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ABSTRACT

The growing demand for AI-driven workloads, particularly from Large Language
Models (LLMs), has raised concerns about the significant energy and resource
consumption in data centers. This work introduces a novel LLM-based predictive
scheduling system designed to enhance operational efficiency while reducing the
environmental impact of data centers. Our system utilizes an LLM to predict key
metrics such as execution time and energy consumption from source code, and it
has the potential to extend to other sustainability-focused metrics like water usage
for cooling and carbon emissions, provided the data center can track such data.
The predictive model is followed by a real-time scheduling algorithm that allo-
cates GPU resources, aiming to improve sustainability by optimizing both energy
consumption and queuing delays. With fast inference times, the ability to gener-
alize across diverse task types, and minimal data requirements for training, our
approach offers a practical solution for data center scheduling. This framework
demonstrates strong potential for advancing sustainability objectives in AI-driven
infrastructure. Through our collaboration with a data center, we achieved a 32%
reduction in energy consumption and a 30% decrease in waiting time.

1 INTRODUCTION

The rapid advancement of Machine Learning (ML), especially Large Language Models (LLMs), has
brought about groundbreaking capabilities, yet it has also raised significant social and environmen-
tal concerns (Pichai, 2024; Amazon, 2024; Nakagawa & Smith, 2023). One of the most pressing
issues is the substantial energy and water resources consumed during ML model training and serv-
ing, which has sparked widespread concerns (Blunt & Hiller, 2024; Criddle & Bryan, 2024; Solon,
2021). The computationally intensive ML jobs can demand hundreds of GPU-hours and consume
substantial amounts of energy for power and water for cooling. As a result, the growing demand for
ML-based applications has significantly amplified the environmental impact of data centers, high-
lighting the need for modern infrastructure that is both more efficient and sustainable specifically
for AI-driven workloads (Bianchini et al., 2024; Li et al., 2024; Kaack et al., 2022). This paper aims
to enhance data center operation efficiency and reduce the environmental footprint of modern data
centers by devising a LLM-based predictive scheduling system for allocating data center resources
(e.g., GPUs) across a stream of ML jobs efficiently. We harness the contextual understanding and
predictive abilities of LLMs and combine the predictive power to sequential decision-making that
optimize data-center operations.

Figure 1: Our Proposed Pipeline

As illustrated in Figure 1, our proposed method first employs an LLM that takes the ML job’s
source code as input and outputs estimates for the required resources, including execution time and
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GPU energy consumption. We believe that the approach has great potential in predicting with other
metrics including water consumption and carbon emission, if these data is available from the data
center. By leveraging these estimates, the data center can make more informed and efficient real-
time decisions for the GPU resource allocation, leading to improvements such as reduced task queue
waiting times and lower overall energy consumption.

This work aim to address a key limitation in the current operational pipelines of small to large-scale
data centers. We focus on the prevalent practice where users submit tasks and request resources, and
the data center allocates resources based on heuristic algorithms that rely on user-provided estimates,
such as predicted task duration and resource needs (Tirmazi et al., 2020). The optimal resource al-
location, in hindsight, depends on the actual time and energy consumed by the tasks. However,
accurately predicting these factors is nearly impossible due to the inherent complexity of mod-
ern computing systems. Consequently, neither the user nor the data center has precise knowledge
of the optimal resources required for a given task, leading to inefficiencies and resource wastage.
Our approach introduces a unified, effective predictive model, followed by a real-time, data-driven
scheduling system that enables more efficient and sustainable resource allocation decisions.

Figure 2: Illustration of our unified predictive approach. Notably, previous methods were unable to handle
tasks that had not been seen before, or composite tasks (e.g., training a CNN followed by an LSTM). However,
the generalization capacity of LLMs allows our model to effectively manage such cases, making it adaptable to
a wider variety of task types and combinations.

1.1 OUR CONTRIBUTION

We present a prototype pipeline that provides both methodological and practical contributions to var-
ious aspects of data center operations, specifically tailored for AI training and inference applications.
Our approach provides methodological insights while opening up new possibilities for applications,
especially within today’s sustainability and AI-driven context. We defer more discussions on the
related works to Appendix A.1.

Methodological Contributions: Our work advances the fields of data center predictive modeling
and sequential decision-making.

• LLM-based Versatile Predictive Model: While many predictive methods exist for data
center operations, to our best knowledge, we are the first to offer a comprehensive, end-
to-end solution that takes source code as input and outputs estimations of interest. Our
model has the potential to be compatible with any user-submitted task and can predict any
measurable metric the data center requires. The strength of our approach lies in the fact that
LLM-generated representations are more informative and generalizable than handcrafted
features, leading to improved predictive performance and enhanced operational efficiency.

• Fully Automated Predictive Scheduling System: This approach enables the possibility
of a fully automated predictive scheduling system. By adopting our unified framework, the
system is capable of handling any user-submitted tasks and provide estimations of interests
directly. This was previously unattainable (see Figure 3), as traditional prediction methods
were highly task-specific (e.g., CNN-only or LLM-only), and could only cover a limited
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number of task types. Moreover, each type of task required separate prediction models and
handcrafted features, significantly limiting the flexibility and scalability of these methods.

