
Scalable Decision-Making in Stochastic Environments through Learned
Temporal Abstraction

Baiting Luo1, Abhishek Dubey1, Ayan Mukhopadhyay1

1Vanderbilt University
{baiting.luo, abhishek.dubey, ayan.mukhopadhyay}@vanderbilt.edu

Abstract

Sequential decision-making for embodied agents in
high-dimensional continuous action spaces, particularly in
stochastic environments, poses significant computational
challenges. We explore this challenge in the traditional of-
fline RL setting, where an agent must learn how to make
decisions based on data collected through a stochastic
behavior policy. We present Latent Macro Action Plan-
ner (L-MAP), which addresses this challenge by learn-
ing a set of temporally extended macro-actions through
a state-conditional Vector Quantized Variational Autoen-
coder (VQ-VAE), effectively reducing action dimensional-
ity. L-MAP employs a (separate) learned prior model that
acts as a latent transition model and allows efficient sam-
pling of plausible actions. During planning, our approach
accounts for stochasticity in both the environment and the
behavior policy by using Monte Carlo tree search (MCTS).
In offline RL settings, including stochastic continuous con-
trol tasks, L-MAP efficiently searches over discrete latent
actions to yield high expected returns. Empirical results
demonstrate that L-MAP maintains low decision latency de-
spite increased action dimensionality. Notably, across tasks
ranging from continuous control with inherently stochas-
tic dynamics to high-dimensional robotic hand manipula-
tion, L-MAP significantly outperforms existing model-based
methods and performs on-par with strong model-free actor-
critic baselines, highlighting the effectiveness of the pro-
posed approach in planning in complex and stochastic en-
vironments with high-dimensional action spaces.

1. Introduction

Planning-based reinforcement learning (RL) has achieved
remarkable success in settings with discrete, low-
dimensional actions such as chess, Go, Atari, and in
simulated continuous-control benchmarks [15, 27–29, 33].
However, extending these methods to embodied agents op-
erating with high-dimensional continuous action spaces,

especially in stochastic environments, presents significant
challenges. For instance, legged robots navigating out-
door terrain must adapt their locomotion policies in real
time to handle disturbances like wind gusts or slippery sur-
faces, while drones executing delivery tasks face dynam-
ically shifting weather conditions that alter aerodynamic
constraints [6].

In this paper, we posit that planning in such challeng-
ing settings could greatly benefit from temporal abstrac-
tions, i.e., representations of multi-step primitive behaviors
such as macro actions [5, 9, 30]. By leveraging these ab-
stractions, planners can navigate high-dimensional contin-
uous action spaces more efficiently, potentially mitigating
the curse of dimensionality and reducing decision-making
latency in stochastic environments. This paper considers
the standard setting where an agent can access a set of
trajectories (i.e., a sequence of state, action, and reward
traces) collected through a fixed behavior policy. Given
this setting, we propose the Latent Macro Action Planner
(L-MAP), which constructs a lower dimensional represen-
tation of temporally extended primitive actions by using
a state-conditioned Vector Quantized Variational AutoEn-
coder (VQ-VAE) [32]. The encoder integrates the current
state and macro-action to generate a discrete latent code.
Subsequently, a sequential model (in our case, a Trans-
former) is employed to autoregressively model the distribu-
tion of these latent codes, conditioned on the current state
(and the behavior policy). This Transformer facilitates a
two-step inference process: initially, given a state, it en-
ables the sampling of probable latent macro-actions under
the behavior policy, effectively acting as a prior policy. Sub-
sequently, conditioned on both the state and the sampled
macro-action, it generates subsequent latent codes that en-
capsulate information about expected returns and potential
next states. This dual functionality of the Transformer en-
ables efficient exploration of promising action trajectories
while forming a compact representation of the plausible tra-
jectories during planning.

As shown in Fig.1a, leveraging these models, we build
a latent search space that serves as a structured initializa-

...

Decoder

...

...

(a) Planning with pre-constructed search space.

0.05 0.10 0.15 0.20 0.25 0.30
Decision Latency (s)

52

56

60

64

68

72

Pe
rfo

rm
an

ce
 (%

)

Higher Performance
at Lower Latency

Lower Performance
at Higher Latency

Vanilla MCTS
L-MAP

(b) Decision latency vs. performance.

Figure 1. (a) Overview of planning over the pre-constructed search space. (b) As MCTS iterations increase (10,50,100), pre-constructing
the search space reduces decision latency for a given performance.

tion for planning, encapsulating likely trajectories based on
the learned environment dynamics. To address stochas-
ticity and optimize decision-making, we integrate Monte
Carlo Tree Search (MCTS) with progressive widening to
efficiently navigate this latent space. Initially, the search
concentrates on the prebuilt latent space, facilitating rapid
decision-making grounded in learned abstractions. If ad-
ditional computation time becomes available, we progres-
sively widen the search tree to extend the search beyond
the prebuilt latent space incrementally. This dynamic ex-
pansion strategy enables our method to balance rapid plan-
ning using learned abstractions with more exhaustive ex-
ploration when computational resources permit. As shown
in Fig.1b, this strategy achieves better performance with
lower decision latency compared to planning with vanilla
MCTS. Upon selecting a latent macro-action, we operate in
a polling control mode [12, 14] wherein MCTS returns only
the first primitive action of the recommended macro-action.
This approach allows for recovery from locally suboptimal
decisions by performing planning at each time step.

We evaluate L-MAP extensively in the offline RL set-
ting across a diverse range of tasks. In stochastic Mu-
JoCo environments [26], L-MAP consistently outperforms
both model-based baselines like Trajectory Transformer
(TT) [16] and Trajectory Autoencoding Planner (TAP) [17],
as well as model-free methods such as Conservative Q-
Learning (CQL) [21] and Implicit Q-Learning (IQL) [20].
This demonstrates L-MAP’s robust capability in handling
stochastic dynamics. For deterministic MuJoCo tasks, L-
MAP shows comparable or superior performance to these
baselines, highlighting that our planning approach effec-
tively accounts for stochasticity in the behavior policy, lead-
ing to competitive performance even in deterministic en-
vironments. Notably, L-MAP scales effectively to high-
dimensional tasks, as evidenced by its strong performance
on the challenging Adroit hand manipulation tasks. Fur-

thermore, L-MAP’s use of temporal abstraction enables
lower latency decision-making compared to methods like
TT. These results underscore L-MAP’s versatility and ef-
fectiveness across various types of control problems, from
stochastic to deterministic environments, and from low to
high-dimensional action spaces.

2. Preliminaries
We consider a continuous state and action space Markov
Decision Process (MDP) defined by {S,A, P, r}, where
S ⊆ Rn is the state space, A ⊆ Rl is the action space,
P : S × A → ∆(S) is the transition function, and r :
S×A → R is the reward function. To manage the complex-
ity of these continuous spaces, we introduce macro actions,
which are fixed-length sequences of primitive actions. A
macro action m ∈ M is defined as m = ⟨at, . . . , at+L−1⟩,
where each ai ∈ A and L is the length of the macro ac-
tion. Our goal is to compute an optimal macro-level policy
π∗ : S → Pm that maximizes the expected discounted re-
turn Eπ [R(s, π(s))].

Trajectory Representation: Consider a trajectory τ
of length T = κ · L (κ ∈ N+), which is com-
posed of a sequence of states st ∈ S , fixed-size
macro actions mt ∈ M, and corresponding return-to-
go estimates Rt =

∑T
i=t γ

i−tri, formally represented
as τ = (R1, s1,m1, RL+1, sL+1,mL+1, . . . , R(κ−1)L+1,
s(κ−1)L+1,m(κ−1)L+1).

