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Abstract001

Large language models (LLMs) trained on next-002
token prediction (NTP) paradigm have demon-003
strated powerful capabilities. However, the004
existing NTP paradigm contains several lim-005
itations, particularly related to planned task006
complications and error propagation during in-007
ference. In our work, we extend the critique008
of NTP, highlighting its limitation also due to009
training with a narrow objective: the prediction010
of a sub-optimal one-hot distribution. Based011
on this insight, we introduce Next Distribution012
Prediction (NDP), which uses statistical distri-013
butions to replace the one-hot targets, enhanc-014
ing learning without extra online training time.015
We conducted experiments across translation,016
general task, language transfer, and medical do-017
main adaptation. Compared to NTP, NDP can018
achieve up to +2.97 COMET improvement in019
translation tasks, +0.61 average improvement020
in general tasks, and incredible +10.75 aver-021
age improvement in the vertical domain (e.g.,022
Medical Domain). This demonstrates the con-023
crete benefits of addressing the target narrow-024
ing problem, pointing to a new direction for025
future work on improving NTP.026

1 Introduction027

Large Language Models (LLMs) are predominantly028

trained using NTP paradigm. However, this ap-029

proach has been subject to criticism, primarily030

focusing on two key issues: (1) the inability to031

perform tasks requiring advanced planning, such032

as look-ahead tasks (Kambhampati et al., 2024b;033

Bachmann and Nagarajan, 2024), and (2) error034

propagation during inference. These critiques have035

prompted various improvements, including meth-036

ods to incorporate planning for future tokens during037

training or inference (Kambhampati et al., 2024a;038

Monea et al., 2023; Chen et al., 2023; Gloeckle039

et al., 2024; Cai et al., 2024).040

We argue that the NTP paradigm is constrained041

not only by its short-term focus in the temporal042

Figure 1: The “torture” of NTP’s learning dilemma.
Instead of learning two paths at the same time, they
repeatedly learn one path and forget the other paths.
Although this forgetting and learning objective may not
be fully achieved due to the nature of stochastic gradient
descent, this tendency also hinders the model’s learning.

dimension but also by its restrictive candidate se- 043

lection process. Specifically, during training, the 044

model is conditioned to treat the next token for a 045

given prefix as the sole correct target, effectively 046

striving to approximate a one-hot distribution. This 047

scenario is analogous to a student being “tormented” 048

by a capricious teacher who insists on learning dis- 049

tinct and unique correct answers at each step, as 050

illustrated in Figure 1. Such a rigid “tormenting” 051

learning process fails to fully leverage the exten- 052

sive learning capabilities of large models, which 053

are inherently capable of exploring multiple solu- 054

tion pathways simultaneously. 055

This observation raises an question: How can we 056

identify and utilize all possible paths for a model to 057

address a given problem effectively? Drawing in- 058

spiration from Huh et al. (2024), who proposed that 059

a model’s ultimate representation should function 060

as a statistical model of the underlying reality, we 061

propose that incorporating statistical methods can 062

lead to a more comprehensive learning objective 063

within the training dataset. By doing so, we aim 064

to overcome the limitations of the NTP paradigm, 065

enabling models to harness their full potential in 066

learning multiple pathways to solutions. 067

To this end, we introduce Next Distribution Pre- 068

diction (NDP), a method that improves the training 069

objective of LLMs with the help of statistical mod- 070
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els. This method analyzes the training corpus to071