• Sequential Decision-Making Algorithms: Our predictive framework is complemented by
a sequential decision-making algorithm for optimizing resource allocation. This problem
arises from the area of reusable resource allocation and queuing control, where no analyt-
ical solution exists. We propose a data-driven decision-making algorithm, and implement
it in collaboration with a small-size data center. Our algorithm significantly outperforms
the baseline scheduling rule, reducing energy consumption by 32% and queuing delays by
30%. This approach leads to more effective data-center management, especially given the
growing emphasis on sustainability.

Application-Level Contributions: The unique features of our methodology—an end-to-end pre-
dictive model and its compatibility with diverse task types and estimation targets—offer substantial
potential for developing next-generation AI-driven infrastructures in data centers.

• Practical Deployment: Our pipeline executes within one second, enabling a cost-effective,
fully automated predictive scheduling system. Additionally, training and deploying the
model within data centers is straightforward and can be effective even with a limited
amount of data, making it particularly practical for real-world data center operations.

• Multi-Purpose Sustainable Data Center Operations: Our method is versatile enough to
predict a wide range of metrics, including time and energy, and we believe it can also pre-
dict carbon emissions and water consumption. Unlike previous target-specific approaches,
which were limited to particular models, our unified framework offers an all-in-one solu-
tion that addresses a broad array of predictive needs, providing key insights for building
more sustainable and environmentally friendly data center infrastructures.

2 PROBLEM FORMATION

The Prediction Problem. Consider a data center equipped with various types of GPUs, where
machine learning tasks arrive sequentially. The data center must decide which type of GPU to
allocate to each arriving task (noting that the number of GPUs is often specified in the user-submitted
code or command input). Let x represent the source code submitted by the user, and z represent the
data center’s decision, which corresponds to the type of GPU to allocate for executing the task. A
decision z results in outcomes including the time required to complete the task, denoted by t, and
the energy consumption using configuration z to complete task x, denoted by e. The relationship
between the outcomes and the decision is modeled by functions f and g, such that

t := f(x, z), e := g(x, z).

Here we note that this function f and g is data-center-specific, it depends on the infrastrcture of the
data center, for example, bandwith, CPUs, memory, storage, communication, system setup, software
stack, etc. In general, characterizing the functions f(x, z) and g(x, z) is highly challenging due to
the complexity of modern computing systems.

Prediction using Large Language Models. To tackle the prediction problem, we employ Large
Language Models (LLMs) (Ouyang et al., 2022; Radford et al., 2019; Achiam et al., 2023). For
simplicity, we refer readers to Vaswani et al. (2017) for a detailed explanation of decoder-based
Transformers and LLM architectures. In this paper, we use fθ and gθ as shorthand notations to
represent LLMs, where θ encapsulates all the model parameters. fθ and gθ take two inputs: the
task’s source code x and the data center’s decision z. The rationale is that the LLM can effectively
analyze and interpret the task’s source code, transforming it into meaningful representations; these
representations, when combined with the GPU configuration z, allow the model to produce estimates
such that:

fθ(x, z) ≈ f(x, z), gθ(x, z) ≈ g(x, z).

To justify our LLM-based approach, we highlight two key features of LLMs that make them partic-
ularly appealing in our context:
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Figure 3: Illustration of our model architecture. Our streamlined design is easy and fast to implement, highly
flexible, and generalizable across a variety of tasks. Notice that to estimate other quantities of interest, we
simply need to add additional probes. In contrast, previous methods required different handcrafted features and
separate prediction models for each task, making them far less flexible and scalable. The lower graph illustrates
the performance difference, where points closer to the straight line indicate more accurate predictions. The
performance is evaluated under test sets with additional adversarially generated data, and our method outper-
forms the previous approach (from Cai et al. (2017) and Justus et al. (2018)) in both accuracy and robustness.
Notably, the previous method shows consistent systematic bias, likely due to its reliance on “physical” features
like the number of forward/backward passes and layer depth, which lack generalizability.

• Contextual comprehension and feature extraction. LLMs are renowned for their su-
perior ability to comprehend the context in the source code extract features, named rep-
resentations. With a large corpus of pre-training data, LLMs and other natural language
models (NLP) can discern essential parts of the code with relevant information, transform
them into representations containing meaningful information (Tenney et al.; Pilehvar &
Camacho-Collados, 2020), and leverage these vectors to predict time, energy consumption,
and other metrics.

• Generalization Another remarkable capability of LLMs is their ability to generalize (Wei
et al., 2022). Even if the pre-training dataset does not cover all possible examples within
the function domains, LLMs can still recognize patterns in the dataset and extend their
learned knowledge to achieve reasonably accurate approximations.

2.1 MODEL ARCHITECTURE - PREDICTION

In this section, we formally describe the architecture of our prediction model. Our approach utilizes
a pre-trained LLM for extracting source code representations and applies a probe (Alain, 2016;
Radford et al., 2017; Vulić et al., 2020; Zhang et al., 2022) to train a supervised model that predicts
the quantity of interest. Figure 3 illustrates the architecture and the different performance compared
to previous methods.