3. Method
Planning in continuous action space is hard and computa-
tionally challenging, and full enumeration of all possible
actions is infeasible. Discretizing the action space is one
way to address this challenge, but in practice, enumerating a
large set of discrete actions can also be challenging, particu-
larly for online approaches. Sample-based methods offer an

efficient approach for handling large and complex domains.
These methods sample a subset of actions rather than ex-
haustively enumerating all possibilities, reducing computa-
tional costs while computing optimal policies or value func-
tions [15]. Building on these insights, we propose the La-
tent Macro Action Planner (L-MAP), which learns temporal
abstractions in the form of macro-actions and plans using a
latent transition model that serves as both a prior policy and
a transition model.

3.1. Discretizing State-Macro Action Sequences
with VQ-VAE

A key insight from prior work is that a learned state-
conditioned discretization can be used to construct a dis-
cretization scheme with relatively few discrete actions while
maintaining high granularity [17, 23]. As shown in Fig.2,
our approach leverages a learned state-conditioned dis-
cretization to enable planning in a lower-dimensional dis-
crete space. Specifically, our encoder processes sequences
of state and macro-actions as input. For example, each to-
ken is defined as xt = (Rt, st,mt) and its subsequent token
as xt+L = (Rt+L, st+L,mt+L). The encoder function is
defined as:

fenc(xt = (Rt, st,mt),
xt+L = (Rt+L, st+L,mt+L)) = (zt, zt+L)

(1)

where the transition chunk size is two, resulting in two la-
tent codes assigned per chunk. To elaborate, the encoder
first concatenates the input return-to-go estimates, states,
and macro actions into two transition vectors. It then applies
a sequence model, producing two latent feature vectors for
each chunk of transitions.

In stochastic environments, executing the same macro-
action m from state s can yield different returns R, in-
troducing variability that complicates the vector quantiza-
tion in VQ-VAE, i.e., note that using the full token xt =
(Rt, st,mt) directly can result in different latent codes z
for identical (st,mt) pairs solely due to differences in Rt.
This challenge can cause the latent space to become frag-
mented and reflect return variability more than the underly-
ing structure of available actions. Consequently, the agent
might overestimate the returns during decision-making by
emphasizing latent codes associated with higher observed
returns, neglecting the true distribution of the primitive ac-
tions and their expected returns.

To address this issue, we aim to focus the vector quan-
tization process primarily on representations of the state
s and macro-actions m, while still preserving the ability
to reconstruct the return R. To tackle this challenge, our
approach involves creating two versions of each token xt:
the full input xt = (Rt, st,mt) and a masked version
xmask
t = (mask, st,mt), where Rt is masked out. The en-

coder processes both xt and xmask
t to generate two embed-

dings, ze(xt) and ze(x
mask
t), respectively. We use ze(x

mask
t)

for vector quantization to obtain the quantized latent code
zq(x

mask
t). To ensure that the codebook embeddings incor-

porate information from the full input, including Rt, we up-
date the embedding et of the quantized latent code towards
ze(xt). We modify the loss function by introducing an addi-
tional term that encourages the embedding from the masked
input to be close to that from the full input. Specifically, we
used the embedding from the full input ze(x) as the learn-
ing target for the embedding of the masked input ze(xmask).
The modified loss function is:

L = log p(x | zq(xmask)) + ∥sg[ze(x)]− e∥22
+ β∥ze(xmask)− sg[e]∥22 + ∥ze(xmask)− ze(x)∥22

(2)

where sg denotes the stopgradient operator and the addi-
tional term

∥∥ze(xmask)− ze(x)
∥∥2
2

acts as a regularizer that
aligns the embeddings of the masked and full inputs.

Incorporating macro-actions within each token is crit-
ical, as it enables the model to capture temporal depen-
dencies across multiple time steps without the need for
downsampling. This approach is particularly important in
stochastic settings, where downsampling techniques that
aggregate states (as in Jiang et al. [17]) can obscure the
stochasticity imposed by the environment’s dynamics. The
decoder takes the initial state and latent codes as inputs, and
outputs the reconstructed trajectories:

fdec(st, zt, zt+L) = (x̂t = (R̂t, ŝt, m̂t),

x̂t+L = (R̂t+L, ŝt+L, m̂t+L))
(3)

The decoding process can be seen as the inverse of the
encoding process, except that the initial state st is merged
into the embeddings of the codes with a linear projection
before decoding.

Latent Transition Model: Following the discretization
process, the subsequent step involves modeling sequences
of latent codes in an autoregressive manner using a causal
Transformer. The Prior Transformer is conditioned on the
initial state st, achieved by adding the state feature to all
token embeddings [17]. Primarily, it functions as a tran-
sition model in the latent space, enabling the sampling of
the next latent code zi+1 conditioned on the current code zi
and state s. This transition, represented as T : S ×Z → Z ,
implicitly captures the full R×S×M → R×S×M tran-
sition in the original space, as each z encodes information
about the return-to-go, state and macro-action. Addition-
ally, p(z | s) acts as a prior policy for efficient action sam-
pling, allowing rapid selection of probable macro-actions
based on learned behaviors from the offline dataset. By
operating in the learned latent space, the model potentially
reduces computational complexity compared to modeling
transitions in the original state-action space, especially for
high-dimensional environments. The discrete nature of the
latent space allows for efficient sampling, which can be ben-
eficial for downstream tasks such as planning.

... ...

+

+

+

Enc Dec

...
Codebook

=

=

...

=
=

=

=

Figure 2. An overview of our VQ-VAE model that discretizes state-macro action sequences.

3.2. Planning with a Latent Macro Action Model

Planning in high-dimensional environments using learned
discrete representations introduces uncertainties from mul-
tiple sources. First, the representation learning process
introduces uncertainty due to the non-injective mapping
from the high-dimensional state-action space to a lower-
dimensional latent space. This can result in many-to-one
correspondences, where multiple distinct high-dimensional
inputs map to the same latent representation, creating appar-
ent stochasticity even in deterministic environments. Sec-
ond, the environment itself may be inherently stochastic.
The detailed analysis of these uncertainty sources is pro-
vided in Appendix D.

We argue that taking expectations over latent transitions
is beneficial in mitigating all these sources of uncertainty,
regardless of whether the environment is deterministic or
stochastic. By considering the expected outcomes over
multiple latent transitions, we can average out the random-
ness introduced by the non-injective mapping and inher-
ent stochasticity, leading to more reliable planning deci-
sions. This insight applies broadly to planning methods
that employ models with non-injective mapping character-
istics. Building on this insight, we employ Monte Carlo
Tree Search (MCTS) as our planning algorithm to mitigate
the impact of stochasticity arising from non-injective map-
pings and potential environmental randomness. MCTS iter-
atively explores the latent space and takes expectations over
transitions, allowing for robust planning in the presence of
uncertainty.

Pre-constructing the Latent Search Space. Our ap-
proach leverages a learned latent transition model to gen-
erate and evaluate macro actions for planning efficiently.
Starting from an initial state s0, we sample M latent codes
z, each representing a potential macro action. For each sam-
pled latent code z, we sample N subsequent latent codes z′

to simulate possible future trajectories, capturing the out-
comes of these macro actions. We obtain the correspond-
ing state-action transitions and return estimates by decod-

ing these latent pairs (z, z′) conditioned on s. To construct

...

Dec

...

...

...
...

