−4), it holds that

sup
x,y∈Ck

sup
z∈S

∣∣Px(τ
ε
y < τεz )− Px(τ

0
y < τ0z )

∣∣ ≤ Õ( 1

(logM)3

)
and

sup
x,y∈Ck

sup
z∈S

∣∣Px(τ̄
ε
y < τ̄εz )− Px(τ̄

0
y < τ̄0z )

∣∣ ≤ Õ( 1

(logM)3

)
.
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Proof. Since τ̄εy <∞ for all ε ≥ 0 almost surely for x, y ∈ Ck, the above probabilities are well-defined. We prove only
the second inequality. Denote the augmented complements Ck,z := Cc

k ∪ {z} and Ck,y,z := Cc
k ∪ {y, z} for brevity. We

divide the event {τ̄εy < τ̄εz } according to whether the chain has been contained in Ck or has first hit some w ∈ Cc
k, w ̸= z

before reaching y, and bound the magnitude of perturbation of each term:

Px(τ̄
ε
y < τ̄εz ) = Px(τ̄

ε
y < τ̄εCk,z ) +

∑
w∈Cc

k\{z}

Px(X
ε
τ̄ε

Ck,y,z
= w)Pw(τ̄

ε
y < τ̄εz ). (11)

For the first term, we exploit the fast mixing of Xε within Ck to show a concentration result for τ̄εy , then utilize the path
measure perturbation bound. Specifically, for m chosen to satisfy (6), the inequality m ≤ τ̄εy < τ̄εCk,z implies X̃k,ε

t = Xε
t

for t < m, so that

Px(τ̄
ε
y < τ̄εCk,z )− Px(τ̄

ε
y < τ̄εCk,z ∧m) = Px(m ≤ τ̄εy < τ̄εCk,z ) ≤ Px(τ̃

k,ε
y ≥ m) < δ. (12)

Moreover, define Γy,z to be the set of paths γ contained in Ck of length equal to m such that y appears, and first appears
before any instance of z, that is

Γy,z :=
{
γ ∈ Cm

k : inf{k ∈ [m] : γk = y} < (m+ 1) ∧ inf{k ∈ [m] : γk ∈ Ck,z}.
}

It follows that

Px(τ̄
ε
y < τ̄εCk,z ∧m) = P̃ε,m

x (Γy,z)

and hence

|Px(τ̄
ε
y < τ̄εCk,z ∧m)− Px(τ̄

0
y < τ̄0Ck,z ∧m)|

= |P̃ε,m
x (Γy,z)− P̃0,m

x (Γy,z)| ≤ ∥P̃ε,m
x − P̃0,m

x ∥TV ≤ mdoutε

by Lemma C.4.

For the second term, by Lemma C.2 we have for all w ∈ Cc
k \ {z}

Px(X
ε
τ̄ε

Ck,y,z
= w) = pε(x,w) +

∑
u∈Ck\{y,z}

Px(τ̄
ε
u < τ̄εCk,y,z )

Pu(τ̄εCk,y,z < τ̄εu)
pε(u,w).

The denominator can be lower bounded via a path measure argument similar to before:

Pu(τ̄
ε
Ck,y,z < τ̄εu) ≥ Pu(τ̄

ε
y < τ̄εu ∧m)

≥ Pu(τ̄
0
y < τ̄0u ∧m)− ∥P̃ε,m

x − P̃0,m
x ∥TV

≥ Pu(τ̄
0
y < τ̄0u)− Pu(τ̄

0
y ≥ m)− ∥P̃ε,m

x − P̃0,m
x ∥TV

≥ ν

logM
− δ −mdoutε ≥

ν

2 logM
(13)

by Lemma C.1, as long as δ,mε = o((logM)−1). It follows that

Px(X
ε
τ̄ε

Ck,y,z
= w) ≤ pε(x,w) + 2 logM

ν

∑
u∈Ck\{y,z}

pε(u,w)

and ∑
w∈Cc

k\{z}

Px(X
ε
τ̄ε

Ck,y,z
= w)Pw(τ̄

ε
y < τ̄εz )

≤
∑

w∈Cc
k\{z}

pε(x,w) +
2 logM

ν

∑
u∈Ck\{y,z}

∑
w∈Cc

k\{z}

pε(u,w)

18
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≤
(
1 +

2nout logM

ν

)
doutε. (14)

Now taking δ = O(Mε logM) and ε ≤ O(M−1(logM)−4), we can verify that δ = O((logM)−3) and

mε = O

(
Mε log

1

Mε
· logM

)
= O

(
log logM

(logM)3

)
.

Combining (11), (12) and (14), we conclude:

∣∣Px(τ̄
ε
y < τ̄εz )− Px(τ̄

0
y < τ̄0z )

∣∣ ≤ mdoutε+ δ +O(logM) · doutε = Õ

(
1

(logM)3

)
,

as was to be shown.

As a corollary, we obtain:

Corollary C.6 (Proposition 2.1 restated). Any subset S◦ = {x1, · · · , xK} ⊂ S of cluster representatives xk ∈ Ck

constitutes a metastable system for Xε in the sense of (1) as M →∞.

Proof. For y ∈ Ck \ {xk}, it holds that

Py(τ̄
ε
S◦
< τ̄εy ) ≥ Py(τ̄

ε
xk
< τ̄εy ) ≥

ν

2 logM

similarly to (13). On the other hand, for xk ∈ S◦ it follows from Proposition C.5 that

Pxk
(τ̄εS◦\{xk} < τ̄εxk

) ≤ Pxk
(τ̄0S◦\{xk} < τ̄0xk

) + Õ

(
1

(logM)3

)
,

and hence (1) follows.

Now let us study the convergence of the perturbed stationary distributions. Let πε for ε > 0 denote the unique stationary
distribution of Xε on S. By the coupling theorem (Meyer, 1989, Theorem 4.1),

πε = (ξ1π
ε
1 · · · ξKπε

K) (15)

where the coupling factors ξk = πε(Ck). We then obtain the following corollary of Proposition C.5.

Corollary C.7. For all k ∈ [K], it holds that

sup
x∈Ck

∣∣∣∣πε
k(x)

µk(x)
− 1

∣∣∣∣ ≤ Õ( 1

logM

)
.

We remark that compared to the straightforward perturbation bound in Proposition B.8, this approach does not require
reversibility nor an explicit condition number bound.

Proof. For all x, y ∈ Ck, by Proposition B.10 applied to Xε on S and X0 on Ck,

πε
k(x)

πε
k(y)

=
πε(x)

πε(y)
=

Py(τ̄
ε
x < τ̄εy )

Px(τ̄εy < τ̄εx)
,

µk(x)

µk(y)
=

Py(τ̄
0
x < τ̄0y )

Px(τ̄0y < τ̄0x)
.

Recall that Px(τ̄
0
y < τ̄0x) ≥ ν

logM by Lemma C.1 and moreover Px(τ̄
ε
y < τ̄εx) ≥ ν

2 logM by repeating the argument in (13).
Therefore, ∣∣∣∣πε

k(x)

πε
k(y)

− µk(x)

µk(y)

∣∣∣∣ =
∣∣∣∣∣Py(τ̄

ε
x < τ̄εy )

Px(τ̄εy < τ̄εx)
−

Py(τ̄
0
x < τ̄0y )

Px(τ̄0y < τ̄0x)

∣∣∣∣∣
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≤
∣∣Px(τ̄

ε
y < τ̄εx)− Px(τ̄

0
y < τ̄0x)

∣∣+ ∣∣Py(τ̄
ε
x < τ̄εy )− Py(τ̄

0
x < τ̄0y )

∣∣
Px(τ̄εy < τ̄εx)Px(τ̄0y < τ̄0x)

≤ 4(logM)2

ν2
· Õ
(

1

(logM)3

)
.