• Extracting Representations: We adopt a pre-trained LLM to extract task representations,
modeled as a function lθ1(·) : V → Rd, where V denotes the space of source code and
Rd is the d-dimensional embedding space for mapped representations. Here, θ1 encapsu-
lates the LLM’s parameters. Note that lθ1(·) refers to the LLM without its final linear and
softmax layers, and for the last layer, it outputs the last token’s representation, which is a
d-dimensional vector.

• Probing: Probing involves taking the generated representations and predicting the target
value using a linear regression or shallow neural network. We denote this probe as hθ2(·, ·) :
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Rd ×Z → R, where θ2 represents the parameters of the probe and Z denotes the decision
space (e.g., the types of GPUs).

Thus, our predictive model for the execution time can be represented as fθ(x, z) = hθ2(lθ1(x), z).
For the energy estimation function gθ(x, z), we use the same representation but train a separate
probe, denoted qθ2 , such that gθ(x, z) = qθ2(lθ1(x), z). Note that θ, θ1, and θ2 refer to classes of
parameters, indicating that the parameter dimensions are the same across functions, though these
functions do not necessarily share the same parameters.

Advantage over Previous Methods. We identify the key factor that could possibly explain the
advantage of our method. As mentioned earlier, the challenging part of the data-center operations
arise from the complexity of modern computer systems. We first give a notation that characterize
the previous approaches.

• For estimating execution time t = f(x, z) and energy consumption e = g(x, z), previous
methods rely on handcrafted features, denoted by ut = lt(x) for time and ue = le(x)
for energy, where lt(·) and le(·) represent the feature extraction functions. Importantly, the
design of lt(·) and le(·) varies significantly depending on the target variable and prediction
context, making them different for each prediction task.

• Separate models are then trained for each target, such as ht(·, ·) for time and he(·, ·) for
energy, resulting in the following approximations: t ≈ ht(lt(x), z) and e ≈ he(le(x), z).
To account for the dependence on z, which represents the GPU choices, several estima-
tion techniques attempt to model the architecture differences between GPUs. While this
approach makes sense physically, it suffers from a lack of flexibility and scalability. Mod-
eling the dependence on z is typically restricted to specific types of source code x and GPU
choices z, rendering the models unable to generalize to unseen tasks or GPU configurations.

Our approach is better in terms of the architecture for a various reasons

• Better Representation. It has been demonstrated in various domains that representations
extracted by pre-trained models are significantly more effective than handcrafted features.
In this context, our prediction task can also be viewed as a form of feature extraction akin
to Natural Language Processing (NLP), where pre-trained models capture richer and more
comprehensive information. These representations are more generalizable and universal,
making them applicable to a wide variety of prediction tasks related to the characteristics
of the source code.

• Data-Driven Predictive Modeling. Many traditional predictive models rely on the in-
trinsic characteristics of the underlying machine learning model, such as CNNs, where
predictions are made by explicitly calculating factors like the number of forward/backward
passes and the layer depth. While these “physical” models can achieve high accuracy when
the test environment perfectly matches the assumptions, they often fall short in data-center
operations. For instance, even tasks that train the same CNN architecture may exhibit vari-
ations in execution time due to differences in the way the code is written. Additionally,
many modern tasks involve training and inference across multiple models, alongside var-
ious other function implementations. In such settings, physically based predictive models
lack the flexibility and adaptability needed for accurate predictions. In contrast, our data-
driven approach is flexible enough to learn the inherent relationships between the source
code, the characteristics of computer systems and GPUs, and a variety of targeted metrics.

• Less Data Hungry. Traditional methods often require large amounts of source code ex-
amples to train predictive models effectively. In contrast, by leveraging a pretrained LLM,
which has already been trained on terabytes of data, we capitalize on the model’s superior
understanding of contextual knowledge. This allows us to obtain a highly effective fea-
ture extractor with far less training data, improving both data efficiency and performance.
Indeed, our predictive model is trained using only a little more than 500 source code ex-
amples, each paired with corresponding results for energy consumption and execution time
across different GPUs in the server.

• Generalization for GPU Dependence. Another advantage of our approach is its ability
to maximize the generalization power of the LLM’s representation across different down-
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stream tasks. By utilizing the same representation for every prediction task and maintain-
ing a consistent structure for the downstream probe, our method facilitates the discovery
of patterns across different GPU configurations. This consistency preserves the model’s
generalization capacity, ensuring its adaptability to various GPU architectures. Such a fac-
tor is missing in previous methods, which followed a more restricted modeling approach,
limiting their flexibility and ability to generalize across diverse hardware setups.

Training Process. To train our predictive model, for simplicity we assume the parameters of the pre-
trained LLM lθ1(·) remain fixed, and we will discuss the practical training procedure in a followup
remark. We first collect a dataset D consisting of the representations of the source code lθ1(x) and
the corresponding execution results, including time t and energy e, across different GPU configura-
tions z. Each task x is executed on multiple GPUs to measure both time and energy consumption.
Let |Z| denote the cardinality of the decision space, i.e., the number of available GPUs. The training
set, with size n, can be written as:

D =
{(

lθ1(xi), {tij , eij}|Z|
j=1

)}n

i=1
,

where tij = f(xi, j) and eij = g(xi, j) are the time and energy required for task xi when executed
on GPU z = j. Using this dataset, we train two separate probes: hθ2(·) for time prediction , and
qθ2(·) for energy prediction. The goal is to minimize the error between the actual values tij , eij and
the predictions hθ2(lθ1(xi), j) and qθ2(lθ1(xi), j) respectively. Since for simplicity we assume θ1 is
fixed, the loss for the time is Lt(θ2) =

1
n|Z|

∑n
i=1

∑|Z|
j=1 (tij − hθ2(lθ1(xi), j))

2
, and the loss for

energy prediction is: Le(θ2) =
1

n|Z|
∑n

i=1

∑|Z|
j=1 (eij − qθ2(lθ1(xi), j))

2
.

