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Abstract001

This paper introduces Interleaved Speech-002
Text Language Model (IST-LM) for zero-003
shot streaming Text-to-Speech (TTS). Unlike004
many previous approaches, IST-LM is directly005
trained on interleaved sequences of text and006
speech tokens with a fixed ratio, eliminating007
the need for additional efforts like forced align-008
ment or complex designs. The ratio of text009
chunk size to speech chunk size is crucial for010
the performance of IST-LM. To explore this, we011
conducted a comprehensive series of statistical012
analyses on the training data and performed013
correlation analysis with the final performance,014
uncovering several key factors: 1) the distance015
between speech tokens and their correspond-016
ing text tokens, 2) the number of future text to-017
kens accessible to each speech token, and 3) the018
frequency of speech tokens precedes their cor-019
responding text tokens. Experimental results020
demonstrate how to achieve an optimal stream-021
ing TTS system with a limited performance022
gap compared to its non-streaming counterpart.023
IST-LM is conceptually simple and empirically024
powerful, enabling streaming TTS with mini-025
mal overhead while largely preserving perfor-026
mance, and offering broad potential for inte-027
gration with real-time text streams from large028
language models.029

1 Introduction030

Text-to-speech (TTS) synthesis, which aims to gen-031

erate high-fidelity speech from text, has made re-032

markable progress, driven by advancements in gen-033

erative modeling (Shen et al., 2018; Li et al., 2019;034

Kim et al., 2021; Ren et al., 2021; Jeong et al.,035

2021; Wang et al., 2023), as well as the growing036

availability of computational power and data (Ma037

et al., 2024a; Kang et al., 2024; He et al., 2024;038

Chen et al., 2021a; Yang et al., 2025b). Conse-039

quently, modern TTS systems exhibit human-level040

parity in terms of naturalness and intelligibility,041

for both predefined speakers (Tan et al., 2024) and042

zero-shot scenarios (Chen et al., 2024a).043

While existing zero-shot TTS systems (Chen 044

et al., 2024a; Meng et al., 2024; Du et al., 2024a; 045

Wang et al., 2024; Eskimez et al., 2024; Chen 046

et al., 2024b) demonstrate promising performance 047

in synthesizing speech for unseen speakers, they 048

are typically trained in an offline mode and pro- 049

cess the entire input text before generating speech. 050

As a result, these systems suffer from high latency 051

and prohibitive computational costs when handling 052

very long texts. To mitigate these challenges, exist- 053

ing zero-shot streaming TTS systems (Dang et al., 054

2024a,b) break long text inputs into smaller chunks 055

and synthesize speech for each chunk separately. 056

However, this leads to inconsistencies across dif- 057

ferent chunks. There remains substantial room for 058

improving streaming TTS. 059

A more intuitive but less explored solution to 060

this challenge involves interleaving text and speech 061

tokens at a fixed ratio. This strategy leverages 062

the in-context learning (ICL) capabilities of lan- 063

guage models (LMs) to ensure consistent timbre 064

and prosody across speech segments while align- 065

ing naturally with the steady output rate of large 066

language models (LLMs). 067

With this perspective in mind, this paper intro- 068

duces Interleaved Speech-Text Language Model 069

(IST-LM) for zero-shot streaming TTS, a novel 070

paradigm that directly trains an LM on interleaved 071

sequences of text and speech tokens with a fixed 072

ratio. This eliminates the need for additional efforts 073

such as forced alignment to prepare training data 074

and complex system designs. To investigate the key 075

factors involved in the interleaving design, specifi- 076

cally chunk-internal size and chunk-mutual ratio, 077

we propose four sets of word-level, position-aware 078

statistical measures, and perform statistical analy- 079

ses on the entire training dataset. By correlating 080

these measures with the final model performance, 081

we uncover several key insights: 082

• The ratio of text chunk size to speech chunk size 083

directly affects 1) the distance between speech 084
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tokens and their corresponding text tokens, 2) the085