identify the same prefixes and their corresponding072

successor tokens, and then converts the frequency073

of the successor tokens into a distribution, replac-074

ing the original one-hot distribution of the NTP.075

NDP can also leverage unsupervised data to further076

enhance the distribution, thereby achieving similar077

results without the need for continued pretraining078

on domain-specific data. This provides a potential079

solution for unifying continued pretraining and in-080

struction fine-tuning. In the analysis section, we081

provide two perspectives: by comparing the simi-082

larities in the distributions of NTP, NDP, and LLM,083

as well as the convergence endpoints of NTP and084

NDP, we further demonstrate the advantages of085

NDP over NTP as a training paradigm.086

Our extensive experiments across various mod-087

els, tasks, and evaluation metrics demonstrate sig-088

nificant performance improvements. Moreover,089

NDP enables the simultaneous use of supervised090

and unsupervised data for training, effectively091

allowing for continued pre-training during fine-092

tuning. This feature is particularly advantageous093

for domain adaptation and language transfer sce-094

narios. NDP outperforms NTP, showing improve-095

ments of up to 2.97 COMET points in translation096

tasks, an average gain of 0.61 points in general097

tasks, and a remarkable average increase of 10.75098

points in the medical domain.099

2 Related Work100

2.1 Calibration During Training101

Our work shares similarities with output probability102

calibration methods, as both aim to mitigate over-103

confidence and align output probabilities with true104

probabilities. Prominent calibration techniques dur-105

ing training include loss function modification (Ren106

et al., 2024; Li et al., 2020; Lin et al., 2018), label107

smoothing (Liang et al., 2024; Wei et al., 2022;108

Malagutti et al., 2024), Noise Injection(Sam and109

Kolter, 2023; Gao et al., 2019)110

Research on loss function modification often at-111

tributes the discrepancy between predicted and real-112

world probabilities to maximum likelihood estima-113

tion. This has led to efforts to replace cross-entropy114

(e.g., negative log-likelihood) with alternative loss115

functions, introducing significant computational116

overhead and sensitive parameters. In contrast,117

NDP can be easily integrated into existing training118

frameworks without incurring additional training119

costs, yielding substantial improvements.120

While NDP supports smoothing, its primary ad- 121

vantage stems from addressing the issue of nar- 122

row candidates rather than smoothing per se. NDP 123

guarantees a non-one-hot distribution, allowing for 124

multi-discrete value distributions rather than only 125

continuous ones. Given the expanding vocabulary 126

sizes in modern language models, the correct next 127

token candidates cannot span the entire vocabulary 128

range. For large language models requiring high- 129

precision alignment, introducing noise across the 130

entire vocabulary can result in downstream task 131

performance inferior to that achieved with one-hot 132

distributions from NTP. 133

2.2 Improvement on Next Token Prediction 134

Earlier criticisms of the NTP training paradigm 135

were all focused on the time dimension, which led 136

to many improvements. Monea et al. (2023) was in- 137

spired by Speculative Sampling (Chen et al., 2023), 138

using the LLMs itself as a draft model, thus allow- 139

ing the LLMs to output multiple tokens at once dur- 140

ing the inference stage, implicitly achieving long- 141

term planning and alleviating the short-term issues 142

to some extent. Gloeckle et al. (2024) achieved 143

consistent improvements in efficiency and perfor- 144

mance on code tasks by training shared model back- 145

bones and multiple independent output heads and 146

adopting speculative decoding with Medusa-like 147

tree attention (Cai et al., 2024) during inference, in- 148

dicating that this training paradigm has advantages 149

in large-scale models. 150

These studies are completely orthogonal to our 151

perspective. We primarily focus on the issues 152

brought by narrow candidates, with the hope of 153

jointly optimizing the NTP process. 154

2.3 Knowledge Distillation 155

We can further evaluate the effectiveness of NDP 156

compared to NTP from the perspective of knowl- 157

edge distillation. NDP can be seen as token- 158

level, while NTP is sentence-level (Kim and Rush, 159

2016). This perspective illuminates NTP’s limi- 160

tations. Yuan et al. (2023) demonstrated that in 161

knowledge distillation, student models more read- 162

ily assimilate soft labels compared to one-hot la- 163

bels. Wei et al. (2024) observed that the efficacy of 164

sentence-level versus token-level distillation corre- 165

lates with student model size, with larger models 166

benefiting more from token-level approaches. Em- 167

pirically, most research utilizing black-box Large 168

Language Models (LLMs), such as instruction data 169

synthesis (Xu et al., 2023), employs sentence-level 170
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Figure 2: Overall framework of simplified NDP. The numbers in the squares represent token. (a) Count the successor
words of the same prefix string in the training dataset to form a prefix table. (b) Convert each counter in the prefix
table into a probability distribution through normalization. (c) Replace the labels in the original dataset using the
probability distribution. Through these three steps, we convert the one-hot distribution NTP dataset into a statistical
distribution NDP dataset.

distillation. While effective, sentence-level distil-171

lation alone has not enabled open-source LLMs172

to match the performance of GPT-4-turbo/GPT-4173

(OpenAI et al., 2024) . Conversely, Gemma2-9B174

(Team et al., 2024) achieved performance compa-175

rable to LLaMA3-8B (Dubey et al., 2024) with176

only 9T pretraining tokens, attributable to its use177

of token-level distillation. These findings support178

NDP’s superior performance over NTP.179

It should be noted that there is an essential differ-180

ence between dataset-based knowledge distillation181

(NTP/NDP) and model-based knowledge distilla-182

tion. First, we cannot bypass the dataset-based183

distillation paradigm to obtain a pre-trained model;184

therefore, it can be said that model-based distilla-185

tion must be built upon the dataset-based distilla-186

tion paradigm. Model-based KD cannot replace187

NTP, but NDP can. Second, KD-based training188

methods require cooperating NTP to achieve good189

results such as Hybrid Distillation (Hinton et al.,190

2015; Romero et al., 2015), which also incurs sig-191

nificant training overhead. Typically, KD requires192

an additional teacher model, which has parameters193

that are more than ten times larger than the student194

model, leading to substantial memory usage and195

increased training time. In contrast, NDP does not196

need to be combined with NTP and does not incur197

additional training overhead.198

3 Next Distribution Prediction Paradigm 199

In this section, we will provide a detailed descrip- 200

tion of how our method, NDP, incorporates the 201

aforementioned statistical distribution concept into 202

the actual model training process. Meanwhile, we 203

provide a brief explanation in the Appendix B on 204

how the NTP paradigm processes training data into 205

distributions. 206

Almost all datasets can be categorized as ei- 207

ther unsupervised or supervised datasets. Let’s 208

take supervised datasets as an example, since 209

self-supervised datasets can be regarded as a spe- 210

cial case of supervised datasets where the instruc- 211

tion/input is empty. This process can be divided 212

into three sub-processes: First, learn the prefix ta- 213

ble through statistical analysis of the dataset (Fig- 214

ure 2(a)). Second, convert value counter from pre- 215

fix table to distribution (Figure 2(b)). And third, 216

replace the training targets in the original dataset 217

from one-hot distributions to non-one-hot distribu- 218

tions (Figure 2(c)). We will elaborate the details of 219

each sub-process in subsequent sections. 220

3.1 Learning Prefix Tables 221

The specific process is illustrated in Figure 2(a). 222

Given a sentence, we use all its prefix sequences 223

as keys and the corresponding successor tokens as 224

values to form several key-value pairs. Across the 225
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entire training set, the key-value pairs formed by226