By Assumption 1 we have that µk(y)/µk(x) is bounded for all x, y ∈ Ck and hence∣∣∣∣πε
k(x)

µk(x)
− 1

∣∣∣∣ ≤ ∑
y∈Ck

∣∣∣∣πε
k(x)

µk(x)
µk(y)− πε

k(y)

∣∣∣∣
=
∑
y∈Ck

µk(y)

µk(x)
πε
k(y)

∣∣∣∣πε
k(x)

πε
k(y)

− µk(x)

µk(y)

∣∣∣∣ ≤ Õ( 1

logM

)
.

C.2. Perturbative Analysis of Metastable Chain

We proceed to study the behavior of the meta-chain Xε
⋆ with transition probabilities qε⋆ defined in (2). It can be shown that

Xε
⋆ is asymptotically reversible with respect to the measure induced by πε:

Proposition C.8. For all k, ℓ ∈ [K] with k ̸= ℓ it holds that

πε(Ck)q
ε
⋆(Cℓ|Ck)

πε(Cℓ)qε⋆(Ck|Cℓ)
= 1 + Õ

(
1

logM

)
.

Proof. First note that for x ∈ Ck, y ∈ Cℓ with k ̸= ℓ, by Proposition C.5,

0 ≤ 1−
Px(τ̄

ε
y < τ̄εx)

Px(τ̄εCℓ
< τ̄εx)

=
1

Px(τ̄εCℓ
< τ̄εx)

∑
z∈Cℓ

Px(τ̄
ε
Cℓ
< τ̄εx , X

ε
τ̄ε
Cℓ

= z)Pz(τ
ε
x < τεy )

≤ 1

Px(τ̄εCℓ
< τ̄εx)

∑
z∈Cℓ

Px(τ̄
ε
Cℓ
< τ̄εx , X

ε
τ̄ε
Cℓ

= z) · sup
z∈Cℓ

∣∣Pz(τ
ε
x < τεy )− Pz(τ

0
x < τ0y )

∣∣
≤ Õ

(
1

(logM)3

)
.

By the definition of qε⋆, the coupling equation (15) and Corollary C.7, it follows that

πε(Ck)q
ε
⋆(Cℓ|Ck) = πε(Ck)

∑
x∈Ck

µk(x)
2Px(τ̄

ε
Cℓ
< τ̄εx)

= πε(Ck)
∑
x∈Ck

πε
k(x)µk(x)Px(τ̄

ε
Cℓ
< τ̄εx)

+ πε(Ck)
∑
x∈Ck

µk(x)
2

(
1− πε

k(x)

µk(x)

)
Px(τ̄

ε
Cℓ
< τ̄εx)

=
∑
x∈Ck

πε(x)µk(x)Px(τ̄
ε
Cℓ
< τ̄εx) + πε(Ck)q

ε
⋆(Cℓ|Ck) · Õ

(
1

logM

)
.

We expand the first term further as∑
x∈Ck

πε(x)µk(x)Px(τ̄
ε
Cℓ
< τ̄εx)

=
∑
x∈Ck

∑
y∈Cℓ

πε(x)µk(x)µℓ(y)Px(τ̄
ε
y < τ̄εx)
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+
∑
x∈Ck

∑
y∈Cℓ

πε(x)µk(x)µℓ(y)Px(τ̄
ε
Cℓ
< τ̄εx)

(
1−

Px(τ̄
ε
y < τ̄εx)

Px(τ̄εCℓ
< τ̄εx)

)
=
∑
x∈Ck

∑
y∈Cℓ

πε(x)µk(x)µℓ(y)Px(τ̄
ε
y < τ̄εx)

+
∑
x∈Ck

πε(x)µk(x)Px(τ̄
ε
Cℓ
< τ̄εx) · Õ

(
1

(logM)3

)
.

Together, we have shown that

πε(Ck)q
ε
⋆(Cℓ|Ck) =

∑
x∈Ck

∑
y∈Cℓ

πε(x)µk(x)µℓ(y)Px(τ̄
ε
y < τ̄εx) ·

(
1 + Õ

(
1

logM

))
,

and by symmetry

πε(Cℓ)q
ε
⋆(Ck|Cℓ) =

∑
x∈Ck

∑
y∈Cℓ

πε(y)µk(x)µℓ(y)Py(τ̄
ε
x < τ̄εy ) ·

(
1 + Õ

(
1

logM

))
.

Finally, since ∑
x∈Ck

∑
y∈Cℓ

µk(x)µℓ(y) · πε(x)Px(τ̄
ε
y < τ̄εx) =

∑
x∈Ck

∑
y∈Cℓ

µk(x)µℓ(y) · πε(y)Py(τ̄
ε
x < τ̄εy )

due to Proposition B.10, we conclude the desired statement.

Together with Assumptions 1, 4 and (15), this immediately implies:

Corollary C.9. For all k ∈ [K] and x ∈ S it holds that πε(Ck) = Θ(1/K) and πε(x) = Θ(1/KM).

Moreover, qε⋆(·|Ck) serves as an approximation of the escape probabilities from any x ∈ Ck, weighted by the stationary
measure.

Proposition C.10. For k, ℓ ∈ [K] with k ̸= ℓ it holds that

sup
x∈Ck

∣∣∣∣µk(x)Px(τ̄
ε
Cℓ
< τ̄εx)

qε⋆(Cℓ|Ck)
− 1

∣∣∣∣ = Õ

(
1

logM

)
(16)

and

sup
x∈Ck,y∈Cℓ

∣∣∣∣µk(x)Px(τ̄
ε
y < τ̄εx)

qε⋆(Cℓ|Ck)
− 1

∣∣∣∣ = Õ

(
1

logM

)
. (17)

Proof. Similarly to the proof of Proposition C.8, for any y ∈ Cℓ we can successively transform via Proposition B.10:

µk(x)Px(τ̄
ε
Cℓ
< τ̄εx) = µk(x)Px(τ̄

ε
y < τ̄εx) ·

(
1 + Õ

(
1

logM

))
=

πε(x)

πε(Ck)
Px(τ̄

ε
y < τ̄εx) ·

(
1 + Õ

(
1

logM

))
=

πε(y)

πε(Ck)
Py(τ̄

ε
x < τ̄εy ) ·

(
1 + Õ

(
1

logM

))
=
πε(Cℓ)

πε(Ck)
πε
k(y)Py(τ̄

ε
Ck

< τ̄εy ) ·
(
1 + Õ

(
1

logM

))
.

Since the last term is independent of x, we also have

qε⋆(Cℓ|Ck) =
∑
x∈Ck

µk(x)
2Px(τ̄

ε
Cℓ
< τ̄εx)
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=
πε(Cℓ)

πε(Ck)
πε
k(y)Py(τ̄

ε
Ck

< τ̄εy ) ·
(
1 + Õ

(
1

logM

))
= µk(x)Px(τ̄

ε
Cℓ
< τ̄εx) ·

(
1 + Õ

(
1

logM

))
for any x ∈ Ck, verifying (16). The proof for (17) is identical.

As a corollary, we obtain the promised justification of Assumption 4.
Corollary C.11. If there exists a sparse edge from Ck to Cℓ, it holds that qε⋆(Cℓ|Ck) = Ω̃(ε/M).

Proof. Fix x ∈ Ck and let (y, z) ∈ Es with y ∈ Ck, z ∈ Cℓ. The event {τ̄εCℓ
< τ̄εx} occurs if y is hit before returning to x

and the edge to z is immediately taken, so that

Px(τ̄
ε
Cℓ
< τ̄εx) ≥ pε(z|y)Px(τ̄

ε
y < τ̄εx) ≥

νcε

2 logM
.

Hence by Proposition C.10 we obtain

qε⋆(Cℓ|Ck) = µk(x)Px(τ̄
ε
Cℓ
< τ̄εx)

(
1 + Õ

(
1

logM

))
≥ Ω

(
ε

M logM

)
.