number of future text tokens accessible to each086

speech token, and 3) the frequency of speech087

tokens preceding their corresponding text tokens.088

• The mean distance between speech tokens and089

their corresponding text tokens reflects a trade-090

off: shorter distances impose stronger constraints091

on speech synthesis while limiting the available092

contextual information as fewer upcoming text093

tokens are accessible to the current speech token,094

further impacting model performance.095

• The variance in the distances between speech096

tokens and their corresponding text tokens indi-097

cates the modeling difficulty of the LM. When098

the chunk-mutual ratio is fixed, the variance099

changes very little.100

• The frequency of speech tokens preceding their101

corresponding text tokens is highest at the start102

of the interleaved sequence, increasing model-103

ing difficulty during training due to the lack of104

context from text tokens. However, this typically105

does not affect inference with speech prompts.106

Experiments conducted on LibriTTS, using the Lib-107

riSpeech test-clean set for zero-shot TTS evalua-108

tion, demonstrate that IST-LM with a 1: 3 ratio109

increases the word error rate (WER) by only 8%110

relatively compared to the non-streaming counter-111

part while maintaining comparable speaker sim-112

ilarity and overall perceived quality. IST-LM is113

conceptually simple and empirically powerful, pre-114

senting a promising solution for streaming TTS.115

We hope that our streaming TTS model and the116

insights derived from our analysis will contribute117

to the advancement of the voice interaction field.118

2 Related Work119

2.1 Speech Language Models120

The advent of LLMs has spurred the integration of121

multiple modalities by converting them into contin-122

uous or discrete tokens for joint training, which has123

emerged as a promising approach. Previous studies124

have explored the joint modeling of speech and125

text for various applications, including automatic126

speech recognition (ASR) (Ma et al., 2024b; Bai127

et al., 2024), text-to-speech synthesis (TTS) (Du128

et al., 2024a; Anastassiou et al., 2024), and voice129

dialog systems (Zhang et al., 2023; Zeng et al.,130

2024b). In these studies, some approaches treat131

text and speech tokens separately, with text tokens132

guiding speech tokens (Du et al., 2024a; Anastas-133

siou et al., 2024), or speech tokens guiding text 134

tokens (Ma et al., 2024b; Wu et al., 2023; Bai et al., 135

2024). Other approaches interleave text and speech 136

tokens. SpiritLM (Nguyen et al., 2024) randomly 137

replaces paired speech and text token spans to en- 138

hance modality switching during generation, while 139

ELLAV (Song et al., 2024b) interleaves phonemes 140

and their corresponding speech tokens to enforce 141

the constraint of text-to-speech synthesis. How- 142

ever, these two methods depend heavily on forced 143

alignment, which introduces additional computa- 144

tional overhead and poses challenges for scalability. 145

GLM-4-Voice (Zeng et al., 2024a) is pre-trained 146

on interleaved sequences of text and corresponding 147

synthesized speech data, bypassing forced align- 148

ment, yet the speech and text chunks remain paired 149

during training. OmniFlatten (Zhang et al., 2024) 150

is trained on interleaved dialogue sequences of text 151

and speech chunks with fixed sizes, where the text 152

chunk size is 2 and the speech chunk size is 10. 153

However, these chunk sizes are large and empiri- 154

cally chosen, with the ratio selected solely to pre- 155

vent the output text from excessively preceding 156

the speech content, lacking a deeper exploration 157

or analysis of alternative ratios. The investigation 158

of interleaving speech and text tokens at a fixed 159

remains limited. 160

2.2 Zero-Shot TTS 161

Zero-shot TTS systems enable speech synthesis for 162

unseen speakers by capturing the timbre, prosody, 163

and style from merely several seconds of speech 164

prompts. Early approaches primarily focus on 165

speaker adaptation (Arik et al., 2018; Chen et al., 166

2019, 2021c) and speaker encoding (Jia et al., 167

2018), often requiring model fine-tuning, feature 168

engineering, or complex structural designs. As lan- 169

guage modeling rapidly advances, the performance 170

of zero-shot TTS systems has greatly improved, 171

achieving human-level quality in naturalness and 172

intelligibility (Chen et al., 2024a). 173

Recent research in zero-shot TTS can be broadly 174

classified into two categories: some use speech 175

prompts (Wang et al., 2023; Chen et al., 2024a; Du 176

et al., 2025; Meng et al., 2024; Wang et al., 2025, 177

2024; Eskimez et al., 2024; Chen et al., 2024b) 178

or speaker vectors (Lajszczak et al., 2024) for 179

in-context learning (ICL), and others disentangle 180

speaker information from speech signals (Ju et al., 181

2024). More recent works (Du et al., 2024a,b; Yang 182

et al., 2025a) combine speaker disentanglement and 183

ICL to achieve better performance. 184
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2.3 Streaming TTS185

Streaming TTS systems incrementally convert in-186

coming text into a speech stream, aiming to reduce187

perceived latency, particularly for long inputs, by188

enabling audio playback before the entire text is189

processed. With the advent of LLMs, streaming190

TTS has been adapted for real-time voice synthesis191

from LLM outputs, improving the naturalness of192

voice interactions and enhancing user experience.193

Existing streaming TTS systems can be broadly194

divided into chunk-level and frame-level generation195

methods. Traditional chunk-level systems (Dekel196

et al., 2024; Dang et al., 2024a) segment the long197

text into chunks based on punctuation or word198

boundaries, and synthesize speech for each chunk199

separately, leading to inconsistencies and unnatural200

transitions across chunks. Subsequent work (Dang201

et al., 2024b) adopts sliding window and context202

pruning to alleviate these issues. Nevertheless,203

these methods heavily rely on complex rule-based204

segmentation and engineering optimization. Frame-205

level systems leverage the inherently streaming na-206

ture of neural Transducers (Graves et al., 2013).207

Early work like Speech-T (Chen et al., 2021b) fo-208

cuses on single-speaker synthesis without zero-shot209

capabilities. Several recent approaches (Du et al.,210

2025; Bataev et al., 2025; Kim et al., 2023; Lee211

et al., 2024) incorporate zero-shot capabilities but212

are primarily designed for non-streaming scenarios.213

Given that LLMs generate text at a constant rate,214

there is considerable potential for developing more215

efficient streaming TTS systems without intricate216

engineering efforts. This naturally raises the ques-217

tion: can speech be synthesized in parallel with218

LLM-generated text at a fixed ratio? In this work,219

we explore the feasibility of interleaving text and220

speech tokens with a fixed ratio, demonstrating its221

potential in voice dialogue systems.222

2.4 Concurrent Work223

Concurrent with our work, CosyVoice 21 (Du et al.,224

2024b) mixes text and speech tokens using a fixed225

ratio of 5:15 for streaming mode. In contrast to226

our approach, CosyVoice 2 emphasizes industrial-227

scale, multi-stage optimized TTS systems, with-228

out exploring alternative token ratios or analyzing229

deeper impacts. SyncSpeech (Sheng et al., 2025)230

interleaves paired text and speech tokens during231

training, further enabling the generation of multi-232

ple speech tokens in parallel at each step.233

1Preprinted in the same week.