We remark that the training process described above represents the simplest version for illustrative
purposes. In practice, the training process can be more complex and we will address them here.

• One limitation of the approach presented is that the data center would need to run all sub-
mitted code to obtain execution time and energy consumption estimates. However, data
centers can leverage their existing user submitted codebase and operational data. By record-
ing execution time, energy consumption, and even metrics like carbon emissions and water
usage (if measurable), data centers can accumulate vast amounts of data to train the probes
effectively. This method allows data centers to continuously refine their predictive models
without the need for additional computational overhead.

• Another limitation of the current approach is that we fix the parameters θ1 of the pretrained
LLM and only train the probe parameters θ2. While this approach simplifies the training
process, it may not fully utilize the potential of the model. In practice, we can enhance
performance by fine-tuning the LLM or incorporating more advanced techniques like Re-
inforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) or incorporat-
ing a reward model (Rafailov et al., 2024). Based on the potential benefits of fine-tuning,
RLHF, and reward models, these approaches offer even greater possibilities for improving
predictive performance. These enhancements will be considered as part of future work.

2.2 PROBLEM FORMATION: DECISION-MAKING

Constraints. Consider a data center equipped with |Z| = M types of GPUs, where tasks i with
source code xi arrive sequentially in time, and the data center must decide which GPU type zi ∈ Z
to allocate (notice that the task’s source code xi also specify its preference on GPUs, and we can
model this by constraining the action set Z). The GPU resources are limited, and is represented by
c = [c1, · · · , cM ]⊤, where cj is the total number of GPUs of type j. If no GPUs are available, the
task is placed in a waiting queue. The total available GPU resources at any time s are represented
by c(s) = [c1(s), · · · , cM (s)]⊤, where cj(s) is the available resource at time s for GPU type j.

Dynamics. Since all the tasks arrive sequentially, and the task arrival follows a stochastic process,
let us denote by N(T ) the total number of tasks arrived during time [0, T ], and for each task i, let
si represents the arrival time. If there are sufficient non-occupied GPUs available, and we assign
zi = j to task i, then aij number of correponding inventory will be temporary occupied, hence taken
out from cj(si). Once aij of GPU j are assigned to xj , the task will be running for ti = f(xi, zi)
amount of time. If we denote by A(s) the active set that contains all tasks that are still running at
time s, then i ∈ A(s) for s ∈ (si, si + ti).
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Waiting Queue. Let Q(s) denote the set of waiting tasks at time s. If a task xi cannot be im-
mediately processed due to insufficient GPU resources, it is placed in the set Q(s). If task xi has
been put in the queue, we denote by wi the time it spent in the queue, which depends on factors
including other tasks in the waiting queue, the current tasks that are active with their corresponding
GPU allocations, and the decision-making model.

Decision-Making Model. We aim to find a decision-making policy π that takes 4 inputs: the current
task feature x, the current time s, the current inventory level c(s), and the historical information up
to the current time Hs. The policy can be deterministic or stochastic, and the range of the policy
π is Z ∪ ∅. If π(x, s, c(s),H) ∈ Z , we assign the task GPU of type π(x, s, c(s),H), and if
π(x, s, c(s),H) = ∅, we put this task in the waiting queue. We denote by Π the space of policies
which satisfies the condition described above. Our goal is to solve the following objective function,
which is a combination of the task completion time, the waiting time, and energy cost. (Notice that
these times are directly affected by the policy π, and we denote by S = maxi∈N(T ){ti + wi} the
time upon which all the tasks are finished.)

minπ∈Π

N(T )∑
i=1

(αti + βwi + γei) ,

s.t.
N(T )∑
i=1

aijI(i ∈ A(s) and zi = j) ≤ cj , for all s ∈ [0, S] and j ∈ Z ,

where α, β, and γ are the weights assigned to execution time, waiting time, and energy cost. This
formulation indeed resembles an online allocation problem with reusable resources, as discussed in
Chen et al. (2017); Zhang & Cheung (2022). However, two key factors differentiate our work from
existing studies in the literature: (i) Multi-purpose objective: while traditional allocation problems
typically focus on optimizing a single reward or objective, our approach involves multiple goals.
This multi-purpose objective requires balancing various criteria rather than focusing on a singular
reward function, adding a layer of complexity not addressed in standard models of online allocation.
(ii) Waiting queue: In our problem, there is a waiting queue of tasks that influences decision-making.
The policy π must account for tasks already in the queue (as inferred from the history H) in addition
to handling new arrivals. This contrasts with standard resource allocation models, which usually
make decisions based solely on newly arriving tasks, without needing to consider previously queued
tasks. This interaction between the queue and decision-making introduces an additional layer of
complexity. In summary, these challenges highlight that existing works can not provide (near) opti-
mal solutions for our problem. This necessitates the development of algorithms to effectively address
these complexities.