Figure 3. Pre-construction of the latent search space by sampling
and evaluating latent macro-action codes, caching the top-k can-
didates, and recursively expanding the planning tree for efficient
macro-level planning.

the planning tree efficiently, we cache the initial state s0
along with the top-k latent codes z (and their associated in-
formation) based on the decoded returns, where k = λ×M
and λ ∈ (0, 1] controls the expansion ratio of the tree. The
cached latent codes represent the most promising macro ac-
tions to consider from the initial state. The latent codes z′

are then decoded to obtain a set of reconstructed tokens, i.e.,
(R, s,m). For each of these states s, we sample B latent
codes z′′, representing potential macro actions from s (note
that B and M are exogenously defined hyper-parameters).
This process is recursively applied, allowing us to expand
the planning tree while controlling its growth through the
parameter λ. By focusing on the most promising macro ac-
tions at each state, we maintain a compact and informative
planning structure that efficiently explores the state-action
space at a macro level.

Selection. Starting from the cached tree structure,
MCTS iteratively expands and evaluates nodes, allowing
for a more comprehensive exploration of the state-action
space. For each state s in the tree, MCTS selects one
of the top-k cached latent codes z based on the Upper
Confidence Bounds for Trees (UCT) [19]: UCT(s, z) =

Q(s, z) + c
√

log(N(s))
N(s,z) where Q(s, z) represents the value

of executing macro action z in state s (estimated through the
decoded return-to-go), N(s) denotes the number of times
state s has been visited, N(s, z) denotes the number of
times macro actionz has been chosen in state s, and c is
an exploration coefficient. Progressively Widening the
State Space for Search. Despite these powerful abstrac-
tion techniques, the search space remains challenging due
to the underlying high-dimensional nature of the original
state space, residual stochastic characteristics of transitions
in the abstracted space, and the complexity of long-horizon
planning scenarios. If we were to apply MCTS directly
to this abstracted space, we would encounter two main is-
sues: inefficient utilization of our pre-built search space,
with the search potentially diverging prematurely into un-
explored regions, and difficulty in building sufficiently deep
trees for high-quality long-term decision-making, particu-
larly in areas of high stochasticity or uncertainty [8]. There-
fore, we use progressive widening to extend MCTS to in-
crementally expand the search tree. It balances the explo-
ration of new states with the exploitation of already vis-
ited states based on two hyperparameters: α ∈ [0, 1] and
ϵ ∈ R+. Let |C(s, z)| denote the number of children for the
state-action pair (s, z). The key idea is to alternate between
adding new child nodes and selecting among existing child
nodes, depending on the number of times a state-action pair
(s, z) has been visited. A new state is added to the tree if
|C(s, z)| < ϵ · N(s, z)α, where N(s, z) is the number of
times the state-action pair has been visited. The hyperpa-
rameter α controls the propensity to select among existing
children, with α = 0 leading to always selecting among ex-
isting child and α = 1 leading to vanilla MCTS behavior
(always adding a new child). In this way, we could enhance
our approach by efficiently utilizing the pre-built search
space, prioritizing the exploration of promising macro ac-
tions while allowing for incremental expansion of the search
tree. This technique enables our method to make quick deci-
sions in an anytime manner, leveraging the cached informa-
tion, and further refine the planning tree if additional time
is available.

Expansion. In our approach, the expansion phase dif-
fers from standard MCTS by performing parallel expan-
sion of multiple nodes from a leaf node. From the leaf
node, a set of B latent codes {z(i)}Bi=1 is sampled, each
representing a distinct macro action, drawn from a latent
transition model p(z | s) to ensure diverse action space
coverage. For each sampled macro action z(i), N subse-

quent latent codes {z′(i,j)}Nj=1 are sampled according to
z′(i,j) ∼ p(z′ | z(i), s), for j = {1, . . . , N}, modeling
potential outcomes and capturing the stochastic nature of
macro actions. These latent transitions are then decoded to
obtain the resulting next states {s′(i,j)}Nj=1 for each macro
action. Finally, the search tree is expanded by adding all
L child nodes {(s′(i,j), z′(i,j))}Nj=1 for each macro action
z(i) to the current leaf node s. This breadth-wise expan-
sion enables simultaneous exploration of multiple promis-
ing macro actions, enhancing the diversity and comprehen-
siveness of the search and facilitating efficient exploration
in complex environments.

Backpropagation. Following the expansion phase,
where multiple macro actions are expanded simultaneously,
the backpropagation step updates the estimated Q-values
based on the return-to-go as shown in Fig.4.

4. Experiments

The empirical evaluation of L-MAP consists of three sets of
tasks from D4RL [11]: gym locomotion control, AntMaze,
and Adroit. We compare L-MAP to a range of prior offline
RL algorithms, including both model-free actor-critic meth-
ods [20, 21] and model-based approaches [16, 17, 26]. Our
work is conceptually most related to the Trajectory Trans-
former (TT; Janner et al. [16]) and the Trajectory Autoen-
coding Planner (TAP; Jiang et al. [17]), which are model-
based planning methods that predict and plan in continuous
state and action spaces. These two baselines serve as our
main points of comparison for deterministic environments.

To demonstrate L-MAP’s ability to make performant
decisions in stochastic environments, we compare it with
One Risk to Rule Them All (1R2R; Rigter et al. [26]),
a risk-averse model-based algorithm designed for stochas-
tic domains, and model-free actor-critic methods Conserva-
tive Q-Learning (CQL; Kumar et al. [21]) and Implicit Q-
Learning (IQL; Kostrikov et al. [20]). We evaluate L-MAP
on Stochastic MuJoCo tasks [26], which serve as a proof of
concept in the stochastic continuous control domain.

We then test L-MAP on Adroit, which presents a chal-
lenge with its high state and action dimensionality. Fi-
nally, we evaluate L-MAP on AntMaze, a sparse-reward
continuous-control problem. In this task, L-MAP achieves
similar performance to TT, surpassing model-free meth-
ods. Through these diverse evaluations, we aim to demon-
strate L-MAP’s versatility and effectiveness across differ-
ent types of control problems, including stochastic environ-
ments, high-dimensional spaces, and sparse-reward scenar-
ios. Additionally, we conduct an ablation study to analyze
the impact of key components in L-MAP; detailed results
of this study can be found in Appendix A.

Hyperparameters As for the L-MAP-specific hyperpa-
rameters, we set our macro action length to 3. The planning

... ...

...

... ...

... ...

Yes

... ...

No

Repeat

Selection Expansion Backpropagation

...

...

...

...

Figure 4. Illustration of our MCTS process for macro-level planning. The algorithm iteratively selects actions using the UCT policy, applies
progressive widening to balance exploration and exploitation, performs parallel expansion of multiple macro actions and their potential
outcomes, and backpropagates estimated Q-values to efficiently explore and refine the planning tree.

horizon in the raw action space is set to 9 for gym locomo-
tion tasks and 15 for Adroit tasks. These horizons are either
smaller or equal to those used in TT and TAP. Our choice
of parameters is to ensure a control rate of approximately
10 Hz for locomotion tasks. For each task, we conduct ex-
periments with 3 different training seeds, and each seed is
evaluated for 20 episodes.

Stochastic Mujoco On the Stochastic MuJoCo tasks,
with results presented in Table 1, L-MAP consistently
outperforms the model-based baselines, TAP and TT,
across all datasets and environments, demonstrating its
superior capacity to handle stochasticity in continuous con-
trol tasks. Notably, L-MAP achieves the highest per-
formance in multiple datasets for both the Hopper and
Walker2D environments. When compared to 1R2R, a
risk-averse model-based algorithm specifically designed for
stochastic domains, L-MAP shows competitive or superior
results in most cases. An exception is the Medium-Replay-
High Hopper dataset, where 1R2R attains a higher score.
This suggests that while L-MAP exhibits robustness across
a variety of stochastic settings, there are specific scenar-
ios where risk-averse strategies like 1R2R may hold an ad-
vantage. Additionally, L-MAP generally outperforms the
model-free methods, CQL and IQL. However, CQL sur-
passes L-MAP in the Medium-Expert-Mod Hopper dataset.
It is worth noting that L-MAP is the only method among all
baselines that achieves performance comparable to CQL in
this specific setting.