3 Problem Formulation: Regarding 234

Streaming TTS as Interleaved 235

Speech-Text Language Modeling 236

Streaming TTS systems are required to continu- 237

ously synthesize speech segments from an incom- 238

ing text stream, generating speech outputs in real- 239

time scenarios. In this paper, we regard zero-shot 240

streaming TTS as an interleaved speech-text lan- 241

guage modeling task, treating streaming speech 242

synthesis as a joint sequential modeling problem. 243

Formulation Consider a speech sample y and its 244

corresponding transcription x. The transcription 245

x is converted into subword units using Byte Pair 246

Encoding (BPE) (Sennrich et al., 2016), resulting 247

in BPE token sequence x = [x0, x1, . . . , xS−1], 248

where S is the length of the tokenized sequence. A 249

pre-trained speech tokenizer is used to encode the 250

speech sample into speech tokens, denoted as y = 251

[y0, y1, . . . , yT−1] = Encodespch(y), where y rep- 252

resents the speech token sequence of downsampled 253

length T . After quantization, a pre-trained speech 254

detokenizer along with a vocoder can reconstruct 255

the waveform, denoted as Decodespch(y) ≈ ŷ. 256

We train a neural LM on the interleaved se- 257

quence of BPE tokens x and speech tokens y with 258

a predefined fixed ratio of n : m. The interleaved 259

sequence l is constructed as follows: 260

l = [x0:n−1, y0:m−1, xn:2n−1, ym:2m−1, . . .], (1) 261

where the BPE tokens and speech tokens are al- 262

ternated in blocks of size n and m, respectively. 263

Once the BPE tokens are consumed, the remain- 264

ing speech tokens are appended to the end of the 265

sequence. The LM is optimized to predict this inter- 266

leaved sequence l using cross-entropy loss. Specif- 267

ically, at each timestep t, the LM is expected to 268

predict the next speech token yt conditioned on the 269

previously generated sequence l<t. The optimiza- 270

tion objective is: 271

argmax
θ

p(lt | l<t; θ), (2) 272

where l<t represents the sequence [l0, l1, . . . , lt−1], 273

and θ denotes the parameters of the LM. Notably, 274

only losses for speech tokens are computed. 275

During inference, given the BPE tokens x of the 276

text to be synthesized, the speech tokens ỹ from 277

the speech prompt, and the BPE tokens x̃ of the 278

corresponding text prompt, the LM generates the 279

target speech tokens y in a streaming manner while 280

preserving the speaker characteristics of the speech 281
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interleaving

Speech Detokenizer

Personalized Speech

IST-LM

Text Tokenizer

Text Prompt

Speech Tokenizer

Acoustic Prompt

EOS

Decoder-only Transformer

Figure 1: An overview of the proposed IST-LM model, comprising (1) a BPE-based text tokenizer, (2) a supervised
speech tokenizer, (3) a decoder-only LM modeling interleaved sequence of speech and text tokens with a fixed ratio
(1: 2 is used for illustration in the figure) as input, and (4) a conditional flow matching decoder with a vocoder.

prompt. The BPE tokens x and x̃ are concatenated282

and treated as a unified sequence, which is then283

segmented into chunks of size n. For each chunk284

of n BPE tokens, the model generates m speech285

tokens, repeating this process until either the <EOS>286

token is produced or all BPE tokens are consumed.287

In the latter case, the model continues to generate288

the remaining speech tokens sequentially until the289

<EOS> token is emitted.290

Discussion The above formulation establishes291

a general language modeling paradigm that re-292

mains agnostic to implementation specifics, such293

as whether speech is represented using continuous294

or discrete tokens.295

4 IST-LM296

4.1 Architecture297

The overall architecture of IST-LM is illustrated in298

Fig. 1. IST-LM comprises the following main com-299

ponents: a BPE-based text tokenizer that converts300

raw text into sub-word tokens; a speech tokenizer301

that encodes speech samples into discrete speech302

tokens; a decoder-only LM that models interleaved303

sequences of speech and text tokens; a speech deto-304

kenizer with a built-in vocoder that synthesizes305

waveform from the speech tokens.306

4.2 Speech Tokenization and Detokenization 307

For speech tokenization, we utilize the pre-trained 308

S3Tokenizer from CosyVoice (Du et al., 2024a) to 309

extract discrete semantic speech tokens from the 310

waveform at a token rate of 50 Hz. This model is 311

a fine-tuned version of the SenseVoice-Large (An 312

et al., 2024) ASR model, which is trained on a 313

large multilingual speech dataset, providing robust 314

speech understanding capabilities. By leveraging 315

ASR loss during training, the S3Tokenizer can ex- 316

tract semantic information while disregarding irrel- 317

evant noise and speaker information. This enables 318

the S3Tokenizer to implicitly denoise and disentan- 319

gle speakers (Song et al., 2024a). 320

For speech detokenization, we adopt the pre- 321

trained optimal-transport conditional flow match- 322

ing model (OT-CFM) from CosyVoice (Du et al., 323

2024a) to decode speech tokens into mel spectro- 324

grams, which are then transformed into the wave- 325

form using the pre-trained HiFi-GAN (Kong et al., 326

2020) vocoder from CosyVoice (Du et al., 2024a). 327

4.3 Interleaved Speech-Text Language Model 328

We use a unidirectional Transformer decoder as the 329

LM to autoregressively generate discrete speech 330

tokens from the interleaved sequence of text and 331

speech tokens with a fixed ratio. Input text tokens, 332

appended with an <EOS> token, are embedded via 333
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the text embedding layer, while speech tokens are334