different sentences are merged based on the identi-227

cal key, and corresponding values will collectively228

form a frequency Counter.229

It is evident that the one-hot distribution derived230

from NTP is a specialized form of a prefix table.231

When keys do not overlap in the table generated232

from the entire dataset, the supervised distribution233

becomes identical to the NTP distribution. In prac-234

tice, we separately compile two prefix tables from235

the starting position of the question and the answer236

part, respectively referred to as the supervised ta-237

ble and the causal language modeling (CLM) table.238

In this way, we can separately extract supervised239

information and pretraining information from the240

dataset, making it easier for us to handle the two241

distributions more effectively in the following sec-242

tions. If we want to use NDP to replace the NTP243

pretraining, we only need to compute the CLM244

table.245

3.2 Converting Distributions from Prefix246

Table247

Figure 2(b) shows the process of converting each248

element in the value counter into a distribution on249

the model vocabulary dimension. For each counter,250

we create a tensor with a dimension of the vocabu-251

lary size, extracting the indices and corresponding252

counts from the frequency counter and setting the253

tensor accordingly. Then, we convert this tensor254

into a probability distribution via L1 norm or soft-255

max. In our preliminary analysis, using the softmax256

method yielded better results compared to the L1257

norm method. Therefore, we opted for the softmax258

method in our experiments. Instead of applying the259

softmax function directly to the entire frequency260

vector, we applied it to the counted parts and then261

placed the transformed values back into their orig-262

inal index within the distribution. This approach263

prevents the softmax from producing a uniform264

distribution over the large vocabulary vector.265

This process can form a non-one-hot distribu-266

tion, but it remains sparse. We also provide a267

novel smoothing method in Appendix C, which ef-268

ficiently converts the frequency vector into a distri-269

bution while controlling the amount of introduced270

noise (i.e., the probability values assigned to parts271

that were originally zero).272

3.3 Replacing Origin One-hot Target273

After properly handling the token-level distribu-274

tion, we can simply traverse the original dataset275

to replace the training targets. In Figure 2(c), we 276

provide an example with a sentence. First, we de- 277

compose a sentence into corresponding keys as in 278

Figure 2(a). Then, we use the keys to look up the 279

corresponding table and obtain the distribution that 280

we transformed in Figure 2(b). 281

We employ a simple linear weighted fusion as 282

Equation 1. 283

Dmix = αDsupervised + (1− α)DCLM (1) 284

where α is a hyperparameter constrained to the in- 285

terval [0, 1]. We substitute the original one-hot 286

label target with Dmix. Through ablation analy- 287

sis, we found that the best performance is achieved 288

when alpha is set to 0.8. This indicates that dur- 289

ing the instruction fine-tuning phase, the model is 290

primarily learning the mapping from problems to 291

answers in the problem space. It is important to 292

note that when encountering a blank distribution 293

in the fusion objects, we do not perform fusion 294

but instead retain the original distribution. In other 295

words, we consistently assign zero weight to blank 296

distributions during the fusion process. 297

At this point, we have completed the data pro- 298

cessing part. The next step in the training process 299

is the regular teacher-forcing as NTP. NDP has 300

another very interesting use: we can use a large 301

amount of unlabeled text to further enhance the 302

CLM table. This process essentially unifies pre- 303

training and fine-tuning. We will demonstrate this 304

later in Section 4.3 . 305

4 Experiments 306

4.1 General Tasks for Large Language 307

Models 308

In this subsection, we aim to explore the impact of 309

using NDP for instruction fine-tuning (IFT) on the 310

base model for general tasks. The specific experi- 311

mental setup is as follows. 312

Model & Baseline We conducted experiments 313

on Gemma-2B (Team et al., 2024) and LLaMA3- 314

8B (Dubey et al., 2024). We used LoRA (Hu et al., 315

2022) to train LLaMA3-8B. We mainly compare 316

NDP with NTP, label smoothing. 317

Dataset We selected a mixture of Alpaca-GPT4 318

(Peng et al., 2023), Math (Hendrycks et al., 2021b), 319

and Code (Zheng et al., 2024) as the instruction 320

fine-tuning (IFT) dataset. This combination is sim- 321

ilar to the typical mix of general text, code, and 322

math used in pretraining, with a total dataset size 323
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GSM MMLU HE TruQA BBH ARC-C TriQA AE SCIQ WG IFeval Avg.
Gemma 19.56 42.12 23.78 33.05 35.94 40.36 47.38 27.20 94.30 65.67 14.42 40.34

+NTP 24.49 40.85 31.71 41.59 37.40 44.54 42.73 27.54 92.30 66.61 19.41 42.65
+LS 22.37 40.90 30.49 40.29 35.80 44.11 40.52 27.27 93.30 66.46 13.12 41.33
+NDP 23.81 41.34 35.98 42.84 37.77 44.88 42.57 28.65 91.90 66.38 19.78 43.26