Adroit Control In the Adroit robotic control tasks,
which are characterized by their high-dimensional state
and action spaces, our proposed method, L-MAP, demon-
strates strong and competitive performance as shown in
Table 2. Across the Human, Cloned, and Expert datasets,
L-MAP exhibits notable effectiveness compared to both
model-based approaches (TAP and TT) and model-free

methods (CQL, IQL, and Behavior Cloning (BC)1).
In the Human dataset, which includes suboptimal human

demonstrations, L-MAP achieves the highest score in the
Door environment and performs well in other tasks. Al-
though IQL leads in the Pen task and CQL leads in the
Hammer and Relocate tasks, L-MAP maintains competitive
results, particularly surpassing TT and BC in most environ-
ments. This suggests that L-MAP effectively utilizes sub-
optimal data to make robust decisions in complex settings.
For the Cloned dataset, which contains a mix of optimal and
suboptimal trajectories, L-MAP secures top performance in
the Pen and Relocate tasks. In the Expert dataset, com-
prised of optimal demonstrations, L-MAP attains the high-
est scores in the Pen and Relocate environments while re-
maining competitive in the Hammer and Door tasks. Over-
all, L-MAP achieves the highest average score of 51.40
across all datasets and environments, and 18.79 across non-
expert datasets, highlighting its effectiveness in handling
varying levels of data optimality. Furthermore, the experi-
mental results indicate that L-MAP effectively manages the
complexities of high-dimensional Adroit environments. In-
corporating more action information into the single token
does not detract from performance; instead, it appears to
enhance the model’s ability to learn nuanced temporal de-
pendencies required for successful task execution.

AntMaze In the AntMaze environments—a set of
sparse-reward continuous-control tasks where an agent
must navigate a robotic ant to a target location, L-MAP
demonstrates strong and competitive performance as shown
in Table 3. These tasks are particularly challenging due to
the sparse rewards and the presence of suboptimal trajecto-
ries that lead to various goals other than the target position
used during testing.

Similar to TAP, our approach integrates goal positions

1We included Behavior Cloning (BC) as an additional baseline since
the original 1R2R method was not evaluated for Adroit tasks.

Model-Based Model-Free

Dataset Type Env L-MAP TAP TT 1R2R CQL IQL

Medium-Expert-Mod Hopper 106.11 ± 2.16 40.86 ± 5.42 56.10 ± 3.33 52.19 ± 8.37 106.17 ± 2.16 60.61 ± 3.46
Medium-Expert-Mod Walker2D 93.43 ± 1.41 91.40 ± 1.42 80.93 ± 2.60 56.48 ± 7.51 91.44 ± 1.44 86.66 ± 1.84
Medium-Mod Hopper 55.07 ± 3.06 43.64 ± 2.25 44.49 ± 2.47 65.24 ± 3.31 49.92 ± 3.00 56.00 ± 3.60
Medium-Mod Walker2D 52.94 ± 1.57 44.46 ± 1.82 43.61 ± 2.15 65.16 ± 2.84 49.38 ± 2.02 48.82 ± 2.31
Medium-Replay-Mod Hopper 52.30 ± 2.65 38.10 ± 3.22 37.85 ± 1.19 22.82 ± 2.08 40.53 ± 1.52 49.12 ± 3.38
Medium-Replay-Mod Walker2D 51.44 ± 1.65 43.49 ± 2.27 27.43 ± 3.33 52.23 ± 2.22 40.24 ± 1.67 40.77 ± 2.72
Medium-Expert-High Hopper 66.93 ± 3.46 37.31 ± 3.66 58.04 ± 3.60 37.99 ± 2.71 68.03 ± 3.94 44.83 ± 2.58
Medium-Expert-High Walker2D 97.18 ± 2.08 91.09 ± 2.78 50.01 ± 3.51 32.38 ± 4.55 83.18 ± 3.70 68.61 ± 3.33
Medium-High Hopper 55.32 ± 3.56 43.93 ± 2.66 41.26 ± 5.53 33.99 ± 0.92 45.21 ± 2.97 49.69 ± 2.47
Medium-High Walker2D 68.87 ± 2.21 52.20 ± 2.76 59.84 ± 5.03 32.13 ± 4.51 61.49 ± 3.24 47.53 ± 3.05
Medium-Replay-High Hopper 58.05 ± 3.36 48.69 ± 2.97 39.24 ± 2.16 68.25 ± 3.78 51.70 ± 3.09 43.27 ± 2.78
Medium-Replay-High Walker2D 65.87 ± 3.07 55.15 ± 3.29 16.55 ± 2.17 65.63 ± 3.41 50.33 ± 3.88 45.13 ± 2.38

Mean 68.63 52.53 46.28 48.71 61.47 53.42

Table 1. Results for Stochastic MuJoCo under various dataset/noise settings.

Model-Based Approaches Model-Free Approaches

Dataset Type Env L-MAP TAP TT CQL IQL BC

Human Pen 76.26 ± 8.58 66.86 ± 8.41 36.4 37.5 71.5 34.4
Human Hammer 1.71 ± 0.12 1.57 ± 0.09 0.8 4.4 1.4 1.5
Human Door 11.24 ± 1.11 9.51 ± 1.10 0.1 9.9 4.3 0.5
Human Relocate 0.09 ± 0.02 0.06 ± 0.01 0.0 0.2 0.1 0.0

Cloned Pen 60.68 ± 7.88 46.44 ± 7.54 11.4 39.2 37.3 56.9
Cloned Hammer 2.43 ± 0.29 1.32 ± 0.12 0.5 2.1 2.1 0.8
Cloned Door 13.22 ± 1.34 13.45 ± 1.43 –0.1 0.4 1.6 –0.1
Cloned Relocate 0.15 ± 0.13 –0.23 ± 0.01 –0.1 –0.1 –0.2 –0.1

Expert Pen 126.60 ± 5.60 112.16 ± 6.57 72.0 107.0 – 85.1
Expert Hammer 127.16 ± 0.29 128.79 ± 0.52 15.5 86.7 – 125.6
Expert Door 105.24 ± 0.10 105.86 ± 0.08 94.1 101.5 – 34.9
Expert Relocate 107.57 ± 0.76 106.21 ± 1.61 10.3 95.0 – 101.3

Mean (All) 51.40 49.33 20.08 40.32 14.76 36.73
Mean (Non-Expert) 18.79 17.37 6.13 11.70 14.76 11.74

Table 2. Adroit robotic hand control results.

into the observation space, allowing it to condition trajec-
tory generation on specific goals. This conditioning nar-
rows the focus of sampled trajectories towards the target di-
rection, simplifying the planning process. Instead of using
the IQL critic for value estimation, L-MAP leverages Monte
Carlo planning to provide refined value estimates. This al-
ternative approach avoids the additional computational cost
of sampling with a separate Q-network, as required by TT
(+Q).

Our method achieves an average success rate of 83.33%
across all AntMaze environments, which is comparable to
the 84.00% average of TT (+Q). Notably, L-MAP outper-
forms TT (+Q) in the more complex Large-Play and Large-
Diverse environments, achieving success rates of 78.33%
and 81.67% respectively, compared to TT (+Q)’s 66.7%
and 60.0%. This indicates that L-MAP is particularly effec-

tive in larger mazes where navigation complexity is higher.
While TT (+Q) attains perfect success rates in smaller en-
vironments like Umaze and Medium-Diverse, L-MAP still
performs exceptionally well with success rates of 93.33%
and 88.33% in these settings. This consistency suggests that
our method is robust across different scales of environment
complexity.