projected into the semantic space of LM through335

the acoustic embedding layer. By using distinct336

positional encodings for text and speech, the LM337

clearly distinguishes between the two modalities,338

leveraging multi-head attention and feed-forward339

layers to capture dependencies between semantic340

and acoustic information.341

5 Experiments342

5.1 Experimental Setup343

5.1.1 Dataset344

We conduct experiments on the LibriTTS (Zen345

et al., 2019) dataset, a multi-speaker English cor-346

pus with approximately 580 hours of speech from347

2,306 speakers. For text tokenization, we use 2,000-348

class BPE word pieces. Speech tokenization is car-349

ried out using the off-the-shelf S3Tokenizer model2350

from CosyVoice (Du et al., 2024a) at a token rate351

of 50Hz. Speech reconstruction is performed using352

the off-the-shelf OT-CFM model with the built-in353

vocoder, also from CosyVoice (Du et al., 2024a).354

5.1.2 Model355

We employ a decoder-only transformer architec-356

ture with 12 layers, 16 attention heads, 1024-357

dimensional embeddings, and 4096-dimensional358

feed-forward layers, with a total of 161.8M pa-359

rameters. All models are trained on 8 NVIDIA360

V100 32GB GPUs with a 160-second batch du-361

ration per GPU for 50 epochs. We utilize the362

ScaledAdam (Yao et al., 2024) optimizer and363

Eden (Yao et al., 2024) scheduler, with a peak learn-364

ing rate of 0.045.365

5.2 Evaluation366

5.2.1 Evaluation Settings367

We use the LibriSpeech (Panayotov et al., 2015)368

test-clean set for zero-shot TTS evaluation, ensur-369

ing no overlap in speakers with the training set.370

Following previous practice (Wang et al., 2023),371

the same test set is employed, which comprises372

audio segments ranging from 4 to 10 seconds, to-373

taling 2.2 hours of data from 40 unique speakers374

and 1,234 samples. We evaluate IST-LM under two375

inference tasks:376

• Continuation: Using the text transcription and377

the first 3 seconds of an utterance as a prompt, the378

model synthesizes the remainder of the speech;379

2https://github.com/xingchensong/S3Tokenizer

• Cross-Sentence: Using a reference utterance and 380

its transcription as the prompt, the model gener- 381

ates speech for the target text while preserving 382

the characteristics of the speaker. 383

5.2.2 Evaluation Metrics 384

We employ the following objective metrics, includ- 385

ing WER, SIM, and UTMOSv2, to assess the ro- 386

bustness, speaker similarity, overall perceived qual- 387

ity, and efficiency of the proposed method, respec- 388

tively. For the continuation task, we evaluate the 389

entire utterance rather than just the continuation 390

segment for a more complete comparison. 391

• WER-H (Word Error Rate) is used to evaluate 392

the robustness and intelligibility of synthesized 393

speech. Neural TTS systems often encounter ro- 394

bustness issues. To evaluate these, we perform 395

speech recognition on the synthesized output us- 396

ing the HuBERT-Large (Hsu et al., 2021) ASR 397

model3 and calculate the WER between the gen- 398

erated transcripts and the ground truth text. 399

• SIM-o (Speaker Similarity) measures the simi- 400

larity between the original prompt and synthe- 401

sized speech. We use the state-of-the-art speaker 402

verification model WavLM-TDNN4 (Chen et al., 403

2022). The similarity score predicted by WavLM- 404

TDNN ranges from [−1, 1], with a higher score 405

indicating greater speaker similarity. 406

• UTMOSv2 measures the naturalness and over- 407

all quality of synthesized speech. We use the 408

UTokyo-SaruLab Mean Opinion Score Predic- 409

tion System v2 (UTMOSv2) (Baba et al., 2024), 410

a model-based, non-intrusive speech quality met- 411

ric trained on human ratings. The predicted score 412

ranges from 1 to 5, with higher scores denoting 413

better perceptual quality. UTMOSv2 offers an 414

efficient and reliable estimation of human judg- 415

ment in speech synthesis evaluation. 416

• RTF (Real-Time Factor) measures the time taken 417

to synthesize one second of speech and reflects 418

system efficiency, especially in real-time scenar- 419

ios. We report RTF on an NVIDIA TESLA A100 420

80G GPU, calculated from the average inference 421

time for generating 10 seconds of speech with a 422

batch size of 1. 423

3https://huggingface.co/facebook/
hubert-large-ls960-ft

4https://github.com/microsoft/UniSpeech/
tree/main/downstreams/speaker_verification#
pre-trained-models
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Table 1: Objective performance comparison on continuation and cross-sentence zero-shot speech synthesis tasks.
IST-LMn:m represents streaming systems with a text chunk size of n and a speech chunk size of m, while IST-
LM∞:∞ refers to non-streaming system. Bold highlights the best result among streaming systems, while underlined
marks the second-best. ∗Metrics not reported in the original papers are calculated using the checkpoints provided by
their authors.

System Continuation Cross-Sentence

WER-H↓ SIM-o↑ WER-H↓ SIM-o↑ RTF↓

Ground Truth 2.15 0.905 2.15 0.779 -
Ground Truth (EnCodec) 2.33 0.823 2.33 0.715 -
Ground Truth (S3Tokenizer v1 50Hz) 2.94 0.791 3.09 0.746 -

Trained on Large-Scale Dataset
VALL-E (Wang et al., 2023) 3.80 0.773 5.90 0.633 0.73
MaskGCT∗ - - 4.22 0.756 0.65
E2 TTS (32 NFE)∗ - - 2.92 0.756 0.68

Trained on Small-Scale Dataset
VALL-E 4.47 0.730 8.64 0.531 0.73
IST-LM∞:∞ 3.35 0.756 4.16 0.652 0.40
IST-LM1:2 3.69 0.754 4.61 0.649 0.40
IST-LM1:3 3.60 0.757 4.53 0.653 0.40
IST-LM1:4 5.73 0.757 6.86 0.645 0.40
IST-LM3:6 3.77 0.757 5.26 0.650 0.40
IST-LM3:9 3.65 0.757 4.75 0.652 0.40
IST-LM3:12 3.89 0.757 5.20 0.649 0.40
IST-LM6:12 3.76 0.758 5.86 0.650 0.40
IST-LM6:18 3.71 0.755 5.38 0.647 0.40
IST-LM6:24 5.74 0.753 8.90 0.643 0.40
IST-LM12:24 3.86 0.757 5.96 0.646 0.40
IST-LM12:36 3.70 0.754 5.58 0.649 0.40
IST-LM12:48 3.80 0.756 5.19 0.646 0.40

Table 2: Predicted MOS comparison on cross-sentence
zero-shot speech synthesis tasks.