We note that for each task xi, with the predictive model, the data center can incorporate the pre-
diction results of time and energy, t̂i := fθ(xi, zi) and êi := gθ(xi, zi), into their decision-making
process. This is because these information can be made available within 1 second after access-
ing the source code xi, and does not rely on future information. Notice that this decision-making
model is also applicable to other objectives, for example, water consumption and carbon emission,
if corresponding data is provided by the data center.

We conducted our experiment in collaboration with a data center, collecting two months of opera-
tional data from 07/01/2024 to 09/01/2024. As shown in Figure 4 (a), the task arrival times exhibit
high non-stationarity. During this period, we recorded the characteristics of tasks, including execu-
tion time and energy consumption across different GPUs. This dataset enabled us to backtest our
decision-making algorithms that rely on predictions from the LLM-based model.

We propose two algorithms: Greedy (Algorithm 1), where we follow a first-come-first-served
rule and the GPU type is selected greedily based on the smallest estimated objective value
αt̂ij + βwi + γêij , and value-based (Algorithm 2), which is inspired by the algorithm for the
multiple knapsack problem (Kan et al., 1993). We compare the performance of these algorithms
against the current baseline allocation policy of the data center, with the results presented in Figure
4. Both algorithms outperform the baseline, with the Value-based algorithm achieving a 32% re-
duction in energy consumption and a 30% reduction in task waiting time. The Value-based method
outperforms the Greedy method because it considers all tasks in the waiting queue, and accordingly
assigns them based on their “values” of reducing the waiting time and energy cost, rather than fol-
lowing a simple first-come-first-serve rule as in the Greedy algorithm. These results are consistent
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with theoretical insights from Spencer et al. (2014); Wagner et al. (2021). More experimental details
can be found in Appendix A.3.

Model TWT (s) TDT CRT(s) TEC (kWh)
Simple 3,135,824.01 29.79 16,924,533.71 470.69
Value-based 2,186,166.49 22.50 16,565,627.33 322.07

Improvement (%) 30.28% 24.47% 2.12% 31.58%

Table 1: Performance gain for our algorithm implemented in data centers. Here, TWT stands for total waiting
time, TDT stands for total delayed tasks, the tasks that have to wait, CRT stands for cumulative running time
and TEC stands for the total energy cost.

(a) Task Arrival time (b) Number of Waiting Tasks (c) Real-time Energy Consumption

Figure 4: (a) Task arrival pattern and (b), (c) performance comparison among the proposed predictive decision-
making algorithms, Value-based and Greedy (see Appendix A.3.1), and the benchmark algorithm, Simple Rule.
The Simple Rule assigns the available GPU type to the first task in the waiting queue, following a first-come-
first-serve policy when sufficient GPUs are available. If multiple GPU types are available, the most powerful
one (e.g., A100) is selected.

3 OTHER EXTENSION

In this section, we discuss relevant extensions to our pipeline that align with data center practices.
Our prototype is designed using a pre-trained LLM with strong capabilities in code comprehension
and completion, coupled with a probe trained on 500 source codes. Although we are able to achieve
good performance with a relatively small dataset of 500 source codes, this approach still risks poor
out-of-sample performance. Due to variations in the coding practices of machine learning engi-
neers—such as differences in variable names, function abstractions, and comments—the contextual
information represented in the source code can vary significantly. Even if two codes are function-
ally equivalent, resulting in identical execution times and energy consumption, the representations
generated by the LLM can be quite different.

This issue reflects an inconsistency problem. Formally, there may exist two tasks, x1 and x2, such
that the representations differ noticeably (lθ1(x1) ̸= lθ1(x2)), but the execution times (and energy
consumption) are identical: hθ2(lθ1(x1), z) = hθ2(lθ1(x2), z). We adopt another LLM, referred to
as the Align-LLM, to address this issue and mitigate potential out-of-distribution (OOD) estimation
errors, which could otherwise degrade model performance.

As illustrated in Figure 5, while data centers can gradually accumulate a code base to improve
prediction performance for both in-distribution and out-of-distribution tasks, we propose a novel
algorithm that partially resolves the OOD issue, showcasing the flexibility and practicality of our
pipeline. The architecture and experimental details can be found in appendix A.2

The extended architecture first takes the source code as input and extracts representations using the
pre-trained LLM. These representations are compared against representation clusters of the tasks
from the local codebase to assess whether the current task’s representation deviates significantly
from those in the training set. If not, the task is passed to the probe for estimation. Otherwise, the
Align-LLM assists by extracting key information from the source code, allowing the data center
to identify similar code from its codebase. Next, Align-LLM rewrites the source code based on the
style of the similar sample. The rewritten code, although functionally identical to the original, adopts
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Figure 5: Architecture of the extended pipeline to resolve out-of-distribution tasks

a more familiar written style to the pre-trained LLM, aligning better with the LLM’s representations
in the training dataset, and enhancing the performance of the downstream probe.