5. Related Work

Recent advancements in reinforcement learning focus on
learning temporally extended action primitives to reduce
decision-making horizons and improve learning efficiency.
Both model-free and model-based methods leverage tempo-
ral abstraction to manage task complexity.

Model-free methods such as CompILE [18], RPL [13],

Table 3. Performance comparison on AntMaze environments. This evaluation demonstrates that our approach can achieve comparable
performance to TT with a separate Q network, while being more efficient during sampling and decision-making.

Dataset Environment BC CQL IQL TT (+Q) TAP L-MAP

Umaze AntMaze 54.6 74.0 87.5 100.0 ± 0.0 78.33 ± 5.32 93.33 ± 3.22
Medium-Play AntMaze 0.0 61.2 71.2 93.3 ± 6.4 43.33 ± 6.40 75.00 ± 6.85
Medium-Diverse AntMaze 0.0 53.7 70.0 100.0 ± 0.0 30.00 ± 5.92 88.33 ± 4.14
Large-Play AntMaze 0.0 15.8 39.6 66.7 ± 12.2 63.33 ± 6.22 78.33 ± 5.32
Large-Diverse AntMaze 0.0 14.9 47.5 60.0 ± 12.7 66.67 ± 6.09 81.67 ± 5.00

Mean 10.92 43.92 55.16 84.00 56.33 83.33

OPAL [1], ACT [34], and PRISE [35] leverage temporal ab-
straction in various ways. For instance, CompILE learns la-
tent codes representing variable-length behavior segments,
enabling cross-task generalization. RPL employs a hier-
archical policy architecture to simplify long-horizon tasks
by decomposing them into sub-policies. OPAL introduces
a continuous space of primitive actions to reduce distri-
butional shift in offline RL, enhancing policy robustness.
PRISE applies sequence compression to learn variable-
length action primitives, improving behavior cloning by
capturing essential behavioral patterns. These approaches
demonstrate the versatility of temporal abstraction in ad-
dressing different challenges in reinforcement learning, par-
ticularly in managing the complexity inherent in sequential
decision-making.

From a model-based perspective, recent work has treated
reinforcement learning as a sequence modeling problem,
utilizing Transformer architectures to model entire trajec-
tories of states, actions, rewards, and values. This ap-
proach is exemplified by methods like Trajectory Trans-
former (TT) [36], and TAP [17]. TAP, in particular, shares
conceptual similarities with our proposed method, L-MAP,
in its use of efficient planning solutions for complex action
spaces. These sequence modeling approaches have shown
promise in capturing long-term dependencies and handling
the variability in trajectories, but they often face challenges
in stochastic environments where the outcome is not solely
determined by the agent’s actions. As highlighted by Paster
et al. [25], reinforcement learning via supervised learning
methods may replicate suboptimal actions that accidentally
led to good outcomes due to environmental randomness.
To address this issue, they proposed ESPER, a solution in-
spired by the decision transformer framework [7]. ESPER
mitigates the influence of stochasticity on policy learning in
discrete action spaces by clustering trajectories and condi-
tioning on average cluster returns.

From a planning perspective, our work relates to meth-
ods like MuZero [27], stochastic MuZero [3], and Vector
Quantized Models for Planning [24], which primarily op-
erate in discrete action spaces and online settings, limiting
their applicability to continuous control tasks in offline RL.

MuZero Unplugged [28] extended MuZero to the offline
setting and adapted to low-dimensional continuous action
spaces using factorized policy representations [31]. How-
ever, scaling to high-dimensional action spaces is challeng-
ing due to computational infeasibility and imprecise action
selection [23]. Additionally, MuZero Unplugged focuses
on deterministic environments and may struggle in highly
stochastic continuous settings.

Our method, L-MAP, extends these concepts to high-
dimensional continuous action spaces by effectively han-
dling stochasticity and complexity. Using an encoder to
group similar state-macro-action pairs and reconstructing
return-to-go estimates via a decoder within the VQ-VAE
framework, L-MAP captures essential dynamics while ab-
stracting unnecessary details. This approach models future
returns more accurately in stochastic settings. Combined
with planning algorithms, L-MAP refines expected return
estimates, bridging the gap between temporal abstraction
techniques and robust performance in stochastic environ-
ments. Our latent code representation and transition model
reduce the need to learn separate policy, dynamics, and
value components in the offline setting, increasing planning
efficiency and accounting for environmental stochasticity,
thereby enhancing generalization across complex tasks.

6. Discussion and Limitations

In conclusion, we introduced the Latent Macro Action
Planner (L-MAP), which leverages temporal abstractions
learned with a state-conditioned VQ-VAE to construct a dis-
crete latent space of macro-actions. This approach enables
efficient planning in high-dimensional continuous action
spaces within stochastic environments. Future directions
include exploring transfer learning to handle new tasks,
and adapting L-MAP to online learning scenarios through
strategies such as risk-averse exploration [22]. These en-
hancements would enable continuous improvement and
help tackle more complex challenges, ultimately improv-
ing generalization and efficiency in complex, real-world set-
tings.

References
[1] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine,

and Ofir Nachum. OPAL: offline primitive discovery for
accelerating offline reinforcement learning. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. 8

[2] Robert Almgren and Neil Chriss. Optimal execution of port-
folio transactions. Journal of Risk, 3:5–40, 2001. 12

[3] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair,
Thomas K. Hubert, and David Silver. Planning in stochastic
environments with a learned model. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. 8

[4] Wenhang Bao and Xiao-yang Liu. Multi-agent deep rein-
forcement learning for liquidation strategy analysis. arXiv
preprint arXiv:1906.11046, 2019. 12

[5] Andrew G Barto and Sridhar Mahadevan. Recent advances
in hierarchical reinforcement learning. Discrete event dy-
namic systems, 13:341–379, 2003. 1

[6] Ashwin Carvalho, Yiqi Gao, Stéphanie Lefèvre, and
Francesco Borrelli. Stochastic predictive control of au-
tonomous vehicles in uncertain environments. 2014. 1

[7] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. In Advances in
Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 15084–
15097, 2021. 8

[8] Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya
Sokolovska, Olivier Teytaud, and Nicolas Bonnard.
Continuous upper confidence trees. In Learning and Intel-
ligent Optimization - 5th International Conference, LION 5,
Rome, Italy, January 17-21, 2011. Selected Papers, pages
433–445. Springer, 2011. 5

[9] Thomas G Dietterich. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of ar-
tificial intelligence research, 13:227–303, 2000. 1

[10] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis
Wehenkel. Clinical data based optimal sti strategies for hiv:
a reinforcement learning approach. Proceedings of the 45th
IEEE Conference on Decision and Control, pages 667–672,
2006. 12

[11] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. D4RL: datasets for deep data-driven rein-
forcement learning. CoRR, abs/2004.07219, 2020. 5, 13

[12] Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer,
and Claudia Linnhoff-Popien. Subgoal-based temporal ab-
straction in monte-carlo tree search. In Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 5562–5568. ijcai.org, 2019. 2

[13] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning.