System UTMOSv2↑

Ground Truth 3.22
Ground Truth (S3Tokenizer v1 50Hz) 3.30

Trained on Large-Scale Dataset
MaskGCT 2.92
E2 TTS (32 NFE) 2.82

Trained on Small-Scale Dataset
VALL-E 2.12
IST-LM∞:∞ 3.32
IST-LM1:3 3.30

5.2.3 Baseline Systems424

We evaluate our systems against several state-of-425

the-art (SOTA) zero-shot TTS systems. For a fair426

comparison, we reproduce VALL-E using the same427

training data. In addition, we compare our systems428

with multiple SOTA systems, including MaskGCT,429

E2-TTS, and the original VALL-E trained on a430

large-scale dataset. Note that our goal is not to pur-431

sue SOTA performance, but rather to comprehen-432

sively explore the proposed interleaved speech-text433

language modeling paradigm on a relatively small 434

dataset. More details about the baseline systems 435

are provided in Appendix A. 436

5.3 Main Results 437

Table 1 presents comparisons between our pro- 438

posed IST-LM and the baselines in terms of robust- 439

ness, similarity, and efficiency on the LibriSpeech 440

test-clean set. Table 2 reports the overall perceived 441

quality of IST-LM compared to the baselines. 442

5.3.1 Comparison with Baselines 443

IST-LM∞:∞ consistently outperforms two VALL- 444

E variants across all evaluation metrics for both 445

continuation and cross-sentence tasks, despite the 446

reconstructed ground truth from S3Tokenizer being 447

notably inferior in quality to that from EnCodec. 448

IST-LM is based on 50Hz single-layer semantic 449

speech tokens from S3Tokenizer, whereas VALL-E 450

relies on 75Hz eight-layer acoustic speech tokens 451

from EnCodec. This suggests that single-layer se- 452

mantic representations are more amenable to effec- 453

tive modeling by language models. 454

Remarkably, despite being trained with much 455
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Table 3: Objective performance of IST-LM1:3 using the decoder in chunk-wise streaming mode. Once the generated
tokens reach the sum of Chunk Size and Right Context, they are fed into the decoder, with Right Context as
lookahead.

Chunk Size Right Context Continuation Cross-Sentence

WER-H↓ SIM-o↑ WER-H↓ SIM-o↑

- - 3.60 0.757 4.53 0.653
50 20 3.75 0.762 5.36 0.663
25 10 3.74 0.753 5.50 0.651
15 6 4.24 0.722 5.82 0.628

less data, IST-LM∞:∞ outperforms the large-scale456

trained MaskGCT in both intelligibility and over-457

all perceived quality, albeit with reduced similar-458

ity. Furthermore, both our non-streaming IST-459

LM∞:∞ and streaming IST-LM1:3 achieve human-460

level overall perceived quality, outperforming the461

ground-truth recordings, MaskGCT, and E2 TTS462

on the cross-sentence task. We also observe that463

the reconstructed ground-truth speech from the464

S3Tokenizer surpasses the original in overall per-465

ceived quality, which we attribute to flow matching466

in the speech detokenizer.467

Compared to all baselines, IST-LM achieves the468

lowest RTF, which can be attributed to its compact469

design. Speech detokenization is performed once470

after all speech tokens are generated. The total471

number of generated tokens remains the same re-472

gardless of streaming mode or interleaving ratio.473

As a result, the RTF exhibits only minor variation474

and is reported as a single value.475

5.3.2 Comparison among Streaming Variants476

Among all streaming systems, IST-LM1:3 achieves477

the best overall performance on both continu-478

ation and cross-sentence tasks. Compared to479

its non-streaming counterpart IST-LM∞:∞, IST-480

LM1:3 exhibits a relatively small WER gap, specif-481

ically 6.94% for continuation and 8.17% for cross-482

sentence, and comparable similarity. These results483

demonstrate that IST-LM effectively maintains per-484

formance for streaming without the need for com-485

plex engineering.486

5.3.3 Comparison under Chunk-wise487

Streaming488

Table 3 provides results for IST-LM1:3 with the de-489

coder in chunk-wise streaming mode. The model490

generates speech tokens concurrently with wave-491

form synthesis, and the response latency is con-492

trolled by the chunk size and right context.493

1 3 6 12
n

2x
3x

4x
m

3.69 3.77 3.76 3.86

3.60 3.65 3.71 3.70

5.73 3.89 5.74 3.80

(a) Continuation

1 3 6 12
n

2x
3x

4x
m

4.61 5.26 5.86 5.96

4.53 4.75 5.38 5.58

6.86 5.20 8.90 5.19

(b) Cross-Sentence

Figure 2: Heatmap of WER of continuation and cross-
sentence tasks as the ratio of text chunk size n to speech
chunk size m varies. The horizontal axis represents the
text chunk size n, while the vertical axis represents the
speech chunk size m. The color intensity reflects the
magnitude of the WER values.

6 Analyses 494

6.1 Impact of Ratio on Performance 495

Fig. 2 shows a heatmap of WERs for two tasks. 496

The horizontal axis represents text chunk size n, 497

while the vertical axis represents speech chunk size 498

m. As n increases, WER for both continuation and 499

cross-sentence tasks generally increases, except for 500

two noise outliers (1: 4 and 12: 48), indicating that 501

larger chunk sizes tend to have worse performance. 502

Additionally, as the value of ratio n : m increases, 503

WER first decreases and then increases, reflecting 504

the influence of multiple factors. 505

6.2 Definitions of Position-Aware Measures 506

To investigate the key factors involved in the in- 507

terleaving design, including chunk-internal size 508

and chunk-to-chunk ratio, we propose four sets 509

of word-level, position-aware statistical measures. 510

Each training sample comprises up to 72 words. 511

For each word j in sample i, it can be encoded 512

into multiple BPE tokens x0ij , x
1
ij , . . . , x

l1
ij , and cor- 513

responding speech tokens y0ij , y
1
ij , . . . , y

l2
ij are ob- 514

tained through word-level forced alignment. We de- 515

fine the distance between tokens x and y as d(x, y). 516
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(a) Average µD

Text-Speech Distance (Std)

(b) Average σD (c) Average A

Figure 3: Correlation between the three statistical measures and the WERs of continuation and cross-sentence tasks.
The WERs are grouped by the values of the ratio n : m, with the central points of each group represented by large
circles (x : 2x, x : 3x, x : 4x). For each group, the four data points are fitted using Linear Regression with Random
Sample Consensus (RANSAC), and the fitted lines are shown as dashed lines.

