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ABSTRACT

This paper introduces a method for efficiently learning video-level object-centric
representations by bootstrapping off a pre-trained image backbone, which we term
Interpreter. It presents a novel hierarchical slot attention architecture with
local learning and an optimal transport objective that yields fully unsupervised
video segmentation. We first learn to compress images into image-level object-
centric representations. Interpreter then learns to compress and reconstruct
the object-centric representations for each frame across a video, allowing us to
circumvent the costly process of reconstructing full frame feature maps. Unlike
prior work, this allows us to scale to significantly longer videos without resort-
ing to chunking videos into segments and matching between them. To deal with
the unordered nature of object-centric representations, we employ Sinkhorn di-
vergence, a relaxed optimal transport objective, to compute the distance between
unordered sets of representations. We evaluate the resulting segmentation maps on
video instance segmentation in both realistic and synthetic settings, using YTVIS-
19 and MOVi-E, respectively. Interpreter achieves state-of-the-art results
on the realistic YTVIS-19 dataset and presents a promising approach of scaling
object-centric representation learning to longer videos.1

1 INTRODUCTION

Self-supervised object-centric learning has received significant attention within the last few years
(Locatello et al., 2020; Aydemir et al., 2023; Kakogeorgiou et al., 2024). In object-centric learning
the objective is to learn a mapping from observations to sets of vectors such that each vector encodes
a semantically distinct part of the observation, e.g. individual or groups of objects in an image. This
process is learned in a self-supervised manner, for example through reconstruction of image pixels
or feature maps. Recent work has extended object-centric learning from images to video while
achieving impressive results on video object segmentation without relying on additional cues such
as motion estimation or depth. However, extending slot attention to videos, particularly of high
resolution, presents a computational challenge due to the requirement of reconstructing the full
feature map of each frame. As a result, prior work (Aydemir et al., 2023) resorts to chunking videos
into small segments of a few frames, extracting object-centric representations and segmentations,
and matching these across frames. We submit that a more efficient method is needed to permit full
processing of the temporal context.

We present one such solution. Interpreter introduces a novel hierarchical slot attention ap-
proach with a local learning objective. We overcome the temporal limitations of prior work by break-
ing the problem down into two parts. Interpreter first learns to compress image feature maps
into object-centric representations through reconstruction. Next, our proposed method learns to
compress and reconstruct the image-level object-centric representations across entire videos, yield-
ing a set of video-level frames. However, to implement this approach requires us to answer a few
questions. The first question is how to extend the attention maps between the individual frames and
video-level representations. For this we show that attention maps can be propagated between the im-
age and video level slot attention modules to compute a image-to-video attention maps. The second
question is what criteria is suitable to measure the distance between the unordered sets that con-
stitute the image-level object-centric representations and their reconstructions. This we resolve by
considering any two sets of object-centric representations as empirical samples in high dimensional

1Code to be made publicly available at a later date.
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feature space. Through this we are able to employ Sinkhorn Divergence, an entropy regularized
optimal transport distance that is amenable to gradient-based learning.

To summarize, our contributions are threefold. First, we introduce Interpreter, a novel method
that leverages a hierarchical slot attention architecture with local learning objectives to efficiently
learn video-level representations from pre-trained image backbones, enabling the processing of en-
tire videos without the need for chunking. Second, we propose a technique to propagate attention
maps between image-level and video-level representations, facilitating the computation of image-
to-video level attention maps. Third, we address the challenge of measuring distances between
unordered sets of object-centric representations by employing Sinkhorn Divergence, an entropy-
regularized optimal transport distance. We validate our approach on both realistic and synthetic
datasets, demonstrating state-of-the-art video object segmentation performance on YTVIS-19 in
terms of mean Intersection over Union.

2 RELATED WORK

We consider here two lines of work, object-centric learning and video object segmentation, that we
will summarize in brief. We focus on fully unsupervised video object segmentation.

Object-Centric Learning: The most prevalent method in contemporary object-centric learning is
Slot Attention (Locatello et al., 2020), which defines a learnable iterative function that extracts a
set of slots of predefined cardinality from an observation, e.g. an image, through an inverted cross-
attention mechanism. Subsequent work extended Slot Attention from simple pixel reconstruction on
synthetic scenes to real world images by introducing a feature map reconstructive objective using the
high quality features from a pre-trained DINO/DINOv2 ViT backbone (Seitzer et al., 2022; Caron
et al., 2021; Oquab et al., 2023). Newer versions of Slot Attention have also been introduced, such
as Invariant Slot Attention (Biza et al., 2023), which makes slot attention invariant to translation and
scale, and Implicit Slot Attention (Chang et al., 2022) which significantly improved the robustness
of training.