In 3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceedings,
pages 1025–1037. PMLR, 2019. 7

[14] Ruijie He, Emma Brunskill, and Nicholas Roy. Efficient
planning under uncertainty with macro-actions. J. Artif. In-
tell. Res., 40:523–570, 2011. 2

[15] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Mohammadamin Barekatain, Simon Schmitt, and David Sil-
ver. Learning and planning in complex action spaces. In Pro-
ceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, pages
4476–4486. PMLR, 2021. 1, 3

[16] Michael Janner, Qiyang Li, and Sergey Levine. Offline rein-
forcement learning as one big sequence modeling problem.
In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 1273–1286, 2021. 2, 5

[17] Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying
Li, Tim Rocktäschel, Edward Grefenstette, and Yuandong
Tian. Efficient planning in a compact latent action space.
In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. 2, 3, 5, 8

[18] Thomas Kipf, Yujia Li, Hanjun Dai, Vinı́cius Flores
Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefenstette,
Pushmeet Kohli, and Peter W. Battaglia. Compile: Com-
positional imitation learning and execution. In Proceedings
of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA,
pages 3418–3428. PMLR, 2019. 7

[19] Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In Machine Learning: ECML 2006, 17th
European Conference on Machine Learning, Berlin, Ger-
many, September 18-22, 2006, Proceedings, pages 282–293.
Springer, 2006. 5

[20] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline rein-
forcement learning with implicit q-learning. In The Tenth In-
ternational Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. 2, 5

[21] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. 2, 5

[22] Baiting Luo, Yunuo Zhang, Abhishek Dubey, and Ayan
Mukhopadhyay. Act as you learn: Adaptive decision-making
in non-stationary markov decision processes. In Proceed-
ings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2024, Auckland,
New Zealand, May 6-10, 2024, pages 1301–1309. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems / ACM, 2024. 8

[23] Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar,
Xinyang Geng, and Sergey Levine. Action-quantized offline

reinforcement learning for robotic skill learning. In Confer-
ence on Robot Learning, CoRL 2023, 6-9 November 2023,
Atlanta, GA, USA, pages 1348–1361. PMLR, 2023. 3, 8

[24] Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou,
Aäron van den Oord, and Oriol Vinyals. Vector quantized
models for planning. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, pages 8302–8313. PMLR, 2021. 8

[25] Keiran Paster, Sheila A. McIlraith, and Jimmy Ba. You can’t
count on luck: Why decision transformers and rvs fail in
stochastic environments. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, 2022.
8

[26] Marc Rigter, Bruno Lacerda, and Nick Hawes. One risk to
rule them all: A risk-sensitive perspective on model-based
offline reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023. 2, 5,
12

[27] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
Timothy P. Lillicrap, and David Silver. Mastering atari, go,
chess and shogi by planning with a learned model. Nat., 588
(7839):604–609, 2020. 1, 8

[28] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mo-
hammadamin Barekatain, Ioannis Antonoglou, and David
Silver. Online and offline reinforcement learning by plan-
ning with a learned model. In Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 27580–27591, 2021. 8

[29] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lil-
licrap, Karen Simonyan, and Demis Hassabis. Mastering
chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. 1, 11

[30] Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999. 1

[31] Yunhao Tang and Shipra Agrawal. Discretizing continuous
action space for on-policy optimization. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 5981–
5988. AAAI Press, 2020. 8

[32] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing

Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6306–6315, 2017. 1

[33] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel,
and Yang Gao. Mastering atari games with limited data. In
Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
25476–25488, 2021. 1

[34] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. In Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023, 2023. 8

[35] Ruijie Zheng, Ching-An Cheng, Hal Daumé III, Furong
Huang, and Andrey Kolobov. PRISE: llm-style sequence
compression for learning temporal action abstractions in
control. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. 8

[36] Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS:
latent action space for offline reinforcement learning. In 4th
Conference on Robot Learning, CoRL 2020, 16-18 Novem-
ber 2020, Virtual Event / Cambridge, MA, USA, pages 1719–
1735. PMLR, 2020. 8

Figure 5. Results of ablation studies, where the height of the bar is
the mean normalized scores on high noise gym locomotion control
tasks.

A. Ablation Study

We present analyses and ablations of key hyperparameters
such as macro action length, planning horizon, the use of
pUCT [29] versus UCT, and the effect of our customized
VQ-VAE loss function. Figure 5 summarizes the results
from ablation studies conducted on high-noise stochastic
MuJoCo tasks.

Macro Action Length
We tested macro action lengths L = 1, L = 3, and

L = 5 to evaluate their impact on L-MAP’s performance.
The highest mean score of 68.7 was achieved with L = 3.
Increasing L to 5 reduced the mean score to 64.57, while
decreasing it to 1 further dropped it to 59.39. This indicates
that a macro action length of 3 optimally balances temporal
abstraction and adaptability. A moderate length allows the
model to capture important action sequences while remain-
ing responsive to environmental changes. Shorter lengths
may fail to model temporal dependencies effectively, while
longer lengths may hinder quick adaptation in stochastic en-
vironments.

Planning Horizon
We assessed the effect of planning horizon by varying

the number of planning steps in L-MAP. Reducing the plan-
ning horizon to 3 steps (expanding a single latent variable)
decreased the mean score to 57.51, compared to 68.7 with
the default longer planning horizon. This demonstrates
that a longer planning horizon significantly enhances per-
formance by enabling the model to better anticipate future
events and handle uncertainty in high-noise stochastic envi-
ronments.

Tree Search Algorithm: UCT vs. pUCT
We compared standard UCT and pUCT as tree search al-

gorithms in L-MAP. UCT achieved a mean score of 68.7,
slightly outperforming pUCT, which scored 66.4. While
both methods are effective, UCT performs marginally better
in this context. A possible explanation is that pUCT lever-

ages a learned prior policy to guide exploration, making it
sensitive to the quality of the prior. If the prior policy is
suboptimal, pUCT may be less effective due to this depen-
dency.

VQ-VAE Loss Function We compared our loss func-
tion with the standard loss function without masking (mean
scores: 68.7 vs 57.7). Our approach outperforms the stan-
dard loss by focusing primarily on state and action dur-
ing vector quantization. This results in less skewed recon-
structed returns and a more coherent latent space, accurately
capturing action and state distributions. Consequently, the
model generates more reliable latent representations for re-
construction.

Progressive Widening
We evaluated the impact of progressive widening on

MAP’s performance. Removing progressive widening led
to a significant drop in the mean score from 68.70 to 54.77.
This substantial decrease demonstrates the importance of
controlled state space expansion during planning for a large
search space. Progressive widening enables MAP to bal-
ance between exploiting existing states in the pre-built
search space and incrementally adding new states. With-
out progressive widening, the search suffers from excessive
branching, making it difficult to build sufficiently deep trees
for meaningful planning in areas of high stochasticity.

Parallel Expansion
We assessed the contribution of parallel expansion by

comparing L-MAP’s performance with and without this
feature. Removing parallel expansion reduced the mean
score from 68.7 to 62.75, yielding performance similar to
reducing the planning horizon to six steps. This comparison
reveals that parallel expansion primarily affects the algo-
rithm’s ability to efficiently explore the search space. Given
the same number of MCTS iterations, removing parallel ex-
pansion results in less exploration of possible trajectories,
reducing the algorithm’s planning capability to that of a
shorter horizon. This demonstrates that parallel expansion
is crucial for maximizing the effectiveness of each MCTS
iteration by enabling broader simultaneous exploration of
potential outcomes.

B. Additional Deterministic Environment ex-
periments: D4RL MuJoCo

On the deterministic MuJoCo tasks, particularly when com-
pared to established model-free approaches such as CQL
and IQL, L-MAP demonstrates notable performance in
environments like Walker2D and Hopper, matching or
exceeding these baselines even in dense reward scenarios
as shown in Table 4. This highlights L-MAP’s effectiveness
across various task structures. When compared to TT, L-
MAP consistently delivers comparable results. However, L-
MAP offers a significant practical advantage: its use of tem-
poral abstraction enables lower latency decision-making

for equivalent planning horizons, resulting in improved
efficiency during deployment. Furthermore, L-MAP gener-
ally outperforms TAP, suggesting that even in determinis-
tic environments, the expectation-based planning approach
proves advantageous by accounting for stochasticity in the
behavior policy. This leads to more robust policies and, con-
sequently, superior results.