The speech-text distance for word j in sample i,517

denoted Dij , is calculated as the average distance518

between each speech token and all corresponding519

BPE tokens: Dij = 1
l2

∑l2
k=1

1
l1

∑l1
r=1 d(x

r
ij , y

k
ij).520

The mean and standard deviation of the speech-text521

distance for each word position j across the entire522

training set are denoted as µDj and σDj , respec-523

tively. Similarly, we define the average number524

of future words accessible by the speech tokens525

corresponding to each word position as Aj . Addi-526

tionally, we analyze the frequency with which the527

speech tokens corresponding to each word position528

precede the BPE tokens of the current word, de-529

noted as Fj . We perform statistical analyses on the530

training dataset using the above-mentioned mea-531

sures. Fig. 4 visualizes µDj , σDj , Aj , and Fj for532

each word position j across different ratio settings.533

6.3 Impact of Position-Aware Measures on534

Performance535

Fig. 3 shows the correlation between average mea-536

sures of all word positions and WERs for two tasks,537

leading to the following conclusions:538

• Effect of n : m: The ratio n : m directly affects539

µDj , σDj , Aj , and Fj . Specifically, when the540

value of ratio is fixed and n (i.e., chunk-internal541

size) increases, both µDj and Aj increase, σDj542

slightly increases, and Fj decreases. Conversely,543

when n is fixed and the ratio (i.e., chunk-to-chunk544

ratio) increases, µDj and σDj decrease, Aj de-545

creases, and Fj increases.546

• Effect of µDj , σDj , Aj: When µDj increases,547

σDj and Aj also increases. The WER for both548

continuation and cross-sentence tasks first de-549

creases and then increases. This reflects a trade-550

off, where shorter distances impose stronger con- 551

straints on speech synthesis, limiting contextual 552

information as fewer upcoming text tokens are 553

accessible to the current speech token while in- 554

creasing the modeling difficulty for the LM. 555

• Effect of Fj: The frequency of speech tokens 556

preceding text tokens occurs mainly at the start 557

of the interleaved sequence when n is small and 558

the ratio is large. This increases training diffi- 559

culty, as the speech tokens lack text context, but 560

typically do not affect inference with the speech 561

prompt, except for the 1: 4 ratio, which exhibits 562

abnormally high WERs. 563

• Outlier analysis: IST-LM12:48 exhibits abnor- 564

mally low WERs, as around 40% of test samples 565

in the continuation task contain no more than 24 566

text tokens, resembling non-streaming behavior. 567

7 Conclusion 568

This paper introduces IST-LM for zero-shot stream- 569

ing TTS, which is directly trained on interleaved 570

text and speech tokens at a fixed ratio. Experi- 571

ments on LibriTTS demonstrate that IST-LM with a 572

1: 3 ratio significantly outperforms other streaming 573

systems, achieving acceptably worse intelligibility 574

compared to non-streaming counterpart while main- 575

taining comparable speaker similarity and overall 576

perceived quality. Furthermore, our analysis pro- 577

vides several insights into how the ratio impacts per- 578

formance, revealing the trade-offs between enforc- 579

ing textual constraints and leveraging contextual 580

information in speech synthesis. We hope that the 581

language modeling paradigm of IST-LM and the 582

insights gained from our analysis will contribute to 583

advancing the field of voice interaction. 584
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Limitations585

Despite the promising performance and compact586

topology, we acknowledge several limitations. This587

work initially employed a non-streaming decoder588

and simulated streaming inference by chunking589

speech tokens, due to the unavailability of an off-590

the-shelf streaming decoder at the time. This led591

to first-packet latency constrained by the chunk592

size and degraded speech quality. We anticipate593

that performance will improve with an advanced594

streaming decoder.595
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A Details of Baselines822

• VALL-E (Wang et al., 2023): A two-stage TTS823

system that includes both autoregressive (AR)824

and non-autoregressive (NAR) models to gener-825

ate RVQ tokens at 75Hz, based on EnCodec (Dé-826

fossez et al., 2023). We consider two VALL-827

E variants: (1) the version trained on the Lib-828

rilight corpus (Kahn et al., 2020), for which829

we use the performance results from the origi-830

nal paper (Wang et al., 2023) and RTF reported831

in (Meng et al., 2024) using the official check-832

point; and (2) a reproduction trained on Lib-833

riTTS (Zen et al., 2019), using the publicly avail-834

able codebase5.835

• E2 TTS (Eskimez et al., 2024): A fully NAR sys-836

tem based on flow-matching, comprising 333M837

parameters. We use the publicly available pre-838

trained checkpoint6, trained on 100K hours of839

in-the-wild Chinese and English data from the840

Emilia corpus (He et al., 2024).841

5https://github.com/lifeiteng/vall-e
6https://huggingface.co/SWivid/E2-TTS

• MaskGCT (Wang et al., 2024): A fully NAR 842

two-stage TTS system based on masked lan- 843

guage modeling, comprising a 695M text-to- 844

semantic model and a 353M semantic-to-acoustic 845

model. We use the official pre-trained check- 846

point7, trained on 100K hours of in-the-wild Chi- 847

nese and English data from Emilia corpus (He 848

et al., 2024). 849

B Visualization of Statistical Measures 850

Fig. 4 presents heatmaps illustrating the values of 851

four statistical metrics across different positions 852

(from top to bottom) and varying ratios of text 853

chunk size to speech chunk size (from left to right). 854

Darker colors indicate higher values. 855

7https://huggingface.co/amphion/MaskGCT

11

https://arxiv.org/abs/2412.02612
https://arxiv.org/abs/2412.02612
https://arxiv.org/abs/2412.02612
https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2410.17799
https://arxiv.org/abs/2410.17799
https://arxiv.org/abs/2410.17799
https://github.com/lifeiteng/vall-e
https://huggingface.co/SWivid/E2-TTS
https://huggingface.co/amphion/MaskGCT