Video Object Segmentation: In Video Object Segmentation (VOS) the goal is to accurately seg-
ment individual objects throughout the frames of a video. This includes making sure that segmen-
tations stay consistent across the sequence, without mix up of identities. While there exist two
common VOS settings, semi-supervised and unsupervised, we choose here to focus on prior work in
unsupervised VOS as it aligns with our proposed method. In unsupervised VOS training on ground
truth segmentation annotations is permitted, but no supervision is provided at inference time. Re-
cent work, however, has approached VOS fully unsupervised (Xie et al., 2022; Aydemir et al., 2023;
Ding et al., 2024), where the only permitted supervision should come from the data itself. Methods
such as OCLR (Xie et al., 2022) use optical flow to discover and segment objects. More recently,
approaches not reliant on any modality other than the video itself, have been proposed. Two notable
examples are SOLV and BA (Aydemir et al., 2023; Ding et al., 2024).

SOLV combines per-frame invariant slot attention with learnable queries and a temporal encoder that
enriches slots across frames. SOLV also introduces agglomerative clustering to alleviate the over-
clustering that occurs from using a fixed number of slots. BA takes a different approach and makes
use of the attention maps of a pre-trained DINO vision encoder and learns an attention mechanism
to capture spatio-temporal dependencies, followed by hierarchical clustering to generate coherent
object segmentation masks. However, both SOLV and BA are limited by relatively short temporal
contexts, e.g. T = 5 and T = 3 frames, respectively, requiring matching between video segments. In
contrast, our proposed method, Interpreter, is designed to allow for a more extensive temporal
context, making it more effective at maintaining object consistency across longer sequences.

3 METHODOLOGY

In this section we introduce the architecture and training objective of Interpreter. We also de-
scribe how to propagate the attention maps between image features and video-level representations.
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3.1 INTERPRETER

Our proposed method, Interpreter, follows prior works (Seitzer et al., 2022; Kakogeorgiou
et al., 2024) by first learning an image-level slot attention auto-encoder to reconstruct high-quality
image features from a pre-trained DINOv2 ViT-B/14 backbone. Subsequently, we introduce a sec-
ond video-level slot attention module that is trained by reconstructing the image-level object-centric
representations from the first level. However, the video-level objective poses a challenge. While the
image-level reconstruction benefits from an explicit ordered structure in the feature map, allowing
for structured losses like L2, the image-level object-centric representations form an unordered set,
thereby lacking explicit structure. Although these representations implicitly contain latent positional
information, they still do not permit the use of a structured loss.

To effectively use the object-centric representations as reconstruction targets, we require a loss func-
tion that is invariant to the ordering of elements within the set. Consider a set of object-centric
representations S and a predicted set S̃, both viewed as empirical samples in high-dimensional fea-
ture space with equal probability mass assigned to each feature vector. One natural way to measure
the discrepancy between S and S̃ is the Wasserstein (optimal transport) distance, which evaluates
the minimal ”work” (distance × mass) required to transform S̃ into S. This distance is inherently
invariant to the ordering of elements. However, the direct computation of optimal transport is non-
differentiable, complicating its use in gradient-based optimization.

Fortunately, an alternative divergence measure, Sinkhorn Divergence, approximates the Wasser-
stein distance while being both fast and differentiable (Feydy et al., 2019). Sinkhorn divergence
interpolates between the exact Wasserstein distance and an entropy-regularized divergence by in-
corporating an entropy term that smooths the problem. This divergence can be computed iteratively
via the Sinkhorn-Knopp algorithm. As the entropy regularization diminishes, Sinkhorn divergence
converges towards the true Wasserstein distance, making it a practical and theoretically sound choice
for measuring how well the model reconstructs unordered sets in high-dimensional feature space.