LLaMA3 54.44 65.57 37.20 43.91 62.52 50.43 71.21 33.70 96.30 78.22 10.17 54.88
+NTP 53.30 62.37 37.80 44.04 60.13 51.28 63.64 33.38 96.60 77.82 14.97 54.12
+LS 50.80 58.23 35.37 43.73 51.14 51.02 57.69 33.51 96.50 78.22 17.19 52.13
+NDP 53.15 62.99 39.02 44.05 61.86 51.11 62.70 33.24 96.50 77.98 17.93 54.59

Table 1: Evaluation results on general tasks. The benchmark abbreviations in the table: GSM (GSM8k), MMLU
(Massive Multitask Language Understanding), HE (HumanEval), TruQA (TruthfulQA), BBH (Big-Bench Hard),
ARC-C (ARC-Challenge), TriQA (TriviaQA), AE (AgiEval), SCIQ (SCIQ), WG (WinoGrande), and IFeval (IFeval).
LS means Label Smoothing here.

of 220K instances. The evaluation comprised 11324

benchmarks that broadly cover the model’s general325

reasoning, knowledge Q&A, math, coding, fact,326

and instruction following capabilities. More de-327

tailed benchmark information can be found in Ap-328

pendix D.329

Evaluation framework Our evaluation process330

primarily leveraged the lm-evaluation-harness331

framework (Gao et al., 2023), with the exception332

of coding tasks, for which we utilized the evalua-333

tion scripts from the OpenAI/HumanEval reposi-334

tory. The evaluation setting closely follow those335

outlined in the LLaMA3 evaluation protocol1.336

Results The experimental results are summarized337

in Table 1. From the result, we observe some phe-338

nomena:339

• Consistent Improvements of NDP. NDP out-340

performs NTP by +0.61 points on Gemma341

and by +0.47 points on LLaMA, respectively.342

These improvements validate the efficacy of343

the modifications introduced to address the344

inherent limitations of the NTP paradigm.345

• Failure of Label Smoothing. Contrary to346

expectations, the label smoothing technique347

did not yield performance gains. In fact, it un-348

derperforms relative to the NTP method. We349

hypothesize that the meaningless noise dur-350

ing the instruction fine-tuning phase may have351

degraded the quality of the fine-tuning data.352

This observation indicates that the critical im-353

portance of data quality over quantity in the354

instruction fine-tuning process.355
1https://github.com/meta-

llama/llama3/blob/main/eval_details

4.2 Translation Task for Encoder-Decoder 356

Models 357

In this subsection, we aim to answer the following 358

questions: (1) Does our method work effectively 359

for models with smaller parameter sizes? (2) Can 360

our method benefit specific downstream tasks? Al- 361

though we have demonstrated that NDP can benefit 362

general, broad tasks, further discussion on adapta- 363

tion to specific task can still be argued. 364

Model & Baseline The T5 model (Raffel et al., 365

2023) is an excellent choice because we will select 366

a 400M decoder-only LLaMA in the latter exper- 367

iment. Using T5 would allow us to observe the 368

impact on encoder-decoder models as well. We 369

selected three sizes of the T5 1.1 version models: 370

small (77M), base (248M), and large (783M). Here 371

we only compare with NTP, since in preliminary 372

experiments, label smoothing has already shown a 373

similar drop in performance as general tasks. 374

Dataset & Metric We selected 200k bilingual 375

sentence pairs in the en-de direction from IWSLT17 376

(Cettolo et al., 2017) as the training set. Both 377

IWSLT17 and WMT22 (Kocmi et al., 2022) were 378

used as test sets, as IWSLT17 consists of TED 379

talk utterance transcripts while WMT22 comprises 380

news articles. We used WMT22 to observe the 381

generalization performance on out-of-domain data. 382

We use rule-based SacreBLEU (Post, 2018) and 383

neural network based COMET22 (Rei et al., 2022) 384

as evaluation metrics. 385

Results The translation result is shown in Table 386

2. Overall, NDP consistently outperformed NTP in 387

both in-domain and out-of-domain performance ex- 388

cept COMET on T5-small. This suggests that NDP 389
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IWSLT17 WMT22 Avg. Avg. ∆

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

T5_small
NTP 11.51 55.49 7.39 48.43 9.45 51.96 +0.30 -0.18
NDP 11.56 55.39 7.93 48.16 9.75 51.78

T5_base
NTP 19.97 68.54 15.48 61.90 17.73 65.22 +0.91 +1.97
NDP 21.87 70.66 15.41 63.72 18.64 67.19

T5_large
NTP 23.63 76.42 17.49 71.26 20.56 73.84 +1.96 +1.17
NDP 25.70 77.29 19.34 72.72 22.52 75.01

Table 2: T5 series evaluated on IWSLT17 & WMT22 with BLEU and COMET22.