7 5 5 9 8 8 12 11 11 17 17 17

20 14 10 22 17 13 28 24 22 31 29 28

35 26 19 38 30 23 43 37 33 49 45 42

51 39 29 53 43 35 57 49 42 66 61 57

65 52 40 68 55 44 70 59 50 81 76 72

80 65 51 82 68 55 85 73 62 95 88 82

94 78 62 96 81 67 100 87 74 108 99 90

108 90 73 110 94 77 114 99 85 120 109 97

122 103 84 124 106 89 127 112 95 132 119 106

136 116 95 138 119 100 141 124 106 145 131 116

150 128 106 152 132 111 155 136 117 160 144 128

163 141 117 165 144 122 168 149 128 174 158 141

177 153 129 179 156 133 182 161 139 189 172 154

190 165 139 192 169 144 195 173 150 202 184 165

204 178 150 206 181 155 209 185 161 215 196 175

217 190 161 219 193 165 222 197 172 228 207 184

231 202 172 233 205 176 236 210 182 241 218 194

244 214 183 246 217 187 249 222 193 255 230 205

258 226 194 260 229 198 263 234 204 268 242 215

271 238 204 273 241 208 276 246 214 282 255 226

285 250 215 287 253 219 290 258 225 296 267 237

299 263 226 301 266 230 304 270 236 310 279 248

312 275 236 314 278 241 317 282 247 324 292 259

326 287 247 328 290 251 331 295 257 337 304 270

340 299 258 342 302 262 345 307 268 351 316 280

354 311 269 356 314 273 359 319 279 365 328 291

368 324 279 370 327 283 373 331 289 378 340 301

381 335 290 383 338 294 386 343 300 392 352 312

395 348 300 397 351 304 400 355 310 406 364 322

409 360 311 411 363 315 414 367 321 420 376 333

422 372 321 424 375 325 427 380 331 434 389 344

436 384 332 438 387 336 441 392 342 447 401 354

450 396 342 452 399 346 455 404 352 461 413 364

464 409 353 466 412 357 469 416 363 475 425 375

478 421 364 480 424 368 483 429 374 489 438 386

492 433 375 494 436 379 497 441 385 503 450 397

506 446 385 508 449 389 511 453 395 517 462 407

520 458 396 522 461 400 525 465 406 531 474 418

534 470 407 536 473 411 539 478 417 545 487 429

548 482 417 550 485 421 553 490 427 559 499 439

561 494 427 563 497 431 566 502 437 572 511 449

576 507 438 578 510 442 581 514 448 587 523 460

589 519 449 591 522 453 594 526 459 600 535 471

603 531 459 605 534 463 608 538 469 614 547 481

617 543 470 619 546 474 622 551 480 628 560 492

630 555 480 632 558 484 635 563 490 641 572 502

644 567 490 646 570 494 649 574 500 655 583 512

658 579 501 660 582 505 663 587 511 669 596 523

672 591 511 674 594 515 677 599 521 683 608 533

685 603 521 687 606 525 690 611 531 696 619 543

698 615 531 700 618 535 703 622 541 709 631 553

711 626 540 713 629 544 716 633 550 722 642 562

724 638 551 727 641 555 730 645 561 736 654 573

739 650 562 741 653 566 744 658 572 750 667 584

753 662 572 755 665 576 758 670 582 764 679 594

767 675 583 769 678 587 772 682 593 778 691 605

779 685 592 781 688 596 784 693 602 790 702 614

792 697 601 794 700 605 797 704 611 803 713 623

802 706 609 804 709 613 807 713 619 813 722 631

814 716 617 816 719 621 819 723 627 825 732 640

827 727 627 829 730 631 832 734 637 838 743 649

839 737 635 841 740 639 844 745 645 850 753 657

852 748 645 854 751 649 857 756 655 862 764 666

865 760 655 867 763 659 870 767 665 876 776 677

877 771 664 879 774 668 882 778 674 888 787 686

888 780 672 890 783 676 893 788 682 899 797 694

901 792 683 903 795 687 906 799 692 912 809 705

915 804 693 917 807 697 921 812 704 927 821 716

927 815 702 929 818 706 932 822 712 939 832 725

941 826 711 943 829 715 946 834 721 952 843 733

960 843 726 962 846 730 965 851 736 972 861 749

1044 911 778 1046 914 782 1050 919 789 1061 936 811

200

400

600

800

1000

(a) Text-Speech Distance
(Mean)