3.2 ARCHITECTURE AND OBJECTIVE

Interpreter consists of a pre-trained image backbone and two hierarchically stacked slot atten-
tion auto-encoders that are trained with a local objective, independently. For each level we use
Implicit Slot Attention (Chang et al., 2022) for more robust training and Flash Attention (Dao
et al., 2022) for faster and cheaper transformer attention (Vaswani et al., 2017). For calculating
the Sinkhorn divergence we use the GPU accelerated Geomloss (Feydy et al., 2019) package due
to its speed and robust implementation.

The first level of the hierarchy consists of an slot attention module and a transformer decoder
without causal masking. A diagram of this stage of training can be seen in figure 1 left. The slot
attention module takes image feature maps F ∈ RHW×D0 , from the pre-trained image encoder and
compresses them to object-centric representations S ∈ RN×D1 , where N is the number of image
slots with N ≪ HW , D0 and D1 is the dimensionality of the feature map and slots, respectively.
Following this, a transformer decoder maps a set of 2D sine-cosine positionally encoded vectors
P0 ∈ RHW×D0 to a reconstructed feature map F̃ conditioned on the slots S. The objective is then
calculated as the L2 loss between the original feature map F and the reconstructed feature map F̃ :

L0 = ∥F̃ − F∥22 (1)

The second level of the hierarchy consists of a transformer encoder, a slot attention module and a
transformer decoder, also without causal masking. A diagram of this stage of training can be seen in
figure 1 right. The slots S0, . . .ST for T frames from the prior level are first concatenated and time-
positionally encoded with 1D sine-cosine positional encodings, after which they run through the
transformer encoder to produce temporally enriched representations. The temporally enriched image
slots are then compressed into a set of video-level slots Ŝ ∈ RK×D2 using the slot attention module,
where K is the number of video slots with K ≪ TN and D2 is the video slot dimensionality.
Similar to (Aydemir et al., 2023), we employ agglomerative clustering with complete linkage using
cosine distance as the criterion to merge slots after slot attention, to mitigate over-clustering. Finally,
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Figure 1: The two stages of Interpreter. Blue are frozen modules, green are (hot) tunable
modules, yellow are tensors. Single arrows indicate joint-processing, multiple parallel arrows indi-
cate disjoint parallel processing. Left: Training of the image-level slot attention auto-encoder by
reconstructing image feature maps from a pre-trained encoder. Right: Training of the video-level
slot attention auto-encoder through reconstruction of image-level object-centric representations.

the decoder maps a set of 2D positionally encoded vectors P1 ∈ RTN×D1 to reconstructed image-
level slots S̃0 . . . S̃T conditioned on the video-level slots Ŝ. The objective for this level is measured
through the Sinkhorn divergence averaged over time-steps:

L1 =
1

T

T∑
i

SH(S̃i,Si) (2)

Attention Propagation: We use the attention maps from the slot attention mechanism for segmen-
tation. Since we employ hierarchical slot attention, there exists no direct attention map between a
given feature map Fi and the video-level object-centric representations Ŝ. Instead, we have to com-
pute this attention map through attention propagation between the stages of the hierarchy. More
formally, let Ai ∈ [0, 1]HW×N be the slot attention map representing the linear mapping between
the image features Fi and the image-level slots Si for frame i ∈ [0, T ], normalized over the slot
dimension. Furthermore, let Â ∈ [0, 1]TN×K be the slot attention map between the concatenated
image-level slots S0||S1||...||ST and video-level slots Ŝ. Now let Ā ∈ [0, 1]T×N×K be the tensor
given by decomposing the first dimension of Â into time and image-slot dimensions. With this, the
attention map Mi between Fi and Ŝ is given by Mi = AiĀ[i], where Ā[i] is the i:th matrix along
the batch dimension of Ā.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: To evaluate our proposed method on video object segmentation in real-world videos we
train and test on YouTube-VIS 2019 (YTVIS-19) (Yang et al., 2019), consisting of a total of 2883
videos that are up to 36 frames, corresponding to 6 seconds of video. We follow the training and
testing protocol of (Aydemir et al., 2023) and train on the combined train, test and validation sets.
Due to the lack of ground truth masks on the train and validation set, we also follow (Aydemir et al.,
2023; Ding et al., 2024) by evaluating on the exact same holdout set of 300 videos from the training
set. More succinctly, we train on a total of 2583 videos and evaluate on 300 videos. During training
and evaluation we resize the videos and segmentation masks to 336 × 504 resolution and extend
videos shorter than the maximum length of 36 frames by repeating the sequence to fill the maximum
length and truncate any excess. During evaluation we resize the attention maps after propagation
with bilinear interpolation to match the resolution of the videos and cut off any repeated frames.