MedQA MedMCQA PubMedQA CareQA Avg. Avg. ∆ MMLU FLOPS
Qwen2 44.46 46.57 47.30 52.04 47.59 - 70.76 -

+CPT‡+NTP 46.58 45.76 24.30 56.48 43.28 -4.31 68.18 6.44× 1019

+NTP 47.60 50.11 42.60 60.47 50.19 +2.60 70.97 1.72× 1018

+NDP 49.49 50.68 42.10 59.95 50.83 +3.24 71.00 1.71× 1018

+NDP† 49.49 50.83 43.70 61.22 51.25 +3.66 70.99 1.71× 1018

LLaMA3 33.70 36.22 2.50 46.98 29.85 - 65.57 -
+CPT‡+NTP 25.29 37.25 10.00 48.76 30.33 +0.48 58.43 6.62× 1019

+NTP 31.26 33.09 13.40 39.25 29.25 -0.60 54.09 1.75× 1018

+NDP 20.27 27.40 53.7 22.99 31.09 +1.24 54.77 1.74× 1018

+NDP† 38.41 39.61 31.6 50.36 40.00 +10.15 58.58 1.74× 1018

Table 3: Results on domain adaptation task. Item marked with † represents enhancement using PubMed, while ‡
means Pubmed+Redpajama.
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Figure 3: Comparison of COMET22 scores for different
models on WMT22 and IWSLT2017 datasets

also has considerable potential in small models and390

downstream-specific tasks.391

4.3 Unifying Continue Pre-training and392

Fine-tuning393

Post-training of large language models often in-394

cludes continued pertaining (CPT), IFT, and RLHF.395

Here, we focus on CPT and IFT since they involve 396

NTP. Post-training is usually a delicate and com- 397

plex process because the goal is not only to adapt 398

to a specific domain or align with humans but also 399

to ensure that the knowledge learned during pre- 400

training is minimally disrupted. The NDP offers 401

an optional approach. We still use the dataset from 402

the IFT phase to generate the prefix table, but we 403

additionally use the dataset from the CPT phase 404

to enrich the CLM prefix table, making the re- 405

sulting CLM distribution incorporates information 406

from the CPT tasks and become more robust. Our 407

method has the following three potential benefits 408

in unifying CPT and IFT: 1) it avoids the cumber- 409

some hyperparameter selection during the contin- 410

ued pre-training phase, such as learning rate, decay, 411

and warmup. 2) by forgoing the continued pre- 412

training phase, the number of model update steps is 413

greatly reduced, which helps alleviate the problem 414

of model forgetting. 3) it saves a lot of training 415

resources since the model still computes only the 416

original instruction dataset. 417

We have selected two common scenarios: lan- 418
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guage transfer and domain adaptation.419

Language Transfer We extracted 500k sen-420

tences from the monolingual German data in421

WMT23 (Kocmi et al., 2023) to supplement the422

CLM distribution. We use T5-1.1-3B and T5-423

1.1-Large as the models for this experiment. The424

COMET result is shown in Figure 3, while BLEU425

result in Appendix E.426

Our approach achieved a gain of +2.72 on T5-427

large model and +2.64 on the t5-XL model com-428

pared to NTP on average. The BLEU score in-429

creased even more, with a gain of +3.18 on the430

T5-large model and +2.68 on the T5-XL model,431

confirming the significant benefits of NDP in unify-432

ing CPT and IFT. For comparison, similar attempts433

have been made by NLLB (Team et al., 2022),434

which employed an encoder-decoder model with a435

Denoising Autoencoder (DAE) as the pre-training436

task. This task, akin to a cloze test, is simpler than437

CLM. Additionally, NLLB performs unifying at438

a step-wise granularity, alternating between fully439

computing the DAE and the fine-tuning loss in sep-440

arate steps. In contrast, ours integrates the losses441

from both the CLM task and the supervised task at442

a loss-wise level within each iteration, providing a443

more fine-grained approach.444

Domain Adaptation Our methods also show445

strong performance in vertical domain. We choose446

PubMed_Abstract which sampled from pile (Gao447

et al., 2020) and Redpajama-1B as CPT dataset448

and Alpaca_GPT4+Medquad (Ben Abacha and449

Demner-Fushman, 2019) as IFT dataset. Test on450

following benchmarks: MedQA (Jin et al., 2021),451

MedMCQA (Pal et al., 2022), CareQA (Gururajan452

et al., 2024), MMLU (Hendrycks et al., 2021a), and453

PubMedQA (Jin et al., 2019). We retain MMLU454

to observe its impact on the general domain indi-455

rectly. We do full parameter tuning on Qwen2-7B456

(Bai et al., 2023) and LLaMA3-8B. The result is457

shown in Table 3, and we can observe that Qwen2458

has undergone more adaptation in the medical field459

compared to LLaMA3. The key findings are as460

follows:461

• For models that lack domain-specific pre-462

training (such as LLaMA3), NTP leads to a463

performance drop. In contrast, NDP maintains464

a steady performance increase.465

• The advantages of domain data augmenta-466

tion are more evident in models without ex-467

tra domain-specific pre-training. Specifically,468
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Figure 4: (a): Changes in the sharpness of model dis-
tributions with increasing model size. (b): Changes
in Simstatistic/Simntp with calibrated preformance in-
creases.