We highlight key insights from our experiments. First, by computing representation distances for
the source code in the probe’s training dataset, we observe that different task types tend to form
distinct clusters (Figure 6 (a)). Second, as shown in Figures 6 (b) and (c), when source code with
the same functionality is rewritten by different users or engineers, its embedding diverges from the
original cluster, leading to significantly reduced predictive accuracy due to the probe encountering
out-of-distribution inputs. However, when we apply Align-LLM to rewrite the code while following
the style of the original task, the resulting representation is closer to the original distribution (see
indexes 4 vs. 5 and 6 vs. 7 in Figure 6 (b)). Although the rewritten representation is not identical,
possibly due to the Align-LLM’s style differing slightly from human coding styles, the probe can
predict the rewritten code more accurately thanks to the generalizability of our predictive model.

4 CONCLUSION

We propose an LLM-based predictive scheduling system for data center operations aimed at en-
hancing the efficiency and sustainability of AI training. Our system leverages a pre-trained LLM
specialized in code comprehension to extract representations of source code and utilizes sequential
decision-making algorithms to optimize the scheduling of computational resources. Compared to
traditional prediction methods, our architecture design and the use of LLMs offer significantly im-
proved generalizability, flexibility, and practicality. Complemented by the decision-making schedul-
ing algorithms, our approach achieves a 32% reduction in energy consumption and a 30% reduction
in waiting times in real data centers. These results demonstrate the strong potential of our method
in advancing AI infrastructure.
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A APPENDIX

A.1 DISCUSSION ON RELATED WORKS

Prediction based on device features. A body of literature focuses on predicting relevant metrics,
such as execution time and energy consumption, using features that summarize the characteristics
of the hardware. This approach assumes that analyzing hardware parameters and runtime data can
uncover patterns that influence these metrics. For example, Pham et al. (2017) combine GPU run-
time parameters with static hardware features, applying regression models to predict execution time.
Similarly, Daraghmeh et al. (2023) and Garg et al. (2023) utilize various clustering techniques to
identify operational patterns in machines based on hardware metrics, followed by sequence model-
ing for accurate predictions. Conversely, Hilman et al. (2018) take an alternative approach by first
predicting hardware behavior during code execution and then employing the KNN clustering method
to forecast execution time. In general, this stream of literature is not very related to our approach
and we refer the readers to O’Neal & Brisk (2018); Rodriguez et al. (2024); Ali et al. (2023) for
literature survey.

Prediction based on code features. Regarding code characteristics, early work by Huang et al.
(2010) used feature engineering, extracting elements like loop counts and conditional branches, and
applying sparse polynomial regression for time prediction. Recent approaches have shifted towards
deep learning, where two main strategies dominate. One approach treats models as composed of
atomic operations, with works like Wang & Cao (2015); Cai et al. (2017); Geoffrey et al. (2021);
Justus et al. (2018) using program slicing and MLPs to predict time and energy by decomposing
models into layers. The second approach leverages graph-based techniques, as in Cao et al. (2021)
and Bai et al. (2022), which use graphs to represent layer dependencies and employ machine learning
to learn these representations. Some methods are similar to ours in extracting code representations
for prediction. For example, Guerreiro et al. (2019) transforms PTX instructions into embeddings
for LSTM inputs, while Zhou et al. (2019) uses attention-based Bi-LSTMs and graph convolutional
networks to automatically extract code semantics and structure. While these methods focus on
extracting features, our model generalizes across a wider variety of task types and prediction metrics
using a unified, high-level representation approach. See Gianniti et al. (2018); Metz et al. (2022);
Zhao et al. (2013) for more related work.

Data center operations. Energy management in data centers has been a longstanding area of inter-
est, with foundational work by Pinheiro et al. (2001); Chase et al. (2001); Ranganathan et al. (2006);
Fan et al. (2007). As cloud computing and AI technologies emerged, software-based approaches
have been developed to improve data center operations (Wu et al., 2016; Evans & Gao, 2016; Cortez
et al., 2017; Katal et al., 2023). In today’s AI and sustainability-driven era, there has been grow-
ing interest in carbon emissions related with AI (Lacoste et al., 2019; Anderson et al., 2023; Güğül
et al., 2023; Patel et al., 2024). However, most efforts focus on software or infrastructure-level oper-
ations, whereas our approach specifically targets algorithmic-level improvements. While there is a
substantial body of literature on optimal scheduling and queuing policies for service systems, much
of this work is highly theoretical and relies on numerous assumptions (Vilaplana et al., 2014; Xie
& Lu, 2015; Jafarnejad Ghomi et al., 2019). Additionally, many scheduling algorithms that avoid
theoretical assumptions, such as reinforcement learning-based approaches (Ding et al., 2020; Tuli
et al., 2020), primarily focus on scheduling tasks but lack task-level predictive inference capabilities,
which is a core strength of our method. Additionally, we note that our focus is specifically on the
operations of data centers for AI-driven workloads, which exhibit distinct characteristics compared
to traditional data center operations considered in previous studies.