To further test the video segmentation performance we use the synthetic MOVi-E dataset (Greff
et al., 2022), consisting of around 10k training videos, and 1k testing videos, at 24 frames each,
corresponding to 2 seconds. MOVi-E features up to 20 in-motion objects combined with linear
camera motion. We resize the videos to 336 × 336 resolution and consume each 24 frame video in
full without needing to extend due to constant video length. Similar to YTVIS-19, we use bilinear
interpolation to upscale the attention maps during segmentation evaluation. For both YTVIS-19 and
MOVi-E we report the video Mean Intersection over Union (mIoU), disregarding the background
class. As established by prior methods (Bao et al., 2023; Aydemir et al., 2023; Karazija et al., 2022),
we also report the mean per-frame Foreground Adjusted Rand-Index (FG-ARI). Following standard
practice, we perform Hungarian matching between the predicted segmentations and the ground truth
segmentation maps.

Implementation Details: On the YTVIS-19 dataset we train the first level of interpreter with 32
slots and a 4 layer transformer decoder. We keep the dimensionality D1 of the slots equal to that of
the 768 dimensional DINOv2 ViT-b embeddings and train with the AdamW (Loshchilov & Hutter,
2018) optimizer for 180 epochs with a batch size of 128, equalling roughly 110k steps. We use a
linear learning rate warmup from 1× 10−4 to a peak of 4× 10−4 over 5 epochs, followed by cosine
annealing down to 2× 10−6. For the second level we sample 8 slots with dimension D2 = 768 and
learn a transformer encoder and decoder, each with 4 layers. We also use AdamW for the second
level, but train with a batch size of 96 for 800 epochs, totalling around 21k steps. We use a slow
linear learning rate warm up from 1 × 10−5 to 2 × 10−4 for 50 epochs followed by a cosine decay
down to 2 × 10−6. Both levels employ a learnable Gaussian prior in the slot attention module, and
are trained with a constant weight decay of 0.005. For the second level we set the clustering distance
threshold to 0.15, use a blur value of 0.05 (which controls the level of entropy regularization), and
set the scaling to 0.5 (which controls the step size of Sinkhorn Knopp). During training of both
levels we only use a simple horizontal flip and no other augmentations.

For the MOVi-E dataset we use nearly the same configuration as for YTVIS-19. We sample 32 slots
at the first level and 20 at the second level. We train the first level for 60 epochs with a batch size of
128, totalling around 110k training steps, but warm up the learning rate for only 3 epochs. For the
second stage we train for 600 epochs with a batch size of 96, totalling around 47k training steps. We
warmup for 50 epochs, and perform consine annealing with the same learning rate configuration as
with YTVIS-19. We set the clustering distance threshold to 0.15. During training for both level 1
and 2 we use a simple horizontal flip augmentation. Just as with YTVIS-19, we use a blur value of
0.05 and a scaling value of 0.5 for the Sinkhorn loss.

Ablations: We perform a small set of ablations on the YTVIS-19 dataset and choose to ablate the
number of slots N used at the image level, and the clustering threshold ϵ used during agglomerative
clustering at the video level. Note that we train each model for the distance threshold ablation with
half the number of training steps of the final reported model due to resource constraints.
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Figure 2: Sample segmentations by Interpreter on the 300 video hold-out set from YTVIS-19.
Frames were taken from the beginning (first and second column), middle (third column), and end
(fourth column) of the videos. First column shows the original RGB frame.
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4.2 RESULTS

Interpreter achieves state-of-the-art results on the YTVIS-19 dataset with a significant 4.1
mIoU improvement compared to the runner up, Betrayed by Attention (Ding et al., 2024), and a 8.9
mIoU improvement over the closest slot attention based method SOLV (Aydemir et al., 2023) (table
1). However, the method lags behind on image FG-ARI, indicating that the per-frame segmentation
could be improved. We demonstrate some segmentation samples from the 300 testing videos in
figure 2. Interpreter is able to deal with occlusions, as seen in the first row of figure 2, where
a pebble is occluded for a prolonged period. It is also able to track subjects that see significant
changes in appearance, size, pose and position, as seen in the second video of a skier. Entities
going from off-screen to on-screen are also segmented well, as seen in both first and and third row,
where a fruit and person are revealed, respectively. The fourth row shows a particularly impressive
performance, identifying a heavily occluded gorilla hidden in a tree that later makes a leap of faith.
In the fifth row we see the model dealing well with segmenting the leopard behind the thin-wired
fence. The sixth and seventh row shows Interpreter managing fine-detailed segmentations
effectively, segmenting the thin leaves and branches, respectively, with remarkable accuracy. The
small monkey is also tracked well in row seven. The last row shows a cute cat.