Qwen2 exhibits an improvement of +3.66, 469

while LLaMA3 shows a significant increase of 470

+10.15. This suggests that our method holds 471

substantial potential for enhancing the uni- 472

fied continued pretraining process. Moreover, 473

CPT benefits LLaMA3 but negatively impacts 474

Qwen2. 475

• Across all settings observed in the MMLU 476

benchmark, models trained with NDP not 477

only show superior domain adaptation but 478

also match the general capabilities of mod- 479

els trained with NTP. 480

More training details can be found in Appendix G. 481

5 Analysis 482

Similarity between Training Paradigm and 483

LLM We use LLM distributions as a proxy for 484

the ideal statistical distribution of the world data, 485

since LLM can be seen as an efficient compression 486

of world data (Deletang et al., 2024). By comparing 487

the similarities between statistic distribution and 488

one-hot distribution with LLM distribution on the 489

same specific datasets, we demonstrate that statis- 490

tic distribution serves as a superior learning target 491

since it aligns more with LLM distribution. 492

We observe the cosine similarity between statis- 493

tical distributions, the one-hot distribution of NTP, 494

and the distribution of LLM, thereby demonstrat- 495

ing that statistical distributions are more efficient 496

as learning targets than NTP distributions. 497

Since both statistical distributions and LLM 498

distributions have non-one-hot properties, readers 499

might find it unsurprising that statistical distribu- 500

tions are closer to LLM distributions. However, 501
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Figure 5: Dataset configuration. Numbers represent
tokens, and tilde represents a token that does not repeat
with other tokens. The items marked in red font indicate
that we will observe its fitting accuracy. are used to
represent the common prefix of the input, represent
the different suffixes of the input, the blue blocks rep-
resent the target to be predicted, and represent the
irrelevant tokens. n = 40 in our setting.

the smooth distribution of LLM is essentially a502

sharp distribution that is very similar to a one-hot503

distribution, as shown in Figure 4(a). It is easy to504

observe that the LLM distribution is not only close505

to a one-hot distribution, but also that the sharp-506

ness2 of the distribution increases further as the507

model size grows. To more intuitively show the508

result, we present the ratio of similarity between509

the statistical distribution and LLM Simstatistic,510

and the similarity between the NTP distribution511

and LLM SimNTP , as a function of model perfor-512

mance3 in Figure 4(b). We observed that as the513

model’s performance improves, the ratio of the514

statistical distribution to the NTP distribution also515

increases rapidly. This demonstrates that even as516

the model size grows, leading to sparser and more517

concentrated distributions, the statistical distribu-518

tion still exhibits an essence that is closer to the519

world data distribution modeled by the LLM.520

The Convergence Endpoints of NDP and NTP521

NDP demonstrates a notable advantage over NTP,522

however, the source of this superiority, whether523

from faster convergence or a superior convergence524

endpoint remains unclear. To investigate long-525

term convergence behavior, we extended training526

to 10,000 epochs.527

Drawing from scaling law principles (Kaplan528

et al., 2020), we use small-scale scenarios to in-529

fer large-scale behavior. We trained a randomly530

2We employ two metrics: one is the proportion of elements
of the distribution to reach top-p. The other is kurtosis, which
we placed in Appendix A.2. show similar result

3We choose the average score list on the Hugging Face
Open LLM leaderboard as the performance metric

Figure 6: Analysis of model convergence with increas-
ing training epochs. The left figure shows the similarity
of the model’s output distribution on the target items.
The right figure shows the similarity with irrelevant
items.

initialized 438M LLaMA-like model (Ren et al., 531

2024) on a custom dataset devoid of real-world 532

semantics. This approach eliminates pre-training 533

knowledge effects, allowing pure comparison of 534

NDP and NTP methods. The dataset comprises tar- 535

get items, noise items sharing prefixes with targets, 536

and unrelated items. Noise items simulate real- 537

world interference to target item, while unrelated 538

items help detect overfitting. 539

Results are presented using similarity between 540

target frequency distributions as a metric, which 541

correlates with loss. Figure 6 illustrates that NDP’s 542

improved fitting accuracy likely stems from a bet- 543

ter convergence endpoint, as NTP fails to close 544

the similarity gap after 10,000 epochs. Both meth- 545

ods achieve over 98% fitting accuracy on unrelated 546

items, with NDP showing faster initial convergence. 547

These findings suggest that NDP not only con- 548

verges more rapidly than NTP but also reaches 549

a superior convergence point. 550

6 Conclusion 551

Our work offers a novel critical perspective on 552

the NTP training paradigm, and this hypothesis 553

was validated through preliminary similarity ex- 554

periments. Based on addressing this issue, we 555

proposed a new training paradigm inspired from 556

statistic called NDP, which achieved good gains in 557

various tasks such as general capability baselines 558

for LLMs, translation, language adaptation, and 559

domain adaptation. Nevertheless, we believe that 560

NDP is merely a simple solution to the narrow can- 561

didate problem, and there remains a broad solution 562

space worth exploring to further mitigate this issue. 563
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7 Limitations564

Although theoretically, NDP could replace the565

NTP-based pretraining from scratch and become566

more powerful as the dataset size increases (be-567

cause the statistical distribution becomes more ro-568

bust), we lack the resources for practical verifica-569

tion. Therefore, our setup primarily focuses on570

the instruction fine-tuning process or comparisons571

with continued pretraining. As such, this remains572

an area worth exploring.573
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A.1 Details961

A.1.1 Model & Dataset962

In our preliminary experiments, we selected open-963

source LLMs with varying parameter counts from964
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Figure 7: An intuitive example of sharp and smooth
distributions.