C.3. Hitting Time Analysis

To prove Theorem 3.2, we first derive the expected escape time of a single cluster.
Lemma C.12. For all k ∈ [K] and x ∈ Ck, it holds that

Ex[τ
ε
Cc

k
] = Θ̃

(
M

ε

)
.

Proof. Recall from Lemma B.9 that the mixing time of X̃k,ε is tmix = O(logM). Also denote the set of states in Ck with
outbound edges as Dk := {x ∈ Ck : ∃y /∈ Ck, (x, y) ∈ Es}, so that 1 ≤ |Dk| ≤ nout By Assumption 2. Since τεCc

k
> m

implies that X̃k,ε
t = Xε

t for t ≤ m and that a sparse edge was not taken at each state of the skipped subchain X̃k,ε
tmixt up to

t = ⌊m/tmix⌋, it follows that

Px(τ
ε
Cc

k
> m) ≤ sup

⌊m/tmix⌋∏
t=1

PXε
tmix(t−1)+1

(Xε
tmixt+1 ∈ Ck)

≤ sup

⌊m/tmix⌋∏
t=1

(
1− PXε

tmix(t−1)+1
(X̃k,ε

tmixt ∈ Dk) · PX̃k,ε
tmixt

(Xk,ε
tmixt+1 /∈ Ck)

)

≤
⌊m/tmix⌋∏

t=1

(
1− ρ|Dk|

2M
· cε
)

≤ exp

(
− ρcεm

2Mtmix

)
.

This yields the upper bound

Ex[τ
ε
Cc

k
] =

∞∑
m=0

Px(τ
ε
Cc

k
> m) ≤

(
1− exp

(
− ρcε

2Mtmix

))−1

≤ O
(
M logM

ε

)
.

For the lower bound, consider the partition of (X̃k,ε
t )t≥0 into the union of skipped and shifted subchains (X̃k,ε

tmixt+u)t≥0

for 0 ≤ u < tmix. Suppose that m ≥ 2tmix, so each subchain has length at least 2, and all transition probabilities of each
subchain is Θ(1/M) by Assumption 1. Since not taking a sparse edge at each step of all subchains implies τεCc

k
> m,

Px(τ
ε
Cc

k
> m)
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≥ inf

tmix−1∏
u=0

⌊m/tmix⌋∏
t=1

(
1− PX̃k,ε

tmix(t−1)+u+1
(X̃k,ε

tmixt+u ∈ Dk) · PX̃k,ε
tmixt+u

(Xε
tmixt+u+1 /∈ Ck)

)

≥
tmix−1∏
u=0

⌊m/tmix⌋∏
t=1

(
1−Θ

(
|Dk|
M
· doutε

))
≥
(
1−Θ

( ε

M

))m−tmix

.

Note that while the dependency on tmix does not explicitly appear in the bound, tmix still needs to be small enough to argue
that the states of each subchain for t ≥ 1 exist and are sufficiently mixed. Hence it follows that

Ex[τ
ε
Cc

k
] =

∞∑
m=0

Px(τ
ε
Cc

k
> m) ≥ Ω

(
M

ε

)
− 2tmix ≥ Ω

(
M

ε

)
,

which concludes the statement.

Theorem C.13 (Theorem 3.2 restated). Under Assumptions 1-4, it holds for all ε ≤ εmax := Θ(M−1(logM)−4) that

E(Xin,Xout)∼D[EXin
[τεXout

]] = Θ̃

(
KM

ε

)
.

Proof. Suppose Xin ∈ Ck, Xout ∈ Cℓ with k ̸= ℓ. For the upper bound, by (8) it holds that

EXin [τ
ε
Xout

] = EXin [τ̄
ε
Xout

] ≤ EXin [τ̄
ε
Xout

] + EXout [τ̄
ε
Xin

] =
1

πε(Xin)PXin
(τ̄εXout

< τ̄εXin
)
.

Combining (15), Corollary C.7 and Proposition C.10 yields

πε(Xin)PXin(τ̄
ε
Xout

< τ̄εXin
) = πε(Ck) ·

πε
k(Xin)

µk(Xin)
· µk(Xin)PXin(τ̄

ε
Xout

< τ̄εXin
)

= πε(Ck)q
ε
⋆(Cℓ|Ck) ·

(
1 + Õ

(
1

logM

))
= O

( ε

KM

)
,

where the last line follows from Corollary C.9 and Assumption 4.

For the lower bound, define the sequence of increasing stopping times (σn)n≥0 as

σ0 := 0, σn := min{t > σn−1 : (Xε
t−1, X

ε
t ) ∈ Es}.

Then defining the minimum number of cluster transitions to reach Xout as

N = N(Xin, Xout) := min{|X0:T ∩ Es| : X0 = Xin, XT = Xout, (Xt−1, Xt) ∈ E ∀t},

it holds that τεXout
≥ σN . Moreover denoting the cluster containing Xε

σt−1
as C[t], by Lemma C.12 we have

EXin
[σN ] =

N∑
t=1

EXε
σt−1

[τεC[t]] ≥ Θ̃

(
MN

ε

)
,

and hence

E(Xin,Xout)∼D[EXin
[τεXout

]] ≥ Θ̃

(
KM

ε

)
since E[N ] = Ω(K) by Assumption 3.
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D. Proofs for Optimization Dynamics
D.1. Analysis of Pretraining Dynamics

Theorem D.1. Let X0 ∼ Unif(S) or X0 ∼ πε and X1 ∼ pε(·|X0) be random samples from the Markov chain Xε. Then:

(1) The sequence of gradient descent iterates (W(t))t≥0 for cross-entropy loss

Lpre(W) = EX0,X1
[− log p̂W(X1|X0)]

with initialization W(0) = 0 and suitable learning rate converges with respect to the learned transition probabilities as

sup
1≤i,j≤S

|p̂(T )
ij − p

ε
ij | = O

(√
KM2

T
log

KT

Mε

)
. (18)

(2) After T1 = Õ(KM2ε−2) steps, by setting wij ← −∞ if p̂(T1)
ij is below a threshold cthresε it holds for the resulting

model p̂ that p̂ij = 0 iff pεij = 0 and
pεij − o(ε) ≤ p̂ij ≤ pεij + o(1) (19)

holds uniformly for all j such that pεij ̸= 0.

(3) After thresholding, the learned transition probabilities converge linearly as

sup
1≤i,j≤S

|p̂(T1+T )
ij − pεij | = exp(−Ω(ε2T )) ·O(log ε−1). (20)

Proof. For part (1), we utilize the proof technique of Ji & Telgarsky (2019), Theorem 3.1 for logistic regression. Suppose
X0 ∼ µ where µ is any distribution such that µi = Θ(1/KM) for all states i. If µ = πε, we will show that πε(x) =
Θ(1/KM) for all x ∈ S in Corollary C.9. The categorical cross-entropy loss can be written as

Lpre(W) = EX0,X1 [− log p̂W(X1|X0)] =
∑
i

µiLi(Wi∗)

where
Li(Wi∗) = −

∑
j

pεijwij + log
∑
j

expwij .

Note that each Li is convex and
inf Li = −

∑
j

pεij log p
ε
ij = H(pε(·|ei))

is the entropy of X1 given X0 = ei. The gradient of Li is given as (∇Li)j = p̂W(ej |ei)− pεij . Since the softmax operator
is 1-Lipschitz, it follows that∇Li is also 1-Lipschitz,

∥∇Li(Wi∗)−∇Li(W
′
i∗)∥2 =

∑
j

(
expwij∑
k expwik

−
expw′

ij∑
k expw

′
ik

)2

≤ ∥Wi∗ −W′
i∗∥2.