Table 1: Performance on YTVIS-19 in terms of FG-ARI and mIoU. For TimeT (Salehi et al., 2023)
we borrow the rerun evaluations from (Ding et al., 2024). For our proposed method we rerun the
evaluation three times with random seeds and report the mean.

Model FG-ARI mIoU
SAVi (Elsayed et al., 2022) 11.1 12.7
STEVE (Singh et al., 2022) 20.0 20.9
OCLR (Xie et al., 2022) 15.9 32.5
VideoSAUR (Zadaianchuk et al., 2023) 39.4 29.1
SOLV (Aydemir et al., 2023) 29.1 45.3
SMTC (Qian et al., 2023) 31.4 38.8
TimeT (Salehi et al., 2023) 37.9 40.4
BA (Ding et al., 2024) 44.3 50.1
Interpreter (ours) 28.5 54.2

Table 2: Performance on MOVi-E in terms of FG-ARI and mIoU. For our proposed method we
rerun the evaluation three times with random seeds and report the mean.

Model FG-ARI mIoU
SAVi (Elsayed et al., 2022) 42.8 16.0
STEVE (Singh et al., 2022) 50.6 26.6
VideoSAUR (Zadaianchuk et al., 2023) 73.9 35.6
SOLV (Aydemir et al., 2023) 80.8 -
BA (Ding et al., 2024) 84.4 40.7
Interpreter (ours) 85.3 29.7

On the MOVi-E dataset we see that our proposed method falls behind previous works (-11 mIoU,
table 2). This is an interesting observation, as we achieve good performance on YTVIS-19. We look
closer at why our method appears to perform worse on MOVi-E in subsection 4.3. Surprisingly, our
method achieves the highest FG-ARI on this dataset.

Looking at the ablation results in table 3a we see a significant rise in mIoU as the number of image-
level slots N increases, achieving an mIoU of 54.2 at 32 slots. However, FG-ARI does not portray
such a trend, achieving the best performance at 16 image-level slots. Optimizing for mIoU we train
our final model on YTVIS with 32 image-level slots. Varying the clustering threshold ϵ has a rather
pronounced effect on both FG-ARI and mIoU (see table 3b), achieving an increase of most 3.3 FG-
ARI and 4.8 mIoU when compared to having no clustering. Optimizing for mIoU performance we
set ϵ = 0.15 on the final YTVIS-19 model.
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Figure 3: Sample failure cases by Interpreter on YTVIS-19. Top: we can see how an adult
gorilla and the baby hanging on to it are clustered together. Middle: we see how two bikers are
consistently clustered together throughout a video. Bottom: shows rapid camera motion and subse-
quent confusion of two entities.

Figure 4: Sample failure cases by Interpreter on the MOVi-E test set. First row: take note
of how the flying box changes slot assignments when it lands on the ground, going from purple to
yellow. Second row: the pill bottle changes assignment between flying and landing on the ground.
We can also see the spurious clustering of two shoes at the top of the video.
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Table 3: Ablation studies on segmentation performance with varying parameters. We report the
mean over 3 random seed evaluations.

(a) Segmentation performance on YTVIS-19 as
the number of image-level slots N varies.

N FG-ARI mIoU
8 28.0 49.3
16 29.3 52.0
32 28.5 54.2

(b) Segmentation performance on YTVIS-19 as
the clustering distance threshold varies.

ϵ FG-ARI mIoU
0.00 26.0 49.2
0.05 27.8 50.5
0.10 28.3 53.5
0.15 28.4 54.0
0.20 29.3 53.7

4.3 ANALYSIS OF RESULTS

We observe a few common failure modes of our proposed method. A common issue on the YTVIS-
19 dataset is the spurious clustering of similar entities. This usually presents itself when there are two
or more objects of similar appearance, and seems to happen more frequently, though not exclusively,
when such objects are in close proximity. Figure 3 shows two examples of this happening on the
300 video YTVIS-19 hold-out set. Another failure mode occurs when there are similar entities and
significant camera movement. In particular, in cases of rapid camera movement can cause the model
to confuse one entity for another due to camera panning. We show an example of this in the bottom
row of figure 3.