several series, including: LLaMA, Qwen, Yi, 965

Gemma, and Mistral. For our dataset, We uti- 966

lized a combination of Alpaca-GPT4, MATH, and 967

CodeFeedback-Filtered-Instruction, as this is a 968

commonly used instruction-tuning dataset combi- 969

nation in engineering (general capabilities + math- 970

ematics + code). From this composite dataset, we 971

proportionally sampled 10,000 examples to form 972

our experimental corpus. All data processing codes 973

used in this study are available in our repository for 974

direct access and replication. 975

A.1.2 Calculate similarity 976

A.2 Dive into sharpness 977

To illustrate the difference between sharp and 978

smooth distributions more intuitively, we provide 979

an example in Figure 7. This sharpness can be well 980

measured by two metrics, one is the percentage of 981

distribution elements required to achieve a specific 982

probability p as mentioned in the main text, and 983

the other is kurtosis. The previous metric is easy to 984

understand because a sharp distribution has more 985

probability concentrated in a small number of el- 986

ements, so there will be fewer elements required 987

to achieve a specific probability. Therefore, the 988

smaller the value, the sparser the distribution. Kur- 989

tosis is a commonly used metric in mathematics, 990

used to measure the proportion of probability as- 991

signed to the "peaks" in a distribution. We present 992

the changes in kurtosis of different large models 993

as the number of parameters increases in Figure 994

12

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2404.14827
https://arxiv.org/abs/2404.14827
https://arxiv.org/abs/2404.14827
https://arxiv.org/abs/2404.14827
https://arxiv.org/abs/2404.14827
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://api.semanticscholar.org/CorpusID:270391432
https://arxiv.org/abs/2305.10893
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2402.14658


0 10 20 30 40 50 60 70

1.0

3.0

5.0

7.0

9.0

Scale(B)

K
ur

to
si

s
Yi
Phi

Qwen
LLaMA
Gemma

Figure 8: Change in model distribution kurtosis with
increasing model size.

8. It is easy to observe that for various series of995

models, kurtosis also increases with the increase of996

model size, indicating a sharpening of the output997

distribution of the model.998

Although it’s somewhat off-topic, what does in-999

creased sharpness mean for a model? This actually1000

indicates an overconfidence in the model. Overcon-1001

fidence can cause the model to hallucinate, produc-1002

ing answers even for questions it’s uncertain about.1003

It also exacerbates the phenomenon of error propa-1004

gation. If the model displays high confidence even1005

for uncertain information, it may lead to further1006

spread of misinformation. It reduces the model’s1007

interpretability and credibility. Overly confident1008

models struggle to provide reasonable uncertainty1009

estimates, which decreases the interpretability of1010

their outputs and users’ trust in the model. It affects1011

the reliability of decision-making. If the model1012

shows high confidence even in incorrect answers,1013

relying on these confidence estimates for decision-1014

making becomes unreliable (Xiong et al., 2024).1015

The increase in large language model sharpness1016

is likely attributable to the enhanced memorization1017

capacity that accompanies the growth in model1018

parameters. Consequently, these models can effort-1019

lessly retain one-hot features extracted from the1020

dataset by the training paradigm.1021

B Distribution from Training Paradigm1022

The notion of deriving distributions from datasets1023

using training paradigms may be somewhat confus-1024

ing to readers. In reality, training paradigms can1025

Figure 9: We tokenize the RAW text and observe its true
learning objective under the NTP paradigm.However,
during implementation, different learning objectives can
obtain their corresponding losses through a single for-
ward computation by attention mechanism.

transform each prefix of every instance in a dataset 1026

into a distribution. This process can be represented 1027

as Figure 9. We can further formalize this process 1028

as Equation 3. 1029

p(xi(j+1)|xi[0:j]) = 1 (2) 1030

Where xi means the i-th instance in dataset, xi[0:j] 1031

means {xi0, xi1..xij}. The model’s training pro- 1032

cess on the dataset is equivalent to knowledge dis- 1033

tillation from the distribution derived by the NTP 1034

training paradigm to the model. In this case, the 1035

loss function is simply the Kullback-Leibler (KL) 1036

divergence between the NTP distribution and the 1037

LLM (Large Language Model) distribution. From 1038

this perspective, the NTP training paradigm ap- 1039

pears capable of becoming a language model (LM) 1040

through the use of a dataset. However, they are not 1041

entirely equivalent. This distinction arises when 1042

prefixes in the dataset overlap. For instance, when 1043

xkl = xml, it becomes unclear whether the distri- 1044

bution should be derived from xk(l+1) or xm(l+1). 1045

Understanding the fundamental nature of how NTP 1046

derives distributions from datasets allows us to dis- 1047

tinguish clearly between NTP-derived distributions 1048

and those generated by LLMs. 1049

C Smoothing on vocabulary tensor 1050

It is important to note that the vocabulary’s dimen- 1051

sion is typically much larger than the number of 1052

items in the Counter, for instance, 256k vs. 10. If 1053

we directly form a probability distribution on such 1054

a frequency vector, it would result in a uniform 1055

distribution, diluting the information derived from 1056

the dataset. We solve this problem by controlling 1057

the probability allocated to the zero regions of the 1058

tensor. 1059

Without loss of generality, we rearrange a vo- 1060

cab tensor v = [a1, a2...a|V |] with |V | elements 1061

into two contiguous regions based on whether the 1062

elements are zero or non-zero. This rearrange- 1063

ment results in v′ = [a′1...a
′
k, a

′
k+1...a

′
|V |], where 1064
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[a′1...a
′
k] represents the non-zero elements region,1065