C. Additional Stochastic Environment experi-
ments: HIV treatment and Currency Ex-
change

The HIV Treatment environment, originally introduced
by Ernst et al. [10], simulates treatment planning where
an agent controls two drug types (RTI and PI) in a 6-
dimensional state space representing cell and virus concen-
trations. The stochasticity arises from varying drug efficacy
at each step. The Currency Exchange environment, based
on the Optimal Liquidation problem [2, 4], involves con-
verting currency under stochastic exchange rates that follow
an Ornstein-Uhlenbeck process. Both environments were
adapted by Rigter et al. [26] to the offline RL setting, with
datasets collected using partially trained and random poli-
cies respectively.

For the HIV Treatment domain, L-MAP and CQL
achieve comparable strong performance (59.08 ± 1.96 and
59.74 ± 1.11 respectively), outperforming other baselines.
In the Currency Exchange environment, L-MAP substan-
tially outperforms all other approaches, achieving a score
of 106.78 ± 5.00 compared to the next best performer CQL
at 93.96 ± 1.69. This superior performance demonstrates
L-MAP’s versatility across different types of stochastic en-
vironments.

D. Latent Space Analysis
To empirically demonstrate the uncertainties introduced by
non-injective mappings, behavior policy, and environmen-
tal stochasticity, we generate heatmaps representing the
transition probabilities between latent codes. We focus
on the Hopper environment and consider three datasets:
medium-expert, medium, and medium-replay, in
both deterministic and stochastic settings. The heatmaps are
constructed by encoding the state-macro-action pairs into
latent codes using our learned representation and visualiz-
ing the transition probabilities between these codes.

D.1. Deterministic Environment Heatmaps
In analyzing the heatmaps for deterministic environments
as shown in Fig. 6, it becomes evident that transitions
from a current latent code zt to multiple next latent codes
zt+1 are not strictly deterministic. This observed spread in
transitions originates from two primary sources: the non-
injective nature of the learned representation and the

(a) Medium expert

(b) Medium

(c) Medium replay

Figure 6. Heatmaps for Deterministic Hopper Environment (Top
50 Frequent Latent Codes). In each heatmap, the intensity of
the color at position (i, j) represents the probability of transition-
ing from the current latent code zt = i to the next latent code
zt+1 = j. The accompanying histograms display the frequency
of each latent code occurring across the dataset with the learned
encoder as the current (zt, right histogram) and next (zt+1, top
histogram) codes. The observed spread in the heatmaps indicates
that, despite the deterministic nature of the environment, transi-
tions from a single zt lead to multiple zt+1.

stochasticity of the behavior policy employed during data
collection.

First, the non-injective mapping of the encoder func-
tion fenc may result in multiple distinct high-dimensional
state-macro-action pairs being mapped to the same latent

Table 4. Normalized results for D4RL MuJoCo-v2 following the protocol of Fu et al. [11]

Model-Based Model-Free

Dataset Type Env L-MAP TAP TT 1R2R CQL IQL

Medium-Expert HalfCheetah 92.14 ± 0.26 86.40 ± 2.22 95.0 ± 0.2 93.99 ± 1.40 91.6 86.7
Medium-Expert Hopper 105.74 ± 2.24 85.55 ± 3.83 110.0 ± 2.7 57.40 ± 6.06 105.4 91.5
Medium-Expert Walker2D 109.35 ± 0.08 105.32 ± 2.03 101.9 ± 6.8 73.18 ± 6.29 108.8 109.6
Medium HalfCheetah 45.50 ± 0.10 44.73 ± 0.39 46.9 ± 0.4 73.45 ± 0.15 44.4 47.4
Medium Hopper 73.90 ± 1.91 69.14 ± 2.33 61.1 ± 3.6 55.49 ± 3.99 58.0 66.3
Medium Walker2D 80.31 ± 1.20 51.75 ± 3.30 79.0 ± 2.8 55.69 ± 4.97 72.5 78.3
Medium-Replay HalfCheetah 38.45 ± 0.80 40.83 ± 0.72 41.9 ± 2.5 63.85 ± 0.19 45.5 44.2
Medium-Replay Hopper 91.18 ± 0.56 80.92 ± 3.79 91.5 ± 3.6 89.67 ± 1.92 95.0 94.7
Medium-Replay Walker2D 81.04 ± 2.62 72.32 ± 3.26 82.6 ± 6.9 90.67 ± 1.98 77.2 77.2

Mean 79.73 70.77 78.88 72.60 77.60 77.32

Table 5. Results for HIV Treatment and Currency Exchange.

Model-Based Approaches Model-Free Approaches

Env L-MAP TAP TT 1R2R CQL IQL

HIV 59.08± 1.96 54.95± 1.98 54.46± 3.30 56.45± 2.17 59.74 ± 1.11 34.1± 1.2
Currency 106.78 ± 5.00 89.72± 3.90 79.28± 2.61 78.52± 2.08 93.96± 1.69 89.41± 2.83

code as shown in the histograms of Fig.6. Specifically, for
different state-macro-action pairs x

(1)
t = (s

(1)
t ,m

(1)
t) and

x
(2)
t = (s

(2)
t ,m

(2)
t), it is possible that:

fenc(x
(1)
t) = fenc(x

(2)
t) = zt,

even though x
(1)
t ̸= x

(2)
t . Consequently, their correspond-

ing next state-macro-action pairs x(1)
t+1 and x

(2)
t+1 may differ,

potentially leading to different next latent codes upon en-
coding:

z
(1)
t+1 = fenc(x

(1)
t+1), z

(2)
t+1 = fenc(x

(2)
t+1), (4)

with z
(1)
t+1 ̸= z

(2)
t+1. (5)

Second, because the behavior policy πb used for data
collection may be stochastic, it introduces variability in the
selection of macro-actions at both the current and subse-
quent time steps. Given a state st, the behavior policy de-
termines the macro-action mt as follows:

mt ∼ πb(m | st).

This stochastic selection can result in different macro-
actions m

(1)
t and m

(2)
t being chosen from the same state

st, which naturally introduces stochasticity. Note that even
if the encoder maps both x

(1)
t = (st,m

(1)
t) and x

(2)
t =

(st,m
(2)
t) to the same latent code zt:

fenc(x
(1)
t) = fenc(x

(2)
t) = zt.

the next states s(1)t+1 and s
(2)
t+1 might differ, even though the

environment dynamics Tenv are deterministic, i.e.,

s
(1)
t+1 = Tenv(st,m

(1)
t), s

(2)
t+1 = Tenv(st,m

(2)
t), (6)

with s
(1)
t+1 ̸= s

(2)
t+1. (7)

These different next states lead to different next state-
macro-action pairs:

x
(1)
t+1 = (s

(1)
t+1,m

(1)
t+1), x

(2)
t+1 = (s

(2)
t+1,m

(2)
t+1).

Upon encoding, they may yield different next latent codes:

z
(1)
t+1 = fenc(x

(1)
t+1), z

(2)
t+1 = fenc(x

(2)
t+1), (8)

with z
(1)
t+1 ̸= z

(2)
t+1. (9)

Therefore, even in a deterministic environment, the com-
bination of a non-injective encoder and a stochastic behav-
ior policy introduces variability in the latent transitions.
The heatmaps for deterministic environments empirically
demonstrate this spread, showing that each zt does not map
deterministically to a single zt+1 but rather to a distribution
of possible next latent codes.