Choose the learning rate η = Θ(KM) such that η0 ≤ µiη ≤ 1 for some η0 > 0. Then rewriting gradient descent of Wi∗ as
gradient descent with respect to Li,

W
(t+1)
i∗ = W

(t)
i∗ − η∇Wi∗L(W

(t)
i∗ ) = W

(t)
i∗ − µiη∇Li(W

(t)
i∗ )

we have the well-known guarantee

Li(W
(t+1)
i∗ ) ≤ Li(W

(t)
i∗ )−

η0
2
∥∇Li(W

(t)
i∗ )∥

2. (21)

Define the reference matrix Z ∈ R|S|×|S| componentwise as

zij := log

(
(1− δ)|S|

δ
pεij + 1

)
,
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for δ > 0 to be determined. It holds that

∥Zi∗∥2 =
∑

j:pε
ij>0

log

(
(1− δ)|S|

δ
pεij + 1

)2

≤ (M + dout)

(
log
|S|
δ

)2

and

Li(Zi∗) = −
∑
j

pεij log

(
(1− δ)|S|

δ
pεij + 1

)
+ log

∑
j

(
(1− δ)|S|

δ
pεij + 1

)

= −
∑
j

pεij log

(
(1− δ)pεij +

δ

|S|

)

= −
∑
j

pεij log p
ε
ij −

∑
j

pεij log

(
1− δ + δ

|S|pεij

)

≤ inf Li +O

(
δ

|S|ε
∨ δ
)
,

owing to the inequality − log(1 + x) ≤ 2|x| for small x and the bound pεij ≥ cε when pεij ̸= 0. Moreover, from the
convexity of Li and (21) we have the relation

∥W(t+1)
i∗ − Zi∗∥2 − ∥W(t)

i∗ − Zi∗∥2

= −2⟨∇Li(W
(t)
i∗ ),W

(t)
i∗ − Zi∗⟩+ ∥∇Li(W

(t)
i∗ )∥

2

≤ 2(Li(Zi∗)− Li(W
(t)
i∗ )) +

2

η0
(Li(W

(t)
i∗ )− Li(W

(t+1)
i∗ )).

Summing over t = 0, · · · , T − 1 and rearranging gives

Li(W
(T )
i∗ ) ≤ 1

T

T−1∑
t=0

Li(W
(t)
i∗ )

≤ Li(Zi∗) +
Li(W

(0)
i∗ )

η0T
+
∥W(0)

i∗ − Zi∗∥2 − ∥W(T )
i∗ − Zi∗∥2

2T

≤ Li(Zi∗) +
log |S|
η0T

+
∥Zi∗∥2

2T

≤ inf Li +O

(
δ

|S|ε
∨ δ
)
+
M + dout + η−1

0

2T

(
log
|S|
δ

)2

.

Since |S| = O(KM), by taking δ =M/T if ε ≥ 1/KM and δ = KM2ε/T if ε < 1/KM , it follows that

Li(W
(T )
i∗ )− inf Li = O

(
KM2

T

(
log

KT

Mε

)2
)

uniformly for all i. Again by applying (21) we obtain the bound

∥∇Li(W
(T )
i∗ )∥2 ≤ 2

η0

(
Li(W

(T )
i∗ )−W

(T+1)
i∗ )

)
≤ 2

η0

(
Li(W

(T )
i∗ )− inf Li

)
.

Since ∑
j

(
p̂W(T )(ej |ei)− pεij

)2
= ∥∇Li(W

(T )
i∗ )∥2,

this concludes part (1).

For part (2), by running gradient descent for time T1 = Õ(KM2ε−2) steps, the bound (18) ensures

sup
1≤i,j≤S

|p̂(T1)
ij − pεij | = o(ε), (22)
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and in particular p̂(T1)
ij = o(ε) if and only if pεij = 0. Hence defining the thresholded parameter matrix

W+ ∈ R|S|×|S| : w+
ij =

{
−∞ if p̂(T1)

ij < cthresε

w
(T1)
ij otherwise

the corresponding softmax scores p̂+ij = p̂W+(ej |ei) are affixed to precisely zero. Moreover, note that the ratios p̂+ij/p̂
+
ik

for all j, k such that p̂+ij , p̂
+
ik > 0 do not change before/after thresholding. Define the set Di = {j ∈ [S] : p̂+ij > 0} so that

|Di| ≤M + dout and

1−
∑
j∈Di

p̂
(T1)
ij =

∑
j∈Di

|p̂(T1)
ij − pεij | ≤ (M + dout)o(ε) = o(1).

Therefore we have for all j ∈ Di,

p̂+ij =
p̂+ij∑

k∈Di
p̂+ik

=
p̂
(T1)
ij∑

k∈Di
p̂
(T1)
ik

= (1 + o(1))p̂
(T1)
ij , p̂+ij ≥ p̂

(T1)
ij ,

and by comparing with (22) we obtain the desired bound.

Finally for part (3), we utilize the strong convexity of Li on a bounded domain. We treat all entries set to −∞ in part (2) as
nonexistent, so that for example minj p

ε
ij ≥ cε > 0. Then there exists a set of logits W∗ such that p̂W∗ = pεij ; as adding

the same constant to all entries in a row does not affect the probabilities p̂W∗ , we may assume the row sums of W∗ are
equal to W+ so that (W∗ −W+)1 = 0.

The Hessian of Li is equal to

∇2Li(Wi∗) = diag p̂i∗ − p̂i∗p̂⊤i∗

and has zero curvature along the direction 1. We claim that in all orthogonal directions {1}⊥, ∇2Li is Θ(ε2)-strongly
convex. Indeed, for any vector v such that ∥v∥ = 1 and v⊤1 = 0 and any t ∈ R we have

∑
j

p̂ij(vjt− 1)2 =

∑
j

p̂ijv
2
j

 t2 − 2t
∑
j

p̂ijvj + 1 ≥ min
j
p̂ij

since vjt ≤ 0 for at least one j. Then the discriminant must satisfy

∑
j

p̂ijvj

2

−

∑
j

p̂ijv
2
j

(1−min
j
p̂ij

)
≤ 0,

so that

v⊤∇2Li(Wi∗)v =
∑
j

p̂ijv
2
j −

∑
j

p̂ijvj

2

≥

∑
j

p̂ijv
2
j

min
j
p̂ij ≥ min

j
p̂2ij

which is Θ(ε2) due to (19). It now follows from classical convex analysis that

∥p̂(T1+T )
i∗ − pεi∗∥ ≤ ∥W

(T1+T )
i∗ −W∗

i∗∥
≤ (1− Ω(ε2))T ∥W+

i∗ −W∗
i∗∥

= exp(−Ω(ε2T )) ·O(log ε−1),

where we have again used that softmax is 1-Lipschitz and the effective learning rate µiη = Θ(1).
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D.2. Analysis of Search and PPO

We first show that the initial cluster exploration phase of the search algorithm is consistent.

Lemma D.2. For each outer loop of Algorithm 2, after T0 steps, Ĉ returns the cluster Ck containing X0 with probability
1− Õ(K−2).

Proof. Ĉ ̸= Ck implies that either some state y ∈ Ck has not been hit by some Xn,ε
t by time T0, or all chains Xn,ε

t have
reached some point outside Ck at time T0.

Denote the hitting time of C ⊆ S by Xn,ε
t as τn,εC . Since K ≤ poly(M), by Lemma B.9 it holds that

PX0
(τn,εy ≥ T0) ≤

1

MK2
, ∀y ∈ Ck

by choosing T0 ≥ Ω(M(logM)2). Union bounding over y, n gives

PX0

(
max
y∈Ck

max
n≤N

τn,εy > T0

)
≤MN · PX0

(τ1,εy > T0) ≤ O
(
logK

K2

)
.