and [a′k+1...a
′
|V |] represents the zero elements re-1066

gion. Therefore, the softmax process on v′ can be1067

described as Equation 3.1068

Softmax(v′) =

∑k
i=1 e

a′i∑|V |
j=1 e

a′j
+

∑|V |
i=k+1 e

a′i∑|V |
j=1 e

a′j
(3)1069

where the second item in Equation 3 is the prob-1070

ability value allocated to the entire zero elements1071

region. To control its value and make it equal to1072

our preset probability p, we introduce a tempera-1073

ture coefficient t, transforming it to solve Equation1074

4.1075

f(t) =

∑|V |
i=k+1 e

a′i/t∑|V |
j=1 e

a′j/t
= p (4)1076

Obtaining an exact solution for Equation 2 is quite1077

challenging; however, we can easily obtain its ap-1078

proximate solution through numerical computation1079

methods. For instance, the root-finding methods1080

provided in scipy4, or the simpler bisection method,1081

can efficiently locate t within the [0, 100] interval,1082

with the error easily controlled within 1e-6s. Our1083

smoothing method is quite different from those1084

commonly used in n-gram language models. The1085

latter can also lead to frequency vectors becoming1086

uniform distributions. For example, the +1 smooth-1087

ing method could distribute probability values that1088

far exceed the original frequency vector’s quantities1089

in a vocabulary of 128k tokens.1090

D Settings for General Tasks1091

D.1 Benchmark Info:1092

A more detailed description about task type:1093

MC1 (Single-true): Given a question and 4-51094

answer choices, select the only correct answer. The1095

model’s selection is the answer choice to which it1096

assigns the highest log-probability of completion1097

following the question, independent of the other1098

answer choices. The score is the simple accuracy1099

across all questions.1100

MC2 (Multi-true): Given a question and multi-1101

ple true / false reference answers, the score is the1102

normalized total probability assigned to the set of1103

true answers.1104

Generate: Given a question where the answer is1105

a text snippet, such as code, formulas, or a multiple-1106

4https://docs.scipy.org/doc/scipy/tutorial/optimize.html#root-
finding

choice question that uses Chain of Thought (CoT) 1107

for assisted reasoning. 1108

D.2 Train Dataset 1109

As shown in Table 6,We mix them together and 1110

shuffle them randomly to create a complete train- 1111

ing set. The main reason for choosing these three 1112

datasets is that they represent broadly applicable 1113

general instructions and highly specialized instruc- 1114

tions for mathematics and coding, respectively. 1115

This division also reflects the categorization typi- 1116

cally found in pre-training processes. 1117

D.3 Training hyperparemeter 1118

Details are listed in Table 5. 1119

E BLEU Score of Language Transfer 1120

Task 1121

Result is shown in Figure 10. Although our im- 1122

provement on this metric is more significant, we 1123

have placed it in the appendix, primarily consider- 1124

ing that machine translation researchers currently 1125

favor using neural network-based evaluation meth- 1126

ods to assess translation quality, as rule-based meth- 1127

ods might underestimate the performance of large 1128

models.
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Figure 10: Comparison of BLEU scores for different
models on WMT22 and IWSLT2017 datasets

1129

F Drop of LLaMA3 Models. 1130

NTP and NDP Both show a slight decline com- 1131

pared to the LLaMA3-base model. We believe 1132

the possible reasons for this are: the pre-training 1133

data of LLaMA3-8b amounts to an astonishing 15T 1134

tokens, and despite some deduplication, there is 1135

still a significant possibility of data leakage in the 1136
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Dataset name HF identifier Type COT n Samples

MMLU cais/mmlu MC1 5 14000
GSM8K openai/gsm8k Generate ✓ 8 1320
HumanEval openai/openai_humaneval Generate 164
TruthfulQA truthfulqa/truthful_qa MC1(MC12) 817
BBH lukaemon/bbh Generate ✓ 3 6510
ARC-Challenge allenai/ai2_arc MC1 1170
TriviaQA mandarjoshi/trivia_qa MC1 17200
AGIEval RUCAIBox/agieval MC1 8238
SCIQ allenai/sciq MC1 1000
Winogrande allenai/winogrande MC1 1767
IFEval HuggingFaceH4/ifeval Generate 1080

Table 4: Benchmark used in general task evaluation. n represents instances used for few-shot prompting.

Experiment Hyperparameter name Setting

NTP

scheduler type linear
learning rate 5e-5
epoch 3
batch size 512

LS label smoothing 0.1

NDP
mix ratio 0.8
n-gram 5

Table 5: Hyperparameter in general task. LS and NDP share the same hyperparameter used in NTP.

Dataset name HF identifier Samples

Alpaca-GPT4 vicgalle/alpaca-gpt4 52000
Math lighteval/MATH 12500
Code m-a-p/CodeFeedback-Filtered-Instruction 157000

Table 6: Train dataset used in general task.
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benchmark. The same phenomenon also appeared1137

in the work of (Xu et al., 2024), which listed re-1138

sults where fine-tuning with various mainstream1139

instruction data caused a decline in benchmark per-1140

formance.1141

G Training Details in Domain1142

Adaptation Task1143

Basically, we used shared hyperparameter settings1144

for NTP and NDP as in Table 7.

Hyperparameter name Setting

scheduler type cosine
learning rate 2e-5
CPT epoch 1
IFT epoch 2
batch size 256
cutoff len 8192
warmup ratio 0.05
mix ratio 0.8
n-gram 1

Table 7: Hyperparameter in domain adaption task.

1145
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