D.2. Stochastic Environment Heatmaps
The heatmaps for stochastic environments as shown in
Fig. 7 exhibit a more pronounced spread in transition prob-
abilities. This inherent environmental stochasticity means
that for a given st and mt, there are multiple possible next

(a) Medium Expert

(b) Medium

(c) Medium Replay

Figure 7. Heatmaps for Stochastic Hopper Environment (Top 50
Frequent Latent Codes). The observed spread in the heatmaps
indicates that inherent environmental stochasticity further con-
tributes to transitions from a single zt leading to multiple zt+1.

states st+1, leading to a wider distribution of next latent
codes zt+1 upon encoding. When combined with the non-
injective mapping of the encoder and the stochasticity of the
behavior policy, the uncertainties in the latent transitions are
further amplified.

D.3. The Impact of L1 Regularization on Represen-
tation Fidelity

The heatmaps shown in Fig.8 reveal distinct patterns be-
tween transition probabilities for latent codes encoded by
encoders trained with L1 and L2 norm regularization in the

(a) L1 norm

(b) L2 norm

Figure 8. Transition Probability Heatmaps for Medium-Replay
Datasets from the Stochastic Hopper Environment (Top 50 Fre-
quent Latent Codes). Left: Heatmap depicting transition probabil-
ities when embeddings are regularized using the L1 norm. Right:
Heatmap illustrating transition probabilities under L2 norm regu-
larization.

latent space. The L2 norm demonstrates more distributed
transition probabilities, with multiple moderate-probability
transitions (shown as light blue dots) for each current state,
indicating the encoder preserves more granular informa-
tion. In contrast, the L1 norm exhibits highly deterministic
transitions for certain latent codes, shown by the predomi-
nantly dark purple background with the bright yellow spot
approaching probability 1.0. This suggests that the encoder
trained with L1 regularization tends to collapse dissimilar
inputs into the same latent code, leading to less nuanced
representations.

Table 6. Hopper Environment Results with Increasing Stochasticity

Model-Based Model-Free

Dataset Type Env L-MAP TAP TT 1R2R CQL IQL

Deterministic
Medium-Expert Hopper 105.74 ± 2.24 85.55 ± 3.83 110.0 ± 2.7 57.40 ± 6.06 105.4 91.5
Medium Hopper 73.90 ± 1.91 69.14 ± 2.33 61.1 ± 3.6 55.49 ± 3.99 58.0 66.3
Medium-Replay Hopper 91.18 ± 0.56 80.92 ± 3.79 91.5 ± 3.6 89.67 ± 1.92 95.0 94.7

Mean (Deterministic) 90.27 78.54 87.53 67.52 86.13 84.17

Moderate Stochasticity
Medium-Expert-Mod Hopper 106.11 ± 2.16 40.86 ± 5.42 56.10 ± 3.33 52.19 ± 8.37 106.17 ± 2.16 60.61 ± 3.46
Medium-Mod Hopper 55.07 ± 3.06 43.64 ± 2.25 44.49 ± 2.47 65.24 ± 3.31 49.92 ± 3.00 56.00 ± 3.60
Medium-Replay-Mod Hopper 52.30 ± 2.65 38.10 ± 3.22 37.85 ± 1.19 22.82 ± 2.08 40.53 ± 1.52 49.12 ± 3.38

Mean (Moderate Stochasticity) 71.16 40.87 46.15 46.75 65.54 55.24

High Stochasticity
Medium-Expert-High Hopper 66.93 ± 3.46 37.31 ± 3.66 58.04 ± 3.60 37.99 ± 2.71 68.03 ± 3.94 44.83 ± 2.58
Medium-High Hopper 55.32 ± 3.56 43.93 ± 2.66 41.26 ± 5.53 33.99 ± 0.92 45.21 ± 2.97 49.69 ± 2.47
Medium-Replay-High Hopper 58.05 ± 3.36 48.69 ± 2.97 39.24 ± 2.16 68.25 ± 3.78 51.70 ± 3.09 43.27 ± 2.78

Mean (High Stochasticity) 60.10 43.31 46.18 46.74 54.98 45.93

E. Analysis of Performance Trends with In-
creasing Stochasticity

This section examines how L-MAP and baseline methods
respond to increasing levels of stochasticity in the Hop-
per environment. Table 6 presents the performance metrics
across deterministic, moderate, and high stochasticity set-
tings.

In the deterministic setting, L-MAP achieves a mean
score of 90.27, indicating strong performance and outper-
forming all other model-based methods. Among the base-
lines, TT attains a mean of 87.53, TAP achieves 78.54, and
1R2R scores 67.52. The model-free methods CQL and IQL
also perform well, with mean scores of 86.13 and 84.17, re-
spectively. The high scores across all methods suggest that
the deterministic environment poses minimal challenges, al-
lowing both L-MAP and the baselines to excel.

As the environment introduces moderate stochasticity,
L-MAP’s mean performance decreases to 71.16, reflecting a
reduction of approximately 21% from its deterministic per-
formance. The model-based baselines experience larger de-
clines; TAP’s mean drops to 40.87 (a 48% reduction), TT’s
to 46.15 (a 47% reduction), and 1R2R’s to 46.75 (a 31% re-
duction). The model-free methods also suffer performance
losses; CQL’s mean decreases to 65.54 (a 24% reduction),
and IQL’s to 55.24 (a 34% reduction). Despite the reduc-
tions, L-MAP maintains a higher mean score than all base-
lines in this setting, indicating better resilience to moder-
ate stochasticity among both model-based and model-free
methods.

In the setting of high stochasticity, L-MAP’s mean fur-
ther decreases to 60.10, representing a total reduction of
about 33% from the deterministic case. The model-based
baselines continue to show declining trends; TAP’s mean
falls to 43.31 (a 45% reduction), TT’s to 46.18 (a 47%

reduction), and 1R2R’s to 46.74 (a 31% reduction). The
model-free methods also see further decreases; CQL’s mean
drops to 54.98 (a 36% reduction), and IQL’s to 45.93 (a
45% reduction). While all methods experience performance
degradation, L-MAP consistently outperforms the model-
based baselines TAP and TT, and maintains an edge over
the model-free methods CQL and IQL. The performance of
L-MAP shows relatively better robustness among the base-
lines.

The overall trend indicates that increasing stochasticity
adversely affects all methods, but L-MAP’s performance di-
minishes at a slower rate compared to the other model-based
methods. These results suggest that L-MAP is more robust
to stochastic variations in the environment than most of the
baseline methods, particularly the model-based ones.

F. Planning Hyperparameters

Table 7. Planning Hyperparameters

Environment M N B λ γ

Stochastic MuJoCo 16 4 4 0.5 0.99
D4RL MuJoCo 16 4 4 0.5 0.99
Adroit 10 2 4 0.5 0.99
AntMaze 16 2 4 0.5 0.998
Currency 32 4 4 0.5 0.99
HIV Treatment 5 4 4 1.0 0.99

For all environments, we utilize the following hyperpa-
rameters for sampling during the search process: α = 0.1
and ϵ = 1, which determine the exploration rate of pro-
gressive widening; and set the number of Monte Carlo Tree
Search (MCTS) iterations to 100. Detailed parameters for
each environment are presented in Table 7.

	Introduction
	Preliminaries
	Method
	Discretizing State-Macro Action Sequences with VQ-VAE
	Planning with a Latent Macro Action Model

	Experiments
	Related Work
	Discussion and Limitations
	Ablation Study
	Additional Deterministic Environment experiments: D4RL MuJoCo
	Additional Stochastic Environment experiments: HIV treatment and Currency Exchange
	Latent Space Analysis
	Deterministic Environment Heatmaps
	Stochastic Environment Heatmaps
	The Impact of L1 Regularization on Representation Fidelity

	Analysis of Performance Trends with Increasing Stochasticity
	Planning Hyperparameters