5 4 3 5 4 3 5 4 4 4 4 4

12 11 9 13 11 10 13 11 10 13 12 11

17 15 14 17 16 14 17 15 15 18 18 16

21 19 18 21 19 18 21 19 18 22 21 20

24 23 21 25 23 22 25 23 23 25 23 23

28 26 24 28 26 24 28 26 25 27 26 26

31 29 27 31 29 27 31 29 28 30 29 30

34 31 30 34 31 30 34 31 30 34 32 33

36 34 33 36 34 33 36 34 33 37 35 35

39 37 35 39 37 35 39 37 36 40 39 38

41 39 38 41 39 38 41 39 38 43 41 40

43 41 40 44 41 40 44 42 40 45 43 42

46 44 42 46 44 42 46 44 43 46 45 44

48 46 44 48 46 45 48 46 45 48 47 46

50 48 47 50 48 47 50 48 47 50 49 48

52 50 49 52 50 49 52 51 49 52 51 50

54 52 51 54 52 51 54 53 51 55 53 53

56 55 53 56 55 53 56 55 53 57 56 55

59 57 55 59 57 55 59 57 56 59 58 57

61 59 57 61 59 58 61 59 58 61 60 59

63 61 59 63 61 60 63 61 60 63 62 61

65 63 62 65 63 62 65 63 62 65 64 63

67 65 64 67 65 64 67 65 64 67 66 65

69 67 65 69 67 66 69 67 66 69 67 67

71 69 67 71 69 68 71 69 68 71 69 69

73 71 69 73 71 70 73 71 70 73 72 71

75 73 71 75 73 71 75 73 72 75 74 73

77 75 73 77 75 73 77 75 74 77 76 75

79 77 75 79 77 75 79 77 76 80 78 76

81 79 77 81 79 77 81 79 77 81 79 78

83 81 79 83 81 79 83 81 79 83 81 80

85 83 81 85 83 81 85 83 81 85 83 82

87 85 83 87 85 83 87 85 83 87 85 84

89 87 85 89 87 85 89 87 85 90 87 86

91 89 87 91 89 87 91 89 87 92 89 88

94 91 89 94 91 89 94 91 89 94 91 90

95 93 91 96 93 91 96 93 91 96 93 92

98 95 93 98 95 93 98 95 93 98 95 94

100 97 95 100 97 95 100 97 95 100 97 96

101 99 96 101 99 97 101 99 97 102 99 97

103 101 98 103 101 98 103 101 99 104 101 99

105 102 100 105 102 100 105 102 100 105 103 101

107 104 102 107 104 102 107 104 102 107 104 102

108 106 103 108 106 103 108 106 104 109 106 104

110 107 105 110 107 105 110 107 105 111 108 106

112 109 107 112 109 107 112 109 107 112 109 107

114 110 108 114 110 108 114 111 108 114 111 109

116 112 110 116 112 110 116 112 110 116 113 111

117 114 112 117 114 112 117 114 112 117 114 112

118 115 113 118 115 113 118 115 113 118 116 114

120 117 115 120 117 115 120 117 115 120 117 116

121 118 116 121 118 116 121 118 116 121 118 117

123 119 117 123 119 117 123 120 117 123 120 118

125 121 119 125 121 119 125 121 119 125 122 120

126 123 120 126 123 120 126 123 121 126 123 122

128 125 123 128 125 123 128 125 123 129 126 124

130 126 124 130 126 124 130 126 124 130 127 125

131 127 125 131 127 125 131 127 125 131 128 125

130 127 125 130 127 125 130 127 125 130 127 125

132 129 127 132 129 127 132 129 127 132 129 127

132 129 127 132 129 127 132 129 127 132 129 127

133 130 128 133 130 128 133 129 127 133 130 128

133 130 128 133 130 128 133 130 128 133 130 128

135 132 130 135 132 130 135 132 130 135 132 130

135 132 130 135 132 130 135 132 130 135 132 130

136 132 131 136 133 131 136 133 131 135 132 131

137 134 132 137 134 132 137 134 132 137 134 132

139 136 134 139 136 134 139 136 134 139 136 135

139 136 134 139 136 135 139 136 135 139 137 136

142 139 137 142 139 137 142 139 138 142 140 139

135 133 133 135 133 133 135 133 132 136 134 133

92 95 99 92 96 99 94 98 103 94 99 103

20

40

60

80

100

120

140

(b) Text-Speech Distance
(Std)

0.9 0.3 0.1 1.4 0.7 0.5 2.6 2.3 2.2 5.4 5.3 5.3

3.4 1.7 0.9 3.9 2.3 1.4 4.6 3.0 2.1 5.8 4.8 4.6

5.8 3.4 2.0 6.2 3.9 2.5 6.7 4.6 3.2 7.6 5.5 4.4

7.6 4.8 3.0 7.9 5.2 3.5 8.3 5.8 4.2 9.1 6.8 5.1

9.0 6.1 4.0 9.2 6.4 4.4 9.6 6.9 5.0 10.1 7.9 6.2

10.1 7.2 4.9 10.3 7.5 5.3 10.5 7.9 5.8 10.9 8.6 6.9

10.9 8.1 5.8 11.1 8.4 6.1 11.2 8.7 6.6 11.5 9.3 7.5

11.5 8.9 6.5 11.6 9.2 6.9 11.7 9.5 7.3 12.0 10.0 8.1

11.9 9.6 7.3 12.0 9.8 7.5 12.1 10.1 7.9 12.3 10.5 8.6

12.2 10.2 7.9 12.2 10.3 8.1 12.3 10.5 8.5 12.4 10.9 9.1

12.3 10.6 8.4 12.4 10.7 8.7 12.4 10.9 9.0 12.5 11.2 9.5

12.4 10.9 8.9 12.4 11.0 9.1 12.4 11.2 9.4 12.5 11.4 9.8

12.4 11.1 9.3 12.4 11.2 9.4 12.4 11.3 9.7 12.4 11.5 10.1

12.3 11.3 9.6 12.3 11.4 9.7 12.3 11.5 9.9 12.3 11.6 10.3

12.2 11.4 9.8 12.2 11.5 10.0 12.2 11.5 10.1 12.2 11.6 10.5

12.1 11.5 10.1 12.1 11.5 10.2 12.1 11.6 10.3 12.1 11.7 10.6

12.0 11.5 10.2 12.0 11.5 10.3 12.0 11.6 10.5 12.0 11.6 10.7

11.9 11.5 10.4 11.9 11.5 10.5 11.9 11.6 10.6 11.9 11.6 10.8

11.8 11.5 10.5 11.8 11.5 10.6 11.8 11.6 10.7 11.8 11.6 10.9

11.6 11.5 10.6 11.6 11.5 10.7 11.6 11.5 10.8 11.6 11.5 10.9

11.5 11.4 10.7 11.5 11.4 10.7 11.5 11.4 10.8 11.5 11.5 10.9

11.4 11.4 10.7 11.4 11.4 10.8 11.4 11.4 10.9 11.4 11.4 11.0

11.3 11.3 10.8 11.3 11.3 10.8 11.3 11.3 10.9 11.3 11.3 11.0

11.2 11.2 10.8 11.2 11.2 10.8 11.2 11.2 10.9 11.2 11.2 10.9

11.2 11.1 10.8 11.2 11.1 10.8 11.2 11.1 10.9 11.2 11.1 10.9

11.1 11.0 10.8 11.1 11.0 10.8 11.1 11.0 10.8 11.1 11.0 10.9

10.9 10.9 10.7 10.9 10.9 10.7 10.9 10.9 10.8 10.9 10.9 10.8

10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.8 10.7

10.7 10.7 10.6 10.7 10.7 10.6 10.7 10.7 10.6 10.7 10.7 10.6

10.6 10.6 10.5 10.6 10.6 10.5 10.6 10.6 10.6 10.6 10.6 10.6

10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5

10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4

10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3

10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2

10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9

9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8

9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6

9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

9.3 9.3 9.2 9.3 9.3 9.2 9.3 9.3 9.2 9.3 9.3 9.3

9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1

9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0

8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8

8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6

8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4

8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2

8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0

7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8

7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3

7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8

6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6

5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6

4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2

3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0

2

4

6

8

10

12

(c) Accessible Future
Words

1.3 2.5 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.8 2.3 0.1 0.5 1.5 0.0 0.0 0.1 0.0 0.0 0.0

0.0 0.1 0.7 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(d) Unbound Speech To-
kens

Figure 4: Visualization of four statistical measures. From left to right in each plot, the ratios are 1: 2, 1: 3, 1: 4,
3: 6, 3: 9, 3: 12, 6: 12, 6: 18, 6: 24, 12: 24, 12: 36, and 12: 48. From top to bottom, the plots correspond to the
first through the 72nd word. The color intensity reflects the magnitude of the values.
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