Moreover by the argument in Lemma C.12, since each Xn,ε is independently generated from pε,

PX0

(
max
n≤N

τn,εCc
k
≤ T0

)
≤ PX0

(
τ1,εCc

k
≤ T0

)N
≤
(
1−

(
1−Θ

( ε

M

))T0
)N

≤ exp

(
−N exp

(
−Θ

(
T0ε

M

)))
≤ exp(−N/2) ≤ K−2

by ensuring that N ≥ 4 logK. Hence we have shown that PX0(Ĉ ̸= Ck) ≤ Õ(K−2).

Proposition D.3 (Proposition 3.3 restated). PRM mode of Algorithm 2 returnsMs = Es with probability 1− Õ(1/K).

Proof. Denote the set of outbound edges from Ck as Es,k := {(x, y) ∈ Es : x ∈ Ck, y ∈ Cc
k} so that |Es,k| ≤ noutdout

and fix (x, y) ∈ Es,k. The probability that a fixed rollout X1,ε takes the edge (x, y) and terminates within time Tmax is
bounded below as

PX0

(
∃t ≤ Tmax : X1,ε

t−1 = x,X1,ε
t = y

)
=

Tmax∑
t=1

PX0

(
τ1,εCc

k
≥ t,X1,ε

t−1 = x,X1,ε
t = y

)
≥

Tmax∑
t=1

PX0
(X̃k,ε

t−1 = x)PX0
(τ1,εCc

k
≥ t)pε(y|x)

≥
Tmax∑

t=2tmix

ρ

2M

(
1−Θ

( ε

M

))t−tmix

Θ(ε)

≥
(
1−Θ

( ε

M

))tmix
(
1−

(
1−Θ

( ε

M

))Tmax−2tmix+1
)

≥ exp

(
−O

(
ε logM

M

))
· exp

(
− exp

(
−Θ

(
Tmaxε

M

)))
≥ c,

for some positive constant c. Therefore by union bounding over all edges in Es,k,

PX0(Ê ̸= Es,k) ≤
∑

(x,y)∈Es,k

PX0

(
∄t ≤ Tmax : X1,ε

t−1 = x,X1,ε
t = y

)N
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≤ |Es,k|(1− c)N ≤ O(1/K2)

by taking N/ logK suitably large. By union bounding again over all R = Θ(K logK) iterations of the outer loop, the
probability that the inner loop fails to return the correct set of sparse edges for some iteration is at most Õ(1/K). Finally,
the probability that some cluster will be missed during the R iterations is bounded above for a suitable choice of R as

K (1−Θ(1/K))
R ≤ K exp (−Θ(R/K)) ≤ O(1/K).

Thus with probability 1− Õ(1/K)−O(1/K), all clusters Ck will be explored and the correct set of sparse edges Es,k will
always be added toMs, so that the final output satisfiesMs = Es.

We now prove the convergence of the PPO-Clip algorithm.

Proof. As in the proof of Proposition 3.3, we condition on the event that the correct set of sparse edges is returned for all
clusters, and focus on a single cluster Ck. Again write p̂(t)ij = p̂W(t)(ej |ei), let X0 ∼ µ where µi = Θ(KM) and denote
Ds,i = {j ∈ [S] : (i, j) ∈ Es} ⊂ Di. The objective LPPO reduces to

∑
i∈Ck

µiLi where

Li(W; Â) =
∑
j

pεij min

{
p̂W(ej |ei)

pεij
, cclip

}
Â(ei, ej) =

∑
j∈Ds,i

min{p̂W(ej |ei), cclip · pεij}.

We will show inductively that either p̂W(ej |ei) < cclip · pεij for all j ∈ Ds,i or p̂W(ej |ei) ≥ cclip · pεij for all j ∈ Ds,i while
running Algorithm 3. Assuming the former, we see that for all j ∈ [S],

dLi

dwij
(W(t); Â) =

d

dwij

∑
k∈Ds,i

p̂
(t)
ik =

d

dwij

∑
k∈Ds,i

expw
(t)
ik∑

ℓ expw
(t)
iℓ

= 1{j∈Ds,i}
expw

(t)
ij∑

ℓ expw
(t)
iℓ

−
∑

k∈Ds,i

expw
(t)
ik · expw

(t)
ij

(
∑

ℓ expw
(t)
iℓ )2

= p̂
(t)
ij

(
1{j∈Ds,i} −

∑
k∈Ds,i

p̂
(t)
ik

)
.

This implies that dLi

dwij
(W(t), Â) > 0 if and only if j ∈ Ds,i, so sign gradient ascent gives for each i the update rule

w
(t+1)
ij =

{
w

(t)
ij + µiα j ∈ Ds,i

w
(t)
ij − µiα j /∈ Ds,i.

In particular, the relative magnitudes of p̂(t)ij for all j ∈ Ds,i are preserved starting from p̂
(0)
ij = pεij , so that the earlier

assertion is justified. Furthermore since p̂(t)ij ∝ expw
(t)
ij for all j, we can derive p̂(t)ij from p̂

(0)
ij by directly multiplying e±µiα

(or e2µiα and 1) and normalizing afterwards,

p̃
(t)
ij :=

{
e2µiαtpεij j ∈ Ds,i

pεij j /∈ Ds,i

and p̂
(t)
ij =

p̃
(t)
ij∑
k p̃

(t)
ik

.

By choosing cclip = (1− o(1))εmax/ε so that

Ti =
1

2µiα
log(1 + o(1))cclip =

1

2µiα
log

εmax

ε
,

we ensure that gradient ascent has not yet terminated (reached the clip threshold) by time Ti and also p̃(t)ij ≤ εmax for all
j ∈ Ds,i. This implies

1 ≤
∑
j

p̃
(t)
ij ≤ 1 + (e2µiαt − 1)

∑
j∈Ds,i

pεij ≤ 1 + (e2µiαt − 1)|Ds,i|ε ≤ 1 +O(εmax).
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Thus p̂Ti
ij = (1 − o(1)) εmax

ε pεij = pε
′

ij where ε′ = (1 − o(1))εmax for j ∈ Ds,i. Moreover p̂Ti
ij for all j ∈ Ds,i decrease

proportionally from pεij so that they also equal the corresponding pε
′

ij values by Assumption 2.

Now if we take TPPO = maxi Ti, then this will hold for all states ei in the initialized cluster Ck as each row will stop
updating after time Ti. Finally, since the values p̂ij for ei in a different cluster do not affect the above derivation, we may
repeat this argument for all explored clusters to obtain the guarantee. We remark that exploring the same cluster multiple
times does not affect the outcome since the clipping operation will prevent the weights from being updated from the second
time onwards.

D.3. Analysis of Distillation

Lemma D.4. (Y0, Y1) ∼ Ddist is distributed as Y0 ∼ πε, Y1 ∼ qε◦(·|Y0) where

qε◦(xℓ|xk) := πε
k(xk)Pxk

(Xε
τ̄ε
S◦

= xℓ), k ̸= ℓ,

qε◦(xk|xk) := 1−
∑

ℓ ̸=k q
ε
◦(xℓ|xk).

Proof. The Y0 component of Ddist is clearly distributed according to πε. Consider samples such that Xε
t ∈ Ck, in which

case Y (t)
0 = xk and Xε

t ∼ πε
k. If Xε

t ̸= xk, then Y (t)
0 = Y

(t)
1 = xk. If Xε

t = xk, the following state Y (t)
1 is the next return

of Xε to S◦, so that

P
Y

(t)
0

(Y
(t)
1 = xℓ) = P

Y
(t)
0

(Y
(t)
1 = xℓ, X

ε
t = xk) = πε

k(xk)Pxk
(Xε

τ̄ε
S◦

= xℓ)

holds for all ℓ ̸= k. Comparing with the definition of qε◦, this shows that Y1 ∼ qε◦(·|Y0) for (Y0, Y1) ∼ Ddist.