Predictive decision-making Our work is also related to the area of decision-making with future
predictions as side information. With such predictions, well-established decision algorithms, orig-
inally designed without the benefit of foresight, can be improved (Purohit et al., 2018). Examples
include problems such as caching (Lykouris & Vassilvitskii, 2021), rent-or-buy (also known as the
ski rental problem) (Gollapudi & Panigrahi, 2019), frequency estimation (Hsu et al., 2019), and
queuing control (Spencer et al., 2014; Xu & Chan, 2016). Among these, the most closely related
topic to our work is (online) resource allocation (Feldman et al., 2010; Li & Ye, 2021; Chen et al.,
2024; Zhang & Cheung, 2022). Specifically, Lei & Jasin (2020); Chen et al. (2017) examine online
allocation with reusable resources (like GPUs in data centers), where each arriving request occupies
resources for only a limited period before releasing them. Thonglek et al. (2019) and Gadhavi &
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Bhavsar (2022) focus on CPU and memory utilization, adopting LSTM and other time series models
to optimize resource allocation.

A.2 EXPERIMENT: PREDICTIVE MODEL DETAILS

A.2.1 EXPERIMENT SETUP

Data Generation The training (and testing) data for the probes includes embedding features and
corresponding label values.

• Embedding Features: The input features for the probe model are generated through
Starcoder-7B(LLM). Specifically, we input 500 source code files as prompts into Starcoder-
7B(LLM) and extract 4608-dimensional embedding vectors from each inference’s penul-
timate layer, i.e., the output of the last transformer block. Following standard practices
for sequence classification tasks, we then use the last token’s embedding vector to repre-
sent the features of the entire code file. The 500 code files are either carefully selected or
handcrafted to ensure that each file can run independently to complete a full computational
process. These files cover a diverse set of tasks and structures, including ResNet, BERT,
GAN, ViT, VGG, and more. The minimum, average, and maximum number of tokens in
the code files are 1037, 1582.26, and 2151, respectively. And We ensure that the LLM’s
context length is sufficient to process the entire code file without truncation.

• Label Values: The label values, which the probes aim to predict, are generated by running
the 500 code files on two different types of GPUs, NVIDIA A100 and NVIDIA A6000. We
record the running time and energy consumption using the official tool nvidia-smi by
NVIDIA. For each code running, we open an independent process running nvidia-smi
--query-gpu=power.draw to record the real-time power consumption with a logging
interval of 1 second and compute the average power consumption. For each code file, we
run experiments for at least twice and make sure the gap of recorded values is less than
10% of the average. We also make sure the gpus are exclusively used by our experiments.

Probe Architecture In our experiments, the probe model is a 3-layer dense neural network, uti-
lizing ReLU as the activation function, with batch normalization applied to each layer. The input
dimension of 4608 aligns with the dimensions of the (input) embedding vectors. The embedding
dimensions for each layer are 1024, 30, and 1, respectively.

Probe Training We randomly separate the generated data into training data and testing data with
a ratio of 9:1. All the data are further normalized by Standardscaler. The probe models are trained
using the following configurations: a batch size of 8, 2000 training epochs, a learning rate of 1e-4,
weight decay of 0.001, and L1 regularization with penalty parameter being 1e-5. We use the Mean
Squared Error (MSE) as the loss function and AdamW as the optimizer. Additionally, we apply
early stopping when the epoch loss decreases by no more than 0.001 for 30 consecutive epochs.

Testing and Inference To test the time needed for prediction, in the testing phase we let the LLM
Starcoder take the source code as input, outputting the presentation, and use the probe to predict the
estimated value. The inference time for 48 source codes takes 32 seconds, averaging 0.65 seconds
per task. The testing phase is carried out on 1 Nvidia RTX 6000 (Ampere Version) GPU.

Predictive pipeline for OOD For the experiments in section 3, we take gpt-4o-2024-05-13 as the
Align-LLM. With the Align-LLM, the rewrite time for the source code of 7 tasks takes 68 seconds,
averaging 9.7 seconds per task.

A.3 EXPERIMENT: DECISION-MAKING MODEL DETAILS

In this section, we first provide detailed predictive decision-making algorithms applied in A.3. Fur-
ther, due to data privacy restrictions imposed by the collaborating data center, we present additional
numerical results across various settings using a simulation system. These results can offer manage-
rial insights for the data center operator and validate our choice of multi-criteria optimization.
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A.3.1 PREDICTIVE DECISION-MAKING ALGORITHMS

In this section, we provide detailed implementations of the two types of predictive decision-making
algorithms used for GPU allocation.

Algorithm 1 Predictive Decision-Making: Greedy

Require: Current time s, GPU types Z , waiting queue Q(s), active set A(s), GPU occupation
information aij’s, available GPUs c(s), prediction models fθ, gθ, weights α, γ.

1: Estimate the running time and the energy of each task i ∈ A(s)
⋃
Q(s) for each GPU type

j ∈ Z:
t̂ij = fθ(xi, j), êij = gθ(xi, j)

%% First-come-first-served rule
2: Sort Q(s) in ascending order by their arriving time si, and assign the first task (which first

comes) to z1 = argminj∈J αt̂1j + γê1j whenever z1 has sufficient GPUs to satisfy task 1, i.e.,
at the time min{s′ ≥ s|cz1(s′) ≥ a1z1}

Algorithm 2 Predictive Decision-Making: Value Based

Require: Current time s, GPU types Z , waiting queue Q(s), active set A(s), GPU occupation
information aij’s, available GPUs c(s), prediction models fθ, gθ, hyperparameter κ.