Looking closer at the qualitative results in figure 4 we can see one of the reasons why the perfor-
mance suffers on MOVi-E. Ostensibly, the model appears to allocate excess slot capacity at the video
level to break up the movement trajectories of objects. Notably, we can see that objects maintain
the same slot assignment as they fall through the air, but change assignment as soon as the object
hits the ground and motion changes. This is unsurprising considering the compression objective;
the model is making use of the allotted representational capacity to best reconstruct the sequence of
image-level object-centric representations. To remedy this the clustering distance threshold ϵ could
be increased, but this also makes spurious clusterings of adjacent objects more likely. Notably, we
observe qualitatively that MOVi-E is sensitive to under-clustering as ϵ increases, likely due to the
sheer number of objects in each scene.

The attention maps derived from slot attention have a tendency to over-segment objects, particularly
when the background is simple, leading to a signature ”aura” look. An example of this can be
observed in the middle row in figure 2. This might be why our proposed method, which makes use
of slot attention, falls behind other works such as BA and TimeT (Ding et al., 2024; Salehi et al.,
2023), that do not make use of slot attention, in terms of average per-frame FG-ARI on YTVIS-19.
Supporting this hypothesis is the relatively close performance of prior slot-attention based methods;
SMTC, SOLV, and our proposed method score closely at 31.4, 29.1, 28.5 FG-ARI, respectively. On
MOVi-E Interpreter scores unexpectedly well in terms of per-frame FG-ARI. This result is
consistent with the observations of motion trajectories being segmented into separate parts; while
the video-level mIoU score will suffer from segmented motion, the per-frame FG-ARI results should
not. Regardless, the performance in terms of FG-ARI on MOVi-E is surprising.

5 CONCLUSION

5.1 SUMMARY

We have introduced Interpreter, a novel method for efficient video-level representation learn-
ing that leverages a hierarchical slot attention architecture with local learning objectives. By build-
ing upon pre-trained image backbones and avoiding the reconstruction of full frame feature maps,
Interpreter scales effectively to longer videos without the need for chunking and matching. We
enable this novel hierarchical approach by introducing a method for propagating attention maps be-
tween slot attention layers and a method for learning to reconstruct unordered sets of object-centric
representations using the Sinkhorn divergence distance metric.
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Experimental results demonstrate that Interpreter achieves state-of-the-art performance on the
YTVIS-19 dataset in terms of mean Intersection over Union, outperforming existing methods by a
significant margin. While there are limitations observed on synthetic datasets like MOVi-E, where
the method underperforms compared to previous works, Interpreter represents a notable ad-
vancement in object-centric video representation learning as it offers a scalable and efficient ap-
proach for processing entire videos.

5.2 FUTURE WORK

We see a need for better methods of dynamically selecting the number of slots used during training
and inference time. The agglomerative clustering approach helps to alleviate over-clustering in some
scenarios, but it can lead under-clustering in others. A better method of deciding the number of slots
would likely improve our proposed method.

We empirically find that Interpreter is particularly sensitive to masking. During our experi-
ments we tried temporal masking for when videos are too short to fill the context window, such as
is the case with YTVIS-19, but found that it often lead to divergence during training. While it is
possible to mask, we found that extending the sequence through repetition to be an easier solution
that does not adversely affect results. A future direction of research could try to address this issue.

The hierarchical slot attention method we propose is general and could be extended to any depth. It
would be interesting to see it applied with more levels than two, which would allow the method to
be extended to even longer videos and would result in multi-level segmentation hierarchies.
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Armand Joulin. Emerging Properties in Self-Supervised Vision Transformers. pp. 9630–9640,
October 2021. doi: 10.1109/ICCV48922.2021.00951. URL https://ieeexplore.ieee.
org/document/9709990. ISSN: 2380-7504.

Michael Chang, Thomas L. Griffiths, and Sergey Levine. Object Representations as Fixed Points:
Training Iterative Inference Algorithms with Implicit Differentiation. March 2022. URL https:
//openreview.net/forum?id=rV3Gon4dD-5.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
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Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and
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