Proposition D.5 (Proposition 4.1 restated). Denote the return time of qε◦ to xk as τ̄ε◦,xk
. For all k, ℓ ∈ [K] with k ̸= ℓ, it

holds that
Pxk

(τ̄ε◦,xℓ
< τ̄ε◦,xk

)

qε⋆(Cℓ|Ck)
= 1 + Õ

(
1

logM

)
.

We remark that the asymptotic version of this result is Theorem 5.3 of Betz & Le Roux (2016). It is also shown that this is
the best characterization of the metastable dynamics, as the transition probabilities qε◦ themselves cannot be made to be
independent of the choice of representatives S◦ even in the asymptotic limit.

Proof. Applying Corollary C.7 and Proposition C.10 to the representatives xk, xℓ of Ck, Cℓ gives

πε
k(xk)Pxk

(τ̄εxℓ
< τ̄εxk

)

qε⋆(Cℓ|Ck)
= 1 + Õ

(
1

logM

)
.

Considering the numerator, conditioning the event {τ̄εxℓ
< τ̄εxk

} on the first return of Xε to S◦, we have that

Pxk
(τ̄εxℓ

< τ̄εxk
) = Pxk

(Xε
τ̄ε
S◦

= xℓ) +
∑

m̸=k,ℓ

Pxk
(Xε

τ̄ε
S◦

= xm)Pxm
(τ̄εxℓ

< τ̄εxk
)

and multiplying both sides by πε
k(xk) gives

πε
k(xk)Pxk

(τ̄εxℓ
< τ̄εxk

) = qε◦(xℓ|xk) +
∑

m ̸=k,ℓ

qε◦(xm|xk)Pxm(τ̄εxℓ
< τ̄εxk

).

Now note that qε◦ is a rescaled version of Xε reduced to S◦ where only the diagonal elements qε◦(xk|xk) have been increased
and all other elements have been decreased proportionally. It follows that Pxm

(τ̄εxℓ
< τ̄εxk

) = Pxm
(τ̄ε◦,xℓ

< τ̄ε◦,xk
) for all

m ̸= k, ℓ. Therefore applying the same argument to the chain qε◦ we obtain

πε
k(xk)Pxk

(τ̄εxℓ
< τ̄εxk

) = qε◦(xℓ|xk) +
∑

m ̸=k,ℓ

qε◦(xm|xk)Pxm
(τ̄ε◦,xℓ

< τ̄ε◦,xk
)

= Pxk
(τ̄ε◦,xℓ

< τ̄ε◦,xk
),

concluding the proof.
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For the convergence of the distilled model q̂Z, we first show the following.

Lemma D.6. Under Assumption 5, for any k ̸= ℓ, qε◦(xℓ|xk) = Θ(ε/M) if there is a sparse edge from Ck to Cℓ and
qε◦(xℓ|xk) = 0 otherwise.

Proof. If there is no sparse edge from Ck to Cℓ, the first return of Xε to S◦ starting from xk cannot be xℓ, since Xε must
first travel to a different cluster Cn ̸= Cℓ to escape Ck where it will inevitably hit xn. Thus Pxk

(Xε
τ̄ε
S◦

= xℓ) = 0 and
qε◦(xℓ|xk) = 0.

Suppose there exists a sparse edge (x′, xℓ) where x′ ∈ Ck. Note that

qε◦(xℓ|xk) ≤ πε
k(xk)Pxk

(τ̄εxℓ
< τ̄εxk

) = qε⋆(Cℓ|Ck)

(
1 + Õ

(
1

logM

))
= O(ε/M)

by Corollary C.7, Proposition C.10 and Assumption 4. Moreover letting Γxk,x′ be a simple path with positive pε-probability
in Ck, it holds that

qε◦(xℓ|xk) ≥ πε
k(xk)Pxk

(Γxk,x′)pε(x′, xℓ) ≥ Ω(ε/M),

proving the assertion.

The proof of Proposition 4.2 then follows by repeating the analysis of Theorem D.1, replacing dimension |S| by K, the
maximum number of outgoing edges M + dout by the number of sparse edges dout, and the probability lower threshold
Θ(ε) by Θ(ε/M). The learning rate η = Θ(K) is justified since P(Y0 = xk) = πε(Ck) = Θ(1/K) by Corollary C.9. This
results in a convergence rate of O(logKT/T ) for the initial stage and exp(−Ω(ε2T/M2)) after thresholding. The details
are omitted.

We also require the following dynamical properties of qε◦:

Lemma D.7. The stationary distribution πε
◦ of qε◦ on S◦ satisfies πε

◦(xk) = Θ(1/K), moreover, Exk
[τε◦,xℓ

] = O(KM/ε)
for all k, ℓ.

Proof. By Proposition B.10 and Proposition 4.1, we have that

πε
◦(xk)

πε
◦(xℓ)

=
Pxℓ

(τ̄ε◦,xk
< τ̄ε◦,xℓ

)

Pxk
(τ̄ε◦,xℓ

< τ̄ε◦,xk
)
=
qε⋆(Ck|Cℓ)

qε⋆(Cℓ|Ck)

(
1 + Õ

(
1

logM

))
= Θ(1)

due to Assumption 4. Then each πε
◦(xk) must be of order 1/K. It further follows from an application of (8) that

Exk
[τε◦,xℓ

] ≤ 1

πε
◦(xk)Pxk

(τ̄ε◦,xℓ
< τ̄ε◦,xk

)
= Θ

(
KM

ε

)
.

Theorem D.8 (Theorem 4.3 restated). For all k ̸= ℓ, q̂Z+(xℓ|xk) = Θ(1) if there exists a sparse edge from Ck to Cℓ or 0 if
not. Moreover, the hitting time τ+xℓ

of xℓ ∈ S◦ by q̂Z+ satisfies Exk
[τ+xℓ

] = O(K).

Proof. The chain qε◦ can be retrieved from q̂Z+ by making it ‘lazy.’ Indeed, note that q̂Z+ is computed from the distilled
model qε◦ as

q̂Z+(xℓ|xk) =


eβqε◦(xℓ|xk)

qε◦(xk|xk) + eβ
∑

ℓ′ ̸=k q
ε
◦(xℓ|xk)

ℓ ̸= k,

qε◦(xk|xk)
qε◦(xk|xk) + eβ

∑
ℓ′ ̸=k q

ε
◦(xℓ|xk)

ℓ = k.

Since the sum in the denominator is over at most dout + 1 nonzero terms, by choosing eβ = Θ(M/ε) we ensure that
q̂Z+(xℓ|xk) = Θ(1) for those terms that are nonzero. Conversely, by viewing the logits of qε◦ as obtained by subtracting β
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from Z+, we have

qε◦(xℓ|xk) =


e−β q̂Z+(xℓ|xk)

q̂Z+(xk|xk) + e−β
∑

ℓ′ ̸=k q̂Z+(xℓ|xk)
ℓ ̸= k,

q̂Z+(xk|xk)
q̂Z+(xk|xk) + e−β

∑
ℓ′ ̸=k q̂Z+(xℓ|xk)

ℓ = k.

This may be expressed as

qε◦(xℓ|xk) = λkq̂Z+(xℓ|xk) + (1− λk)δkℓ

where
λk =

1

eβ q̂Z+(xk|xk) +
∑

ℓ′ ̸=k q̂Z+(xℓ|xk)
= e−βqε◦(xk|xk) +

∑
ℓ′ ̸=k

qε◦(xℓ|xk) = O(ε/M).

Hence qε◦ is equivalent to the lazy chain obtained from q̂+Z by inserting additional self-transitions of each xk with probability
1−λk. It follows that the expected hitting time Exk

[τε◦,xℓ
] is larger than Exk

[τ+xℓ
] by at least a factor of mink λ

−1
k = Ω(M/ε).

Comparing with Lemma D.7 proves the assertion.