1: Estimate the running time and the energy of each task i ∈ A(s)
⋃
Q(s) for each GPU type

j ∈ Z:
t̂ij = fθ(xi, j), êij = gθ(xi, j)

2: Compute the value vij for each task i ∈ Q(s) and each GPU type j ∈ Z:

vij =
1

aij t̂ij
− κêij

3: Construct the value set V = {(i, j, vij)} and sort it in decending order by the cost value vij .
4: for (i, j, vij) ∈ V do
5: if aij ≤ cj(s) then

%% If there are sufficient GPUs, assign i to j
6: Set zi = j, and update V by removing the tuples {(i′, j′, vi′j′) ∈ V|i′ = i, j′ ∈ Z}
7: Update the available GPUs cj(s) = cj(s)− aij
8: else
9: Skip

10: end if
11: end for

The Greedy algorithm focuses on a first-come-first-served approach to allocate tasks to GPUs. At
each time step s, the algorithm estimates the running time and energy consumption for each task
i on each GPU type j using the prediction models. Once these estimates are made, the waiting
queue is sorted in ascending order of task arrival times. The algorithm assigns the first task in the
queue to the GPU type selected based on the smallest estimated value of αt̂1j + γê1j reflecting a
weighted combination of running time and energy consumption. This algorithm’s simplicity makes
it efficient for quick decision-making, but it may not always optimize resource allocation across the
entire queue.

The Value-Based algorithm extends beyond the Greedy approach by considering all tasks in the
waiting queue and selecting the GPU allocation based on a more strategic optimization. At each
time step the algorithm first estimates the running time and energy consumption for each task across
GPU types. However, the next step involves computing a cost value vij for each task-GPU pair,
which is a combination of the inverse of the estimated running time t̂ij adjusted by the GPU occu-
pancy requirement aij and a penalty term κêij representing the energy consumption. The algorithm
then constructs a set of task-GPU pairs, sorting them in descending order based on the value vij .
It allocates the GPUs to tasks based on this sorted list, prioritizing higher values, and updates the
available GPU resources accordingly. This method is inspired by the algorithms in multiple knap-
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sack problems and balances multiple objectives, such as reducing energy consumption and running
time with limited available GPUs.

A.3.2 MORE SIMULATION EXPERIMENTS

Simulation Environment We built the simulation environment using data collected from the co-
operating data center. Specifically, we first estimated a heterogeneous Poisson process to model
task arrivals. And we build a task simulator which generates the running time tij and the energy
consumption eij for each arrival task i across GPU type j. The values are randomly sampled from
truncated normal distributions (truncated above 0), with the mean and variance estimated from the
collected data. Further, we assume there are two types of GPUs (|Z| = 2) with the number of each
type randomly sampled uniformly from the intervals [10, 20] and [20, 40], respectively.

Performance under different criteria We evaluate the performance of the proposed Algorithm
2 under different settings, with varying emphasis on the optimization criteria. Specifically, we tune
the hyperparameter κ in Algorithm 2 using independently sampled validation data, based on the
following metrics: (i) waiting time only (α = γ = 0 and β = 1) (ii) running time only (β =
γ = 0 and α = 1), and (iii) energy only (α = β = 0 and γ = 1). These settings prioritize
different objectives, allowing us to compare the results and validate the effectiveness of the proposed
Algorithm 2 under various criteria. We compare the performance of Algorithm 2 with a simple rule,
which assigns the available GPU type to the first task in the waiting queue, following a first-come-
first-serve policy, provided there are sufficient GPUs. When multiple GPU types are available, the
most powerful type (e.g., A100) is selected. The reported results are based on 100 testing samples
and the validate data contains 50 samples.

Table 2 summarizes the experimental results. First, it showcases that the proposed value-based
rule can outperform the benchmark simple rule consistently in all tuning methods. In addition, it
demonstrates that the performance of the value-based rule aligns with the specific objective being
emphasized during tuning. Specifically, when tuned to minimize waiting time, it achieves the short-
est waiting time (and the fewest tasks with positive wait times). Similarly, when tuned to minimize
running time, it achieves the smallest running time. Finally, when tuned to minimize energy con-
sumption, it achieves the lowest energy usage during testing. We also provide visualizations of
sample path levels in Figure 7.

Metric Simple rule Value-based rule
Waiting time Running time Energy

Total Waiting Time (s) 2,466,062.56 1,810,123.92 2,045,399.25 2,112,773.56
-Tasks with Wait Time 27.38 21.16 22.13 22.80
Total Running Time (s) 15,333,868.47 15,215,721.21 15,001,371.15 15,291,965.57
Total Energy Cost (kWh) 440.98 245.42 243.97 240.07

Table 2: Comparison of testing total waiting time, tasks with wait time, cumulative running time, and energy
cost for the benchmark algorithm (simple rule) and value-based models tuned under different emphasized ob-
jectives.
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(a) Number of Waiting Tasks (Waiting time) (b) Real-time Energy Consumption (Waiting time)

(c) Number of Waiting Tasks (Running time) (d) Real-time Energy Consumption (Running time)

(e) Number of Waiting Tasks (Energy) (f) Real-time Energy Consumption (Energy)

Figure 7: Performance comparison across different metrics for the benchmark algorithm (simple rule) and
value-based models tuned under different emphasized objectives.
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