E. Proofs for Hardness Results
We first review the definition of a group action.

Definition E.1 (group action). Let (G, ◦) be a group with identity eG andR be any set. G is said to act onR (from the left)
if there exists a map · : G×R → R (the group action) satisfying the following two axioms:

(1) (identity) eG · r = r for all r ∈ R,

(2) (composition) g1 · (g2 · r) = (g1 ◦ g2) · r for all g1, g2 ∈ G and r ∈ R.

It follows that the map r 7→ g · r is a bijection for all g ∈ G, with inverse r 7→ g−1 · r.

E.1. Proof of Theorem 5.2

Let P ′ ⊆ P be such that |P ′| = SDA(P, I), hp are pairwise orthogonal and Ip are equal for all p ∈ P ′. This ensures that
fθ(x, Ip(x)) is independent of p. Choosing p uniformly randomly from P ′, the variance of the gradient of L with respect to
p is computed as

Varp∇L(θ; p) = min
u∈R

Ep

[
(−2⟨∇fθ, hp − fθ⟩H − u)2

]
≤ Ep

[
4⟨∇fθ, hp⟩2H

]
=

4

|P ′|
∑
p∈P′

⟨∇fθ, hp⟩2H

≤ 4∥∇fθ∥2H
|P ′|

≤ δ3.

It follows from Chebyshev’s inequality that for all θ,

P (∥∇L(θ; p)− Ep[∇L(θ; p)]∥ ≥ δ) ≤ δ.

Thus if all queries to ∇L are adversarially corrupted with δ to return Ep[∇L(θ; p)] when ∥∇L(θ; p)− Ep[∇L(θ; p)]∥ < δ,
the n successive queries will not reveal any information on the ground truth p with probability 1− nδ by a union bound.
Hence after running the algorithm, the loss is bounded below by the random guessing error with any fixed θ. Noting that
replacing fθ with f̄θ(x) := max{min{fθ(x), 1},−1} does not increase the loss, it follows that

Ep [L(θ; p)] ≥ Ep

[
∥hp − f̄θ∥2H

]
= 1 + ∥f̄θ∥2H − 2Ep

[
⟨hp, f̄θ⟩H

]
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= 1 + ∥f̄θ∥2H −
2

|P ′|

〈∑
p∈P′

hp, f̄θ

〉
H

= 1 +

∥∥∥∥∥∥f̄θ − 1

|P ′|
∑
p∈P′

hp

∥∥∥∥∥∥
2

H

− 1

|P ′|2
∑

p,p′∈P′

⟨hp, hp′⟩H

≥ 1− 1

|P ′|
,

uniformly for all θ.

E.2. Proof of Theorem 5.3

Note that SDA(P;P) = 1 is trivial. We give three constructions realizing the lower bounds in order of strictness of the
additional information constraint.

Lower bounding SDA(P;∅). Suppose p = pε is any kernel satisfying Assumptions 1, 2 and D is any distribution
satisfying Assumption 3’. We first analyze the case where the lower bound of Assumption 3’ is Ω(logK) and M ≥ Ω(K),
since the proof is slightly more involved. Let sk,1, · · · , sk,|Ck| be a labeling of all states in Ck such that all nodes with
outbound sparse edges are contained in the first nout nodes. Define the quantity

q :=

⌊
mink∈K |Ck|

nout

⌋
= Θ(M).

For a vector v ∈ ZK
q , define the corresponding permutation of S (also denoted by v) as

v(sk,i) =

{
sk,(i+vknout−1 mod qnout)+1 1 ≤ i ≤ qnout
sk,i qnout < i ≤ |Ck|.

That is, the first qnout states of Ck are cyclically shifted by vk-multiples of nout and the remaining states are left fixed.
Denote the pushforward kernel of pε induced by v as

v♯p
ε(y|x) = pε(v−1(y)|v−1(x)).

It is clear that v♯pε ∈ P for all v, moreover, Assumptions 1, 2 hold when replacing Es by Es(v♯p
ε) since v only permutes

states within clusters and does not affect the sparse structure.

Lemma E.2. Let dH denote the Hamming distance on ZK
q . For any two v, v′ ∈ ZK

q it holds that

|Es(v♯p
ε)| ≤ noutdoutK

and ∣∣Es(v♯p
ε) ∩ Es(v

′
♯p

ε)
∣∣ ≤ noutdout(K − dH(v, v′)).

Proof. Suppose for some x ∈ Ck, y ∈ Cℓ with k ̸= ℓ we have (x, y) ∈ Es(v♯p
ε). Then (v−1(x), v−1(y)) ∈ Es(p

ε) so
that v−1(x) = sk,i for some 1 ≤ i ≤ nout, hence x = v(sk,i) = sk,i+vknout

. If at the same time (x, y) ∈ Es(v
′
♯p

ε), it must
hold that sk,i+vknout = sk,i+v′

knout
and so k must satisfy vk = v′k. There are exactly K − dH(v, v′) such clusters and at

most noutdout sparse edges leading out of each cluster, concluding the second bound. The first bound follows from the
second by setting v = v′.

We construct a well-separated subset of ZK
q via the Gilbert-Varshamov bound.

Lemma E.3 (Gilbert-Varshamov bound). The maximum size Aq(K, d) of a code of length K over an alphabet of size q
with minimum Hamming distance d satisfies

Aq(K, d) ≥
qK

Volq(K, d− 1)
, Volq(K, d) =

d∑
i=0

(
K

i

)
(q − 1)i.
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Moreover for τ ∈ [0, 1− 1/q] it holds that
Volq(K, τK) ≤ qHq(τ)K ,

where Hq is the q-ary entropy function

Hq(τ) = τ logq(q − 1)− τ logq τ − (1− τ) logq(1− τ).

While the classical bound only guarantees the existence of large subsets with linear (at least K/q) overlapping bits, we
can obtain a better separation by scaling q (equivalently, M ) along with K. In particular, choosing the relative overlap as
O(log q/q) (note the use of the natural logarithm), we obtain:

Lemma E.4. For C > 0, τ = 1− log q/(Cq) and sufficiently large q, it holds that

Aq (K, τK) ≥ q
log log q

2Cq K . (23)

Proof. Using the inequality 0 ≤ x− log(1 + x) ≤ x2 for |x| ≤ 1/2, we may bound

Hq(τ) =

(
1− log q

Cq

)
logq(q − 1)−

(
1− log q

Cq

)
logq

(
1− log q

Cq

)
− log q

Cq
logq

log q

Cq

= 1− log log q

Cq
+

logC

Cq
+

(
1

log q
− 1

Cq

)(
log

(
1− 1

q

)
− log

(
1− log q

Cq

))
≤ 1− log log q

Cq
+

logC

Cq
+

1

log q

(
−1

q
+

log q

Cq
+

(log q)2

C2q2

)
≤ 1− log log q

2Cq

for sufficiently large q. The statement follows from Lemma E.3.

Now denote by V ⊂ ZK
q the τK-separated subset of size Aq(K, τK). For any distinct v, v′ ∈ V , by Lemma E.2 we have

∣∣Es(v♯p
ε) ∩ Es(v

′
♯p

ε)
∣∣ ≤ noutdout(K − τK) = noutdout

(
log q

Cq

)
K.

On the other hand, it holds that∣∣Mv♯pε(Xin, Xout) ∩ Es(v♯p
ε)
∣∣ = ∣∣Mpε(v−1(Xin), v

−1(Xout)) ∩ Es(p
ε)
∣∣ ≥ c logK

due to Assumption 3, and similarly for v′. Since M ≥ cK, we may choose C a large enough constant so that

C >
noutdout

c
· K log q

q logK
.

Then since ∣∣Mv♯pε(Xin, Xout) ∩ Es(v♯p
ε)
∣∣ , ∣∣∣Mv′

♯p
ε(Xin, Xout) ∩ Es(v

′
♯p

ε)
∣∣∣ > ∣∣Es(v♯p

ε) ∩ Es(v
′
♯p

ε)
∣∣

it must hold that
Mv♯pε(Xin, Xout) ∩ Es(v♯p

ε) ̸=Mv′
♯p

ε(Xin, Xout) ∩ Es(v
′
♯p

ε).

Without loss of generality, we may suppose there exists a sparse edge ξ = (Xt−1, Xt) of v♯pε that is included in the
left-hand side of the above but not the right. Since A(ξ) is included in the computation of rA,v♯pε alongMv♯pε(Xin, Xout)
but not of rA,v′

♯p
ε alongMv′

♯p
ε(Xin, Xout), denoting A− := A|S×S\{ξ}, it follows that

⟨hv♯pε , hv′
♯p

ε⟩H

= EXin,Xout,A

[
hv♯pε(Xin, Xout,A)hv′

♯p
ε(Xin, Xout,A)

]
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• • • • •

Figure 2. Sparse edge construction for the no-search scenario. The two circles represent the original dense clusters. Dashed edges have
probability ε.

= EXin,Xout,A

[
ϕ ◦ rA,v♯pε(Mv♯pε(Xin, Xout))ϕ ◦ rA,v′

♯p
ε(Mv′

♯p
ε(Xin, Xout))

]
= EXin,Xout,A−

[
EA(ξ)|A−

[
ϕ ◦ rA,v♯pε(Mv♯pε(Xin, Xout))

]
ϕ ◦ rA,v′

♯p
ε(Mv′

♯p
ε(Xin, Xout))

]
.

Adopting the shorthand g1A = g if A holds and g1A = eG if not, we may write

rA,v♯pε(Mv♯pε(Xin, Xout)) = (AL ◦ A(Xt−1, Xt) ◦ AR) · ψ(Xin)

where

AL = A(XT−1, XT )1{(XT−1,XT )∈Es(v♯pε)} ◦ · · · A(Xt, Xt+1)1{(Xt,Xt+1)∈Es(v♯pε)},

AR = A(Xt−2, Xt−1)1{(Xt−2,Xt−1)∈Es(v♯pε)} ◦ · · · A(X0, X1)1{(X0,X1)∈Es(v♯pε)}.

Since A(Xt−1, Xt) is uniformly distributed on G, the composition AL ◦ A(Xt−1, Xt) ◦ AR is also uniformly distributed
on G conditioned on A−; note that this step relies crucially on the existence of left and right inverses in G. Hence

EA(ξ)|A−
[
ϕ ◦ rA,v♯pε(Mv♯pε(Xin, Xout))

]
= 0

for all Xin, Xout,A−, so that ⟨hv♯pε , hv′
♯p

ε⟩H = 0. Thus the subset {hv♯pε : v ∈ V} ofH is orthogonal with size at least

Aq (K, τK) ≥ q
log log q

2Cq K ≥ KΩ(log logK)

if q = Θ(K), which grows faster than any polynomial in K. In the case that q/K →∞, we may choose a smaller q′ = cK
at the beginning to obtain the same lower bound. Therefore we have shown that SDA(P;∅) ≥ Kω(1).

Finally, if the minimum length in Assumption 3 is instead set to scale linearly as cK for some 0 < c < 1, it suffices to set
C = 1 and choose q (equivalently M ) a large enough constant satisfying

noutdout
log q

q
< c

to apply the same argument. Then the lower bound (23) becomes exponential in K.

Lower bounding SDA(P;M). We take an arbitrary kernel p ∈ P and make the following modification, pictured in
Figure 2. Each sparse edge (x, y) is replaced by a set of states z0 = x, z1, · · · , zq−1, zq = y such that each neighboring
pair zt, zt+1 for t ∈ Zq are connected to each other via bidirectional edges of probability O(1). However, one specific
pair zt, zt+1 is to be connected to each other with probability ε. Denote this index by vj where j ∈ [J ] numbers the set
of directly connected clusters; it holds that J = |Es| = Θ(K) by Assumption 2. The points zt for t ≤ vj and for t > vj
are appended to the clusters containing x and y, respectively. Since this is a bounded number of points all connected by
constant probability edges, the extended clusters are still rapidly mixing. Then each vector v = (vj) ∈ ZJ

q determines a
kernel pv ∈ P , and

|Es(pv) ∩ Es(pv′)| = 2(J − dH(v, v′))

holds for all v, v′ ∈ ZJ
q . We now repeat the argument from before to show orthogonality: by Lemma E.3 there exists a

τJ-separated subset V ⊂ ZJ
q of size Aq(J, τJ) for τ = 1− log q/q, and by choosing q large enough we can ensure

|Mpv
(Xin, Xout) ∩ Es(pv)| ≥ cK >

(
2 log q

q

)
J ≥ |Es(pv) ∩ Es(pv′)| .
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• • • • • • • • •

• • •

• • •

• • • • • •

=

Figure 3. Graph construction for the local search scenario (r = 2). Dashed edges have probability ε. A local neighborhood of maximum
distance one from the original graph is shown in the dashed box, which the learner is assumed to have full access to.

The key aspect of this construction is that the support of pv does not depend on v, as only the position of the sparse edge
among q candidates change with v. This implies that querying the pathMpv

(Xin, Xout) (and indeed the entire set of edges)
does not reveal any information about the ground truth v, and {pv : v ∈ V} satisfies the conditions to compute the SQ
dimension with access toM. Hence we have shown that

SDA(P;M) ≥ Aq(J, τJ) ≥ eΩ(K).

Lower bounding SDA(P; nbd(M)). We construct the graph depicted in Figure 3 as follows. We start with nK clusters
of size M laid out in side by side and connect neighboring clusters with bidirectional edges of probability ε. From all states
extend a ‘rod’ of probability O(1) bidirectional edges of bounded length r (the vertically arranged states, here r = 2),
similarly to Figure 2. Join the endpoints of all rods originating from each cluster into a single ‘endpoint’ state. For D, we
assume that (Xin, Xout) are sampled only from the original clusters (bottom horizontal line of states) andMp only returns
paths along this line.

Choose a size K subset B of the low probability edges to be sparse edges, viewed as a subset of [nK]. For each of the edges
(x, y) not in B, identify the endpoint states of the clusters containing x, y. The identified clusters will merge into a single
larger rapidly mixing cluster, so that (x, y) is indeed no longer a sparse edge. Denote the resulting kernel as pB . We have
the following intersection constraint bound:

Lemma E.5. For any n ≥ 5, there exists a size eΩ(K) set B of size K subsets of [nK] such that |B ∩ B′| ≤ cK for all
B,B′ ∈ B.

Proof. We construct B via a greedy algorithm similarly to the Gilbert-Varshamov bound. Start with B = ∅ and add any
B ⊂ [nK] of size K not already in B to B. Each new element blocks at most(

K

cK

)(
nK − cK
K − cK

)
elements from being added to B. Hence the maximum size of B is at least(

nK

K

)(
K

cK

)−1(
nK − cK
K − cK

)−1

=

(
nK

K

)(
K

cK

)−2

≥ O(nKK−1/2) · 2−2K ≥ eΩ(K)

for n ≥ 5.

Then |Es(pB) ∩ Es(pB′)| = |B ∩ B′| ≤ cK and we can repeat the same argument to show orthogonality. Furthermore
by taking r sufficiently large, the local neighborhood of any path contained in the bottom horizontal line (which must be
contained in the dashed area in Figure 3) is isomorphic for all B ∈ B, since it cannot query the endpoint states to identify
which clusters are actually connected. Hence {pB : B ∈ B} satisfies the conditions to compute the SQ dimension with
access to nbd(M), and thus

SDA(P; nbd(M)) ≥ |B| ≥ eΩ(K).
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